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Abstract The ‘‘Cheminformatics aspects of high

throughput screening (HTS): from robots to models’’

symposium was part of the computers in chemistry tech-

nical program at the American Chemical Society National

Meeting in Denver, Colorado during the fall of 2011. This

symposium brought together researchers from high

throughput screening centers and molecular modelers from

academia and industry to discuss the integration of cur-

rently available high throughput screening data and assays

with computational analysis. The topics discussed at this

symposium covered the data-infrastructure at various aca-

demic, hospital, and National Institutes of Health-funded

high throughput screening centers, the cheminformatics

and molecular modeling methods used in real world

examples to guide screening and hit-finding, and how

academic and non-profit organizations can benefit from

current high throughput screening cheminformatics

resources. Specifically, this article also covers the remarks

and discussions in the open panel discussion of the sym-

posium and summarizes the following talks on ‘‘Accurate

Kinase virtual screening: biochemical, cellular and selec-

tivity’’, ‘‘Selective, privileged and promiscuous chemical

patterns in high-throughput screening’’ and ‘‘Visualizing

and exploring relationships among HTS hits using network

graphs’’.

Keywords Cheminformatics �High throughput screening �
Molecular modeling � Data-infrastructure

Introduction

This article introduces the symposium while providing a

background of why this symposium was of interest to the

computational community and the topics covered at the

meeting; the authors of the mini-series articles contributed

to the symposium.

The drug discovery process in the past 20 years has been

greatly accelerated by the utilization of robotic automation

for key aspects. Specifically, the ability to screen a chem-

ically diverse compound library consisting of tens of

thousands of compounds in a single pass for a disease

target and then analyzing the plethora of biological and

chemical information to aid in the early stage of drug

discovery. In 2005 the National Institutes of Health (NIH)

established the $88.9 million dollar Molecular Libraries

Screening Centers Network1 (MLSCN) to aid academic

researchers. The goal of this initiative was to build a col-

laborative research network to leverage high-throughput

screening methods. Small molecules identified by HTS at

MLSCN can then be used as research tools to enable
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academic researchers the ability to explore new ideas and

further projects on a broad front against human diseases.

The MLSCN is also part of the NIH Roadmap for medical

research and ‘‘New Pathways to Discovery’’ initiative,

whose goal is to advance the understanding of biological

systems and provide a better ‘‘toolbox’’ for medical

researchers. One of the most powerful aspects of this NIH

effort is the availability of the generated high-throughput

assay data to researchers in both the public and private

sectors through the PubChem database at the National

Library of Medicine of NIH (http://pubchem.ncbi.nlm.

nih.gov/).

The potential to analyze a large quantity of biological

endpoints for a set of small molecules that have been tested

for activity across different bioassays, opens a new era of

understanding with respect to the mechanisms of disease

and identification of potential targets for new therapies.

The available HTS data generated by the NIH funded

screening centers is composed of more than 300,000

compounds from commercial sources and synthesized by

academic and government researchers. For the first time in

the history, a large amount of molecular data—chemical

structures, biological systems, and endpoints—is provided

in an unencumbered fashion to the public for study and

analysis. The excellent design and user-friendliness of the

PubChem Substance and Bioassay databases enables aca-

demic and government researcher groups along with small

biotech companies a place to contribute their HTS results

for a defined set of small molecules against a specific

disease (biological target).

Though symposia regarding HTS and cheminformatics

paradigms have been organized in the past, there has not

been a symposium that bridges these two unique and vital

aspects. The ‘‘Cheminformatics aspects of high throughput

screening (HTS): from robots to models’’ symposium

provided researchers the opportunity to address and discuss

general topics, specifically: the data-infrastructure of HTS

centers, the methods underlining the management of HTS

data to guide iterative screening and hit-finding, together

with the potential exchange of data, methods, or compu-

tational models between academic, government, and

industrial groups.

Topics covered in ‘‘Cheminformatics aspects of high

throughput screening (HTS): from robots to models’’

The ‘‘Cheminformatics aspects of high throughput

screening (HTS): from robots to models’’ symposium

aimed to foster a discussion between the scientists that

work in the areas of high throughput screening, chemin-

formatics and molecular modeling. A state-of-the-art HTS

pipeline relies on each scientist’s talents, and improve-

ments to the entire process require better cheminformatics

techniques. This symposium was organized within the

Computers in Chemistry (COMP) division’s technical

program and co-sponsored by the Chemical Information

(CINF) and Medicinal Chemistry (MEDI) divisions of

the American Chemistry Society.

The symposium had two half-day sessions beginning

with the introductory remarks of Y. Jane Tseng, Ph.D. from

National Taiwan University to describe the aims and scope

of this symposium. The first speaker, Stephen Bryant,

Ph.D. of the NIH, where he is PubChem’s Database Lea-

der, started the discussion by providing an introduction to

the ‘‘Open repository for chemical structure and biological

activity information’’. Sivaraman Dandapani, Ph.D. from

the Broad Institute of MIT and Harvard demonstrated a

superbly designed medicinal screening platform infra-

structure for the screening of stereoisomers using the Broad

Chemical Biology Informatics Platform for analyzing the

data. S. Joshua Swamidass, Ph.D. from Washington Uni-

versity in St. Louis presented an interesting and intriguing

data mining study through the use of multiple HTS bio-

assays on probabilistic substructure mining from small-

molecule screens.

The second half of the symposium included real-world

examples from the Novartis Institutes for Biomedical

Research’s Global Discovery Chemistry division presented

by Eric Martin, Ph.D. Dr. Martin presented a great example

from the pharmaceutical industry that demonstrated the

application of iterative and accurate kinase virtual

screens—constructed from partial training data—to handle

the biochemical, cellular, and selectivity problems without

the aid of solved crystal structures of the kinase receptor of

interest. Cristian G. Bologa, Ph.D. from the University of

New Mexico Center for Molecular Discovery presented a

very commonly seen but hard to deal with obstacle that is

experienced at all HTS centers: promiscuous chemical

patterns in HTS. Anang Shelat, Ph.D. from the Chemical

Biology and Therapeutics Department at St. Jude Chil-

dren’s Research Hospital, discussed ways to visualize and

explore the varied relationships among HTS hits using

network graphs. Visualization techniques are important

when dealing with large quantities of data for better

interpretation and understanding.

The symposium was concluded with an open panel

discussion. Detailed articles on several of the talks pre-

sented in the symposium are presented in— ‘‘An Infor-

matic Pipeline for Managing High-Throughput Screening

Experiments and Analyzing Data from Stereochemically

Diverse Libraries’’ by C. Mulrooney et al. and ‘‘Managing

Missing Measurements in Small-Molecule Screens’’ by M.

R. Browning and coworkers. The discussions of the open

panel discussion in the symposium as well as the summary

of the following talks on the topics of ‘‘Accurate Kinase

virtual screening: biochemical, cellular and selectivity’’ by
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Dr. Eric Martin, ‘‘Selective, privileged and promiscuous

chemical patterns in high-throughput screening’’ by

Dr. Cristian Bologa, and ‘‘Visualizing and exploring rela-

tionships among HTS hits using network graphs’’ by

Dr. Anang Shelat are included in this article. Detailed

articles on several of the talks presented in the symposium

are presented elsewhere in this issue.

Summary of ‘‘accurate kinase virtual screening:

biochemical, cellular and selectivity’’

‘‘Accurate Kinase Virtual Screening: Biochemical, Cellular

and Selectivity’’ was presented by Dr. Eric Martin. The talk

presented a collection of uniquely accurate protein family–

based kinase virtual screening methods for predicting

biochemical and cellular activity and selectivity for new

kinase targets without requiring the protein structure, and

with or without training data.

Experimental high throughput screening (HTS) has pro-

vided most drug leads for over 20 years. However, a typical

HTS of a large corporate archive takes 6-9 months and can

cost nearly $1,000,000. Thus, fast, inexpensive ‘‘virtual-

screening’’ is a long-standing goal. Unfortunately, conven-

tional docking and QSAR lack the predictive power to serve

as an adequate alternative. This presentation described 4

novel Protein-Family Virtual Screening (PFVS) methodol-

ogies specifically for kinases: Profile-QSAR, Kinase-Kernel,

AutoShim and Surrogate AutoShim. These computational

methods combine a modest amount of IC50 data for a new

kinase with a vast kinase knowledgebase from all previous

Novartis kinase projects, giving unparalleled IC50 predic-

tions rivaling the accuracy of experimental HTS.

Profile-QSAR [1], is a 2D substructure-based meta-

QSAR. It requires about 500 experimental IC50s for a new

kinase, used to train a new model using predicted activities

from 100 historical kinase Quantitative Structure–Activity

Relationships (QSARs) as compound descriptors. Every

prediction is informed by over 1.5 million historical IC50s

from over 130,000 compounds, resulting in unprecedented

accuracy and extrapolation power. Profile-QSAR also pre-

dicts cellular activity, selectivity among kinases, and entire

kinase profiles for 115 kinases with sufficient training data.

However, there are nearly 400 additional kinases of

potential pharmaceutical interest. Kinase-Kernel [2] mod-

els interpolate between each new kinase’s nearest neigh-

bors from among the 115 with trained Profile-QSAR

models, based on active-site sequence similarity. Thus,

activity for the remaining kinases with no training data can

also be predicted.

Profile-QSAR and Kinase Kernel models, based only on

the 2D substructures of the ligands, have unmatched accu-

racy. However an orthogonal docking method, which instead

uses 3D interactions with the protein active site, could find

additional active compounds. Unfortunately, docking suf-

fers from 3 key limitations: it is slow, requires a protein

structure for the target, and cannot predict reliable IC50s. Our

AutoShim [3] method trains highly accurate customized

scoring functions for each new protein target by adjusting the

weights of pharmacophore interaction—‘‘shims’’, added to

the binding site, to reproduce 500 training IC50s. AutoShim

has excellent accuracy, and is not restricted to kinases, but is

still slow and requires a protein structure.

However, for kinases, Surrogate AutoShim [4] uses a

‘‘Universal Kinase Surrogate Receptor’’ ensemble of 16

diverse kinase crystal structures as a proxy for the actual

kinase of interest. Four million internal and commercial

compounds have been pre-docked into this surrogate

receptor, and the docking scores and pharmacophore

interactions have been extracted and stored for the billions

of docked poses. Surrogate AutoShim models for new

kinases can be trained, and accurate IC50
0s of these 4

million compounds predicted, in just hours rather than

weeks, without further docking. Combined, Profile QSAR,

Kinase-Kernel and Surrogate AutoShim identify most of

the actives in a compound collection. Activity has been

predicted for these 4 million internal and commercial

compounds across all 500 ? human kinases and numerous

cell lines, so an initial PFVS for any kinase is now just a

table lookup. To do this experimentally would take many

years and cost at least a billion dollars!

PFVS has been successfully applied to about 50 recent

Novartis kinase projects, with external R2 = 0.35–0.7,

enrichments of 20x–50x, and hit rates of 25–80 % even for

completely novel compounds. Applications have covered a

wide range of project stages: finding tool compounds for

target validation ahead of HTS, virtual screening where

protein is too scarce for full HTS, ‘‘catch-up’’ screens for

compounds added to the archive since an earlier HTS,

rescuing HTS false-negatives, triaging experimental HTS

hits for cellular potency or specific selectivities, selecting

compounds from commercial vendors, and enhancing the

archive based on kinase profile diversity.

Since the symposium, PFVS has been extended to

additional families: GPCRs, Ser/Cis proteases, and many

non-kinase adenosine nucleotide binding proteins from

many families including chaperones, carboxylases, phos-

phodiesterases, ABC transporters, pyrophosphatases, ion

channels, ubiquitin-congugators and others. No longer a

kinase-specific niche technology, PFVS now applies to

roughly � of the estimated druggable genome (Fig. 1).

Summary of ‘‘Selective, privileged and promiscuous

chemical patterns in high-throughput screening’’

The talk ‘‘Selective, privileged and promiscuous chemical

patterns in high-throughput screening’’ was presented by
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Dr. Cristian Bologa. The talk was focused on the lessons

learned in the process of finding successful chemical

probes at the University of New Mexico Center for

Molecular Discovery.

The University of New Mexico Center for Molecular

Discovery (UNMCMD) is a screening center within the

Molecular Libraries Probe Production Centers (MLPCN)

focusing on multiplexed, high throughput flow cytometry.

The UNMCMD was part of the NIH Roadmap for The

Molecular Libraries Program (MLP) since 2005. UN-

MCMD has been screening more than 10 million chemical

samples in more than 300 assays and has identified 14

chemical probes by August 2011. The UNM Biocomputing

facility is focused on bioinformatics, cheminformatics,

ligand- and structure-based molecular design and supports

high-throughput screening (HTS) data mining and screen-

ing informatics for UNMCMD. All the screening results of

UNMCMD are made public in the PubChem database. Of

all the chemical probes developed by the MLP program,

the UNMCMD GPR30 agonist G-1 [5] has got the highest

number of citations at the time of this presentation, fol-

lowed by two chemical probes from the Scripps Research

Institute, an agonist and an antagonist of the S1P1 receptor.

In the author’s opinion, five factors have a great influ-

ence on finding a successful chemical probe—‘‘hot’’ target,

high potency, proper physico-chemical properties, dem-

onstrated in vivo activity, and selectivity on the intended

target. The last mentioned factor, selectivity, is not the

most important property for drugs, which can produce their

desired pharmacological effect by acting on multiple tar-

gets, but it is one of the most important ones for a chemical

probe, used to investigate the role of the intended target in

biological pathways or medical diseases. In a general

library screening, the goal of HTS is to produce candidate

molecular scaffolds for lead/probe optimization. However,

making sense of large scale (and noisy) HTS results is not

always easy. Understanding the potential of each scaffold

very early in the project is critical for success and for

avoiding later troubles. There are roughly four categories

of scaffolds that can be defined based on the screening

results in many HTS assays: not active (yet), selective,

privileged, and promiscuous. Not active scaffolds are those

found in compounds not active on any tested targets.

Selective scaffold are those active on only one or very few

specific targets. Privileged scaffolds are defined as those

active on multiple targets from the same family (such as

GPCR, kinases, ion channels, etc.). The last and also the

focus of this presentation are the promiscuous scaffolds—

those found to be ‘‘active’’ in assays on several targets from

multiple families.

The problem of false positives in HTS has been studied

in the past [6–14], and diverse sets of structural filters have

been proposed to remove these promiscuous compounds

from screening libraries, or from the list of the active hits

that will further advance in the project. One question to be

asked is whether we use the right filters to select the right

chemical scaffolds for probe optimization. While that

might be true, the filters would probably not cover newly

synthesized promiscuous scaffolds that were not available

when those structural filters were designed. For this reason,

an unbiased retrospective analysis of the primary screening

assay results of our current chemical library in a large

number of assays can show us what are the problematic

scaffolds in this library. In order to perform this analysis,

we extracted from the Pubchem database only those assays

that had more than 20,000 MLSMR substances tested (575

assays total), with the physicochemical profiling assays

excluded from this list. The total number of substances

tested in any of the 575 assays was 374,062, and 261,462 of

those being found active in at least one assay. There were a

total number of 126,528,538 samples tested and 931,567 of

them were found active, giving an average hit rate for

‘‘samples’’ of around 0.7 %. If we compute the same

sample hit rate for the compound sets selected using lit-

erature published substructure filters for removing false

positives, we would expect that value to be significantly

higher. However, we found actual hit rates between 0.7 and

17 %, with a weighted average of 1.3 %. That simply says

that not all, but many of the structural filters published in

the literature remove very little of the potential false pos-

itives, and at the same time remove a lot of potentially

good compounds.

In order to prioritize chemical scaffolds for probe opti-

mization, we have focused our analysis on identification of

promiscuous scaffolds. Scaffold generation has been

researched in the past, and we have re-implemented a

recently published method [15] (re-implemented source

code available at http://code.google.com/p/unm-biocomp-

hscaf). For each of the unique scaffold extracted from all

the MLSMR substances, we then computed a ‘‘promiscuity

score’’ based on the following numbers: number of sub-

stances containing that scaffold tested (in any of the 575

selected HTS assays), number of substances found active,

number of assays where compounds containing that scaf-

fold have been tested, number of assays where some of

those compounds where found active, number of samples

containing that scaffold tested, and number of samples

active. Examples of most promiscuous scaffolds detected

using this analysis are shown in Fig. 2. UNM Biocom-

puting has also implemented a BioActivity Data Associa-

tive Promiscuity Pattern Learning Engine (‘‘badapple’’) at

http://pasilla.health.unm.edu/tomcat/biocomp/badapple to

evaluate HTS hits and warn if they contain any promis-

cuous scaffolds.

An alternative strategy to the use of scaffolds in pro-

miscuity analysis is to use matched molecular pairs
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(MMPs) [16] to extract information regarding structural

changes that induce promiscuity. Once identified, that

information could be used, for example, for designing of

more selective compounds by replacing the promiscuous

part(s). The following steps have been used for finding the

most promiscuous substructures: (1) downloading and

cleaning of the MLSMR library from PubChem by

removing salt and solvent molecules, and also normalizing

tautomers; (2) identifying all non-redundant single, double,

and triple cut MMPs; (3) mapping ‘‘active’’ MMPs to HTS

assays; and (4) computing a promiscuity score similar to

the one used for ranking scaffolds. Some of the top pro-

miscuous fragments are presented in Fig. 3.

Finally, there are many questions that can be answered

by performing a similar analysis, but have not been asked

yet—for example, which scaffolds are found active more

often in: one screening center compared to the other cen-

ters; in yeast versus mammalian cells assays; in biolumi-

nescent assays versus other assays; in a specific class of

targets versus all the other—the classic case of privileged

patterns, (see some examples in Fig. 4); in assays with or

without a certain reagent (DTT); or in phenotypic versus

Fig. 1 Summary of 2D-profile-

QSAR, 2D-Kinase Kernel, 3D

AutoShim and 3D Surrogate

AutoShim
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target-based screens? Unfortunately, some of these ques-

tions cannot be answered easily at this moment due to the

curation effort needed by the fact that most of this type of

information is available in Pubchem only in free text

format.

To summarize some of the lessons learned from UN-

MCMD: it is easy to find non-selective actives but hard to

find the selective ones; it is very important to have the right

controls in every assay instead of purely rely on the com-

putational filters; physico-chemical profiling assays are

helpful only if run under the same assay conditions as the

main assay; and it is also important to have robust counter

screens and secondary assays in place.

Summary of ‘‘visualizing and exploring relationships

among HTS hits using network graphs’’

The talk ‘‘Visualizing and exploring relationships among

HTS hits using network graphs’’ was presented by

Dr. Anang Shelat. The talk describes how network graph

techniques were used to analyze hits from a high-

throughput screen (HTS) for antimalarial agents [19] and to

guide subsequent SAR studies that resulted in the identi-

fication of several novel scaffold series.

The motivation for using network graphs to explore

HTS results was inspired by the work of Schuffenhauer

et al. [18, 23] and Wetzel et al. [17].
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An HTS primary screen ‘hit’ is less likely to be a false

positive if it belongs to a well-defined SAR series: a

scaffold that demonstrates significant changes to potency

(ideally [ 2 log) with small structural variation. To iden-

tify such scaffolds, we routinely employ an SAR-by-cata-

log approach to construct analog sets from our internal

library and commercially-available databases. At this stage

in the discovery process, we place a premium on inter-

pretability and opt for building models that are based on

‘obvious’ topological relationships between molecules.

Network graphs are a powerful tool for visualizing and

understanding biological activity in the context of these

topological relationships.

To build the network graph, input molecules are subject

to several rounds of abstraction to yield representations

with decreasing complexity. The input molecules and

scaffolds define the nodes of the graph, and nodes that are

topologically related are connected by edges. Figure 5

describes the abstraction process in detail. First, the Bemis-

Murcko fragmentation algorithm [20] is used to truncate

side chains while keeping intact contiguous ring systems

plus any chains that link two or more rings. In this ‘scaf-

fold’ representation, the alpha atom at side chain substi-

tution points is preserved as a generic carbon atom. At the

next abstraction level, a ‘topology’ is generated by

removing the alpha atom to allow substitutions at all

positions, and by saturating all bonds. We have found that

bond saturation is an effective way to ensure that tautom-

ers, especially those from dispersed pi systems that some-

times confound canonical tautomerization algorithms, are

assigned to the same parent node. The final level of

abstraction involves hierarchically clustering topologies

using the McQuitty algorithm with the ECFP_4 fingerprint

and the Dixon-Koehler dissimilarity metric [22]. This

abstraction procedure is performed by a program written in

the Pipeline Pilot environment (Accelrys), using native

functions except for clustering which requires an R script

that uses the hclust function [21].

The input molecules and entities resulting from the

abstraction process represent the nodes in the network

graph. The nodes are connected by edges according to the

following rules: (a) molecules are connected to other

molecules if they share the same scaffold; (b) molecules

are connected to their parent scaffold; (c) scaffolds are

connected to a ‘parent’ scaffold if a sub-structure rela-

tionship exists; (d) scaffolds not connected to a ‘parent’

scaffold are connected to their ‘parent’ topology;

(e) topologies are connected to each other according to the

dendrogram generated from hierarchical clustering. This

algorithm generates a planar tree graph: every pair of nodes

has exactly one edge and no edges cross. Nodes annota-

tions and relationships are stored in a relational database as

parent–child pairs, facilitating efficient lookup during net-

work construction.

The Cytoscape program [25] is used to visualize and

explore the network graph. In addition to having a number

of useful network layout algorithms and interactive tools,

this application makes it easy to annotate graph attributes

and then visualize these annotations within the context of

the graph structure. For example, Fig. 6 shows a single

branch from the network graph created for the antimalarial

HTS (refer to [19] for the full network graph). Nodes

representing HTS hits are colored according to potency

against the K1 strain of Plasmodium falciparum, and sized

according to potency against the 3D7 strain. Edge color

indicates topological relationships. The layering of multi-

dimensional biological data and chemical topological

information facilitates a deeper understanding of the SARs

present within the 2,3-diaminonaphthalene-1,4-dione

cluster.

Fig. 5 Molecules are abstracted using the Bemis-Murcko fragmentation algorithm and then clustered. The input molecule and each level of

abstraction are represented as nodes connected by edges in the network graph
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Visual interrogation of the antimalarial HTS network

graph helped identify well-defined SAR series, such as the

2,3-diaminonaphthalene-1,4-dione scaffold series, but also

pinpointed hits from poorly sampled regions of chemical

space. Such singletons were further explored using the

SAR-by-catalog workflow described in Fig. 7. We expan-

ded the network graph to include node relationships from

molecules beyond the original HTS screening library,

including our entire in-house chemical library

(N = 543,022) and the Screening Compounds Directory

(’SCD’, N = 9,533,508, Accelrys). We retrieved analogs

by walking up the branches of validated hits to identify

similar scaffolds and topologies, and then walking down

the branches of those nodes to identify analogs of our hits.

Longer walks away from the hit node result in a larger

number of retrieved compounds, but also result in less

similar analogs.

In the malaria project, we queried our network graph

database using 228 high quality hits that were derived from

156 scaffolds. We identified 1,213 novel analogs in our in-

house library and 4,017 novel analogs from the SCD after

walking up to the scaffold level and then down new

branches. After acquiring and screening 1,056 novel

compounds, we were able to establish well-defined SARs

for 13 scaffolds (data in preparation for publication).

Our network graph approach enabled facile interpreta-

tion of HTS results and rapid construction of SAR series

for subsequent study. However, during implementation, we

encountered the following limitations: (a) the Bemis-

Murcko fragmentation algorithm requires at least one ring

and does not process linear molecules, and is unable to deal

with situations where an aliphatic side chain contains

important pharmacophore elements; (b) the abstraction

process can miss obvious relationships between multi-ring

compounds differing by a single ring or compounds with

rings differing by a single heteroatom; (c) topologies are

not real molecules and can sometimes be difficult to

interpret. We are currently working to address (b) by

combining Bemis-Murcko fragmentation with the Schuf-

fenhauer decomposition [8, 23], and (c) by implementing

an improved canonical tautomerization algorithm that

avoids having to force bond saturation.

Furthermore, we are expanding the use of network

graphs to describe relationships beyond chemical topology.

For example, the Anatomical Therapeutic Chemical (ATC)

classification system [24] classifies compounds at five lev-

els based on physiological or therapeutic effect and chem-

ical structure. As of 2011, Level 1 includes 14 anatomical

groups; level 2 includes the therapeutic main groups; level 3

contains the therapeutic-pharmacological subgroups; level

4 contains the chemical-therapeutic-pharmacological sub-

groups; and level 5 contains actual chemical substances. A

network graph can be constructed using this hierarchy, and

visualized in a manner similar to that used in the antima-

larial HTS study. Figure 8 shows an example of a branch

from a network graph constructed from an HTS screen

against wild-type and mutant tumor cells (unpublished

data). The active molecules in this subset include com-

pounds with scaffolds quite dissimilar to the three arter-

misins depicted, yet share common biological activity as

chemotherapeutics targeting eukaryotic protozoa.

In summary, network graphs are powerful tools for

exploring multidimensional relationships among biological

and chemical properties, and they enable rapid and efficient

evolution of HTS hits.

Final open panel discussion

Two main topics were raised in the open panel discussion:

availability of data from non-NIH funded HTS centers, and

how to deal with the noise that can interfere with the HTS

data management.

Fig. 6 Branch from the

antimalarial HTS network

graph. Molecules form the

‘leaves’ of the branches, while

walking up the branch yields

representations that are

increasingly abstracted
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Current non-NIH funded HTS centers, especially from

non-profit organizations and the private sector, have no

obligation to deposit data or make data available to the

public. Steve Bryant commented on the issue and

explained that there is no restriction from the NIH Pub-

chem database that prevents anyone from depositing

assays having even just a few compounds. The NIH

Pubchem database does not own the copyright of the data,

but rather serves just as a public repository. The private

sector does have intellectual property issues that prevent

them from depositing data to public repositories such as

the PubChem database. An audience member from an

NIH funded HTS center asked whether it is possible to

deposit the molecular models or virtual screening models

developed using the HTS data. That is, instead of directly

depositing the data (compounds), the private sector

deposits the models, which will not reveal the compound

structures belonging to the companies. Steve Bryant

commented on this interesting proposal and stated that

there were no rules preventing depositors from depositing

the models in the PubChem database, although there was

no such precedent. An audience member noted that there

is a public database of biological models called Bio-

Model.net [26], but that a similar scheme for molecular

models might be more difficult to implement due to reli-

ance on proprietary software applications. Eric Martin

commented that the Profile-QSAR and AutoShim IC50

virtual screening models are trained using high-quality

IC50 assay data. They typically require 400 ? IC50 s

from a single assay, or from combined assays shown to

correlate well, and with at least 25 active compounds.

They have not used public data to train their models yet,

but if the data met those criteria it could be used. Anang

Shelat lamented the lack of quality models in the public

domain, but noted that pharmaceutical companies are

increasingly granting access to their chemical tools and

subsets of their screening libraries, and that perhaps

enabling broader use of some of their computational

models would follow.

The second discussion in the panel was on handling

noise in the HTS data. HTS data, especially from primary

screening, contains a significant amount of noise from the

experimental design that affects further cheminformatics

results. Cristian Bologa of UNM commented that these

Fig. 7 SAR-by-catalog

workflow using network graph

techniques to rapidly construct

informative SAR series

Fig. 8 Network graph based on

ATC hierarchical relationships
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HTS artifacts might have multiple causes: mechanical—

compound carryover, solvent evaporation, edge effects,

etc.; optical—compound fluorescence or fluorescence

quenching, light scattering by insoluble compounds;

membrane permeabilization or cytotoxicity, in cellular

assays; reactive or redox cycling compounds; and other

assay specific artifacts. For example some of the most

promiscuous compounds in MLSMR are known redox

cycling compounds, and the active compounds in the assay

‘‘NIH Library Profiling’’: Compound and DTT Dependent

Redox Cycling H2O2 Generation (Pubchem AID: 828)

have an overall hit rate of 8.2 % in all other MLSMR

assays, much higher than 0.7 % for the compounds inactive

in that assay. Not the same can be said about other physico-

chemical profiling assays designed to catch false positives.

For example, there is very little difference between the hit

rate of actives (1 %; 1.5 %) and inactives (0.7 %) in the

‘‘aggregator’’ profiling assays (AIDs: 585 and 1,476).

These HTS artifact problems encountered in the HTS

screening campaigns are best handled from the beginning

of the assay development and HTS experimental design:

developing of robust assays which include verified positive

and negative controls, screening in duplicate, triplicate or

at multiple concentrations, having additional countersc-

reens and secondary screens that use a different detection

method, etc. After the screening has been performed, a

cheminformatics post-HTS analysis can and should be used

to filter out known false positives, try to recover false

negatives, and prioritize the most promising set of scaffolds

for further testing and development. Eric Martin com-

mented that they find that the most important factor in the

quality of their Profile-QSAR and AutoShim IC50 virtual

screening models is the dynamic range of the training data.

Single concentration HTS percent inhibition data are not

only noisy, they also have very little dynamic range, so

they have not trained models on HTS data. They would

rather build a model on 500 IC50 s (assuming at least 25

active compounds) than 2 million HTS percent inhibitions.

Conversely, some of the key uses of their models are to

help triage noisy HTS data, recovering of false negatives,

predicting which HTS hits are highly potent or highly

ligand efficient, and predicting selectivity over anti-targets

for which they have models. In addition, medicinal

chemists can start working immediately on early chemical

leads from a virtual screen, allowing the biologists time to

develop more sensitive, accurate and relevant HTS assays,

rather than rushing the HTS to get chemistry something to

work on.
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