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Abstract
Hydration free energy calculations have become important tests of force fields. Alchemical free
energy calculations based on molecular dynamics simulations provide a rigorous way to calculate
these free energies for a particular force field, given sufficient sampling. Here, we report results of
alchemical hydration free energy calculations for the set of small molecules comprising the 2011
Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenge. Our calculations
are largely based on the Generalized Amber Force Field (GAFF) with several different charge
models, and we achieved RMS errors in the 1.4-2.2 kcal/mol range depending on charge model,
marginally higher than what we typically observed in previous studies1-5. The test set consists of
ethane, biphenyl, and a dibenzyl dioxin, as well as a series of chlorinated derivatives of each. We
found that, for this set, using high-quality partial charges from MP2/cc-PVTZ SCRF RESP fits
provided marginally improved agreement with experiment over using AM1-BCC partial charges
as we have more typically done, in keeping with our recent findings5. Switching to OPLS
Lennard-Jones parameters with AM1-BCC charges also improves agreement with experiment. We
also find a number of chemical trends within each molecular series which we can explain, but
there are also some surprises, including some that are captured by the calculations and some that
are not.
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1 Introduction
Hydration free energies based on molecular simulations have amassed numerous
applications over the last decade1-15. This widespread interest is grounded in the fact that
hydration free energies provide a rigorous test of force field accuracy, to the extent that all
system degrees of freedom are adequately sampled. By extension, these calculations are
believed to provide a proxy for the accuracy that can reasonably be expected in binding free
energy calculations. Though these expectations may be well-founded, systematic tests of
hydration free energies were typically limited to amino acid sidechain analogs until very
recently (i.e. beginning around 20071), with few tests on diverse sets of small molecules.
Perhaps as a consequence, hydration free energies, which yield just a single number
potentially influenced by all of the force field parameters, have not been directly
incorporated into force field development.

The relationship between hydration free energies and ligand-receptor binding free energies
is complex, but not to be over-looked. Binding of a ligand to a receptor partially removes the
ligand from solvent, and partially desolvates the receptor binding site. If, in the best case
scenario, bound state interactions between the ligand, protein, and environment are well
predicted, then the error in computed binding free energies will be dominated by any error in
the hydration free energy. If errors in modeling hydration free energies are consistent within
a chemical series, binding free energy calculations may still yield accurate relative free
energy predictions. However, to predict binding of individual compounds, accurate absolute
hydration free energies are necessary as well. In either of these general scenarios, the
accuracy of hydration free energies, relative or absolute, sets a lower bound on the total error
of predicted binding affinities (in the absence of fortuitous cancellation of error between
hydration and binding calculations). Indeed, RMS errors in calculated binding free energies
have proven comparable to or slightly larger than errors observed in hydration free energy
calculations16-20.

While hydration free energies are important, the experimental data is still somewhat limited:
the largest test sets typically span 200-500 small molecules covering a relatively narrow
range of chemical space3,5,14,21 for which the molecules have been studied extensively.
However, pharmaceuticals often have a variety of functional groups which are only sparsely
represented in these sets, fostering interest in new benchmarks. Several hydration free
energy “prediction”1 challenges have focused on more diverse sets of small
molecules2,4,22,23. Depending on the nature of the test set, performance can be substantially
worse on the diverse, polyfunctional molecules in these test sets than on more typical test
sets2,4,12. In some cases, these tests provide new insights – for example, the Generalized
Amber Force Field (GAFF)24,25 does not properly model hypervalent sulfur compounds and
shows systematic errors in alcohols which grow with the number of hydroxyl groups12.

Here, we report our results from the latest SAMPL hydration free energy challenge, which
in this case focuses on three molecules and their chlorinated derivatives. This data set is
more focused than those of previous SAMPL challenges, providing an especially good
opportunity to gain new insight. In these calculations, we applied our “standard” hydration
free energy approach based on AM1-BCC partial charges26,27 with the GAFF small
molecule parameter set24,25, but we also took several other approaches. We tested an
alternate set of partial charges from MP2/cc-PVTZ SCRF RESP28 fits following the success
of our recent work5. Alternatively, we tried a new set of QM-based charges calculated using
explicit solvent simulations of each molecule to develop a solvent reaction field used in

1These are perhaps not true predictions, as the data is typically available in the literature, but often in relatively obscure places,
requiring individual attention from a skilled practitioner to extract hydration free energies and evaluate the accuracy of the data.
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performing a fit of charges. We also took another approach for assigning GAFF or GAFF-
like parameters, using OEAnte29. Further, we tested some newly developed aromatic carbon
Lennard-Jones parameters. Finally, after seeing the correct hydration free energies for the
molecules in the SAMPL challenge, we generated new estimates using OPLS30 Lennard-
Jones parameters for two of our submitted charge models, as well as a third charge model
augmented with virtual sites to improve the molecular mechanics fit of MP2/cc-pvTZ SCRF
calculations. These numerous approaches help to answer three fundamental questions about
molecular mechanical hydration free energies. First, which charge model excels? Second,
which van der Waals model excels? Third, given a specific quantum mechanical description
of the electrostatics, does the quality of the molecular mechanics approximation to the
quantum data matter?

2 Method
2.1 Overview

Our approach for hydration free energy calculations uses molecular dynamics simulations
based on a classical atomistic force field to sample small molecules in water and in the gas
phase, as well as at a variety of partially interacting intermediate “alchemical” states
spanning between these end states. Using data collected from these simulations (specifically,
potential energy differences evaluated between pairs of simulations) we are able to compute
hydration free energies, in this case using the Multistate Bennett Acceptance Ratio (MBAR)
approach for analysis31. This approach gives correct free energies for the particular
parameter set given adequate simulation time and sufficient phase space overlap between
neighboring alchemical states. This is the same approach in spirit as that in our previous
work1-5,12, with minor and mostly insignificant changes relating to software versions.

Here, we briefly detail our general protocol for free energy calculations, then discuss setup
differences between the different approaches considered, and conclude with some analysis
details.

2.2 General “standard” protocol
We used a pre-release version of GROMACS 4.62 containing free energy modifications
implemented by Michael Shirts (University of Virginia) to allow energy evaluations for
MBAR to be done within the code rather than needing to store trajectory snapshots for later
evaluation. This was used both for simulation setup and data analysis. The small molecule
set was taken as provided by the SAMPL organizers, and then the OpenEye OEChem
Python toolkit and Omega were used to generate likely solvated conformations for each
molecule and assign AM1-BCC partial charges, unless otherwise noted. (As is relatively
common with AM1-BCC charge calculations, the charges were not based on the wave
function of a structurally optimized configuration.) These final conformations and charges
were stored to mol2 files and then the AmberTools 1.4 version of Antechamber was used to
assign GAFF atom types. AmberTools’ tleap was used to convert these to AMBER prmtop
and crd files, which were converted to GROMACS format using acpype. Small molecules
were then set up in GROMACS and, for the solute-in-water case, solvated in TIP3P32 water
in a dodecahedral simulation box with at least 1.2 nm from the solute to the nearest box
edge. The number of water molecules was approximately 510 for typical ethane systems,
875 for typical biphenyl systems, and 890 for typical dioxin systems. AMBER combination
rules (arithmetic average for σ and geometric for ε) were used.

2the FEP branch of git, commit 9e5241b9dfc8503f887d54640183bc8e397af261
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Simulations were run using Langevin dynamics, as previously1,3, and a timestep of 2 fs. Van
der Waals interactions were gradually switched off between 0.9 and 1.0 nm, and an
analytical correction was applied to the energy and pressure33. PME was used for
electrostatics, as previously, with a real-space cutoff of 1.2 nm. LINCS34 was used to
constrain bonds to hydrogen. Each system and λ value (where λ is a parameter ranging
between 0 and 1, where 0 corresponds to the unmodified system, and 1 corresponds to the
end-state of the transformation where the solute has no partial charges and no Lennard-Jones
interactions) were independently minimized for up to 1000 steps of steepest-descents
minimization, followed by 10 ps of constant volume equilibration, then 100 ps of constant
pressure equilibration (for the solvated case). Following constant pressure equilibration, box
sizes were adjusted at each λ value by an affine transformation to ensure each λ value had
the correct volume for the target pressure. After this, we conducted an additional 5 ns of
constant volume production simulation at each λ, discarding the first 100 ps as additional
“equilibration”, as previously3.

The parameter λ controls the transformation between end states. In this version of
GROMACS, we use two separate λ values, one controlling modification of partial charges
(turning solute partial charges to zero) and the second controlling modification of Lennard-
Jones interactions (turning solute LJ interactions to zero). Here, λchg = [0.0 0.25 0.5 0.75 1.0
1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0] and λLJ = [0.0 0.00 0.0 0.00 0.0
0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0]1. Hence, partial charges are
first turned off and then LJ interactions are turned off separately. Hydration free energies are
calculated by first computing the free energy of turning of solute-environment interactions
in gas (vacuum) and then subtracting the free energy of turning these off in water.

The above constitutes our “standard” protocol. However, we also tested a number of
deviations from this protocol which focused mainly in three areas: (a) alternate partial
charge models; (b) alternate Lennard-Jones parameters; and (c) alternate software for
assigning parameters.

2.3 MP2/SCRF charge model
In addition to AM1-BCC partial charges, we tried an alternate charge model (as suggested
by our previous work5) based on MP2/cc-pVTZ calculations done in Gaussian0335 with a
self-consistent reaction field (SCRF) continuum electrostatic model to represent solvent
(particularly, the Integral Equation Formalism Polarizable Continuum Model (IEF-
PCM)36,37 where the cavity is represented by a united atom topological model applied on
atomic radii from the UFF force field (UA0)). Geometry optimization was done at the same
level of theory. Charges were fitted using RESP28 as implemented in Antechamber, taking
Gaussian output files as input. Here, we refer to this charge model as “MP2/SCRF” for
brevity.

We used this charge model with the same Lennard-Jones parameters as in the “standard”
approach. To obtain hydration free energies with this charge model, we used the Lennard-
Jones component of solvation (which is calculated without partial charges on the solute)
from the “standard” protocol above and repeated the charging component of the calculations
with the new charge model.

2.4 Solvent background charge QM
In addition to fitting charges to reproduce the electrostatics calculated by MP2 quantum
calculations in a polarizable continuum solvent, we fitted charges to reproduce electrostatics
of similar MP2-level quantum calculations in an explicit solvent reaction field generated by
time-averaged densities of TIP4P-Ew38 water around each target molecule in a variety of
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conformations. This approach, to be described in detail in a later publication, follows the
conclusions of Karamertzanis et al.39: a non-polarizable model of a molecule should
produce an electrostatic field which is precisely the average of the electrostatic fields
produced by the unpolarized molecule in vacuum and by the polarized molecule in solvent.
The derivation rests on a fundamental assumption that a change in the molecular dipole and
the solvent reaction field which induced it are consistent, but it provides some
rationalization of why the existing fixed-charge water models all have dipoles roughly
halfway between the solution-phase dipole of 2.6-3.0D and the vacuum dipole of 1.85D40.
Although the fitting method was complex and will require extensive scripting in order to be
convenient, the result is simply an alternative set of charges for each molecule which enter
into the same molecular mechanics energy function as existing force fields. These charges
will be referred to as ”MP2/ExpSQ” for ”explicit solvent charge” denoting the reaction field
potential employed in MP2 calculations.

2.5 Updated LJ Parameters for GAFF
Relatively little work has been done on optimizing GAFF parameters based on simulations
of small molecules, so the recent suggestion of new aromatic carbon Lennard-Jones
parameters for GAFF was intriguing41. Hence, for the molecules in the set containing those
parameters (all but the ethane series) we repeated our hydration free energy calculations for
the AM1-BCC (“standard”) charge model with these new parameters. We call this approach
“Standard-newLJ”.

2.6 OEAnte Parameterization
We typically assign GAFF parameters using Antechamber. However, there is some interest
in developing a more easily-extensible and open tool for atom typing and parameter
assignment, which led Richard Dixon at Vertex Pharmaceuticals to release “OEAnte”29, a
Python tool based on the OpenEye libraries which handles atom typing and parameter
assignment. Currently, it can either assign some rough guess parameters based on internal
rules, or GAFF parameters after being passed a GAFF parameter file. We tested OEAnte in
both modes, expecting that the rough guess parameters might give marginally worse results
than standard GAFF, and expecting the GAFF mode to agree nearly perfectly with results
from GAFF parameters assigned by Antechamber. Essentially, this last test amounts to
validating parameter assignments by testing on hydration free energies. We tested these two
sets of parameter assignments with AM1-BCC partial charges as in our standard approach.
We call these “OEAnte-GAFF” and “OEAnte-Default”.

2.7 OPLS Results
After submitting our SAMPL predictions, discussions with Charles Kehoe at the University
of California, San Francisco42,43 suggested that OPLS parameters might yield better results
for this series than GAFF parameters. Motivated by this discussion, we replaced Lennard-
Jones parameters for the few atom types in our study with OPLS Lennard-Jones parameters
and modified the combination rules (geometric for OPLS). We maintained GAFF bonded
parameters, expecting that hydration free energies would be relatively insensitive to these.
Our goal was mainly to test whether the OPLS LJ parameters performed better here. Along
those same lines, we maintained the AMBER 1-4 scaling parameters (0.5 for LJ and 0.8333
for Coulomb interactions) rather than switching to the OPLS values (0.5 for each) since we
minted the AMBER bonded parameters. With this modification, we repeated both our
standard and MP2/SCRF calculations with OPLS LJ parameters. We will call these methods
“Standard-OPLS” and “MP2/OPLS”.

At a philosophical level, this swapping of parameters between AMBER and OPLS should
perhaps be taken with a grain of salt. Computed hydration free energies are of course correct
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given the model that we use, but they may not be representative of what we would obtain
from the true OPLS force field. Particularly, torsional parameters are typically derived after
LJ parameters and partial charges are assigned, and depend on the charge model and LJ
parameters. This coupling in some respects impedes the ability to use OPLS LJ parameters
with AMBER bonded terms, and vise versa. That said, there has been considerable
interpollination of the AMBER and OPLS force fields, as a reading of the AMBER
parameter files will show, and occasionally, adopting OPLS LJ parameters straight into
AMBER leads to marked improvements in computed observables, such as for alkynes3.

2.8 Error analysis
Uncertainties in computed free energies were taken as the standard error in the mean from
the MBAR estimator31 and took into account the autocorrelation time of the potential
energies being evaluated. Uncertainties in statistics such as the RMS error, R2, Kendall τ
and average errors were computed using a bootstrapping procedure, wherein new hydration
free energy datasets were constructed from the original datasets by choosing random entries,
with replacement. Uncertainties were estimated for these as 95% confidence intervals
computed from looking at the variation of these statistics over a minimum of 1000 bootstrap
trials (bootstrapping was repeated until confidence interval estimates converged to a
tolerance of less than 1% of their values when averaged over 20 bootstrap trials).

3 Results
3.1 Accuracy of blind predictions

Blind predictions submitted for the SAMPL challenge, based on GAFF bonded and van der
Waals parameters and three different charge models, are summarized in Figure 1 and
statistics are shown in Table 13 (the table includes all methods used, not just those applied
predictively). Previously, we reported hydration free energies with RMS errors relatively
near 1 kcal/mol1-3,5, but test sets containing third-row elements or atypical organic
functional groups have been much more challenging4,12. Here, depending on the charge
model, our submissions had RMS errors from 1.4 to 2.2 kcal/mol. The combination of
narrow target ranges, particularly among compounds in the dioxin and biphenyl series, and
larger errors made this set difficult in terms of rank ordering. Kendall τ values, measuring
the fraction of compound pairs with correct rank orderings, ranged from 0.38±0.04 to
0.43±0.04 for these predictions. This is low, but nonzero, so some trends are correctly
predicted. Overall, the RMS error is particularly poor given the range of free energies – as
was noted at the meeting following the SAMPL challenge, predicting a constant hydration
free energy equal to the average of all compounds (if that value were known) would have
yielded an RMS error of 1.4 kcal/mol44. However, this would also have led to a Kendall τ
value and correlation coefficients which were substantially lower (zero).

Overall, all charge models approaches did relatively well at predicting trends within the
ethane derivatives, but appear to have predicted the wrong trend in the dioxin derivatives
(the narrow range of the experimental HFEs, coupled with the large experimental
uncertainties on many of these values, give some uncertainty as to what the experimental
trend truly is). No charge model predicted a discernable trend in the biphenyl derivatives,
even though the experimental HFEs in this group are more certain and their range is more
broad than that of the dioxins.

None of our SAMPL submissions is clearly superior. The MP2/SCRF charge fitting
approach performed marginally better than our standard AM1-BCC charge assignment

3A full table of all computed hydration free energies is available in the Supporting Information (Table 2).
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approach, as was expected (R2 of 0.69 ± 0.04 kcal/mol and RMS error 1.59±0.07 kcal/mol
for the former versus 0.64±0.04 kcal/mol and 1.88 ± 0.07 kcal/mol, respectively, for the
latter). Kendall τ values were essentially within uncertainty of one another for all
approaches. The MP2/ExpSQ charge fitting approach performed as well as the MP2/SCRF
approach in predicting the overall trend in HFEs (R2 = 0.70 ± 0.04) but it consistently
estimated the HFEs to be less favorable than in the experiment, leading to the highest overall
RMS error (2.18 ± 0.07 kcal/mol). In fact, all of the SAMPL submissions, and also the other
methods we tested after the competition, estimated hydration free energies with an
unfavorable bias. This is consistent with our previous work (for example, across 504
molecules, the mean error was 0.67 kcal/mol in the same direction3) and clearly contributes
to the RMS errors.

We also tested a new set of aromatic carbon Lennard-Jones parameters for GAFF41which
had been informed by hydration free energy calculations. However, on this set (Standard-
newLJ), these parameters did not result in a statistically significant change in the quality of
calculated hydration free energies. Further, we applied the OEAnte package for assigning
small molecule parameters as a substitute for Antechamber. The default set of parameters
for this package are relatively crude and use far fewer atom types than GAFF (OEAnte-
Default). The default parameter set in fact contained a misprint in the Lennard-Jones well
depth for hydrogens which initially led to clearly incorrect hydration free energies. This was
fixed and incorporated into the package prior to SAMPL. OEAnte can also be used to assign
GAFF parameters, and we tested this approach as well (OEAnte-GAFF). When combined
with AM1-BCC charges, the default approach resulted in marginally worse performance in
terms of average error and RMS error (but comparable R2 values) to our standard approach,
while the GAFF parameter set produced results that were statistically indistinguishable from
our standard approach, validating the package’s parameter assignments.

3.2 Accuracy in follow-up testing after SAMPL
Several additional sets of hydration free energy calculations were performed after receiving
the results of the SAMPL challenge. While many of our submissions to SAMPL tested
different charge models, a significant focus in this follow-up testing was different Lennard-
Jones parameters. As noted above, the Dill group found that OPLS Lennard-Jones
parameters yielded better results than those with GAFF43. Combining these parameters with
AM1-BCC partial charges improved the agreement with experiment (Standard-OPLS): RMS
error of 1.4 ± 0.05 kcal/mol and an R2 of 0.74 ± 0.03, though this is almost statistically
indistinguishable from the MP2/SCRF approach. In contrast, combining OPLS Lennard-
Jones parameters with charges assigned by MP2/SCRF (resulting in MP2/OPLS) decreased
the RMS error slightly to 1.48 ± 0.04 kcal/mol but, by placing a favorable bias on the HFEs
of the ethane derivatives in general and a severe favorable bias on the HFE of ethane itself,
reduced R2 to 0.30 ± 0.07. The Kendall τ value was also dramatically reduced in this case,
from 0.46 ± 0.04 to 0.04 ± 0.04.

Finally, we looked at another possible source of error: the quality of the molecular
mechanics approximation to electrostatic potentials derived from quantum-mechanical
calculations. We repeated MP2/SCRF calculations on all molecules with chlorine
substituents, saved the final checkpoint files containing the electron density, and then used
the Gaussian cubegen utility to compute the electrostatic potential on rectangular grids
around each molecule. The electrostatic potential created by a fitted charge model and the
actual, target potential can then be directly compared, as shown in Figure 3. The RESP
procedure is designed to minimize overall mean squared differences between the molecular
mechanics potential and the quantum mechanical potential (subject to certain constraints) at
a specified set of points, typically chosen at or near the molecular surface. As shown in
Figure 3, the RESP-fitted charges may create localized regions of excess negative or excess
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positive potential, many of which are accessible to solvent molecules and particularly to
solvent protons. By reviewing plots from chlorinated derivatives of ethanes, biphenyls, and
dioxins, it became clear that the ”knob” of excess negative potential and the “ring” of excess
positive potential are typical features of RESP-fitted, atom-centered charges on organic
chlorine. We therefore extended the charge model to include virtual sites attached to each
chlorine atom, distal to the backbone carbon atoms and along the carbon-chlorine bond axis
at a distance 30% of the carbon-chlorine bond length (roughly 0.54Å). Forces on the
(massless) virtual sites can be computed during a typical molecular mechanics step and
reassigned to atoms with mass by chain rules. We call this approach, with added charges at
virtual sites, MP2/ExpSQ-Q.

By adding virtual sites to chlorine atoms and repeating the RESP fit, errors in the molecular
mechanics approximation to the electrostatic potential were reduced by 40-50%, as shown in
Table 3 of the Supporting Information. The virtual sites were pure charge sites with no
Lennard-Jones interactions; in such cases it is always a concern that the unshielded charges
may interact adversely with unshielded water protons. However, the charges on the virtual
sites were always positive, reflecting the uniformity of the electrostatic potential defects
around organic chlorine groups in atomcentered charge models, implying no risk of
electrostatic singularities during the simulations. Overall, adding the extra points increased
the negative charges on the chlorine atoms themselves, creating a stronger dipole along the
carbon-chlorine bond than would have been fitted by an atom-centered charge model. While
the fitted charges on chlorines did not always follow expected trends (see below) and the
carbon-chlorine bonds were often modeled with small dipoles, these results can be
understood as products of the RESP fit rather than the quantum-mechanical calculation.

The error in the molecular mechanics electrostatic approximation is readily quantifiable, but
its effect on the computed hydration free energies is much less certain. We therefore
performed additional free energy calculations (here with thermodynamic integration (TI)) to
quantify the hydration free energy change implied by changing the atomic charges from the
original atom-centered MP2/SCRF model to the new set augmented with virtual sites. A pre-
release version of the mdgx program (part of the Amber software package45), augmented to
run simulations involving virtual sites, was used to perform the TI. As shown in Table 2 of
the supporting information, the ΔΔG values implied by changing the charges were generally
modest, but the overall effect of adding the virtual sites was to reduce the RMS error to 1.33
± 0.06 kcal/mol and improve R2 to 0.81 ± 0.03 (correspondingly, the Kendall τ increased to
0.58 ± 0.03).

3.3 Key trends in hydration free energies
Overall, we expected that molecules in our series which are more highly chlorinated ought
to be more favorably solvated, for two main reasons. First, adding a relatively
electronegative chlorine tends to increase the overall polarity of the solute, and, in general,
more polar molecules are more favorably solvated. Within the force field, this is typically
represented by partial charges which become larger in magnitude (and typically negative on
the chlorine atoms). Second, (for reasons which are related physically), chlorine atoms have
stronger dispersion interactions with their environment than hydrogen atoms. Within the
force field, this is seen by a substantially larger well depth for chlorine atoms as compared to
hydrogen atoms (ε = 0.0150 to 0.0157 kcal/mol for hydrogen, here in GAFF, versus ε =
0.2650 for chlorine). These stronger dispersion interactions, we believed, would result in
favorable nonpolar interactions with the surrounding solute that would more than offset the
increased cavity volume due to the increased size of chlorine.

Both of these trends were generally borne out in our computed hydration free energies,
though there are exceptions. Focusing on our MP2/SCRF results, and looking at a series of
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ethane derivatives, we find the expected trend generally holds up (Table 2). Adding
chlorines does generally make solvation more favorable (Table 2(a)-(d)) in terms of both
electrostatic and Lennard-Jones components of solvation. Because the effects contributing to
this are largely local effects and strongly dependent on the first solvation shell, the solvent
accessibility of the chlorines also makes a difference (Table 2(e)) – with an equal number of
chlorines, the solute with the more solvent-accessible chlorines is preferentially solvated. In
this specific case, there is also a dipole moment contribution – the overall dipole moment of
the molecule is substantially higher in the case where the chlorines are at opposite ends, as
well.

Dipole moment and charge distribution alone can make a substantial difference as well.
Going from 1,1-dichlorethane to 1,1,1-trichloroethane results in a substantial overall
decrease in dipole moment, and solvation becomes less favorable (Table 2(f)), both in our
calculations and experimentally. Partial charges on the chlorine atoms are dramatically
reduced, presumably because no nearby hydrogen atom donates electrons.

This isn’t to say that the calculations correctly capture every trend. The 1,1-dichloroethane
to 1,1,2,2,tetrachloroethane pair (Table 2(g)) is a mystery. Our computed charge sets (and
the MP2 density itself) have the dipole moment here staying roughly constant and partial
charges on the chlorine atoms undergoing a dramatic reduction. Overall, this means adding
these two additional chlorine atoms is actually calculated to be unfavorable by nearly 1 kcal/
mol, while experimentally it is favorable to add these. We are unclear why this is, as this
discrepancy is robust across all the approaches we tried.

Thus, the key trends observed in ethanes (both with calculation and experiment) are that
adding chlorines generally improves solvation, and improving solvent accessibility of
chlorines also improves solvation. Increasing the dipole moment or polarity of the overall
molecule tends to improve solvation, and there can be subtle effects depending on chlorine
placement that play a role in this.

These trends are much harder to see, if they are present at all, in the data for the other two
series. The experimental values may show some evidence for these for some of the
compounds, but we see little sign of these trends in the calculated values. This is not
necessarily a problem – it may be that as molecular complexity grows, other factors such as
the details of the electron distribution (particularly, the pi systems present in these
molecules) and structure become much more important than the number of chlorine atoms.

3.4 Observations for specific charge models and methods
As seen in Figure 1 and Figure 1 of the Supporting Information, most of the approaches we
tried show rather similar trends. However, some specific observations are warranted. First,
while our standard approach does well overall, it also exhibits a clear and incorrect trend for
the dioxins. While the dioxin trend is incorrect across all our methods, the error is
particularly pronounced in approaches using AM1-BCC partial charges (the standard,
OEAnte-GAFF, OEAnte-Default, standard-newLJ, and standard-OPLS approaches).

Second, all the approaches we tested agree in computing hydration free energies for a
number of compounds which are substantially too positive. This is moderated somewhat in
the MP2/ExpSQ-Q case, where addition of virtual sites shifts the hydration free energies of
many of these polychlorinated compounds to be somewhat more favorable, probably
because these sites capture stronger C-Cl bond dipoles even while the overall polarity of the
molecule remains weak. Still, even for this charge model free energies are still too positive
on average. In some cases, there is some question about the quality of the experimental
data46. This is denoted by large error bars (estimated by J. Peter Guthrie). The belief is that
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in these cases, if the experimental value is in error, it will typically be in error by being too
negative. This could result because some of the specific experiments reported observing
solubilities higher than the true value, which would yield hydration free energy estimates
that are too negative46. Given the consistency across all of the approaches we tried, we are
particularly concerned that this may be the case for 1,2,4,5-tetrachloro-3-(3,4-
dichlorophenyl)-benzene, 1,2,3,4-tetrachloro-5-(2,3,4,6-tetrachlorophenyl)-benzene, and the
base dioxin, dibenzo-p-dioxin. Computed free energies are consistently too positive for
some other members of the dioxin series as well, but the consistency and magnitude in those
cases is not as pronounced. Given the consistency of this observation even across different
Lennard-Jones parameters (including OPLS parameters) it seems likely the experimental
data needs reevaluation.

Of the models we tested, the MP2/ExpSQ charges yielded the worst overall RMS error in
absolute hydration free energies, but nearly the best overall correlation between predicted
and experimental hydration free energies across all classes of compounds. As shown in
Figure 1, the MP2/ExpSQ charges showed behavior similar to the AM1-BCC and MP2/
SCRF charge sets: strong performance in predicting relative hydration free energies of
ethane derivatives, prediction of the wrong trend in hydration free energies of the dioxin
derivatives, and inability to predict any trends in the biphenyl derivatives. While the overall
correlations with experimental hydration free energies were not high for any charge model,
hydration free energies produced by all of the charge models are strongly correlated,
particularly the MP2/SCRF and MP2/ExpSQ models as shown in Table 3.

As noted in Methods, after submission of our SAMPL results we also tried OPLS Lennard-
Jones parameters. With AM1-BCC charges, these actually substantially improve the overall
quality of the computed hydration free energies, increasing the R2 and decreasing the
average and RMS error relative to other charge models. As seen in Figure 1, most of the
improvement comes from the biphenyls, where scatter is substantially reduced for a number
of the compounds and error relative to experiment is reduced to less than 0.5 kcal/mol; the
Kendall τ value is also just slightly increased for this set. This does not hold up, however,
when OPLS Lennard-Jones parameters are used with MP2/SCRF partial charges – the
average and RMS error again increase somewhat. (The R2 and Kendall τ also decrease
markedly, apparently chiefly because of a poor value for ethane, the single compound in this
set with a hydration free energy that is very different from the rest.)

4 Discussion and conclusions
This test set, three different chemical series involving chlorinated derivatives of a common
scaffold, represents an interesting and challenging set, especially given the relatively narrow
range of experimental hydration free energies. While most of the approaches we tried gave
reasonable agreement with experiment in terms of RMS and average errors (with RMS
errors in the 1.4-2.0 kcal/mol range), this was actually somewhat less than satisfactory in
this set given the narrow range of experimental values (with the RMS difference in
experimental values also around 1.4 kcal/mol). Thus, essentially all approaches we tried do
not do a good job at capturing experimental trends in hydration free energies, except for the
ethane derivatives, where trends are typically captured reasonably well. Typically around
40% of pairs of compounds are correctly ranked (as measured with Kendall τ).

Our results suggest that, overall, current force fields still need substantial improvement in
the area of accurately treating chlorinated derivatives of common scaffolds. While
modifying the charge model (going from AM1-BCC to our approach) or switching Lennard-
Jones parameters (from GAFF to OPLS) can yield modest improvement on this particular
test set, even in the best cases, trends remain poorly captured, except for ethane derivatives.
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Perhaps these results are indicating that we can do no better for these compounds without
going beyond an atom-centered partial charge model or atom types that are more dependent
on the chemical environment, or perhaps Lennard-Jones parameters would need to be
reoptimized in a charge-model-dependent way to improve agreement with experiment.

We also find, generally, that computed hydration free energies from our different
approaches are strongly correlated (R2 from 0.93 to 0.99 relative to MP2/SCRF, except for
the MP2/OPLS set, with R2 = 0.75, with much of the difference in this last case being due to
substantial changes for ethane). In most of the sets we tried, the Lennard-Jones parameters
are identical, which may be one major source of this correlation. However, even results with
OPLS Lennard-Jones parameters remain fairly highly correlated. This is likely because the
charge models themselves share numerous similarities that deserve examination. The
strongest correlation in predicted hydration free energies occurs between charge sets fitted
against MP2 calculations with similar basis sets (R2=0.99); in one charge model, the
aqueous solvent environment was mimicked by a dielectric boundary akin to Poisson-
Boltzmann calculations, whereas in the other the aqueous solvent environment was
represented by a time-averaged solvent charge density. As has been shown before, these two
treatments actually create strikingly similar reaction fields within the solute47, implying that
the influence of each field on the solute charge density determined by MP2 calculations may
have been very similar. Subsequent RESP fitting merely attempted to reproduce the field
due to the solute charge density, not the field due to the solvent. No matter the charge
model, the distribution of atomic partial charges was also similar: non-polarizable point
charges placed at all atomic nuclei. Even in the AM1-BCC case, charges are parameterized
to be like those from RESP fits. The process of RESP fitting naturally creates regions near
the solute surface where the electrostatic potential is over- or under-estimated. While RESP
fitting seeks to minimize mean square error in the potential, these regions of error might
have been qualitatively similar across different models. Finally, another strong determinant
of hydration free energies, the solvent model used during the thermodynamic calculations,
was consistently set to TIP3P. No matter the charge model, water arrangements around the
solute will be similar due to identical or at least extremely similar Lennard-Jones
parameters. And the arrangement of water molecules will be a substantial contribution to the
overall hydration free energy, especially since most of these compounds are not extremely
polar.

Extension of the monopole basis set used in RESP fitting by massless virtual sites (in the
MP2/ExpSQ-Q case) did substantially improve the fit to the quantum-mechanical
electrostatic potential in regions accessible to solvent. In most cases, this extension of the
charge model does not drastically change the hydration free energy. However, in
polychlorinated biphenyl and dioxin compounds the virtual sites do appear to have a more
pronounced effect in making the hydration free energies more favorable. None of these
compounds showed strong overall dipoles, but the virtual sites permitted local dipoles along
C-Cl bonds which models with only atomic nuclear charges could not fit. Although the
solubilities of some of these compounds are uncertain, local dipoles may contribute to the
unexpectedly high values reported in the literature.

Although the virtual site charge model afforded some success, it is noteworthy that all of the
non-nuclear virtual sites took on positive values while driving the chlorine nuclear charges
more negative. While numerically convenient for avoiding singularities in the simulations,
this result underscores the artificial nature of the molecular mechanics charge model.
Experience with modeling other compounds using the mdgx virtual site capabilities suggests
that more virtual sites are of decreasing marginal value to improving the RESP fit.
Complicated pi systems in the biphenyl and dioxin compounds likely cannot be modeled by
simply adding virtual sites with fixed partial charges; although this treatment can create
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static dipole and quadrupole moments, polarization would likely be necessary to capture the
physics of aromatic systems.

Despite the overall similarity of computed free energies across all of the different
approaches, there are enough differences that when all approaches are wrong in a consistent
way, it stands out. Particularly, there are three compounds identified above for which there
is some question about the quality of the experimental data, and all of our tested approaches
show substantial deviations from experiment. For these compounds, we believe our results
suggest experimental follow-up is warranted.

Overall, agreement between calculated hydration free energies and experiment is decent in
terms of average error, but there is considerable room for improvement in how classical
molecular mechanics force fields capture hydration free energies for chlorinated derivatives
in these three chemical series.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Computed versus experimental hydration free energies for several of the approaches and
charge models tested here. Methods are discussed in the text and compounds are color coded
by chemical series. Plots for additional approaches are shown in the Supporting Information.
Inner gray bars denote 0.5 kcal/mol error, and outer gray bars denote 1.0 kcal/mol error.
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Fig. 2.
Statistics for the different approaches tested here. Shown are the RMS error, correlation
coefficient R2, average error (“Err”), average unsigned error (AUE), and Kendall τ (τ).
Methods are (A) Standard; (B) MP2/SCRF; (C) MP2/ExpSQ; (D) Standard-newLJ; (E)
OEAnte-Standard; (F) OEAnte-Default; (G) Standard-OPLS; (H) MP2/OPLS; (I) MP2/
ExpSQ-Q; as discussed in the text. Error bars denote 95% confidence intervals. Data also in
Table 1.
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Fig. 3.
Errors in the electrostatic potential inherent in using point-charge models to approximate
electron density derived from MP2 calculations. A set of point charges cannot perfectly
reproduce the electrostatic field implied by quantum mechanical calculations. Some amount
of error is due to the constraint that a set of fixed charges mimic the electrostatic potential
for all molecular conformations, but a set of monopoles on atomic nuclei has more
fundamental limitations. The two plots show differences between a quantum mechanical
model and two fitted molecular mechanics approximations. The quantum mechanical model
is a set of MP2 calculations performed in the context of the Gaussian SCRF continuum
solvent model. The molecular mechanics approximation at left entails only charges at
nuclear sites fitted with a RESP protocol. Significant errors in the electrostatic potential
arise in solvent-accesible regions (the dotted line shows the boundary at which a TIP3P
water molecule begins to experience a repulsive Lennard-Jones potential, and the illustrated
water molecules show how TIP3P protons can sample regions even closer to the solute). The
approximation at right adds additional sites not at nuclear positions (virtual sites) to better fit
the potential near the chlorine atom as described in the text; the result in this case is a
roughly two-fold reduction in the error over all space, most significantly near the solute
surface. Including such virtual sites on all chlorinated compounds made a modest
improvement to the computed hydration free energies.
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Table 3

Correlation coefficients (R2) between MP2/SCRF results and results obtained with various other approaches.

Method R2 with MP2/SCRF

Standard 0.96±0.01

MP2/ExpSQ 0.99±0.01

Standard-newLJ 0.96±0.01

OEAnte-GAFF 0.95±0.01

OEAnte-Default 0.93±0.01

Standard-OPLS 0.94±0.01

MP2/OPLS 0.75±0.03

MP2/ExpSQ-Q 0.95±0.01
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