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Abstract

We present a method to identify small molecule ligand binding sites and orientations to a given

protein crystal structure using GPU-accelerated Hamiltonian replica exchange molecular dynamics

simulations. The Hamiltonians used vary from the physical end state of protein interacting with

the ligand to a unphysical end state where the ligand does not interact with the protein. As replicas

explore the space of Hamiltonians interpolating between these states the ligand can rapidly escape

local minima and explore potential binding sites. Geometric restraints keep the ligands within the

protein volume, and a potential energy pathway designed to increase phase space overlap between

intermediates ensures good mixing. Because of the rigorous statistical mechanical nature of the

Hamiltonian exchange framework, we can also extract binding free energy estimates at all putative

binding sites, which agree well with free energies computed from occupation probabilities. We

present results of this methodology on the T4 lysozyme L99A model system with four ligands,

including one non-binder as a control. We find that our methodology identifies the

crystallographic binding sites consistently and accurately for the small number of ligands

considered here and gives free energies consistent with experiment. We are also able to analyze

the contribution of individual binding sites on the overall binding affinity. Our methodology

points to near term potential applications in early-stage drug discovery.
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II. INTRODUCTION

Determining small molecule binding sites and bound poses is an important part of the drug

discovery process. When the co-crystal structure of a lead compound is unavailable,

rationalizing affinity changes in a lead compound series and designing molecules with

improved binding can prove challenging. Even when the binding site is known, additional

sites with varying druggability may exist, and targeting these alternative sites may produce

desirable biological responses and hence provide new opportunities for drug discovery.
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With rapid development in processing power and molecular simulation algorithms,

computational methods are now playing an important role in predicting protein-ligand

binding properties, especially in early-stage drug discovery. Docking methods, the most

widely used class of structure-based drug design methods, aim to rapidly generate a

comprehensive set of conformations of the protein-ligand complex and rank them using

scoring functions with varying complexity and accuracy. Though docking methods can

quickly rank and often identify binding locations and poses, the accuracy of docking is

limited by a number of factors, including the effectiveness of semi-empirical scoring

functions, the difficulty of including solvation effects, and the difficulty of representing a

statistical mechanical ensemble with one or a few configurations. Docking is therefore

problematic in projects requiring detailed and reliable knowledge of ligand binding location

and its interactions with the target in the binding pocket [1].

A number of studies have worked to fix many of these issues. Some studies have

successfully improved docking methodologies by introducing receptor flexibility [2],

explicit water molecules [3], or even using post-docking methods to rescore the entire

complex ensemble [4, 5]. Nevertheless, as shown by studies evaluating and comparing

different docking programs, their intrinsic limitations, such as a low level of physical detail

and lack of statistical mechanical sampling, make them unable to consistently identify ligand

binding sites and poses [6–8]. Other structure-based drug design methods that are

specifically designed for identifying binding sites based on geometric properties [9–11] or

that are knowledge-based [12–14] have also been used with varying success, but these

methods are only useful when the sites are well-defined pockets. Moreover, extensive usage

of fitted models and parameters makes them less reliable for systems for which they were

not parameterized.

In contrast with the cheap but approximate docking methods to study protein-ligand binding

are more rigorous, physical-based techniques such as molecular dynamics (MD) and Monte

Carlo (MC) simulations, which historically have been used much less commonly in the drug

design process because of their expense. With an all-atom representation of the protein and

potentially explicit solvent, MD simulations can provide microscopic information about

protein-ligand interactions, predict and calculate properties based on statistical averages of

an ensemble of conformations, and have been shown to be capable of accurately predicting

binding affinities in model systems [15–17]. In theory, MD simulations of a protein with a

known ligand will eventually converge to the true distribution of bound structures if run

sufficiently (though impractically) long with an accurate force field. Free energy calculation

methods [18] can then in principle be used to either decide between the predicted poses or

compare them with experimental data.

In reality, optimizing these simulation tools individually and assembling them together to

produce useful predictions on a timeline consistent with a realistic drug design pipeline is

still an unsolved problem. The rapid development of computer power and techniques such as

GPU-accelerated simulations [19, 20], increasingly accurate biomolecular force fields [21–

23] and implicit solvent models [24–26] and even simulation machines designed specifically

for MD simulations [27, 28] may have made these problems much more amenable to

computation. However, many issues must still be addressed to enable simulations of
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sufficient accuracy to be useful in drug design or discovery. Among these issues, poor or

insufficient sampling is undoubtedly the most stubborn one [29]. A ligand in an MD

simulation can easily become kinetically trapped for long periods of time, effectively

preventing it from visiting the relevant parts of conformational space. This leads to incorrect

sampling of the ensemble and results in the computed binding affinities or observed binding

modes that are sensitive to the initial configuration. In fact, without adequate sampling, even

a perfect force field would be of limited use. As argued by Mobley [29] in a recent review,

we are still running unconverged simulations with unsampled configurations on a daily

basis, hoping that the unsampled ones are not essential to ligand binding or other events of

interest. Overcoming this sampling problem could lead to direct use of more physical

methods to understand and predict small molecule binding.

Because of these computational limits, knowledge of the binding site is usually a

prerequisite in standard ligand binding free energy calculation methods. A crystal structure

of a related small molecule or, alternatively, a putative initial structure generated by docking

tools is often used as the starting configuration to increase the likelihood that the free energy

calculations can at least converge within the binding site. However, with the increased

simulation power and improved simulation tools, may directly physical molecular

simulation techniques be used to identify the ensemble of binding locations and poses both

accurately and relatively quickly without the prior knowledge of the binding site? Using

cheaper docking-based tools and other structure-based drug design methods are options to

create a binding ensemble [30], but in many cases the emphasis on making the process fast

discards the physics required to obtain properly weighted ensembles.

In this study, we investigate whether sufficiently optimized accelerated MD simulations in

implicit solvent can discover binding sites and binding modes without prior knowledge of

the binding site, even in a highly buried binding pocket. Many studies have investigated

enhanced sampling methods for accelerating the rate at which MD can sample relevant

conformations [31–37], and we focus specifically on Hamiltonian replica exchange

molecular dynamics (HREMD) in this paper. In Hamiltonian replica exchange methods,

individual replicas can visit a range of predefined Hamiltonians during the course of a

simulation, with pairs of replicas accepting proposed exchanges of Hamiltonians according

to a modified Metropolis criterion. The convergence properties of the system can vary

drastically with different Hamiltonians, allowing kinetic barriers present in one Hamiltonian

to be avoided in another Hamiltonian if a proper set is designed.

HREMD has been proven to improve sampling in free energy calculations over the use of

independent simulations at fixed Hamiltonians [32]. However, because of the large gap

between the time scale that current computers can achieve and the time scale of most

relevant biomolecular motions, we must further optimize HREMD [38] or combine it with

other enhanced sampling methods to fully explore the biophysical configurations of interest

in protein-ligand binding. We accelerate sampling beyond that typically achieved by

HREMD, without sacrificing thermodynamic accuracy, by restraining the uncoupled ligand

to the vicinity of the protein by a flat-bottom potential in all states, using multiple coupled

and uncoupled states, Monte Carlo simulation techniques, and GPU-accelerated molecular

dynamics with the OpenMM toolkit [20, 39]. Because of the rigorous statistical mechanical
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nature of the Hamiltonian exchange framework, we can also extract binding free energy

estimates at all putative binding sites using the multistate Bennett acceptance ratio (MBAR)

algorithm [40].

The methodology presented here has many similarities to that used by Gallicchio et al. in the

Binding Energy Distribution Analysis Method (BEDAM) [41], in that Hamiltonian replica

exchange in an implicit solvent system is used to enhance sampling. However, in our case

no binding site is assumed, the Hamiltonian is designed to explicitly maximize phase space

overlap between replicas, and no restraints are placed on the protein. A number of other less

conceptually central sampling enhancements are also added as discussed below.

To test the methodology presented in this paper, we examine a model protein-ligand binding

system consisting of the engineered L99A mutant of T4 lysozyme and a series of small

aromatic ligands. This model system has been widely used by a number of researchers to

test the accuracy of free energy methods [15, 16, 42]. T4 lysozyme L99A has a small,

buried, hydrophobic internal pocket that has proven to be a difficult target for a number of

docking methods [43–46]. Importantly, the crystallographic binding structures and binding

free energies are well characterized for this system, allowing us to directly validate our

methodology.

III. THEORY AND COMPUTATIONAL METHODS

A. System preparation

Protein parameterization—The T4 lysozyme L99A benzene-bound structure (PDB

accession code 181L) was used for this study. The protein was parameterized with the

AMBER parm96 forcefield [23] using LEaP from the AmberTools11 [47] (chosen to be

consistent with previous studies of this system) [15].

Ligand parameterization—Ligand structures were created from IUPAC names using the

OpenEye OEChem toolkit (version 2.3.2). Mobley et al. have shown that the semi-empirical

quantum mechanical AM1-BCC charge model [48, 49] for small molecules works almost as

well as ab initio methods in calculating binding free energies for implicit systems [50]. This

treatment was used to derive charges for the ligand, and the other parameters were assigned

from AMBER GAFF force fields [23, 51] using the ANTECHAMBER package [52].

B. Docking

To compare the performance of traditional docking methods and our methodology,

AutoDock (version 4.2) was used to dock the same four ligands to the protein [53, 54]. Each

ligand was docked twice, once with an entirely rigid protein and once with three flexible

residues, Val111, Val103 and Leu118. The three flexible residues were chosen based on

their reorientation observed in X-ray structures in response to ligand binding previously

reported [15]. All docking was performed to the same PDB structure 181L, the co-crystal of

the mutant with benzene. The protein for rigid and flexible docking was prepared according

to standard AutoDockTools procedures, adding hydrogens to the original files and assigning

Gasteiger partial charges. The AutoDock default grid spacing was used, with the grid box
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sizes for all docking set to be the box size, which effectively covers the entire protein

volume. The number of genetic algorithms runs was set at 50, resulting in 50 final poses.

This setup is only partially blind, as the bound structure used is the actual crystal structure

for one of the four ligands, so there is some degree of preorganization of the docking site for

a bound ligand. Additionally, in the case of the flexible docking, only the residues which are

known to potentially move in alternate crystal structures were made flexible. This therefore

represents in many ways a best case scenario for docking.

C. Simulation Methodology

The HREMD-based simulations utilized a modified version of the open-source Python

alchemical free energy code YANK, which is built on the OpenMM GPU-accelerated

molecular simulation library [20, 39]. We performed our simulations using a generalized

Born (GB) implicit representation of water [25]. A Langevin dynamics integrator with a 2 fs

time step and a 0.1 ps−1 collision frequency was used, with a bath temperature of 298 K, and

bonds to hydrogen were constrained by the CCMA method [55]. A flat-bottom restraint was

implemented to keep the ligand in the vicinity of the protein while allowing it to sample in

an unbiased way all spatially available and physically reasonable conformational space

consistent with binding. The specific choices made for this potential are described below.

Hamiltonian replica exchange [32] was used to improve sampling, along with a number of

improvements described below. Simulations were run on GPU computing resources

provided by XSEDE, including the NCSA Forge and Lincoln clusters.

All preliminary tests of simulation parameters and the 10-fold replicate test of simulation

consistency were performed with 1-methylpyrrole, a known binder. The ability of our

approach to differentiate binders from non-binders was then examined by introducing

another three ligands: benzene, a small binder, p-xylene, a larger binder which requires

conformational change of Val111, and phenol, a nonbinder, as a control [15]. By using p-

xylene, the ability of the method to sample all relevant biomolecular motions of the protein

can be examined. The system used in our simulations is shown in Fig. 1.

With sufficient sampling of all relevant binding states, the simulations here can also be used

to calculate the protein-ligand free energy of binding. For this purpose, we additionally

performed HREMD simulations of the ligand alone, in implicit solvent, with the same

parameters as described above.

Flat-bottomed restraint—It is common in free energy calculations to use restraints to

keep the ligand close to the putative binding site, especially in alchemical states that have

weakened interactions with the protein [56, 57]. These restraints prevent the ligand from

drifting through the simulation box, a process which has very long correlation time. In our

case, we use the tendency of the uncoupled ligand to wander to our advantage in order to

identify new binding sites. A restraint to a single binding site would defeat this objective.

However, we still wish to keep the ligand near the protein, as the time the ligand spends in

the solvent is not of interest. We therefore used a flat-bottomed restraint to keep the ligand

close to the protein, as the implicit solvent treatment would otherwise allow the ligand to
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drift off. A flat potential was used inside a cutoff radius (r0) with harmonic restraining walls

outside of this radius, using the equation:

(1)

where U(r) is the restraining potential, k is the spring constant, r is the distance between the

protein and ligand centers of geometry, and r0 is the cutoff radius.

We set r0 at half the maximum distance between protein atoms plus a 5 Å buffer so that the

entire protein with a buffer zone for surface binding sites was within the cutoff. We set the

spring constant k = 5.92 kcal/mol/Å2, such that at 1 Å away from the cutoff, the potential

energy rises to 5kBT. This minimizes the amount of time the ligand spends away from the

protein. In this case, we obtain a cutoff of 35.34 Å from the center of the protein for this

system. This restraint is present regardless of the degree the ligand is coupled to the protein.

We validated our flat-bottom restraint and integration scheme for physical consistency as

described in the Supporting Information. In the case of a less spherical protein, the amount

of time spent sampling configurations away from the protein surface could be minimized

using a more complicated shape such as an ellipsoid constrained along the protein axes.

Hamiltonian replica exchange molecular dynamics (HREMD)—In MD simulations

of protein-ligand complexes, ligands are highly likely to get kinetically trapped in local

minima in the free energy surface, potentially for tens of microseconds. [58, 59] These

trapping events prevent the ligands from visiting other potential binding sites. Our proposed

solution to this problem is to use Hamiltonian replica exchange molecular dynamics

(HREMD) between coupled and uncoupled ligand states. Typically in HREMD, N copies of

simulations at different intermediates along the coupling pathway are run in parallel, with

Monte Carlo exchanges between neighboring replicas. This process allows sampling at one

Hamiltonian state with short correlation times to be shared by exchange with other

Hamiltonians with longer correlation times. In our particular implementation, starting the

fully interacting state, charges are first scaled to zero, followed by removing the Lennard-

Jones interactions between ligand and protein through soft-core potentials [60–62], leaving

an uncharged molecule decoupled from the protein at the other end state. Replicas are

periodically swapped (exchanged) using the standard Metropolis criterion. The state of

physical interest is fully coupled state, in which all protein-ligand interactions are turned on.

However, by including partially and fully uncoupled states in our simulation we allow the

ligands to escape from kinetically trapped states, such as nonspecific binding minima, on the

time scale of tens or hundreds of picoseconds rather than microseconds. Here, we use a

Langevin integrator, but in principle the integrator of user’s choice can be used to perform

the MD (or alternately, MC).

In order to efficiently discover putative ligand binding sites and geometries when such

information is unavailable, we made a number of modifications to the standard Hamiltonian

replica exchange algorithm and Langevin dynamics [32]. These included Gibbs sampling

moves in state space, Monte Carlo translation and rotation moves, seeding all replicas with

independent initial configurations, and using multiple coupled and uncoupled states.
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Gibbs sampling for replica exchange—Recently, it was shown that replica exchange

algorithms can be considered a form of Gibbs sampling, with approaches that speed mixing

in the permutation of thermodynamic state indices associated with replica coordinates also

speeding overall mixing of the whole simulation Markov chain [38]. We make use of this

scheme here by attempting many swaps of randomly selected replica pairs (i, j), accepted

with the acceptance criteria described in Eq. 24 of Ref. [38]. We attempt a total of K5 swaps

each iteration, where K is the total number of alchemical states, to ensure the replicas are

thoroughly mixed. Thus, instead of only jumping to the nearest neighbors, a given replica

can jump to any Hamiltonian that is allowed with a probability that obeys detailed balance.

In previous test cases, this increased the rate of sampling between 2 and 100 times,

depending on the observables and systems examined, with negligible increase in

computational cost [38]. The potential energy matrix of each configuration calculated at all

alchemical states is calculated and stored for later MBAR analysis.

Monte Carlo ligand translational/rotational moves—To further enhance

conformational sampling, we introduced Monte Carlo translational and rotational moves,

carried out immediately prior to dynamics with each iteration of Hamiltonian exchange. For

these moves, a random displacement of the ligand atoms is attempted, with the trial

displacement in each dimension drawn from a normal distribution with 1 nm standard

deviation, and acceptance or rejection determined by the Metropolis criterion. A rotational

move is chosen by drawing a rotation matrix uniformly over rotation space by generating a

uniform quaternion (a uniform element of SO(3)) and translating it into a rotation matrix,

with rotations accepted or rejected by the Metropolis criterion.

Seeding replicas with independent starting configurations—To eliminate biasing

from the starting configuration, we initialized the simulations with random starting

configurations in the allowed simulation space at all replicas. We applied random rotational

and translational moves to the initial bound configurations of all replicas using the scheme

described in the previous section without Metropolization. Translational moves were

proposed by generating three random numbers from 0 to 2 nm corresponding to (x, y, z)

translation from the initial bound configurations, followed by a rotational move as described

above. This starting location was rejected if any atom was less than 3 Å from any protein

atom.

Using multiple fully coupled and fully uncoupled states—Standard HREMD uses

only one fully coupled state and one fully uncoupled state. We can increase the amount of

physically meaningful sampling by using multiple fully coupled states. By also using

multiple fully uncoupled states, we increase the chance of a ligand being exchanged into a

fully uncoupled state, gaining the ability to move freely around the simulation box.

In our HREMD simulations, the potential energy can be expressed in terms of two coupling

parameters:

(2)
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where U0 is the potential of the system with the noninteracting ligand. Uelec and ULJ are the

Lennard-Jones and electrostatic potentials. λelec and λLJ ∈ [0,1] are the corresponding

coupling parameters. Note that the flat-bottom restraint and the ligand torsion, angle, and

bond potentials are fully turned on in all states and therefore part of U0.

For simulations of the ligand in complex, we use 24 total states, as this number is easily

portable between configurations of 6 or 8 GPUs per CPU on the computing clusters

simulations were run on. In this study, one iteration is defined as the period in MD time

steps between replica exchanges. The MD time step was 2 fs, with 500 time steps between

exchanges, making each iteration 1 ps long. Smaller number of time steps per iteration

allows for more exchanges in state space in a given unit time, and thus for faster transitions

of ligands in and out of putative binding sites [63]. However, at some point as exchanges

become more frequent there is a tradeoff between the computational overhead required to

perform state exchanges and the acceleration of binding transitions due to the exchanges.

We ran a series of 1 ns simulations with different numbers of time steps per iteration (250,

500, 1000, 2500). We chose 500 steps for our performance runs, because with 250 MD

iterations per swap the percentage of time spent performing exchanges was about twice as

much as that for 500. The total time taken was independent of whether Gibbs sampling or

standard Metropolis neighbor exchange was performed. The particular tradeoffs involved in

choosing this exchange frequency are highly sensitive to the particular CUDA

implementation and the networking details of the computers on which simulations are run,

and should not be taken as definitive for all hardware or software configurations.

We performed a series of runs using a beta version of the code to examine the sensitivity of

the simulation efficiency on simulation parameters, including the number and spacing of

intermediate states, the number of additional fully coupled and fully uncoupled states, and

the size of the Monte Carlo displacements. The results showed that other than having

sufficiently close spacing of intermediate states in space, sampling was not very sensitive to

these simulation parameters, and thus no attempt at extensive optimization was made. A

table of simulation parameters tested is included as Supplementary Material.

For these simulations, 1 nm was used for the maximum MC displacement distance. The

ligand was discharged (charge annihilation) and then decoupled (Lennard-Jones decoupling)

by scaling the potentials over a series of coupling parameters (λelec: 1.0,0.85, 0.65, 0.35, 0;

λLJ: 1.0, 0.95, 0.90, 0.85, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10, 0.0), which were

chosen to make sure that replica exchange transitions probabilities between neighboring

states were approximately equal across the entire transformation. Six fully coupled and three

fully uncoupled states were used, for a total of 24 states. One equilibrium iteration was

followed by production runs performed for 15000 iterations (15 ns/replica).

For the ligand in solvent HREMD simulations (decoupling the ligand in implicit solvent),

we used only three states—the fully coupled state, the state with the ligand fully discharged

and the state with the ligand fully discharged and decoupled—as this number is sufficient to

guarantee full mixing between states in implicit solvent. All other simulation parameters

were the same as in ligand-protein complex simulations.
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D. Production runs

To test simulation consistency and repeatability, we performed ten separate independent

runs of the 1-methylpyrrole/T4 lysozyme L99A system starting from random configurations

for 15 ns per replica. We then compared clustering patterns between these ten independent

runs. Simulations starting from different configurations, if run sufficiently long, should

converge to the same clusters at the fully coupled states, within some statistical noise.

We also performed simulations with two other binders and one other non-binder was also

performed to see if this methodology was able to differentiate binders from non-binders. For

the p-xylene case, a conformational change from the crystal structure of Val111 is required

for the lig-and to bind, which provides a good opportunity to test the ability of our method to

sample relevant biomolecular motions and ligand motions.

Binding site identification—The configurations sampled at all of the fully coupled (i.e.,

fully interacting) states were analyzed together to give final predictions of putative binding

sites. In the analysis, the location of the ligand at any given configuration was determined by

the ligand atom closest to the center of geometry of the ligand, circled in red in Fig. 1.

Protein alignment—Both the protein and ligand were flexible during our simulations. To

be able to cluster all ligand binding locations, all protein conformations from all complexes

had to be aligned to provide information on ligand locations relative to the protein.

Alignments used the Kabsch algorithm [64, 65] as implemented by Bosco K. Ho [66]. All

configurations were aligned to the alpha carbons of the crystal structure.

Clustering analysis—After alignment, the samples from all fully coupled states were

clustered using the Density-Based Scan Algorithm with Noise (DBSCAN) [67]. The

rationale behind this choice of clustering algorithm lies in the nature of the data. We do not

know ahead of time how many alternative binding sites are possible, though it is likely that

the densities at these locations are moderately well-defined, because the exponential nature

of the Boltzmann distribution means that low free energy configurations will have high

density compared to the non-binding locations. However, there is also likely to be

nonspecific binding density. We therefore expect distinct clusters, with some moderate

noise, but we do not know number of clusters beforehand. These requirements make K-

means and hierarchical clustering algorithms less useful. Density-based clustering methods

that cluster results based on the density of data points appear more applicable.

To simplify the clustering, we began the clustering process with a grid-based density

analysis. Starting from atomic coordinates of the protein, a three-dimensional cube with 36

Å edge length, just large enough to fit the observed data sampled during the flat-bottom

restrained simulation, was centered on the center of geometry of the system and filled with a

2 Å-resolution grid defining 46656 cells of 8 Å3 volume each. A 2 Å edge length was

chosen based on the standard tolerance for the approximate maximum allowable fluctuations

from crystal structure. The uniform density over all nonempty cells was calculated, and all

cells with fewer than 8 times the background density were discarded. The factor of 8 was

chosen for this model system because, clusters that appeared visually distinct could not be

separated by the clustering algorithms with a density cutoff factor less than 8. This choice of
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low density to exclude from the clustering introduces a small amount of bias, which we

address later.

After this filtering, the DBSCAN algorithm was used to cluster the results [67]. We used 1%

of total number of the remaining samples after low density filtering as the criteria for

defining a cluster. Without this filtering removing the low density volumes, the DBSCAN

algorithm tended to give large amorphous clusters. This initial filtering of the density gave

well-defined clusters in all cases examined. The most populated cluster was then identified

as the most probable binding site, with the the centroids of the clusters used to define the

locations of the binding sites.

Binding pose identification—The binding configuration of the ligand is determined not

only by the location of its center of geometry, but also by the orientation and conformation

of the ligand within the binding site. It is therefore important to further analyze these

clusters to find the most probable binding orientations and poses.

In order to identify poses, we ran LIGPLOT for each observed pose in the predicted binding

sites [68]. The LIGPLOT program generates both lists of observed interactions (such as

hydrogen bonding, π-π stacking, and hydrophobic contact interactions) and schematic 2-D

representation of protein-ligand complexes in terms of these interactions. We first examined

the hydrophobic interaction patterns of all the poses at each location by counting the

interactions predicted by LIGPLOT. We then identified interactions that were frequently

formed for low-RMSD structures and classified the poses based on possession of sets of

these predicted interactions.

However, because of the small size of the ligands and the partial freedom they have to

reorient in the binding site, it is impossible to uniquely specify low RMSD configurations

based solely on lists of observed contacts. We therefore default to classifying clusters based

on the average RMSD values of all the poses in the most populated cluster from the ligand

in the co-crystal structure after alpha carbon alignment in order demonstrate the

performance of the methodology. This procedure requires having a crystal structure with the

ligand of interest, but we anticipate that pose identification based on specific protein-ligand

contacts in a crystal structure-agnostic method should work much more effectively than it

worked here for other more complicated binding sites with larger, more chemically diverse

ligands.

E. Computing binding free energies

Because the simulation algorithm presented here generates samples from all the intermediate

states connecting the coupled and uncoupled states, we can use free energy perturbation and

reweighting techniques to calculate binding free energies. In this case, we use the multistate

Bennett acceptance ratio (MBAR) method to calculate free energies [40], as implemented as

the pymbar Python code [69]. Because exchanging between alchemical intermediates using

the Metropolis criteria or Gibbs sampling already requires calculating the differences

between the potential energy function applied to each sampled configuration, no additional

information is required to analyze the resulting energy using MBAR.
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As shown in Fig. 2, to calculate the binding free energy (B to A), the ligand is first

decoupled from the solvent (B to D), as described in the Methods, transferred into the

protein binding site (D to C), and coupled with the protein (C to A), closing the cycle. The

dotted box represents the implicit solvent environment. Grey and red ligands represent

decoupled and coupled ligands, respectively. ΔGsolvent and ΔGcomplex are the free energies of

decoupling the ligand in solvent and complex, respectively. To calculate ΔGsolvent, a

HREMD simulation of ligand in implicit solvent was also performed for each ligand.

The free energy of then transferring the ideal gas ligand out of the simulation box

(ΔGtransfer) is equal to kBT times the ratio of the volumes the ideal gas ligand is sampling.

We will then have for the overall binding free energy:

(3)

where ΔGsolvent and ΔGcomplex are the free energy of decoupling the ligand in solvent and

complex and V∘ and Vsphere are the standard-state volumes for a single molecule in a box of

size 1 L/NA and Vbinding is the volume of the binding site, which may change depending on

the most appropriate definition of binding site. kB and T are the Boltzmann constant and

temperature in Kelvin, respectively.

ΔGcomplex can be calculated by:

(4)

where Q is canonical partition function, which is given by:

(5)

where U is the potential energy as a function of the coordinates x⃗ and V is the phase space

volume of x⃗ over which we sample.

In our study, because we spatially locate our ligands within the protein configurational

space, we can calculate not only the overall free energy of the ligand binding to the protein,

but also the binding free energy with respect to all potential binding sites considered jointly

and the binding free energies of ligand binding to individual binding sites. The difference

between these three binding free energies is the configurational volume over which we

integrate to calculate the partition function.

Overall binding free energies calculations—The overall binding free energy is the

free energy of the ligand considering the entire simulation volume, with partition function

given by:

(6)

where Voverall is total volume inside the flat-bottom sphere. In the limit of box that does not

extend far beyond the edge of the protein, and with a sufficiently large binding affinity, this
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would be the free energy consistent with an experimental measurement of protein

association anywhere on the protein.

Binding free energies of individual sites—We can also calculate the binding free

energies of the ligand to individual binding sites. Using the grid constructed during the grid-

based density analysis, we define a site as the volume made up of the smallest number of

cells that include all the samples from that cluster. The partition function for the site is given

by:

(7)

where the only difference is that Vsite is volume within an individual binding site. This free

energy will be equivalent to the binding free energy calculated for a method that requires

binding in a specific location of a protein, such as fluorescence polarization competition

assays. MBAR is applied to all samples that occur in that defined binding volume, over all

intermediate and final states.

Binding free energies over all sites—We introduce a final measure, all-site binding

free energies, which is the binding free energy over all the bound clusters considered

together. Here, we are interested in the binding affinity over the volume defined by all

known specific binding clusters previous identified. The partition function is given by:

(8)

where Vall sites represents the volume of all individual binding sites combined. This should

be nearly equal to the binding affinity over the entire protein (ΔGoverall), but excludes

probability associated with isolated ligands in the water box alone, and thus may be more

comparable for many experimental definitions of binding affinity such as by isothermal

calorimetry (ITC) or surface plasmon resonance (SPR) than the overall binding affinity.

Because of the granularity of the boxes, it may also exclude some probability density at the

edge of clusters that spills into neighboring boxes without reaching the density cutoff, an

approximation that we analyze later. MBAR is applied to the samples that occur over the

joint volume of all binding sites, over all intermediate and final states. Because the partition

function in MBAR is a weighted sum over all samples, each sample can be assigned to a

binding cluster, and we strictly satisfy:

(9)

or alternatively:

(10)
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This study, there are a few cases where more than one cluster has samples in a single box

volume, which means that this relationship is only approximately correct because of double

counting. In the case, the differences are less than 0.1 kcal/mol, so we do not attempt to

define binding site volume at a finer grain or split the boxes between clusters.

IV. RESULTS AND DISCUSSION

A. Binding sites are consistently identified in repeated trials

To test the statistical robustness of our methodology, we performed ten independent

simulation runs of the 1-methylpyrrole/T4 lysozyme L99A system. We analyzed the

configuration distribution from all fully coupled states for each independent run individually

and compared them.

Between six and twelve clusters were identified for each of the ten copies, with a total of

seventeen independent clusters observed among all simulations. For statistical consistency,

we are interested mainly in the most common clusters. After we discarded the six singletons

which occurred in only one simulation, eleven sites were left that appeared in multiple

simulations. The occupancy O of a specific site i, the probability of observing this location

in a run, is defined as:

(11)

Nfound is the number of times a cluster is found in site i across all Ntrials = 10 trial

simulations, Ni,j is the number of samples observed in site i in trial j, and Ntotal,j is the total

of number of samples in the observed clusters. This is a slight approximation, as if a cluster

is not observed, the volume still has nonzero density. Since the cutoff for a cluster is ¡1%,

approximation does not appreciably change the results.

Table I shows the analysis of the eleven sites identified from our ten runs, with their

physical locations in the protein shown by the first eleven positions in Fig. 3a. In Fig. 3a, a

location is represented by a sphere with diameter of 2 Å (the grid resolution). Black

indicates the experimental binding location. The eleven sites were numbered based on the

occupancy fractions occurrence, and by frequencies if occupancy fractions were the same.

Of eleven sites, three are observed in all ten runs, two of whose occupancies are larger than

0.2 in all ten runs.

Importantly, site 1 is the most populated in all ten independent runs and is located at the

crystallographic ligand binding site, indicating that we can identify this experimentally

observed binding location consistently. Site 2 is also observed in all runs and has an average

occupancy of more than 0.2. Though not as populated, site 3 is also observed in all runs.

However, as indicated from Fig. 3a, site 3 is very close to site 1 and could be interpreted as

“spillover” from site 1. All the other sites occur with much lower probability and can be best

interpreted as weaker nonspecific binding locations. The clusters in Fig. 3b show the binding

location predictions (with the same numbering system) for all four molecules after
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conducting the grid-based density analysis, each point representing a conformation at the

fully coupled states, with only one of the ten runs shown (in red) for 1-methylpyrrole. As

shown in Fig. 3b, the volume of site 1 for 1-methylpyrrole is relatively small despite having

almost half of the total samples, indicating that density at the binding site is well-localized.

Free energy differences are simply kBT times the log ratios of the relative probabilities of the

two states. We should therefore be able to directly compare the ranking of the sites by

occupancy measured by direct observation to the free energies calculated for each site. Free

energies of binding to each site are computed as described Section III E using Eq. 7, and are

shown in Table I, where they can be compared directly to the occupancies. The ranking of

the free energies of the sites agrees with that of the occupancies in almost all cases, though

there are some differences outside of statistical error. The free energy difference between the

top two binding sites is only 0.44 kcal/mol, suggesting that there may exist at least one

potential binding site other than the experimental binding site. The fact that low-frequency

clusters are not consistently observed in all simulations indicate that the simulations are not

entirely converged. This may explain the difference in binding affinity between rarer

clusters, although the convergence of the dominant binding sites does appear adequate based

on agreement between the two ways of calculating relative affinity between clusters.

To better understand the consistency between free energies and occupancies, we can

estimate an occupancy for each site based on its free energy. We estimated the occupancies

Oi from the free energies ΔGi as:

(12)

where Gi is the ΔGsite for location i. Uncertainties for each site free energy are the standard

deviation of the free energy over the ten independent runs, and are the uncertainty in a single

calculation, not in the mean.

We can also estimate each cluster’s free energy based on the directly observed occupancy of

the cluster in the fully interacting states. Each cluster’s relative free energy is equal to:

(13)

where Gi and Oi are ΔGsite and occupancy for site i. Ofar is the occupancy of the “cluster” of

samples far away from the protein as to be effectively noninteracting. This cluster serves as

a reference, because the transfer of the ligand to this volume should have ΔGsite = 0. We

define this cluster as those samples found between r=rcutoff and rcutoff − 5 Å in the fully

coupled state.

As shown in Table I, the occupancies calculated both ways as well as the free energies

calculated both ways are in relatively good agreement within statistical error, indicating that

our definition of the occupancy and the free energy calculation methodology are consistent.

The free energy calculations in principle contain more information, since they incorporate

the potential energies, as well as the location information the occupancies contain, and also
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include samples from multiple intermediate states. Interestingly, however, the uncertainties

in occupancies and free energies calculated starting from either directly observed

occupancies or using MBAR are similar.

B. The dominant binding site can be identified accurately across multiple molecules

To test the accuracy of our methodology in identifying binding sites across a range of

ligands, we examined the predicted sites of four ligands binding to the same protein, one of

which (phenol) is known not to bind experimentally. All methods were the same, except that

each of the three additional ligand binding runs was run only once, instead of ten times.

Fig. 4 shows the site occupancies for four molecules. For 1-methylpyrrole, the statistical

error in a single run (not in the mean) was calculated over the 10 runs, while values for only

one run were used for the other three ligands. Since many of the same binding sites were

observed in simulations of the different molecules, we used the same numbering systems

described in the previous section for the 1-methylpyrrole runs, adding newly identified sites

to the initial eleven sites.

As shown in Fig. 4, since the three binders share similar binding patterns, the total number

of potential binding sites identified on the protein only increases by four when additional

ligands are analyzed, with two of the sites from the non-binder, phenol. These four

additional sites are the last four sites numbered sites in Fig. 3a. Pink and blue represent

additional sites observed for p-xylene and phenol, respectively. The green, orange and blue

clusters in Fig. 3b are the binding site predictions for benzene, p-xylene and phenol. Each

point represents a conformation at the fully coupled state, with the low density sites filtered

out. The binding site at the crystallographically observed binding cavity (site 1) is identified

as the most populated site for all three binders. Additionally, no binding cluster of any

density above background is identified at this location for simulations of the non-binder.

This suggests that, at least for this model system and small set of ligands, we can identify the

binding location accurately and consistently and differentiate the binders from non-binders.

C. Binding poses can also be identified

1. Pose prediction at site 1 for 1-methylpyrrole—After the binding site (site 1) was

successfully identified, we further examined the poses found at that site. From the 10 runs of

the 1-methylpyrrole/T4 lysozyme L99A system, we took the set of ligands in the most

populated cluster, which is also the experimental binding cluster, and examined the poses of

the ligand configurations in this location.

We initially attempted to analyze the poses based on the hydrophobic interaction contacts

made between the ligand and the protein predicted by the LIGPLOT program. Although

there were a number of hydrophobic interactions correlated with low RMSD binding, there

was no single hydrophobic interaction pattern that could be conclusively identified with low

RMSD binding, suggesting that it is not possible to identify the most representative pose by

hydrophobic interaction patterns alone for this system. This was determined by using one

run of 1-methylpyrrole system as a training set to determine patterns of contacts associated

with low RMSD and then testing these patterns on a second run to see if low RMSD
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structures were identified. However, no pattern in hydrophobic binding was identified that

could consistently identify poses within 1 Å RMSD. We hypothesize that it is difficult to

determine binding patterns from contacts is this case because it is an engineered ligand

binding system with a large hydrophobic binding surface (up to 20 contacts), with similar

contributions to binding energy. Such as consensus pose procedure based on observed

contacts is more likely to work for systems with important hydrogen-bonding patterns

systems and more complex ligands.

We therefore focus on identifying poses based on RMSD from crystal structure. We

calculate the RMSD for all four molecules with respect to the co-crystal poses (Table II and

Table III). All RMSD values are symmetry corrected. Although we ran all docking and

simulations with the benzene co-crystal structure, we calculated RMSDs from the

experimental crystal structures of 1-methylpyrrole and p-xylene (PDB accession code 2OU0

and 3GUM) after aligning the alpha carbons to incorporate the conformational differences

between the complexes.

Fig. 5 shows 100 typical poses of each binder at the binding site are shown. 1-methylpyrrole

is primarily oriented the same way in all configurations, as can be seen by the essentially

stationary single nitrogen. Benzene has somewhat more conformational variation, as can be

expected with the highly symmetrical ligand, but still has relatively little motion. However,

p-xylene has significant conformational variation in the binding site, which we discuss in the

next section.

2. The role of Val111 in binding—One of the challenges involved in simulations of

ligand binding is capturing correlated motions involving both ligand and protein. T4

lysozyme L99A is a good model system to test the power of this methodology to overcome

this sampling problem. Previous simulations have shown that p-xylene cannot bind to the

same configuration of the binding cavity as smaller ligands; instead, a rotamer change of

Val111 is first required. In simulations with p-xylene placed in the binding cavity, the

occluded nature of the pocket makes this rotamer motion is extremely slow, often occurring

on time scales beyond that of typical simulations [15]. In this study, we monitored

movement of Val111 during the HREMD simulations of p-xylene and benzene. Fig. 6 shows

the RMSD of the two ligands from their crystal structure with respect to the RMSD of

Val111 from the crystal structure for (a) p-xylene and (b) benzene as well as the ligand

RMSD of the ligands versus against the Val111 χ dihedral angle (C-Cα-Cβ-Cγ) in (c) and

(d). Each dot is a conformation at each iteration. Because we are comparing the ligand pose

to the crystal structure pose, low ligand RMSD corresponds to the ligand being in the

crystallographic binding site.

As shown in Fig. 6a, the ligand binding and the conformational change of Val111 for p-

xylene are highly correlated. When p-xylene enters the binding site, Val111 is necessarily

displaced; if it is not, no binding occurs. For benzene binding (Fig. 6b), Val111 stays in the

initial location regardless of whether the ligand is bound or not. This demonstrates that our

HREMD decoupling strategy can significantly accelerate such coupled configurational

changes on binding that requires long simulations of at least multiple nanoseconds in
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standard MD simulations [15]. HREMD does this by removing the ligand from the pocket so

that the transition can occur.

If we look directly at the Val111 dihedral angle (C-Cα-Cβ-Cγ), the correlation between

binding of ligand and the conformational change of Val111 is not complete. There are in

fact configurations that have low p-xylene RMSD, but where the dihedral corresponds to the

small binder crystal structure. This occurs because the protein backbone shifts out, allowing

Val111 to move, a binding mode not observed in previous free energy calculations. Fig. 7

shows two low RMSD structures from each of the two clusters. Cyan and orange are used

for the dihedral shift (RMSD=0.34Å) and alternative backbone shift (RMSD=2.87Å)

structures, respectively. It is not clear if this observed difference in binding modes from

previous simulations is due to force field errors, the implicit solvent errors, lack of the

protein relaxation with the ligand absent in previous simulations, or some other unknown

reason.

To quantify the relative frequency of the two binding modes, we clustered all the

conformations in the binding site of p-xylene. Only two clusters with more than 10 percent

of all the conformations are present, with respective occupancies of 0.53 and 0.32. By

comparing to the p-xylene crystal structure, we found that cluster one has a 0.56 A average

RMSD with respect to the crystal structure while cluster two has a 3.03 Å average RMSD.

There are thus two primary binding modes in this location-defined cluster that can be

distinguished by their orientation.

One unrelated but important observation from Fig. 6 is that there are no ligand observations

in the range of 5 Å and 10 Å for either benzene or p-xylene in the interacting state,

indicating that there is no physical entry route for the ligand. Instead, it hops back and forth

between bulk and the binding site via the unphysical decoupling pathway.

D. Comparison of docking and our modified HREMD methodology

It is instructive to compare the performance of docking methods to our methodology. The

T4 lysozyme L99A system has proven a challenging case for UCSF’s DOCK program as

well as other docking programs [43–46]. Therefore, as an additional check we attempted

molecular docking to identify binding sites and poses, in our case using AutoDock. We first

compared the average ligand RMSD from the crystal structures for all binders in both cases.

For AutoDock, the average RMSD was calculated over 50 top poses, while for our modified

HREMD, the average RMSD was calculated over all poses at the highest probability binding

location. We also compared the percentages of poses with RMSD (from the experimental

co-crystal structure for each ligand after alpha carbon alignment) with values less than 2 Å.

Since there is since there is no crystal structure for the nonbinder phenol, we used the

benzene co-crystal and replaced the benzene with phenol and used RMSDs to that modeled

crystal structure to see if either approach incorrectly placed phenol into the binding site.

Results are shown in Table II and III.

Surprisingly, AutoDock and the more sophisticated methodology produced comparable

results for the binding site locations. Fraction within a given RMSD does not mean exactly

the same thing when comparing the two methods. In the docking runs, only 50 poses were
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generated out of hundreds of thousands of attempts while in our simulations, all poses in the

binding configuration are counted. Instead, it should be considered only an indication of

whether the crystallographic binding site can be identified. Rigid docking outperforms

flexible docking substantially for two binders, which is especially interesting in the case of

p-xylene. Since we know that Val11 must readjust from the small-binder crystal structure in

both experiment and simulations for binding to actually occur, the better performance of

rigid docking indicates that the good performance may be a statistical fluke, and that it is

only recognizing a hollow hydrophobic site. Tests on wider sets of ligands may be required

to further compare the methods.

E. Binding free energies can be accurately calculated

Though the initial goal of this study was not to calculate the binding free energies, the fact

that our methodology was modified from a free energy calculation tool made it

straightforward. We calculated the free energies of ligand binding to different sites, as

shown in Table I. The ordering of the sites using free energies matches the ordering using

occupancies well, though not perfectly. The free energy of ligand binding to the most

populated binding site is substantially more favorable than those of other sites, confirming

that a single site is dominant, though not overwhelmingly so, at only 2–3 times the

occupancy of the next most frequently occupied site.

Additionally, we were able to calculate the overall free energies of different ligands

associated with the protein, over the entire simulation volume, as shown in Table IV. The

overall free energies generally match the experimental values to within statistical noise. In

Table IV, we also compare all-site binding free energies and binding free to the dominant

binding site to the the overall free energies. For the non-binder phenol ΔGsite is close to zero

since the experimental site was not observed as the one of the predicted potential clusters.

The errors for the 10-replica 1-methylpyrrole simulations are calculated using the standard

deviation in the free energy over the ten simulations, while the errors for the rest are

calculated using the statistical uncertainty estimate for MBAR.

As a comparison, we also include in Table IV the explicit solvent calculations of the same

ligands from Mobley et al. [15], which were calculated assuming binding to only a single

site. We observe that these binding calculations are relatively consistent with our results.

They are in particularly close agreement with the free energy of binding to the highest

occupancy site, though the statistical noise is somewhat too high to reach any strong

conclusions. Gallicchio et al., using a different choice of force field and implicit solvation

model, but also assuming a single binding site, calculated a binding free energy of −4.01 ±

0.04 kcal/mol for benzene and −1.40 ± 0.03 for phenol [41]. This agrees with our single site

calculation for benzene, but is more favorable for binding for phenol. The number for

phenol in Table IV is for the most favorable binding site for phenol, not the hydrophobic

pocket, which has a binding affinity −0.16 kcal/mol. The binding free energies of other

molecules examined by Gallicchio et al. were also underestimated, similar to Mobley et al.

‘s explicit solvent calculations. This underestimation may be due to the contribution of

alternate sites to the free energy of binding, but may also be explained by a host of other

force-field factors.
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In the limit of tight binding and a sufficiently small simulation box, the overall free energy

should be slightly more favorable than the all-sites free energy, because the overall free

energy also includes the completely nonspecific binding to the protein and the low

concentration in the simulated volume near the protein. However, in this study this

discrepancy approaches 1 kcal/mol. This difference appears to in part be because of the

granularity of the clustering algorithm, which omits density outside the cluster if it falls

below the 8 times average density background. We performed an alternate binding

calculation for the 1-methylpyrrole case in which we set the energies of all samples not in

the set of grid cubes assigned to binding site clusters equal to energies drawn from the

samples away from the protein. In this case, the overall binding affinity changed from −5.05

to −4.19 kcal/mol, indicating that the difference between the all-site free energy and overall

free energy was due to samples associated with the protein, not samples at other locations in

the box. However, it is still unclear how much of the weight is due to samples from the

binding sites that were not included in the clustering because of the grid granularity and how

much is due to samples weakly associated to the protein but not part of any binding cluster.

With these missing densities, all-site binding affinities would be shifted somewhat towards

the overall binding affinity, and the individual site binding affinities would also become

slightly more favorable.

F. Discussion

One of the difficulties in GPU-accelerated MD simulations is parallelization of a single

simulation across multiple GPUs. The highly parallelized replica structure of HREMD made

it suitable to run on multiple GPUs, since we can parallelize up to one GPU per replica. As a

result, we were able to generate 15-ns simulations for all 24 alchemical states in about 6.3

days of wall time, using 6 GPUs at 4 replicas per GPU, running at approximately 10

ns/day/GPU in GPU time per single replica. This time scale makes such calculations already

potentially useful for drug discovery. Optimized OpenMM GPU code without the

alchemical state code achieved 40 ns/day on the same same machine and on the same

systems. This indicates that with properly optimized code and given the rapid development

of GPU processor technology, the wall-clock time for studies such as this will decrease

significantly in the very near future.

Some parameters involved in our simulations, such as the number of fully coupled states, the

number of fully uncoupled states and the Monte Carlo displacement, could potentially be

further optimized, as our initial optimization tests of these parameters were fairly coarse

grained. The results (in Supporting Information) suggest that in most cases, the sampling is

not sensitive to these parameters, though a full optimization is beyond the scope of the

current study. A rigorous exploration of these parameters over longer time scale may reveal

additional ways to further improve the efficiency of the methods presented in this study.

There are a large number of potential ways to improve efficiency of simulations, including

optimization of the OpenMM CUDA implementation and adding Monte Carlo moves of

ligand and protein torsional angles. Such improvements could further bring the convergence

time down from days to hours, making such simulations a more useful tool in drug design

pipelines.
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We have found that optimized HREMD simulations in implicit solvent can identify binding

sites and binding modes in a model system without prior knowledge of the binding site, even

in a highly buried binding pocket. Since we start the simulations from random starting

configurations, no binding site information is needed. As a result, our methodology can

potentially be used to conduct low-throughput virtual screening, even when no binding site

information is available. In low-throughput virtual screening, especially in the lead

optimization stage, the accuracy presented here may be sufficient, and the relatively

moderate computational cost will either now or soon be accessible.

However, it is important to recognize that this is a test of only four molecules and a single,

relatively small protein. The demonstrated ability of modified HREMD methods presented

here to sample multiple binding sites will be independent of the system. However, the

success in finding the binding site and the agreement of binding affinities may not be nearly

as transferable. This study is meant as an exploration of the utility of modified HREMD to

sample between binding sites, and is only a proof-of-principle.

Despite the general success of this methodology, there are a few flaws in the clustering

approach presented here. One problem is that more than one cluster can contain samples in

the same grid volume, leading to the inability to uniquely decompose a binding site into

separate clusters. However, this leads to a relatively low amount of error, less than 0.1

kcal/mol in this study. Another problem is that there are some samples belonging to the

binding cluster that are omitted because they partially fall into another box that falls below

the overall density cutoff. Overcoming these problems would require either additional data

in order to use a smaller grid, or a more robust density-based clustering algorithm, technical

problems that can presumably be overcome with sufficient work, but which are not required

for the level of precision presented in this study.

We find that for at least the moderate affinity ligands in this study, the free energy of

binding sites other than the most likely binding site contributes nonnegligibly to the total

free energy, with these alternate binding sites contributing between 0.7 and 0.9 kcal/mol to

the overall binding free energy. Although this contribution is likely to be less in tight

binding molecules that have a very tight binding mode, this observation does mean that the

exact binding affinity can depend significantly on the way the binding site is defined and the

method used to calculate it. This effect may possibly be a reason that binding affinities

measured in Mobley et al. ‘s and Gallicchio et al. ‘s studies of binding to the

crystallographic binding cavity of this system were consistently less favorable than

experiment by about this amount [15, 41], though there are certainly no lack of other

possible explanations for this discrepancy. This distribution of binding sites, if it does

translate into a typical experimental system, may also be important for fragment-based drug

design studies, as there may be multiple binding sites that are worth targeting in a single

protein.

We also compared the alternative binding sites observed directly with the experimental

electron densities deposited in the Protein Data Bank to see if unassigned densities could be

correlated with these putative binding sites. We examined all binding sites with threshold

occupancy of 0.1 in the simulations, as density lower than this is unlikely to be observed
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above noise. For benzene, no alternative sites have occupancies larger than 0.1, so no search

is necessary. For p-xylene, we did not observe any apparent electron densities in the

volumes of the two putative sites with occupancies larger than the threshold. For 1-

methylpyrrole, two ligands were proposed in the crystal structure, one of which is an

alternative site with a lower density than the binding site. However, this alternative site was

not predicted by our methodology. For the single computationally predicted alternative site

with 1-methylpyrrole with an occupancy higher than 0.1, we observed some unassigned

electron density, but it was not distinguishable from water. Interestingly, the structure

Met106 ligand in contact with this binding site volume was ambiguous, with two different

conformations of Met106 proposed to fill the volume in the coordinates, but this may be

unconnected. The simulations do appear to be fairly well converged, at least with respect to

the two most populous binding sites, which suggests that either the force field and/or

implicit solvent model is creating spurious density, or there is some other physical reason for

this binding site not being present in experimental crystal structures.

V. CONCLUSIONS

In this study, we used a modified version of Hamiltonian replica exchange among

alchemical intermediates combined with Monte Carlo ligand displacement/rotation moves to

identify putative binding location and poses in the T4 lysozyme L99A model system starting

from random initial ligand positions. Our results suggest that this methodology can identify

the binding sites consistently and accurately. Moreover, we can identify the correct binding

orientations within these binding sites relatively accurately. Last but not least, we can not

only calculate the overall free energies of binding using MBAR, but can also decompose the

contributions to the overall binding free energy both in terms of individual binding sites and

all binding sites combined, demonstrating the extent to which the ensemble of weak binders

may contribute nonnegligibly to the overall free energy. With the wider availability of GPU

simulation resources, this methodology may be a stepping-off point for further improved

drug discovery methods when no co-crystal ligand information is available.
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FIG. 1. Protein system and small molecule ligands used in this study
The T4 lysozyme L99A and four ligands, including one non-binder were examined. The

ligand atoms closest to the centroids, used to define the location of the ligand in subsequent

analysis, are circled in red.
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FIG. 2. Thermodynamic cycle for calculating binding free energy
To calculate the binding free energy (B to A), the ligand is first decoupled from the solvent

(B to D), transferred into the protein binding site (D to C), and coupled with the protein (C

to A), closing the cycle. The dotted box represents the implicit solvent environment. Grey

and red ligands represent decoupled and coupled ligands, respectively. ΔGsolvent and

ΔGcomplex are the free energies of decoupling the ligand in solvent and complex,

respectively.
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FIG. 3. Fifteen binding sites identified from all simulation runs
(a) The centroid of each site is represented by a sphere, with diameter of 2 Å (the grid

resolution). Black indicates the crystallographic binding site. Black and red locations

together are the eleven sites for 1-methylpyrrole, with benzene sites as a subset of these.

Pink and blue represent additional sites exclusively for p-xylene and phenol, respectively.

(b) The binding site predictions for one run of 1-methylpyrrole (red), benzene (green), p-

xylene (orange) and phenol (blue). Each point represents the center of geometry at the fully

coupled states after grid-based density filtering and clustering. In the inset of the nonpolar

binding pocket, all the protein residues within 6 Å of the ligand are shown.
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FIG. 4. Binding site fractional occupancies
The three binders share similar binding patterns, and are labeled by extending the numbering

scheme from the 1-methylpyrrole simulations. Site 1, located at experimental binding

location, is the most populated site for all three binders. However, no samples above

background are observed in the binding site for the nonbinder, phenol.
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FIG. 5. Superimposed poses (100 each) at the experimental binding site for all three binders for
1-methylpyrrole, benzene and p-xylene
For 1-methylpyrrole and benzene, configurational noise is limited, while p-xylene

transitions between two different clusters during the simulation.
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FIG. 6. Correlation between ligand binding site occupation and Val111 displacement for p-
xylene and benzene
RMSD of the ligand from the crystal structure with respect to the RMSD of Val111 from the

crystal structure (upper graphs) and the Val111 χ dihedral angle (C-Cα-Cβ-Cγ) (lower

graphs) for p-xylene (left side, a and c) and benzene (right side b and d). All calculations are

of fully interacting ligands. Val111 must move for p-xylene binding to occur, either by a

torsional angle rotation or by backbone motion, but benzene binding is independent.
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FIG. 7. Two representative structures observed in the simulation of p-xylene
Cyan and orange are crystal-like (RMSD=0.3 Å from crystal) and alternative (RMSD=2.87

Å from crystal) structures, respectively. In the crystal-like structure, Val111 dihedral

changes from the configuration found in the apo or small binder crystals. In the alternative

structure, Val111 shifts away via backbone motion.
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TABLE II

Average ligand RMSD (in Å) from crystal structures of AutoDock and the methodology presented in this

paper. For AutoDock, the average RMSD was calculated over 50 top poses, while for our methodology, this

was calculated over all poses in the 8 Å3 predicted binding locations, with the standard deviation for 1-

methylpyrrole. For the nonbinder phenol, since there is no crystal structure available, we use the co-crystal

ligand benzene with phenol in order to identify whether docking incorrectly places the ligands in the binding

site. All RMSDs are symmetry corrected.

Molecules Rigid AutoDock Flexible AutoDock Our methodology

1-methylpyrrole 1.84 1.87 1.93 ± 0.09

benzene 1.62 2.30 2.32

p-xylene 2.32 3.76 3.14

phenola 11.21 12.87 N/A

a
As compared to the binding cavity in benzene co-crystal structure.
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TABLE III

Percentages (%) of poses with RMSD from crystal structure less than 2 Å for AutoDock and the methodology

presented in this paper. The standard error for 1-methylpyrrole was calculated over the ten runs. For the

nonbinder phenol, since there is no crystal structure available, we replaced the benzene co-crystal ligand with

phenol and computed RMSD to the resulting structure. All RMSDs are symmetry corrected.

Molecules Rigid AutoDock Flexible AutoDock Our methodology

1-methylpyrrole 46.0 50.0 43.3 ± 2.8

benzene 52.0 30.0 33.4

p-xylene 36.0 20.0 19.1

phenola 2.0 4.0 0.0

a
As compared to the binding cavity in benzene co-crystal structure.
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