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Abstract
Benchmarks for molecular docking have historically focused on re-docking the cognate ligand of a
well-determined protein-ligand complex to measure geometric pose prediction accuracy, and
measurement of virtual screening performance has been focused on increasingly large and diverse
sets of target protein structures, cognate ligands, and various types of decoy sets. Here, pose
prediction is reported on the Astex Diverse set of 85 protein ligand complexes, and virtual
screening performance is reported on the DUD set of 40 protein targets. In both cases, prepared
structures of targets and ligands were provided by symposium organizers. The re-prepared data
sets yielded results not significantly different than previous reports of Surflex-Dock on the two
benchmarks. Minor changes to protein coordinates resulting from complex pre-optimization had
large effects on observed performance, highlighting the limitations of cognate ligand re-docking
for pose prediction assessment. Docking protocols developed for cross-docking, which address
protein flexibility and produce discrete families of predicted poses, produced substantially better
performance for pose prediction. Performance on virtual screening performance was shown to
benefit by employing and combining multiple screening methods: docking, 2D molecular
similarity, and 3D molecular similarity. In addition, use of multiple protein conformations
significantly improved screening enrichment.

Introduction
The field of small molecule docking was initiated by the pioneering work of Kuntz and
Blaney on rigid ligands in the 1980’s [1]. The first practical and fully automatic methods
began to appear in the 1990’s, with AutoDock [2; 3], GOLD [4; 5], Hammerhead [6; 7; 8],
and FlexX [9; 10]. The earliest efforts typically demonstrated successful re-docking of
ligands into their cognate protein binding sites, usually with just a handful of examples,
frequently including cases such as trypsin/benzamidine (3PTB), streptavidin/biotin (1STP),
and DHFR/methotrexate (4DFR). With the publication of the 1997 GOLD validation paper
[5], reporting pose prediction performance on 100 complexes, the scale of validation
experiments for ligand pose prediction changed permanently. Publication of the independent
benchmarking of docking algorithms by Rognan’s group in 2000 added virtual screening
assessment (on thymidine kinase and estrogen receptor) to the types of formal assessments
commonly made of docking algorithms [11]. Development of the Surflex-Dock approach
(first described in 2003 [12]), the descendent of the Hammerhead system, benefited from
cognate-docking benchmarks for pose prediction assessment (81 complexes derived from
validation of GOLD [5]) and from benchmarks for virtual screening assessment (2 target
systems, known positive ligands, and a decoy set from Rognan’s group [11]).
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The early years of the new millennium saw the introduction and popularization of additional
docking algorithms, with independent benchmarking becoming increasingly prevalent.
Studies from Perola et al. [13] and Warren et al. [14] were particularly influential. During
this same period, larger and more diverse virtual screening benchmarks were developed,
notably the set of 29 screening target systems for testing scoring function optimization by
Pham and Jain [15] and 40 screening targets forming the DUD set by Huang, Shoichet, and
Irwin [16]. With respect to measuring pose prediction, the importance of high-quality
structures was gaining prominence, highlighted by the publication in 2007 of the Astex
Diverse set of 85 protein ligand complexes [17]. At the same time, the limitations of using
cognate ligand re-docking were beginning to be recognized, for example by Sutherland et al.
[18] and also by Verdonk et al. [19] who each developed benchmarks for assessment of non-
cognate pose prediction.

A special symposium on evaluation of molecular modeling methods took place at the Fall
2007 National ACS meeting, with special attention paid to the issues governing proper
assessment of docking algorithms. The meeting yielded several papers, published in a
special issue of this Journal, introduced with an editorial by the symposium co-organizers
Nicholls and Jain [20]. While consensus among the broader community has been elusive,
several issues of central importance were identified relating to benchmark construction and
statistical methodology. In the area of virtual screening evaluation, some agreement was
made as to sensible statistical methods for measuring enrichment, but decoy set design
approaches remained controversial. These consisted of two types: “designed” decoy sets
chosen to mimic properties of a set of known actives for a particular target and “agnostic”
decoy sets chosen to mimic properties of a typical small molecule screening library. In the
area of pose prediction assessment, serious problems with cognate docking benchmarks
were highlighted involving “memory effects” that develop when optimizing a protein’s
pocket structure in the presence of the ligand to be docked as a test [21].

This paper is part of a collection devoted to a follow-up to the aforementioned symposium
that took place in Spring 2011, co-organized by the authors of the lead editorial in this
special issue of the Journal of Computer-Aided Molecular Design [22]. Participants were
asked to present comparable data and analyses on pose prediction using the Astex Diverse
set of 85 protein ligand complexes for pose prediction and on screening utility using the
DUD set of 40 protein targets, along with known positive ligands and designed decoy sets
for each target. Both sets involved multiple aspects of manual re-curation, especially as to
the protein structures themselves.

Performance of Surflex-Dock on the re-prepared Astex85 set was not statistically
significantly different than our previous application to the originally released data set [23],
with success rates for single top-scoring poses within 2.0 Å RMSD ranging from 66–80%
depending on input coordinate variations and run conditions and success rates for best of 20
top-scoring poses of approximately 95%. Performance of Surflex-Dock on the re-prepared
DUD40 set yielded a mean ROC area of 0.72 (stdev. 0.15) and mean 1% ROC enrichment
of 19 (stdev. 14.5). This was not statistically significantly different than what was reported
in the independently published report of Cross et al. [24], which compared results for several
docking methods. They concluded that GLIDE and Surflex-Dock were capable of superior
performance in both pose prediction and in virtual screening to the other methods tested:
DOCK, FlexX, ICM, and PhDock. Use of SP mode for GLIDE and enabling ring flexibility
for Surflex-Dock produced the best overall results in that study.

In addition to the baseline benchmarking that provided a comparative platform for the
symposium, we addressed four additional questions, two related to pose prediction and two
related to virtual screening: 1) to what extent are subtle changes in protein preparation
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capable of yielding large improvements in nominal pose prediction performance? 2) is it
possible to make use of protein pocket adaptation during the docking process to produce
high quality pose prediction results? 3) is a multi-pronged strategy for virtual screening,
which combines docking, 2D similarity, and 3D similarity, more robust and reliable that one
method alone? 4) is it possible to make use of multiple protein conformational alternatives
to improve virtual screening performance without requiring ad hoc scoring adjustments?

We observed gains in pose prediction success rates of nearly 20 percentage points by
making very small changes to protein structures (typically 0.3 Å RMSD within the protein
pocket) prior to docking by joint optimization of protein and cognate ligand. However, we
also showed that very high success rates could be obtained using a practical procedure that
adapted protein pockets during the docking process and produced pose families based on
clustering and a Boltzmann weighting scheme. With respect to virtual screening, we showed
that using the combination of docking and similarity approaches produced robust
performance, with early enrichment of 15-fold or greater 75% of the time and overall ROC
area of 0.80 or greater 60% of the time. Use of multiple alternative protein conformations
was also shown to have a significant positive impact in two target systems where data were
available to make direct comparisons.

Data and Methods
The primary molecular data sets for this study were obtained as part of participation in a
symposium. The details of the pose prediction set, 85 complexes adapted from the Astex
Diverse Set [17], which will be referred to as the Astex85 set, can be found in the lead
editorial of this special issue [22]. The details of the virtual screening benchmark set, 40
targets along with nominal true ligands and designed matched decoy sets was adapted from
the DUD benchmark [16], which will be referred to as the DUD40 set, can also be found in
the lead editorial. For both benchmarks, substantial re-preparation of protein structures was
carried out in order to provide a common set of coordinates (including hydrogen atoms) to
participants. Modifications to ligand structures were quite significant for the Astex85 set,
where fresh input coordinates were generated in order to fully eliminate memory effects of
bound cognate ligand poses. For the DUD40 set, some targets received a degree of re-
curation of positive examples of ligand structures (e.g. to address bond order errors in
trypsin ligands and chirality errors in PDE5 ligands).

All docking and similarity calculations were carried out using standard protocols with
Surflex-Dock and Surflex-Sim version 2.514. For pose prediction tasks on the Astex85 set,
the “-pgeom” parameter set selecting the geometric docking search protocol was used, with
“+ring” additionally since the input ligands coordinates often had strained ring systems. The
limited protein pocket adaptation tasks were carried out using standard docking followed by
pocket optimization (the “rescore_multi” command) and pose family generation (the
“posefam” command) as reported in the paper introducing the Surflex-Dock pocket
optimization protocol [23]. Demonstration of the effects of protein structure pre-
optimization for the Astex85 set was carried out as previously illustrated on a different set
initially reported by Vertex [13; 21; 25]. For virtual screening tasks on the DUD40 set, the
“-pscreen” parameter set selecting the fast screening search protocol was used, and ring
search was not enabled. Comparisons were also made using Surflex-Sim’s 3D surfaced-
based molecular similarity approach and the Surflex 2D approach called GSIM [26; 27; 28].
For application of molecular similarity, the cognate ligand of each protein target in question
was used as the target of the similarity search. We also carried out tests of the Surflex-Dock
multi-structure docking protocol (the “mdock_list” command [23]) using standard screening
parameters.
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Data archives can be requested through www.jainlab.org.

Results and Discussion
The performance of Surflex-Dock on the Astex85 and DUD40 sets has been published
previously. For the former set, using the original structures from Hartshorn et al. [17], we
used the set to draw a contrast between the ease of cognate ligand re-docking compared with
non-cognate docking [23]. For the latter set, a careful and comprehensive comparison of
several docking programs was carried out by Cross et al. [24]. Both studies were relatively
recent and made use of up-to-date Surflex-Dock versions. The modifications to the
benchmarks for this symposium were not extensive, so those published results differed little
from what is reported here. In what follows, first for pose prediction and then for virtual
screening efficiency, we will briefly summarize the baseline results while highlighting
differences from previous work. In addition, we will address questions involving protein-
ligand complex pre-optimization, protein pocket adaptation as part of the docking process,
use of hybrid screening approaches that combine docking and similarity computations, and
use of multiple protein structural examples as the target of virtual screening.

Cognate Docking: Performance on the Astex85 Set
Table 1 reports the results of several docking runs on the Astex85 set, making use of
different protein and ligand starting coordinates or run protocols. The top two rows are
directly comparable. The first row shows results on the protein and ligand coordinates
released by the originators of the Astex85 set [17]; these results had been reported as part of
a study exploring the effects of protein conformational adaptation [23]. The second row
shows results on the re-prepared Astex85 set [22]. The key differences in the protein
coordinates stemmed from fresh structure refinement in the re-prepared set and optimization
of proton positions using GoldScore with the cognate ligand in the original set. The key
differences in the ligand coordinates stemmed from use of CORINA to produce fully
agnostic memory-free ligand starting coordinates in the re-prepared set and a protocol of
torsional and alignment randomization and minimization for the original set. The differences
in protein coordinates yielded relatively subtle changes in the energetic landscape to be
probed by ligand docking. The differences in ligand coordinates were more profound in
many cases, resulting in important changes in protonation state, tautomeric state, and input
ring conformations. The docking success rates (proportion of dockings with RMSD ≤ 2.0 Å)
were somewhat better for the original set than for the re-prepared set (80% vs. 66% for top
scoring pose and 96% vs. 93%). However, neither the success rates, nor the mean RMSD
values, differed in a statistically significant manner. Figure 1 shows the comparison of the
cumulative histograms.

There are two key reasons that cognate ligand re-docking is an artificial test of pose
prediction. First, this is never the operationally important application in a real-world use-
case of docking for binding-mode prediction. In a real-world application, a modeler would
choose to explore the binding mode possibilities for some ligand that is different from any
whose bound configuration is known. Depending on the protein, the binding pocket may
adapt in subtle or unsubtle ways, but it will generally change at least a little. So, the
“memory” of the ligand expressed in the particular pocket coordinates of a protein used in a
cognate docking test represent an advantage that is never present in a real-world application.
Second, as we have shown before [21; 25], very small changes in protein pocket
conformation, even involving just proton movement, can have a large impact on pose
ranking within the top set of docking poses returned. In particular, coordinate optimization
of a complex can exacerbate the memory effect already present in the cognate protein
structure. To illustrate the magnitude of this effect, beginning with the re-prepared Astex85
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set, for each complex, we performed joint optimization of ligand and protein binding pocket,
either only for protons or including non-hydrogen protein pocket atoms as well.

We then repeated the docking computations using these protein variants. These results are
summarized in the middle rows of Table 1. While little effect was seen on success rates for
best pose among the top 20, a nearly 20-point increase in success percentage for the top pose
was obtained using the protein variant generated with all-atom pocket optimization. The
difference between 66% and 84% success rates for 85 complexes was statistically significant
(p = 0.01 using Fisher’s exact test). Figure 2 shows the corresponding cumulative
histograms of observed RMS deviations. The red curves correspond to the unmodified re-
prepared protein coordinates (as in Figure 1). The only difference between the red and green
curves was changes in proton positions for the latter, and the blue curve shows the effects of
allowing non-hydrogen atoms as well to adapt to a local minimum prior to docking. The
magenta curves make one additional change: measuring the RMS deviation from the
optimized cognate ligand coordinates (for the all atom protocol) instead of the
crystallographically modeled ones. Complex pre-optimization has a very significant impact
on top-scoring pose performance, owing to the enhancement of the particular local minimum
corresponding to the known bound ligand configuration. This effect derives from very small
movements in protein atoms (see Figure 3). The effect of measuring from the optimized
ligand coordinates has an enormous impact on the fraction of very low RMSD results, which
also skews statistics involving mean RMSD. Given the uncertainty in coordinate precision
for even high-quality structural models, high proportions of RMS deviation values for pose
prediction less than 0.5 Å suggest this type of coordinate optimization.

This effect has been discussed more extensively in trying to understand differences in
nominal pose prediction performance among docking methods with different congruence to
an energy function used for protein optimization [13; 25]. It has also been discussed in the
context of the appropriateness of protein optimization and RMS deviation measurement
from optimized ligand coordinates, as practiced by some methods developers [29], in a
paper devoted to questions involving docking method evaluation [21]. We do not believe
that such protocols produce performance estimates that will reflect real-world application of
docking methods.

Unbiased Protein Atomic Movement—As we have seen, pre-optimization of protein
coordinates using an energy function that is congruent to the one being used in a docking
system can predispose performance results very favorably. We believe that the best
approach to avoid such problems is to test pose prediction on non-cognate ligands, often
termed cross-docking. We have previously shown substantial improvements on a
challenging cross-docking benchmark using Surflex-Dock’s multi-protein docking protocol
coupled with protein pocket adaptation and a pose clustering and rescoring technique that
yields pose families [23]. To illustrate the effects of this protocol in the context of data
available for the symposium from which this paper resulted, we applied it to the Astex85 set.
In the full protocol, protein conformational variants representing large movements are used,
but to illustrate the effects of pocket adaptation on the Astex85 set, only the single re-
prepared protein structure for each complex was used.

Figure 4 illustrates the procedure with the test complex corresponding to PDB code 1JJE. In
this example, the top scoring pose from Surflex-Dock using the standard protocol was
incorrect, shown in atom color at top-left along with the correct pose shown in yellow. The
ligand is partially symmetric, and the top-ranked pose is a flip that places the metal-
interacting moieties correctly. The Surflex-Dock pocket adaptation protocol optimizes the
final docking poses within the protein pocket while allowing the pocket atoms to move,
subject to a covalent force-field as well as inter-molecular scoring energy terms that govern
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the docking. To enhance sampling, multiple small perturbations may be carried out for each
pose (in this case, two perturbation were used). A score that represents the overall energy of
ligand, protein pocket, and their non-bonded interactions (with each other and among
themselves) is computed for each jointly optimized configuration. The resulting ligand poses
are clustered based on RMSD, and a Boltzmann-based formula is used to apportion
percentages to each such pose family, with families that have too low a percentage
eliminated from the output. For the example in Figure 4, there were three families generated,
with the top family accounting for 93.5% of the expected joint configurations, the second
family 6.5%, and the last one just 0.001%. By taking into account the overall energetics of
the complex, the top family (bottom left) now clearly contains the experimentally
determined pose. The original ranks of the poses that gave rise to the top family were 5, 6,
and 9. The second ranked family arose from the top 3 original poses, and shows the flipped
orientation of the ligand. The atomic movements of the protein (green for the top family and
red for the second-ranked one) were small, but sufficient to produce the correct ranking.

An advantage of this procedure is that one gains some degree of information as to the
uncertainty in the pose prediction. This is reflected in the amount of movement exhibited by
the ligand within each pose family and also by the number of pose families produced. Figure
5 shows an example (PDB code 1SJ0) where there was a flexible ring system in the ligand in
question. The ligand coordinates used as input for docking contained a reasonable ring
conformation, but it was incompatible with the correct binding mode. The middle panel
shows the resulting docking without ring search for illustration only. With ring search
enabled (as it was for the primary results for pose prediction), and making use of the pocket
adaptation procedure, a single pose family was produced (bottom panel of Figure 5), which
clearly encompassed the correct binding mode. The pose within the family that had the
smallest RMS deviation was within 0.6 Å of the experimentally determined ligand
coordinates. A single pose family was generated for 20 of the 85 complexes. For this group,
the mean RMSD was 0.77 ± 0.62, with 95% (19/20) having RMSD ≤ 2.0 Å. The bottom
rows of Table 1 summarize results for the pocket adaptation protocol. The top ranked pose
family produced just a marginal improvement over the original docking protocol, but by
considering the top two families, the success rate improved from 66% to 82%. When
considering all pose families that were produced, we observed a success rate of 87% (p ≪
0.01, compared with 66% success by Fisher’s exact test). Figure 6 shows the cumulative
histograms for the top and top-two pose family results. Without relying on the fortune of
well-oriented protein pocket hydrogen atoms, we observed very strong results, especially for
the two pose family case, but even in the single family case, there were significant
improvements at low RMSD.

Clearly, results for a single top-ranked pose and those produced when considering multiple
families are of a different type. However, we believe that the modeling question addressed
by pose prediction with docking is better matched to examining a small number of pose
families, each associated with a percentage of coverage, than it is to examining a single
pose. For the Astex85 set, 24% of the cases produced a single family, 45% produced two or
fewer families, 68% three or fewer, and less than 10% produced more than five (with a
maximum of seven). The type of alternative flip shown in Figure 4, where the ligand is
pseudo-symmetric and where both orientations appear plausible, represent the most common
variations among the different pose families. Typically, a key interaction is common among
the different alternatives, with the pose families stimulating development of new hypotheses
for where interaction opportunities may exist. There were also examples, as with PDB code
1U1C, where the complexes were highlighted as having poor ligand density. This case is
depicted in Figure 7. The top-scoring pose family was “incorrect” (middle panel) but the
second-ranked one was “correct” (bottom panel). The two alternatives were symmetrically
flipped around a central axis, but the alternatives may not be definitively distinguished by
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the crystallographic data. Even if the nominally correct pose represents a truly better
energetic configuration in the real biological system, we believe that the alternate binding
mode is informative, suggesting the potential for hydrophilic interactions with the left-hand
side of the pocket.

Summary—Our analysis of performance of Surflex-Dock on the Astex85 set makes four
primary points. First, the minor differences in set preparation made little difference in pose
prediction performance, with the bulk of the difference probably arising from the use of a
different randomization protocol for ligand starting configuration in the re-prepared set
compared with the original set. Second, cognate re-docking of ligands as a means to test
pose prediction is fraught with difficulty, since it is so dependent on the congruence between
the means used for protein structure preparation and the method to be used for docking. Use
of coordinate optimization schemes that make small and benign changes to protein
coordinates can produce very significant changes in the ranking of poses whose energies are
close. Third, since it is clearly necessary to address protein atomic movement in order to
produce useable results for cross-docking, continued use of rigid protein cognate-docking
tests is difficult to support. Last, judging performance based on the deviation between the
single top-ranked pose and the experimentally determined one is much less informative than
considering some form of pose clustering. Such techniques usually yield few distinct
solutions, the vast majority of which are reasonable, with the number of solutions related to
the confidence in pose prediction.

Virtual Screening: Performance on the DUD40 Set
It is useful to place the development of the DUD set in context. Introduced in 2007 [16], it
was meant to address two significant problems in assessment of docking for the purpose of
virtual screening. First, issues had been raised with respect to the physical characteristics of
decoy sets and the ease with which one could distinguish active ligands from such decoys.
Notably, the set from Rognan’s group [11] was characterized by many, not unfairly, as being
too hydrophobic compared with drug-like compounds. Second, other virtual screening
benchmarks had either limited numbers of active ligands for each target or had limited
numbers of targets, or both. The largest such set at the time was that from Pham and Jain
[15], consisting of 29 targets, but with a maximum of 20 ligands per target. That report
included two decoy sets: the Rognan set (990 molecules) as well as one derived from
screening molecules meant to have similar properties to drug leads (1000 molecules). The
DUD set had more targets (40), more active ligands per target (an average of about 70), and
a design-based approach to constructing decoys. For each target, the idea was to come up
with 40 decoys per active ligand that replicated aspects of physical characteristics but
avoided 2D molecular similarity to any of the known actives. Experiments using DOCK
were carried out with all ligands and decoys against all 40 protein targets. Comparisons were
also made between the DUD decoys and other decoy sets, with the largest differences
existing between the amalgamated (or global) DUD set of 95,316 decoys and the Rognan
set. It is worth noting that the authors of the DUD set advocated using both the “own
decoys” (here termed “self decoys”) and “amalgamated DUD” (here termed “global
decoys”), since they represent different challenges [16].

Table 2 summarizes results for virtual screening assessment on the DUD40 set, both using
the self decoys and the global decoys for Surflex-Dock, Surflex-Sim 3D molecular
similarity, and for the GSIM 2D similarity metric. The results we obtained for Surflex-Dock
using the DUD self decoy set on the re-prepared DUD40 set did not differ from those
reported recently by Cross et al. on the original DUD set [24]. One striking feature was that
while ROC AUC did not change much when comparing self decoy results to global decoy
results (typical shifts in mean AUC of just 0.04), the typical early enrichments (measured
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using ROC 1% true-positive to false-positive ratios) nearly doubled. Data are presented in
more detail in Figure 8, showing the dramatic improvement in early enrichment when using
the global decoy set (top two graphs). For both docking and 3D similarity, early enrichments
of greater than 45-fold were observed in roughly one-third of cases. It is also important to
note that simple 2D similarity searching performed very well owing to the common
occurrence extreme topological similarity of DUD actives to be retrieved compared with the
cognate ligand of the protein structural target. This issue has been analyzed in greater detail
previously [27], especially concerning the use of DUD in evaluating molecular similarity
methods. To better approximate the real-world application of virtual screening, we also
evaluated the performance of the combination of docking, 2D, and 3D similarity.
Information from the three methods was combined by computing the product of the resulting
ranks for each ligand. On a target-by-target basis, the hybrid approach was always better
than the worst of the individual approaches, with mean improvement in AUC of 0.13 ± 0.08.
The hybrid approach was generally slightly worse than the best of the individual approaches,
with mean decrease in AUC 0.07 ± 0.11. Notably, the hybrid approach never performed
worse than the most poorly performing individual technique, but it performed slightly better
than the best individual technique nearly 20% of the time.

One other aspect of note in Figure 8 is that the performance of Surflex-Dock on the Pham/
Jain screening set was significantly better than on the DUD40 set. ROC AUC was greater
than 0.80 about 75% of the time for the former set compared with just 40% of the time for
the latter. This was also reflected in early enrichment rates, with early enrichment of 20-fold
or better in 80% of cases for the Pham/Jain set [15] compared with less than 40% of cases
for the DUD40 set. In order to understand these differences, we compared the active and
decoy structures for each target to ligands bound to those same targets whose structures
were available in the PDB. Figure 9 highlights the risks involved in designing decoys to
look similar to known actives. In the top case, one of the GART decoys is shown in an
experimentally determined co-crystal structure with GART. Many of the GART decoys
were trivial analogs of the ligand in the 1CDE structure, and it is likely that many of those
molecules have reasonable affinity for the GART protein. Similarly, the thymidine kinase
decoys include one where an epimer is known to bind TK. While it may be the case that the
epimer that was present in the decoy data set does not bind TK at all, we believe this to be
unlikely. Further, the extreme similarity of many of the nominal TK decoys to known active
TK ligands is of concern. We believe that a very significant portion of the difference
between early enrichment performance when comparing DUD self to DUD global decoys
stems from “false false positives” as shown in Figure 9. At best, such decoys blur the line
between potency prediction, where distinctions of 1 kcal/mol are important, and virtual
screening, where the expectation is to distinguish larger energy differences. In our
comparison of DUD actives to the known, bound configurations that could be found in the
PDB, we observed a nearly 1 in 6 rate of unrecoverable structural variations, where changes
in chirality were present or bond order variations existed that were not due to tautomerism.
We believe that such errors help explain the difference in overall ROC area between the
DUD40 set and the Pham/Jain set.

Multiple Protein Structures—In keeping with the idea of trying to ascertain real-world
performance, we made a limited attempt to test the effects of using multiple alternative
protein structures as the target of virtual screening. To the degree that multiple structures are
available for a target that exhibits active site mobility, many modelers would try to take
advantage of the additional data. In the case of PDE5 (where active ligand structures had
been corrected by the symposium organizers prior to release), there was a large
improvement: from ROC area of 0.72 ± 0.06 with a single structure to 0.83 ± 0.06 with four
(95% confidence intervals just barely overlapping). The three additional structures (PDB
codes 1T9S, 1TBF, and 1XOZ) were chosen and aligned based on a recently published
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pocket similarity computation patterned after the Surflex-Sim approach [30]. Figure 10
shows the primary driver of the improvement: a large positive shift in the scores of the
active ligands. The left panel shows a nearly 2 log unit increase in the scores of the 51
known active ligands. The middle panel shows the docked pose of one such active molecule
(ZINC04199926 shown in yellow) compared to the bound pose of tadalafil (green). The
single original DUD target structure was of PDE5 bound to vardenafil, but the ligand in
question has a binding mode much more compatible with the active site rearrangement of
PDE5 when bound to tadalafil. The rightmost panel shows the poor predicted poses (shown
in red) of the yellow molecule from the middle panel resulting from docking to only the
vardenafil-bound PDE5 structure. The poses were clearly wrong, and the scores were much
lower than for those making use of the four alternate protein structures, none of which were
bound to a ligand sharing the scaffold of the yellow molecule.

In considering making a broader evaluation of this approach, difficulties with curated
structures of known active ligands within the DUD40 set presented a serious obstacle. For
example, in the case of progesterone receptor (PR), where we expected to see benefits due to
rearrangements of the ligand binding domain on binding agonists compared to antagonists,
application of the same approach as just shown for PDE5 yielded no improvement: original
ROC area of 0.48 and a multi-structure ROC area of 0.46, both indistinguishable from
random performance. Of the 27 active ligands, 8 had steroid cores. Of these, 6 were clearly
wrong in terms of the chiral configuration of the steroid core. We re-curated a set of 11
active ligands for PR from the PDB, taking care to regenerate the ligand structures from
SMILES to avoid any memory of bound configurations. Using the single original DUD
protein target structure (with global decoys), we obtained an ROC area of 0.52 ± 0.19. Using
three additional structures (1SQN, 2OVM, and 3G8N) chosen as with PDE5, we obtained
0.87 ± 0.10, a clearly significant improvement. An example of this improvement is shown in
Figure 11.

Use of WOMBAT curated active ligands, which were made available for several targets, did
not yield significant performance changes using the standard protocol. No attempt was made
to assess error rates in structures within that set.

Summary—Virtual screening using molecular docking is clearly still a significant
computational challenge, with highly variable performance depending on the target in
question. We have shown that a combination of docking, 2D, and 3D molecular similarity is
an attractive approach, exhibiting performance close to the best of any individual method
and reliably better performance than the poorest. This approach can be applied to any
methodology that produces a ranked list of ligands. Preliminary results indicate that use of
multiple target structures can produce marked improvements in screening effectiveness.

Construction of quality benchmarks with numerous targets of diverse character is a serious
challenge. We believe that the risks of “designed” decoy sets far outweigh the potential
benefits of agnostic sets built to mimic lead-like screening libraries. In particular, presence
of decoys that are, in fact true ligands, or whose distinction from being true ligands is a
subtle difference in binding energy, artificially decreases estimates of early enrichment.
Curation of active ligands must also be done with care. While it may be reasonable for
docking systems to begin to cope with internal generation of tautomers or protonation states
for ligands, it is not reasonable to expect frank structural errors to be corrected in any
fashion by a docking algorithm. Such errors can depress overall ROC AUC values, and they
can mask the true effects of algorithm modifications, such as we demonstrated with multi-
structure docking.
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Conclusions
The field of docking is mature enough to move beyond cognate ligand re-docking, which
was introduced more than twenty years ago, as a means to test pose prediction accuracy.
Certainly, sets such as the Astex85 set form important resources for methods developers,
especially in establishing the baseline feasibility of a new technique. However, cognate
docking does not replicate the real-world scenario that is relevant to pose prediction: the
case where a new ligand is sufficiently different from the structure of one whose bound
configuration is known that a skilled modeler has a serious question about potential binding
modes. There are well-curated public benchmarks that address this problem in various
degrees of difficulty [18; 19; 23], and docking researchers should make an active effort to
move away from cognate ligand re-docking.

Data resources to support construction of well-curated benchmarks for measurement of
virtual screening performance have evolved to allow for significant improvement over the
currently available set of benchmarks. Resources such as BindingDB and PubChem in
particular offer well-curated ligand structure and activity data [31; 32]. With the ascendance
of sophisticated 3D molecular similarity methods as serious alternatives or adjuncts to
docking, both for pose prediction and for virtual screening [26; 27; 28; 33; 34; 35; 36], it is
increasingly important to develop such benchmarks. In particular the diversity ligands
should be high, and the binding affinities should be typical of verified hits from physical
high-throughput screening campaigns.
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Figure 1.
Comparison of results from the original Astex Diverse Set release compared with the Re-
prepared Set. Differences in top-scoring pose performance were larger than for best pose of
top 20, but were not statistically significant at the 2.0 Å success cutoff.
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Figure 2.
Optimization of protein-ligand complex prior to docking can have a significant impact on
nominal pose prediction performance, especially for top-scoring pose. The two graphs show
Surflex-Dock performance on the re-prepared Astex85 set under different preparation and
RMSD measurement protocols (the top graph shows top pose RMSD cumulative histograms
and the bottom shows corresponding information for best pose of the top 20 returned).
Results on the re-prepared Astex85 set are shown in red, results for the same proteins after
proton optimization in green, and all pocket atom optimization in blue. The magenta lines
shows the change in RMSD when measuring deviation from the optimized ligand
coordinates rather than the crystallographic coordinates for all atom pocket pre-optimization.
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Figure 3.
Coordinate changes were small, especially for the protein, even with all-atom coordinate
optimization of complexes. These tiny coordinate changes gave rise to significant changes in
the pose ranking that result from docking to the modified proteins.
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Figure 4.
Use of protein pocket optimization and pose family generation offers a means to explore
changes in protein pocket configuration on ligand binding in a way that is not biased. The
top-left panel shows the single top scoring pose (atom color) for test case 1JJe, which was a
flip of the crystallographic pose (yellow). The top scoring pose family (bottom left, atom
color) was correct, resulting from rescoring after jointly optimizing the docked ligand poses,
which resulted in some protein movement (green). The second ranked pose family (bottom
right) required slightly more alteration of the protein binding pocket, especially at the left-
hand side (red).
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Figure 5.
The combination of Surflex-Dock’s ring search and pocket adaptation and pose family
protocol rescued a poor result using the given ligand coordinates (middle panel), yielding a
single pose family (bottom panel), which closely covered the crystallographically
determined ligand pose (green). Cases where only a single pose family were generated
yielded correct results 95% of the time (see text for details).
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Figure 6.
Results applying protein flexibility during the docking process show an improvement when
considering only the top scoring pose family (blue) over results on the re-prepared set using
the standard docking protocol (red), especially at low RMSD values. The gain obtained by
looking at the top two pose families was very substantial (magenta line), reflecting the
common occurrence of “flips” of pseudo-symmetric ligands that received very close scores.
Consideration of all pose families generated (cyan line) yielded a further small gain. More
than 90% cases produced five or fewer families.
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Figure 7.
PDB code 1U1C was a test case where ligand density was poor (the top panel shows the
nominal bound configuration). The middle panel shows the top scoring pose family, which
was a flipped orientation around the central symmetric ring system relative to the second
ranked pose family (bottom panel). It was not clear whether the crystallographic data could
reliably distinguish these two alternatives.
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Figure 8.
Performance on DUD virtual screening benchmark using self decoys and global decoys. The
top two graphs show 1% ROC enrichment performance for docking, 3D molecular
similarity, and 2D molecular similarity. The bottom two graphs show the corresponding
ROC areas, with the bottom right graph also including a comparison to results from a
previous study on 27 screening targets. Marked differences in early enrichment (highlighted
in yellow at the 45-fold level) were observed, with performance on the global decoys very
significantly better. Overall ROC areas changed much less, but the DUD40 set produced
poorer docking performance than the Pham/Jain set.
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Figure 9.
Use of designed decoy data sets, which attempt to mimic properties of active ligands bears
the risk of inclusion of active molecules within decoy pools. Typical examples of actives
and self decoys from the DUD40 set for GART and TK are shown. In the case of GART, the
top decoy is shown crystallized with the enzyme that it is not supposed to inhibit (top right).
In the case of TK, an epimer of the top left decoy is shown crystallized with TK.

Spitzer and Jain Page 20

J Comput Aided Mol Des. Author manuscript; available in PMC 2012 July 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Using multiple target protein structures can be helpful, especially in cases like PDE5, where
significant rearrangement can occur. The positive ligand ZINC4199926 (shown in 2D at
left) scored 10.1 in the multi-structure docking but just 7.6 in the single-structure protocol.
Its predicted pose from the multi-structure protocol (middle, shown in yellow) shows a clear
relationship to the related PDE5 inhibitor tadalafil (green). Poses from the single-structure
protocol (right, shown in red) were very different and likely incorrect. In this case, ROC
area improved from 0.72±0.06 to 0.83±0.06 (95% confidence intervals) using the multi-
structure protocol instead of single-structure.
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Figure 11.
A non-steroidal progesterone partial agonist (2D shown at left) was docked with a high
score in the multi-structure protocol (middle, shown in yellow carbons). The predicted pose
was close to correct (PDB code 3KBA, not shown). It was docked with a low-scoring and
incorrect pose in the single-structure protocol (right, shown in red carbons). In both panels, a
crystallographically determined steroid structure is shown in green to provide binding-site
context.
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Table 1

Summary of results for pose prediction accuracy on Astex Diverse Set of 85 complexes.

% Correct: Top % Correct: Best Mean Top RMSD (stdev)

Original Astex85 80 96 1.66 (1.82)

Re-prepared 66 93 2.18 (2.09)

Proton-optimized 73 95 1.85 (1.88)

All-optimized 84 95 1.34 (1.46)

Top pose family 68 - 1.99 (2.19)

Top two pose families 82 - 1.31 (1.56)

All pose families 87 - 1.15 (1.37)
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Table 2

Summary of results for virtual screening performance on DUD set of 40 targets.

Self Decoys Global Decoys

ROC Area (stdev) 1% Enrichment (stdev) ROC Area (stdev) 1% Enrichment (stdev)

Docking 0.72 (0.15) 19 (14.5) 0.76 (0.18) 28 (31.2)

2D Similarity 0.77 (0.17) 26 (21.5) 0.81 (0.17) 43 (34.6)

3D Similarity 0.65 (0.23) 21 (20.5) 0.73 (0.23) 35 (32.3)

Combined - - 0.79 (0.19) 38 (32.9)
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