Skip to main content
Log in

Identification of ligands that target the HCV-E2 binding site on CD81

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Hepatitis C is a global health problem. While many drug companies have active R&D efforts to develop new drugs for treating Hepatitis C virus (HCV), most target the viral enzymes. The HCV glycoprotein E2 has been shown to play an essential role in hepatocyte invasion by binding to CD81 and other cell surface receptors. This paper describes the use of AutoDock to identify ligand binding sites on the large extracellular loop of the open conformation of CD81 and to perform virtual screening runs to identify sets of small molecule ligands predicted to bind to two of these sites. The best sites selected by AutoLigand were located in regions identified by mutational studies to be the site of E2 binding. Thirty-six ligands predicted by AutoDock to bind to these sites were subsequently tested experimentally to determine if they bound to CD81-LEL. Binding assays conducted using surface Plasmon resonance revealed that 26 out of 36 (72 %) of the ligands bound in vitro to the recombinant CD81-LEL protein. Competition experiments performed using dual polarization interferometry showed that one of the ligands predicted to bind to the large cleft between the C and D helices was also effective in blocking E2 binding to CD81-LEL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ferrari C, Urbani S, Penna A, Cavalli A, Valli A, Lamonaca V, Bertoni R, Boni C, Barbieri K, Uggeri J, Fiaccadori F (1999) Immunopathogenesis of hepatitis C virus infection. J Hepat 31(Supplement 1):3–8

    Google Scholar 

  2. Bartenschlager R (1999) The NS3/4A proteinase of the hepatitis C virus: unraveling structure and function of an unusual enzyme and a prime target for antiviral therapy. J Viral Hepat 6:165–181

    Article  CAS  Google Scholar 

  3. Lesburg CA, Radfar R, Weber PC (2000) Recent advances in the analysis of HCV NS5B RNA-dependent RNA polymerase. Curr Opin Investig Drugs 1:289–296

    CAS  Google Scholar 

  4. Welbourn S, Pause A (2007) The hepatitis C virus NS2/3 protease. Curr Issues Mol Biol 9:63–69

    CAS  Google Scholar 

  5. Venkatraman S, Njoroge FG (2009) Macrocyclic inhibitors of HCV NS3 protease. Expert Opin Ther Pat 19:1277–1303

    Article  CAS  Google Scholar 

  6. Enomoto M, Tamori A, Kawada N (2009) Emerging antiviral drugs for hepatitis C virus. Rev Recent Clin Trials 4:179–184

    Article  CAS  Google Scholar 

  7. Chary A, Holodniy M (2010) Recent advances in hepatitis C virus treatment: review of HCV protease inhibitor clinical trials. Rev Recent Clin Trials 5:158–173

    Article  CAS  Google Scholar 

  8. Sharma SD (2010) Hepatitis C virus: molecular biology and current therapeutic options. Indian J Med Res 131:17–34

    CAS  Google Scholar 

  9. Stoll-Keller F, Barth H, Fafi-Kremer S, Zeisel MB, Baumert TF (2009) Development of hepatitis C virus vaccines: challenges and progress. Expert Rev Vaccines 8:333–345

    Article  CAS  Google Scholar 

  10. Dubuisson J (2007) Hepatitis C virus proteins. World J Gastroenterol 13:2406–2415

    CAS  Google Scholar 

  11. Budkowska A (2009) Mechanism of cell infection with hepatitis C virus (HCV)—a new paradigm in virus-cell interaction. Pol J Microbiol 58:93–98

    CAS  Google Scholar 

  12. Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S, Scarselli E, Cortese R, Nicosia A, Cosset FL (2003) Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem 278:41624–41630

    Article  CAS  Google Scholar 

  13. Bartosch B, Cosset FL (2006) Cell entry of hepatitis C virus. Virology 348:1–12

    Article  CAS  Google Scholar 

  14. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S (1998) Binding of hepatitis C virus to CD81. Science 282:938–941

    Article  CAS  Google Scholar 

  15. Levy S, Todd SC, Maecker HT (1998) CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Ann Rev Immunol 16:89–109

    Article  CAS  Google Scholar 

  16. Petracca R, Falugi F, Galli G, Norais N, Rosa D, Campagnoli S, Burgio V, Di Stasio E, Giardina B, Houghton M, Abrignani S, Grandi G (2000) Structure-function analysis of hepatitis C virus envelope-CD81 binding. J Virol 74:4824–4830

    Article  CAS  Google Scholar 

  17. Higginbottom A, Quinn ER, Kuo CC, Flint M, Wilson LH, Bianchi E, Nicosia A, Monk PN, McKeating JA, Levy S (2000) Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2. J Virol 74:3642–3649

    Article  CAS  Google Scholar 

  18. Zhang YY, Zhang BH, Ishii K, Liang TJ (2010) Novel function of CD81 in controlling hepatitis C virus replication. J Virol 84:3396–3407

    Article  CAS  Google Scholar 

  19. Drummer HE, Wilson KA, Poumbourios P (2002) Identification of the hepatitis C virus E2 glycoprotein binding site on the large extracellular loop of CD81. J Virol 76:11143–11147

    Article  CAS  Google Scholar 

  20. VanCompernolle SE, Wiznycia AV, Rush JR, Dhanasekaran M, Baures PW, Todd SC (2003) Small molecule inhibition of hepatitis C virus E2 binding to CD81. Virology 314:371–380

    Article  CAS  Google Scholar 

  21. Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G, Bolognesi M (2001) CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J 20:12–18

    Article  CAS  Google Scholar 

  22. Kitadokoro K, Galli G, Petracca R, Falugi F, Grandi G, Bolognesi M (2001) Crystallization and preliminary crystallographic studies on the large extracellular domain of human CD81, a tetraspanin receptor for hepatitis C virus. Acta Crystallogr D Biol Crystallogr 57:156–158

    Article  CAS  Google Scholar 

  23. Neugebauer A, Klein CDP, Hartmann RW (2004) Protein-dynamics of the putative HCV receptor CD81 large extracellular loop. Bioorg Med Chem Lett 14:1765–1769

    Article  CAS  Google Scholar 

  24. Balhorn R, Hok S, Burke PA, Lightstone FC, Cosman M, Zemla A, Mirick G, Perkins J, Natarajan A, Corzett M, DeNardo SJ, Albrecht H, Gregg JP, DeNardo GL (2007) Selective high-affinity ligand antibody mimics for cancer diagnosis and therapy: initial application to lymphoma/leukemia. Clin Cancer Res 13:5621s–5628s

    Article  CAS  Google Scholar 

  25. AutoDock website: http://autodock.scripps.edu

  26. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AK (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  27. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semi empirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  Google Scholar 

  28. Huey R, Goodsell DS, Morris GM, Olson AJ (2004) Grid-based hydrogen bond potentials with improved directionality. Lett Drug Des Discov 1:178–183

    Article  CAS  Google Scholar 

  29. Harris R, Olson AJ, Goodsell DS (2008) Automated prediction of ligand binding sites in proteins. Proteins 70:1506–1517

    Article  CAS  Google Scholar 

  30. Morris GM, Huey R, Olson A (2008) Using autodock for ligand-receptor docking. Curr Protoc Bioinforma 8–14

  31. NBCR website: https://www.nbcr.net/pub/wiki/index.php?title=Main_Page

  32. Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61

    CAS  Google Scholar 

  33. Holzer M, Ziegler S, Neugebauer A, Kronenberger B, Klein CD, Hartmann RW (2008) Structural modifications of salicylates: inhibitors of human CD81-receptor HCV-E2 interaction. Arch Pharm (Weinheim) 341:478–484

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Nadhmi Auchi Fellowship, The American University in Cairo, awarded to R. Al Olaby. Computer time was provided by the National Biomedical Computational Resource at the University of California, San Diego. We would like to thank Dr. Arthur Olson’s molecular graphics laboratory at The Scripps Research Institute for supporting the AutoDock tutorial at Scripps Research Institute and providing assistance with AutoDock 4.2 and AutoDock Tools 1.5.6. We would also like to thank Dr. Shoshana Levy (Stanford University) for generously providing us with the human GST-CD81-LEL protein. Biacore support and instrument use was provided by the Protein Expression Center at Caltech. The ligands tested in this study were provided by the National Cancer Institute through its Developmental Therapeutics Program. Special thanks goes to Dr. David Tirrell (Tirrell lab-Caltech) and Nancy Aitken (Social Entrepreneur) for their great support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rod Balhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olaby, R.A., Azzazy, H.M., Harris, R. et al. Identification of ligands that target the HCV-E2 binding site on CD81. J Comput Aided Mol Des 27, 337–346 (2013). https://doi.org/10.1007/s10822-013-9649-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9649-3

Keywords