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Abstract

As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and

large scale binding energy distribution analysis method binding free energy calculations have been

applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the

HIV integrase protein. The computational protocol leveraged docking and high level atomistic

models to improve enrichment. The enrichment factor of our blind predictions ranked best among

all of the computational submissions, and second best overall. This work represents to our

knowledge the first example of the application of an all-atom physics-based binding free energy

model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange

molecular dynamics absolute protein-ligand binding free energy simulations were conducted

starting from docked poses. The setup of the simulations was fully automated, calculations were

distributed on multiple computing resources and were completed in a 6-weeks period. The

accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the

binding free energy estimates were the major factors behind the success of the method. Lack of

sufficient time and computing resources to investigate additional protonation states of the ligands

was a major cause of mispredictions. The experiment demonstrated the applicability of binding

free energy modeling to improve hit rates in challenging virtual screening of focused ligand

libraries during lead optimization.

Keywords

Binding free energy; Reorganization free energy; Free energy ligand screening; BEDAM; HIV
Integrase

Introduction

Molecular recognition is an essential component for virtually all biological processes. In

pharmaceutical research there is a great interest in computer models capable of predicting

accurately the strength of protein-small molecule association. These models can help in the

identification of novel medicinal drugs and optimize their potency. Thermodynamically, the

strength of the association between a ligand molecule and its target receptor is measured by

the standard binding free energy  or, equivalently, the corresponding dissociation/

association equilibrium constants. Because it is very challenging to model these quantities

from first principles, empirical models are most often employed in applied research.

Docking & scoring methods are widely used in virtual screening campaigns whereby likely

binders are selected from large libraries in terms of their geometrical and energetic

compatibility with known or assumed structures of the protein receptor and, by so doing,

narrow down the search for a lead compound.

While docking & scoring methods have reached a level of maturity [1–5], particularly with

respect to structural predictions [6, 7], improvements in virtual screening accuracy are

needed to make in-silico screening a more effective tool. Including a higher level of theory

and physical realism is one potential route towards this goal. In addition, it is hoped that

models which incorporate some aspects of dynamical behavior might better address

important aspects of drug development such as lead optimization, specificity, toxicity, and
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resistance. High resolution molecular mechanics potentials coupled with molecular

dynamics conformational sampling are the basis of physics-based binding free energy

models, which originate from clear statistical mechanics formalisms [8–18]. However the

general applicability of physics-based binding free energy models for the prediction of

protein-ligand binding affinities remains uncertain [19–22]. Part of the reason is that it is

difficult to draw general conclusions from the body of work represented in the existing

literature, which is scattered over a large array of methods each focused on very small

datasets.

The SAMPL4 HIV integrase blind challenge [23, 24] offers a unique opportunity to address

some of these questions. Our first objective was to assess feasibility. That is to establish

whether current software and hardware technologies are up to the task of performing the

hundreds of binding free energy calculations required by virtual screening. The second

objective, assuming that the first could be met, was to assess in an unbiased fashion whether

free energy estimates actually lead to improved screening results. In addition to these

methodological questions, our groups share a deep interest in contributing to the

development of novel HIV anti-viral therapies [25–30]. The HIV integrase enzyme is a

relatively new medicinal target with several potential inhibition sites, including the LEDGF

site, which could be further exploited [31, 32]. Modeling of the SAMPL4 ligand candidates

will add to our understanding of this important target.

As part of the HIV integrase virtual screening SAMPL4 challenge [33], in this work we

apply the binding energy distribution analysis method (BEDAM) binding free energy model

[14, 34–36] and AutoDock Vina [4] and filtering criteria to screen likely binders to the

LEDGF site of integrase. As described in the sister paper in this volume [37], AutoDock

Vina plus filtering and visually inspection (hereafter referred to as “AD Vina”) are used to

predict the structures of the complexes and to prioritize free energy calculations. BEDAM

calculations, started from these initial structures, provided binding free energy estimates to

rank likely binders. BEDAM estimates the protein-ligand binding free energy by simulating

an alchemical thermodynamic path along which the ligand is transferred from the water

solution to the protein binding site. In addition to net protein-ligand interaction energies, the

binding free energy so obtained is influenced by intramolecular strain and entropic losses of

both the receptor and the ligand. These effects, collectively referred to as reorganization free

energy contributions [15, 38], while affecting binding significantly, are often not captured

by empirical scoring functions. Slow convergence rates caused by incomplete

conformational sampling along the alchemical path is a well known problem in molecular

dynamics-based binding free energy methods. To address these challenges BEDAM

employs advanced conformation sampling methods based on parallel Hamiltonian replica

exchange (HREM) [16], and pre-computed conformational reservoirs [34].

The SAMPL4 set is a focused library composed of similar ligands grown from variations on

a few common molecular scaffolds developed for lead optimization. This kind of ligand

database is more difficult to screen than the diverse databases normally processed in virtual

screening applications during hit discovery. In addition, the LEDGF binding site of integrase

is large and known to be capable of accommodating a variety of ligand sizes. Ligand

flexibility is also likely to play a key role in the thermodynamics of binding. These features
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make the screening task quite chal lenging for traditional methods such as docking, and

particularly suitable for testing the added value of binding free energy-based screening

protocols in these challenging situations. The blind set up of the SAMPL4 experiment adds

further depth to these aspects allowing for a realistic and unbiased assessment of theories,

methods, and practices.

Methods

System preparation

The dimer of the CCD domain of HIV integrase was prepared from known crystal structures

[37]. Bound ligands, water molecules and crystallization ions were removed and protein

sidechain protonation states were assigned assuming neutral pH. HIS171, a key residue of

the LEDGF binding site, was protonated at the Nδ position (see below). Preparatory

molecular dynamics simulations of the dimer with explicit solvation and the OPLS force

field conducted with the DESMOND [39] program were employed to probe the flexibility of

the dimer and guide further setup choices for the LEDGF binding site. These studies, while

confirming the flexibility of the “140s” and “190s” loops [40], showed relatively little

flexibility around the LEDGF site with the notable exception of the ARG167-HIS171 loop

next to the LEDGF binding site. Based on this information a truncated model of the LEDGF

binding site was constructed for the purpose of BEDAM binding free energy calculations

which includes residues 68–90 and 158–186 of chain A and residues 71–138 of chain B.

This truncated model contains at a minimum all receptor residues with at least one atom

closer than 12 Å of any atom of the ligand in the 3NF8 crystal structure. Additional residues

were included to minimize the number of chain breaks. Chain terminals were capped by

acetyl and N-methylacetamide groups.

The molecular models for the 311 compounds provided as part of the SAMPL4 challenge

after removing duplicated entries, were prepared using the LigPrep workflow of the 2012

version of the Maestro program (Schrödinger, LLC). Protonation and tautomerization states

were assigned based on a pH of 7 ± 2. Ionization penalties were computed at pH 7 using

Epik [41], also part of the Schrödinger molecular modeling suite. The protonation states

provided by SAMPL4 were used but some of them resulted in ionization penalties larger

than 4 kcal/mol. These occurrences were considered unlikely to lead to strong binding and

were not further considered. The resulting database of 451 unique protonation states of the

311 ligands was the subject of the AD Vina virtual screening campaign conducted at the

Scripps Research Institute as described in the sister publication in this volume [37]. This

resulted in a set of structural predictions for the poses of the ligands to the LEDGF binding

site of the integrase CCD domain. The corresponding complexes were prioritized based on

docking rankings and subject to BEDAM binding free energy analysis using the docked

pose as the starting conformation. BEDAM binding free energies were ultimately obtained

for 285 of the 451 models of the ligands (see “Discussion” section).
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BEDAM binding free energy protocol

The BEDAM method [14] computes the absolute binding free energy  between a

receptor A and a ligand B employing a λ-dependent effective potential energy function with

implicit solvation of the form

(1)

where r = (rA, rB) denotes the atomic coordinates of the complex, with rA and rB denoting

those of the receptor and ligand, respectively,

(2)

is the potential energy of the complex when receptor and ligand are dissociated, and

(3)

is the binding energy function defined for each conformation r = (rB, rA) of the complex as

the difference between the effective potential energies U(r) with implicit solvation [42] of

the bound and dissociated conformations of the complex without internal conformational

rearrangements.

It is easy to see from Eqs. (3), (1), and (2) that Uλ = 1 corresponds to the effective potential

energy of the bound complex and Uλ= 0 corresponds to the state in which the receptor and

ligand are not bound. Intermediate values of λ trace an alchemical thermodynamic path

connecting these two states. The binding free energy ΔGb is by definition the difference in

free energy between these two states. The standard free energy of binding  is related to

this by the relation [8]

(4)

where C° is the standard concentration of ligand molecules (C° = 1 M, or equivalently 1,668

Å–3) and Vsite is the volume of the binding site (see below).

To improve convergence of the free energy near λ = 0, in this work we employ a modified

“soft-core” binding energy function of the form

(5)

where umax is some large positive value (set in this work as 1,000 kcal/mol). This modified

binding energy function, which is used in place of the actual binding energy function [Eq.

(3)] wherever it appears, caps the maximum unfavorable value of the binding energy while

leaving unchanged the value of favorable binding energies [35].

The multistate Bennett acceptance ratio estimator (MBAR) [35, 43] is used here to compute

the binding free energy ΔGb from a set of binding energies, u, sampled from molecular
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dynamics simulations at a series of λ values. For later use we introduce here the

reorganization free energy for binding  defined by the expression [15]

(6)

where ΔEb = 〈u〉1 is the average binding energy of the complex and  is the standard

binding free energy. The former is computed from the ensemble of conformations of the

complex collected at λ = 1 and  is computed by difference using Eq. (6).

Conformational sampling

Rather than simulating each λ state independently, BEDAM employs a HREM λ-hopping

strategy whereby simulations (replicas) periodically attempt to exchange λ values through

Monte Carlo (MC) λ-swapping moves. λ-exchanges are accepted with the Metropolis

probability min[1, exp(–βΔλΔu)] [14] where Δλ is the difference in λ's being exchanged and

Δu is the difference in binding energies between the replicas exchanging them. Replica

exchange strategies of this kind yield superior conformational sampling and more rapid

convergence rates by allowing conformational transitions to occur at the value of λ at which

they are most likely to occur and to be then propagated to other states [16].

Conformational reservoirs were employed to further enhance conformational sampling of

internal degrees of freedom of the ligands [34, 36]. In this technique the ensemble of

conformations for the separate receptor and ligand in solution are obtained from temperature

replica exchange calculations [44] and saved in repositories referred to as conformational

reservoirs. The conformational reservoirs then take the place of the λ = 0 replica of

conventional BEDAM calculations. k-exchanges with the repositories follow the same

acceptance rule as for the other replicas. When an exchange is requested, one conformation

for the ligand is selected at random from the reservoir and placed in a random position and

orientation within the binding site volume of the receptor. The binding energy of the

resulting complex is evaluated and inserted in the Metropolis acceptance step as above. If

the exchange is accepted the conformation from the reservoir is passed on to the next replica

and begins to be propagated by MD and λ-exchanges as in conventional BEDAM.

Because the reservoir represents a canonical ensemble of conformations, overall the method

is canonical, while providing greater coverage of the internal degrees of freedom of the

ligands. In addition, the method is computationally efficient because, due to the small

system size, the cost of obtaining ligand reservoirs is negligible relative to the computational

cost of the binding free energy calculations.

Computational details

In the current implementation BEDAM employs an effective potential in which the effect of

the solvent is represented implicitly by means of the AGBNP2 implicit solvent model [42]

together with the OPLS-AA [45, 46] force field for covalent and non-bonded interatomic

interactions. Force field parameters were assigned using Schrödinger's automatic atomtyper

[47].
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Parallel molecular dynamics simulations were conducted with the IMPACT program [47].

The simulation temperature was set to 300 K. We employed 20 intermediate steps at λ = 0,

0.001, 0.002, 0.0033, 0.0048, 0.006, 0.008, 0.01, 0.04, 0.07, 0.1, 0.25, 0.35, 0.45, 0.55, 0.65,

0.71, 0.78, 0.85, and 1 [35]. The binding site volume was defined as any conformation in

which the center of mass of the ligand was within 6 Å of the center of mass of the LEDGF

binding site defined in terms of the Cα atoms of residues 168–174 and 178 of chain A and

residues 95, 96, 98, 99, 102, 125, 128, 129, and 132 of chain B (residue and chain

designations according to the 3NF8 crystal structure). The ligand was sequestered within

this binding site volume by means of a flat-bottom harmonic potential. Based on this

definition the volume of the binding site, Vsite, is calculated as 904 Å3 corresponding to –kT

ln C° Vsite = 0.69 kcal/mol. The Cα atoms of the residues of the CCD domain of integrase

were restrained to the input structure by means of spherical harmonic restraints with force

constant of 1 kcal/mol Å2, with the exception of the residues closest to the binding site

(residues 167–178 of chain A and 95–102 and 124–132 of chain B) which were left free.

The temperature replica exchange simulations to obtain conformational reservoirs for the

ligand utilized eight replicas distributed between 300 and 600 K and were 10 ns in length.

The collected ensembles at a temperature of 300 K, saved every 10 ps, constituted the

conformational reservoirs used in the parallel HREM calculations.

BEDAM calculations were performed for 1.1 ns of MD per replica (22 ns total for each

complex) starting from the docked ligand poses. Data from the last 600 ps/replica was used

for free energy analysis. Binding energies were sampled with a frequency of 1 ps for a total

of 20 × 600 = 12,000 binding energy samples per complex. Uncertainties in the binding free

energies were estimated by the difference between the results from data from the 400–1,000

and 600–1,100 ps sections of the trajectory.

Approximately two thirds of the BEDAM free energy calculations were conducted on the

Gordon cluster at the San Diego Supercomputing Center as part of the XSEDE NSF

consortium. Additional calculations were conducted at the BioMaPS High Performance

Computing Center at Rutgers University and on the Garibaldi cluster at the Scripps Research

Institute at San Diego. Each BEDAM calculation was typically performed on 80 processing

cores concurrently and took two days to complete. The computational campaign lasted

approximately seven weeks from late May to July 2013 and consumed approximately 1.2

million CPU hours. Throughput was limited by the amount of available CPU resources and

our XSEDE allocation (see below).

Ultimately we were able to collect binding free energy estimates for 285 of the 451

protonation models of the 311 ligands and only for the LEDGF site of integrase. Computed

binding free energies were combined with ionization penalties (see above) to yield binding

free energy scores. The binding free energy score for a ligand was set as the most favorable

free energy score among all of its protonation states. Ligands with free energy scores of –4

kcal/mol or better were predicted as LEDGF integrase binders. This cutoff value is

approximately equivalent to a milli-molar dissociation constant, which corresponds to the

weakest LEDGF site binders that have been crystallized [48]. 67 of the 311 ligands fell in

the category. Ligands with missing free energy score were considered as non-binders.
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Ligand rankings were based on the available binding free energy scores with top binders

having the most favorable binding free energies; ligands with missing data were ranked last

in random ranking order. The set of predicted binders together with the overall rankings thus

computed were submitted to SAMPL4 on July 16 2013 and assigned prediction ID #135.

Results and performance

Binding free energy predictions

The BEDAM binding free energy estimates to the LEDGF site of integrase for 285 of the

451 protonation states of the 311 ligands are listed in Table S1 of the supplementary

information, which includes uncertainties. The results for the top 10 binders are given in

Table 1. The free energy score (“FE Score”), obtained by the adding the ionization penalty

(“I.P.”) to the BEDAM binding free energy, has been used to rank ligands. Ligands denoted

in bold face in Table 1 are confirmed LEDGF integrase binders.

Ligand identifiers are those provided by the SAMPL organizers whereby a sequential index

denotes a specific stereo-isomer of the compound. This is followed at times by a second

sequential index added by us to denote a specific protonation state. So for example

AVX17557_3 denotes the fourth stereo-isomer of compound AVX17557 and

AVX38753_3_1 denotes the second protonation state of the fourth stereoisomer of

compound AVX38753. A missing second index signifies the protonation state as provided

by SAMPL, which for many ligands is the only relevant protonation state.

While inclusion of ionization penalties did not significantly affect the ligand rankings, they

were helpful at discounting at the outset ligand forms with very unfavorable protonation

states unlikely to contribute to binding. In any case, the exploration of multiple protonation

states has been key in a number of cases. For example AVX38753_3 was correctly

recognized as a LEDGF binder only after examining its unprotonated form (AVX38753_3_1

in Table 1) corresponding to a binding free energy score of –7.4 kcal/mol. The original

protonated form resulted in a binding free energy of only –0.7 kcal/mol which alone would

have resulted in a misclassification of AVX38753_3 as a non-binder.

It should be noted that in the provided ligand library [23] protonated alkyl nitrogen centers

have been considered as potential chiral centers even though the resulting conformational

stereoisomers are in equilibrium in solution and could not have been assayed independently.

This is particularly evident when, as for the AVX38753_3_1 entry in Table 1, the

deprotonated form is considered. AVX38753_3_1 is in dynamic equilibrium with

AVX38753_2_1 (not shown) by nitrogen inversion. (The 2D chemical representations in

Tables 1 and S1 do not distinguish between the two conformational stereoisomers.) The

BEDAM calculations, which were restricted to one or the other of the two conformational

stereoisomers, predicted more favorable binding for AVX38753_3_1 than for

AVX38753_2_1 (–7.4 and –1.8 kcal/mol, respectively). In this case, assuming equal

populations of the two conformational stereoisomers in solution, the binding would be

largely dominated by the first stereoisomer, which has been indeed verified by

crystallography.
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In general the binding free energies listed in Tables 1 and S1 should be considered reflective

of hypothetical binding affinities conditional on protonation state and conformational

stereoisomer form, not of the actual binding affinities that would be measured by assaying

the parent compound. We have not attempted to integrate the conditional binding affinities,

and conformational populations and protonation state populations in solution to arrive at

binding free energy estimates comparable to measurable binding affinities. Rather,

computed conditional binding free energies were used to rank ligand forms to predict the

most likely forms observed in crystallographic screening experiments.

Thermodynamic decomposition

Tables 1 and S1 also report the decomposition of the computed binding free energies into

the average binding energy, ΔEb, and the reorganization free energy . The average

binding energy measures the thermodynamic driving force towards binding provided by

favorable receptor-ligand interactions. Conversely, the reorganization free energy measures

configurational entropy loss and intramolecular energetic strain caused by complex

formation, which, collectively, oppose binding [15]. As previously observed, binding energy

and reorganization free energy contributions oppose each other and binding free energies,

being much smaller in magnitude, result from a large compensation between these opposing

effects.

In general the strongest binders tend to have some of the most favorable binding energies.

However the opposite is often not the case. Ligands with very favorable binding energies are

not necessarily good binders. For example among the top ten with respect to binding energy

only four correspond to binding free energies better than –4 kcal/mol, the cutoff considered

here to discriminate binders from non-binders. Furthermore, as further discussed below,

rankings based on binding energies are significantly worse than binding free energy

rankings in predicting true binders. Conversely, ligand forms with only moderate binding

energies sometimes result in very favorable binding free energies. This typically happens

with relatively small ligands, such as AVX17285_0 in Table 1, which incur small

reorganization penalties. In this respect, the inclusion of reorganization free energies helps

overcome the overly strong correlation between interaction energy-based scores with ligand

size.

Prediction performance

Only a fraction of the ligands and ligand forms were subjected to BEDAM binding free

energy analysis and only binding to the LEDGF site was probed. For the purpose of the

SAMPL submission, ligands lacking computed binding free energy data were considered

non-binders and ranked last after those with estimated but unfavorable binding free energies.

As a result, screening prediction performance metrics based on prediction accuracy for each

ligand in the database, such as the area under the Receiver Operating Characteristic (ROC)

curve, are not fully applicable to our prediction set. Early recovery metrics such as the

enrichment factor, which probe the ability to pick out top binders, are more relevant to judge

performance of our prediction protocol both in terms of the efficacy of prioritizing

calculations and of correctly assigning binding free energy scores to the ligands that were

considered.
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Of the ten ligands listed in Table 1 half are confirmed LEDGF binders and half are not. This

50 % ratio can be compared to the fraction of the 53 unique confirmed LEDGF binders in

the original ligand database of 322 ligands (16.4 %) to yield an enrichment factor of 3. The

enrichment factor represents the overall prediction performance of the method over random.

This level of performance can also be compared to a perfect prediction in which all 10 top

ligands are binders corresponding to a maximum enrichment factor of only 6 (100/16.4 %).

The enrichment factor for the top 10 % of the database (top 30 ligands approximately) has

been used to compare the performance of SAMPL submissions. The value for our “in-silico”

predictions is 2.21 (Fig. 1) second best among the submissions in the screening challenge

behind only the effort of Voet et al. [49], which benefited from extensive prior experience

with this medicinal target. The level of enrichment we obtained is very promising also

considering that it has been evaluated with respect to all integrase binders, including the

binders to the fragment and Y3 sites, which we have not explored. When considering only

the confirmed LEDGF binders the enrichment factor for the top 10 % of our predicted

binders increases to 2.45. This result should be compared to the maximum achievable 10 %

enrichment factor, which is only 5.66, much lower than in typical virtual screening

applications with large and diverse ligand datasets [3, 28].

The early ROC curve for our predictions of LEDGF IN binders depicted in Fig. 2 shows that

ligand rankings based on binding free energy scores are significantly better than random at

picking true binders. In this analysis a true positive is defined as a confirmed LEDGF

binder. The true positive rate is the fraction of true binders recovered while progressively

going down the ranked list of complexes. The corresponding false positive rate is the ratio of

the number of non-binders in the same set relative to the total number of non-binders in the

database. At a false positive rate of 10 % (corresponding to the top 44 compounds in terms

of binding free energy scores) approximately 33 % of the true binders are recovered, or 3.3

times better than random. At a false positive rate of 20 % (corresponding to the top 75

compounds) 44 % of the LEDGF binders are recovered. In comparison, as Fig. 2 shows,

predictions based on the binding energy rankings alone are notably worse (see Fig. 2),

achieving on average only 60 % of the prediction performance of the free energy rankings

according to this measure. The ROC results also show that the additional discrimination

power of the binding free energy rankings is not evident in the reorganization free energy

scores, which represent physical effects neglected by the binding energy scores, as the best

rankings developed from them perform worse than random (Fig. 2). These results indicate

that the main source of added discrimination power of binding free energies resides in the

combination of energetic and reorganization effects rather than in one of them alone.

Analysis of binding free energy results for the LEDGF binders

Crystal structures of integrase inhibitors bound to the LEDGF site of integrase constitute a

solid benchmark on which to judge our in-silico screening protocol. Ideally we would like

the free energy screening method to score favorably all of the confirmed binders, and it is

instructive to consider which factors have contributed in a favorable or unfavorable way

towards this goal. The analysis of the prediction performance on the confirmed LEDGF

binders is summarized in Table 2. Of the 53 confirmed LEDGF binders, 23 were correctly
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predicted (true positives). These had one or more protonation states with computed binding

free energies of –4 kcal/mol or better. The remaining 30 binders were incorrectly classified

as non-binders (false negatives). The largest fraction of false negatives (43 %) correspond to

cases with missing binding free energy data, that is data not acquired due to insufficient time

and computing resources. In this class of ligands none of the protonation states investigated

yielded a favorable binding free energy, however some of the protonation states were not

investigated and the corresponding ligands were arbitrarily classified as non-binders

anyway. A smaller fraction (27 %) of false negatives correspond to ligands with

intermediate binding free energy scores between –4 and –2 kcal/mol. These borderline

scores, while above the cutoff we established, are not sufficiently unfavorable to clearly

discount binding and are not considered useful to uncover clear shortcomings of the

prediction methodology. Only 9 of the 30 false negatives (30 %) had substantially

unfavorable free energy scores and, in addition, most of these can be attributed to incorrect

starting structures for the BEDAM free energy simulations rather than incorrect free energy

scoring (see below).

In summary, these results show that the prediction methodology we employed was very

successful at correctly describing confirmed LEDGF binders. A very good fraction of these

(43 %) were correctly classified based on the binding free energy value. Only 9 out of 53

cases (17 %) can be traced to clear shortcomings of the docking and free energy analysis

procedure, while most other misclassification correspond to either borderline or missing data

not useful for drawing conclusions.

Importance of structural predictions

Initial structures for the BEDAM binding free energy calculations were provided by docking

binding mode predictions as described in the accompanying report in this volume [37]. In

general, molecular dynamics trajectories which constitute part of the BEDAM protocol were

of insufficient length to modify these bound initial structures to a significant extent. Because

of this and the fact that binding free energy predictions were limited to the LEDGF site, we

decided to submit a single set of structural (phase II) predictions based only on the docking

experiments as described [37].

The other important implication is that the binding free energy predictions submitted to

SAMPL are, essentially, conditional on the starting conformation, and, consequently, their

prediction accuracy is attributable to both the ability of the docking and filtering procedure

to provide structures close to the actual binding modes and the accuracy of the binding free

energy protocol to score favorably these binding modes. Indeed we observed a very strong

correlation between the correct identification of true binders and the quality of the structural

predictions from docking. The large majority of the clear false negative cases (seven out of

nine), that is binders predicted to be non-binders with clearly unfavorable binding free

energy scores (–2 kcal/mol or higher), had initial structures clearly incompatible with

crystallographic observations (Table 2). In comparison, only a minority (35 %) of the true

positives and none of the borderline false negatives correspond to initial structures distinct

from the crystallo-graphic pose. On the other hand only 7 of the 30 false negatives are

attributable to structural prediction errors.
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These findings underscore both the dependency of the binding free energy protocol on the

availability of accurate structural predictions, and the very good performance of the AD

Vina protocol in this respect, as also confirmed by the excellent performance of this method

on the structure prediction phase II SAMPL challenge [37].

Explicit solvent modeling

Finally, we also performed double decoupling calculations (DDM) [8, 50, 51] in explicit

solvent to explore at a higher level of detail the thermodynamics of binding of this system in

a few cases. These calculations were also performed blindly, prior to obtaining experimental

data from the SAMPL organizers. The protein receptor is modeled with the Amber ff99sb-

ILDN force field [52], and the ligands are described by the Amber GAFF parameters set.

The partial charges of the ligands are obtained using the AM1-BCC method. A DDM

calculation involves two legs of simulation, in which a restrained ligand is gradually

decoupled from the receptor binding pocket or from the aqueous solution [8]. In each leg of

the decoupling simulations, the Coulomb interaction is turned off first using 11 λ windows,

and the Lennard-Jones interactions are then turned off in 17 λ windows. (Electrostatic

decoupling: λ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0; Lennard-Jones decoupling:

λ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.94, 0.985, 1.0). The

simulations were carried out using the Gromacs4.6.1 package [53].

The results of the explicit solvent calculations are given in Table 3. While the DDM

calculations overestimate binding free energies in general, a clear separation between

binders and non-binders appears achievable only when all of the following conditions are

satisfied: (a) starting from a good initial structure; (b) the Nδ atom of His171 is protonated;

(c) the ligand is relatively small, i.e. contains less than 30 heavy atoms. In the simulated

structures of the binders, the hydrogen atom on the Nδ of His171 was observed to interact

with the carboxylate moiety on the ligands. It is likely that the both the doubly protonated

His171 and the monoprotonated Nδ are significantly populated in the bound state: using

PROPKA [54] we calculated that the pKa of His171 to be shifted from 6.3 in unbound state

to 7.3 when a ligand carrying a benzoxole carboxylate moiety is bound. We obtained very

similar binding free energies using either the doubly protonated or Nδ protonated forms of

His171 (not shown). Compared with the Nε protonated form, the protonation at Nδ is

estimated to enhance binding affinity by approximately –4 kcal/mol, due to the favorable

electrostatic interaction between Nδ-H and the carboxylate group on the ligand. Significant

errors in the calculated free energies using DDM are attributed to hysteresis for the

decoupled ligand state in the gas phase. The strong, unscreened ligand intramolecular

interaction in the gas phase leads to a highly rugged energy surface, causing conformational

trapping in the nanoseconds-length simulations. Simulation of the intermediate gas phase

reference state is avoided naturally in the implicit solvent alchemical scheme used in

BEDAM.

Discussion

The SAMPL integrase virtual screening experiment offered a real world example of the use

of structure-based computational methods to identify likely binders among a focused
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database of candidates. This task involved a set of challenges very different from those

posed by early hit identification from a large database of diverse molecular scaffolds. In the

latter situation, docking-based high throughput virtual screening strategies can narrow down

the set of likely binders, with the primary goal of identifying some actual binders, rather

than necessarily minimizing the number of false positives. Also, because only few likely

binders are dispersed among possibly thousands of clear non-binders, relatively large

enrichment factors can be expected only by considering, for example, steric and geometrical

factors.

In contrast, in the current application participants were confronted with a focused library of

candidate ligands derived from an already established molecular scaffold. This was

particularly noticeable for the LEDGF binding site, to which virtually all of the ligands in

the database could be successfully docked. Discrimination of binders from non-binders in

this case had to therefore rely on other less coarse grained metrics such as the free energy of

binding. The performance illustrated by the present blind predictions indicates that binding

free energy methods can be successfully combined with accurate structural predictions from

docking to tackle difficult virtual screening applications.

The usefulness of docking methods for binding mode prediction is well documented. The

accuracy of AD Vina structural predictions on these difficult targets have been key to

achieve a high level of screening performance. In contrast, the reliability and range of

applicability of free energy methods, even when applied to known structures, remains to be

fully established. Retrospective studies on small datasets, while abundant, have not been

successful at giving a general and unbiased picture of the state of the field. The SAMPL

challenge [34, 55] has offered us a unique opportunity, building upon recent work on host-

guest systems [36], to validate our free energy protocol on a large scale and in an unbiased

fashion. We believe that only by studying large datasets patterns can emerge that can be

useful to establish advantages and shortcomings of the methodology.

In the past few years we have been refining our BEDAM protocol for binding free energy

estimation. The method relies on a physics based effective potential with implicit solvation

developed in our lab (OPLS/AGBNP2) [42, 56] and advanced Hamiltonian-hopping

conformational sampling strategies. The implicit solvent description, while in principle less

accurate than explicit solvation models, affords a number of simplifications particularly the

ability to model directly the alchemical transformation from the unbound to the bound state

without going through a gas phase intermediate. The latter requirement, typical of double

decoupling methods with explicit solvation [8, 57] is a source of poor convergence

especially for large and charged ligands as in the present application. The BEDAM method

also relies on advanced parallel HREM conformational sampling strategies and

conformational reservoirs techniques, as well as efficient statistical reweighting techniques

[43, 58] to optimally merge data obtained along the binding thermodynamic path. We

believe that all of these technologies have contributed to achieve the reasonably high level

of prediction accuracy in the present SAMPL challenge, suggesting that free energy

calculations can be used together with docking to improve enrichment over docking alone.
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Binding free energies include effects such as conformational entropy loss and intramolecular

strain (collectively quantified here by the binding reorganization free energy values), aspects

that are neglected by more approximate models but are shown here to be significant and

justify the use of free energy simulations to distinguish binders from nonbinders. This is

clearly illustrated by the results in Fig. 2 which shows that rankings based on binding

energies alone, which neglect reorganization free energy contributions, yield significantly

lower prediction performance.

The binding free energy is the difference in free energy between the bound and unbound

states and therefore it depends on the energetic and dynamical nature of both. The binding

energy, that is the ligand-receptor net interaction energy, probes essentially only the bound

state and is not sufficient in general to capture all of the effects contributing to the binding

affinity. For example, the interplay between energetic and reorganization effects has been

key to correctly identify as binders a number of small compounds with relatively weak

ligand-receptor interaction energies and unusually small reorganization penalties. Some

examples, illustrative of about 25 % of the correctly identified binders, are shown in Fig. 3.

Most of these would have been mis-classified as non-binders using binding energy scores

alone.

Conversely, reorganization free energies helped to correctly identify non-binders, such as

those illustrated in Fig. 9, characterized by large and favorable binding energies offset by

equally large reorganization free energy losses. Such non-binders would have been

incorrectly considered as actives by methods based only on ligand-receptor interaction

energies. The examples in Fig. 9, are only few of the many similar occurrences of avoided

false positives we observed.

These examples suggest that scoring strategies based mainly on ligand-receptor interaction

energies, such as single-structure and single-trajectory versions of the MM-PB/GB/SA

method [59], constitutes a less accurate model as compared with BEDAM and that

significantly improved rankings can be obtained by including reorganization effects. The

separate trajectory version of the MM-PB/SA method includes the portion of the

reorganization free energy related to intramolecular strain and should in principle improve

accuracy. However only the additional inclusion of conformational entropies would model

the full binding free energies and fully capture the effects described here.

We observed that reorganization free energies correlate strongly with the size and flexibility

of the ligand as for example measured by the number of rotatable bonds as in Fig. 4a. On the

other hand the flexibility of the receptor also plays a major role as illustrated in the

correlation plot in Fig. 4b. Inspection of BEDAM molecular dynamics trajectories, in which

the interaction coupling parameter λ varies with time, reveals a progressive decrease of

conformational fluctuations of both the receptor and the ligand as their interactions are

turned on. Conversely, fluctuations tend to increase when interactions are turned off. This

behavior is more evident for larger ligands and is observed with both binders and non-

binders. Large ligands that are also binders have the ability to form numerous contacts with

the receptor without causing large entropic losses.
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Computational aspects

One of the goals for the participation in the SAMPL4 screening integrase challenge has been

to establish the applicability of binding free energy calculations in virtual screening. The

promising results obtained in the SAMPL challenge clearly indicate that binding free energy

simulations can provide added value when used in conjunction with docking. This outcome

was not inevitable as it is often the case that more rigorous theories do not lead to improved

predictions in practice [36]. In the integrase screening challenge the homogeneity of the

candidate compounds and the more central role of receptor and ligand flexibility has likely

tipped the balance towards binding free energy measures relative to simpler interaction

energy and empirical scoring-based methods. It is thus expected that binding free energy-

based ligand screening will be useful in other similar circumstances; e.g. at a second stage of

virtual screening, when a challenging focused pool of candidates is being considered.

Having established the usefulness of a binding free energy-based screening protocol, the

second question to consider is whether the superior results obtained have been worth the

extra effort. This question can be addressed only by looking at the practical aspects of the

project. One immediate consideration is that a project such as this involving hundreds of

binding free energy calculations simply could not have been considered without a high level

of automation. Easy to use tools such as LigPrep and Epik have been essential in prepping

the ligand models virtually without human intervention. Similarly, Schrödinger's OPLS

automatic force field atomtyper available in the IMPACT MD engine has been key to

streamlining system set up. The binding free energy project has also greatly benefited from

automated protocols in the AD Vina structure prediction and prioritization phase.

Automation built into BEDAM binding free energy implementation has also played a key

role. Binding free energy protocols are generally very difficult to streamline. We

implemented a self-contained BEDAM utility written in Python which processes a list of

inputs not much more extensive than those required for a docking calculation. None of these

inputs had to be adjusted manually and individually for each ligand. The utility took care of

producing the structural and procedural inputs for the IMPACT MD engine, automated the

creation of job submission scripts, and performed the analysis of the simulation results.

Without one or more of these aspects of automation the project could not have been

completed, as it would have required an unsustainable commitment of human resources.

Despite the high level of automation it has not been possible to complete all of the binding

free energy calculations. Part of the reason is that the CPU allocation on XSEDE resources,

the source of most of the computational throughput, had to be shared among several projects

and consequently were prematurely exhausted. On the other hand, meeting of SAMPL

deadlines and the necessary coordination with preparatory docking studies, meant that only a

few weeks were available to complete the binding free energy calculations. The imposed

time schedule was not unreasonable as it is representative of scenarios in pharmaceutical

applications. So in addition to the CPU allocation, the computational throughput, that is the

number of ligands completed per day given the amount and capabilities of available CPU

resources, has also been an important determinant. We are currently exploring the use of

grid resources and distributed replica exchange algorithms to maximize throughput.
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It is hard to say how much our predictions would have improved if all of the free energy

calculations could have been completed and/or extended to longer simulation times. Longer

simulation times would have yielded better converged estimates less dependent on initial

conditions. Only 285 of the 451 ligand models were analyzed resulting in full coverage of

only 59 % of the SAMPL library (127 of the 311 unique ligands had one or more

protonation states not evaluated). Assuming that the observed recognition efficiency of the

method on the sampled portion of the library is applicable to the portion not sampled, better

coverage would have resulted in superior predictions.

Structural and thermodynamic insights

In addition to validating our in-silico virtual screening protocol, in this work we have also

gained significant insights into the structural and energetics determinants governing ligand

binding to the Integrase LEDGF site. As shown in Fig. 5, all 53 LEDGF site binders in

SAMPL4 have the benzoic acid or benzodioxole/dioxine carboxylate core. In fact, all the

known LEDGF inhibitors developed so far contain a carboxylate group that mimics the

bidendate hydrogen bond interaction of LEDGF-derived peptides with the integrase amino

groups of Glu170 and His171 [31]. The carboxylate moiety is clearly the main determinant

for the ligand binding at the LEDGF site. However, while the absence of the correct

chemical scaffold (i.e. the templates in Fig. 5) explains why many of the nonbinders do not

bind, there are also many ligands that contain the required benzoic acid or benzodioxole/

dioxine carboxylate groups yet they do not bind. So what are the causes for these molecules

not to bind? Although obviously experimental structures for nonbinders are not available,

we can use the simulated structures of the complexes and estimated binding free energies

from BEDAM to gain insights on binding determinants.

Crystal structures show that most LEDGF binders (51 out of 53 binders in the SAMPL4

dataset) are found to adopt a dominant binding mode illustrated in Fig. 6. Three key

interactions are identified: (1) the interaction of the carboxylate group of the ligand with the

backbone amino groups of His171, Glu170 and Thr174 of chain A, which are well

reproduced by AD Vina-predicted structures and maintained in the BEDAM HREM

simulations. (2) The R1 group (see Fig. 5) occupies the hydrophobic P1 sub-pocket formed

by Met178 and Leu102 on chain B, and Trp132 and Ala129 on chain A. (3) Dioxole/dioxine

groups occupy the less hydrophobic P2 sub-pocket, formed by Glu95, Thr125 and Tyr99 on

chain A and Lys173 on chain B. In the benzoic acid containing binders, the P2 sub-pocket is

unoccupied.

The non-binders in Fig. 7 illustrate the determinant role of the hydrophobic P1 subpocket

and the complex interplay between the potentially exclusive requirements of satisfying the

binding hotspots of the LEDGF site. In both of these cases, correctly predicted by the AD

Vina/BEDAM virtual screening protocol, the formation of the key carboxylate-backbone

interactions precludes the occupation of the hydrophobic P1 sub-pocket leading to poor

binding.

On the other hand satisfying both hydrogen bonding and hydrophobic enclosure in the P1

sub-pocket was found to be a necessary but not sufficient condition for binding. One

illustrative case is shown in Fig. 8. Both ligands carry a benzoic acid group connected with
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an indolinone group by a double bond; the only difference is in the substitution position of

the carboxylate on the benzene ring. The ortho-substituted isomer is a nonbinder, while the

meta-substituted isomer is a binder. Both are correctly predicted. In the modeled structures

the carboxylate moieties on both ligands form the correlated hydrogen bonds with the

receptor; and in both cases, the P1 sub-pocket is occupied by the indolinone groups.

However, due to steric constraints involved in occupying the P1 subpocket while

maintaining the carboxylate-backbone interactions, the amide group of AVX17284_0 ends

up buried deeply inside the hydrophobic P1 sub-pocket. This arrangement is

thermodynamically unfavorable since the desolvation cost for burying the polar amide is not

compensated by the formation of ligand-receptor electrostatic interactions. In contrast, due

to more favorable steric compatibility, the amide group of the AVX17285_0 binder can

point into the solvent and the associated desolvation cost is much smaller.

Examples of non-binders that escape simple structural rationalization are illustrated in Fig.

9. These ligands satisfy all of the LEDGF site hotspots yet they are not observed to bind

integrase. The BEDAM binding free energy analysis shows that this is because the large and

favorable ligand-receptor interaction energies are offset by equally large reorganization free

energy penalties. Unlike binders of similar size, these ligands pay a substantial free energy

cost for assuming binding competent conformations and/or for forcing the receptor to do the

same. Clearly the key in successful ligand design is to optimize ligand-receptor interactions

while minimizing the associated costs in terms of intramolecular energetic strain and

entropic losses. Proper incorporation of all these effects is necessary to make computational

models as effective as possible for use in drug discovery.

Conclusions

We have employed a combined protocol including docking and binding free energy

calculations to screen a focused library of ligands to the LEDGF site of HIV integrase. The

exercise has been conducted as part of the SAMPL4 ligand screening blind challenge

whereby experimental binders were not known to participants. Our blind predictions

produced the best enrichment factor among all of the computational submissions. We found

that the accuracy of the structural predictions from AD Vina were key to achieve the

observed level of prediction performance. Reorganization free energy costs, included in the

overall binding free energy estimates, have been the main determinant of the superior

ranking performance of our method over scoring methods based primarily on ligand-

receptor interaction energy strengths.

Overall, participation in the SAMPL4 HIV integrase challenge has been a very instructive

experience to test the applicability of advanced physics-based modeling with a firm

foundation in statistical mechanics to in-silico drug development pipelines. Our results show

that substantial improvements in virtual screening performance are possible by augmenting

docking protocols with binding free energy analyses, especially during the lead optimization

phase.
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Fig. 1.
10 % enrichment factors for all of the HIV integrase SAMPL4 submission as computed by

the SAMPL4 organizers. The docking and binding free energy-based submission described

here corresponds to id 135, second from left
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Fig. 2.
Early ROC curve for the classification of binders and non-binders to the LEDGF site of

integrase. The ROC curve based on binding free energy rankings is in red (top), the ones

based on binding energy rankings and reorganization free energy rankings are in green

(middle) and blue (bottom) respectively. The straight black line is the 1:1 line corresponding

to random picking. Results for sorting reorganization free energies from low to high are

shown here, the reverse rankings yielded poorer performance

Gallicchio et al. Page 22

J Comput Aided Mol Des. Author manuscript; available in PMC 2014 August 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3.
Examples of LEDGF integrase binders characterized by binding energies and reorganization

free energies of small magnitude
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Fig. 4.
Reorganization free energies for a subset of complexes versus, a number of rotatable bonds

of the ligand and, b root mean square fluctuation of the residues of the LEDGF binding site.

The correlation coefficients are 0.59 and 0.53, respectively
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Fig. 5.
Chemical scaffolds of the integrase LEDGF binders in SAMPL4
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Fig. 6.
The dominant binding mode adopted by the LEDGF inteegrase binders
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Fig. 7.
Modeled structures of the complexes of two non-binders (AVX40910_0 and AVX62730_0)

with the LEDGF site of integrase. These examples illustrate that occlusion of the P1

hydrophobic site is necessary for strong binding
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Fig. 8.
Modeled structures of the complexes of AVX17284_0 (a non-binder) and AVX17285_0 (a

binder) with the LEDGF site of integrase. The buried amide group is responsible for the

poor binding of the former
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Fig. 9.
Examples of nonbinders that have both correlated hydrogen bonds and occupied P1 sub-

pockets. The binding of these ligands is severely hindered by the large reorganization free

energy penalties, which are not clearly evident from the structures alone
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Table 1

Computed BEDAM binding free energies, , ionization penalties, “I.P.”, and resulting free energy scores,

“FE Score”, for the top ten predicted binders of the LEDGF site of integrase

Ligand id
a Ligand structure FE score

b ΔGb
∘
 
b I.P. 

b,c
Δ Eb 

b ΔGreorg
∘

 
b

AVX17557_3 –8.9 –8.9 0.0 –51.6 42.7

AVX101124_0 –8.4 –8.4 0.0 –50.1 41.7

AVX17556_3 –8.2 –8.2 0.0 –47.1 38.9

AVX17556_1 –7.9 –7.9 0.0 –46.0 38.1

AVX101133_0 –7.5 –7.5 0.0 –46.8 39.3

AVX17556_0 –7.4 –7.4 0.0 –48.8 41.4

AVX17285_0 –7.4 –7.4 0.0 –37.9 30.5

AVX38753_3_1 –7.4 –7.9 0.5 –47.3 39.4
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Ligand id
a Ligand structure FE score

b ΔGb
∘
 
b I.P. 

b,c
Δ Eb 

b ΔGreorg
∘

 
b

AVX101124_1 –7.3 –7.3 0.0 –48.0 40.7

AVX38789_2_1 –7.3 –7.8 0.5 –45.4 37.6

Also listed are thermodynamic decomposition results of  into average binding energy, ΔEb, and reorganization free energy, ,

components. Ligands in bold face are crystallographically confirmed LEDGF binders

a
See text for a description of ligand identifiers. The list in this table follows the rankings submitted blindly to SAMPL with the exception of the

removal of ligand AVX17268_1, later excluded from the challenge

b
In kcal/mol

c
Ionization penalty
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Table 2

Summary of the analysis of results for the confirmed LEDGF binders

53 confirmed LEDGF binders 23 correctly predicted (43 %) 8 bad structures (35 %)

15 good structures (65 %)

30 incorrectly predicted (57 %) 13 not computed (43 %)

8 intermediate score (27 %)

9 bad score (30 %) 7 bad structures (80 %)

2 good structures (20 %)

Moving left to right cases are classified as either correctly and incorrectly predicted (true positives and false negatives). False negatives are further
classified based on the binding free energy scores (third column). Both true positives and false negatives are classified based on the quality of the
initial binding mode (4th column)
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Table 3

Binding free energies to the LEDGF site of integrase computed with explicit solvation for multiple

protonation states of the receptor

Ligand Binder/nonbinder ΔGb
∘
 
a Simulation setup

AVX17375_2 Binder –4.5 Bad initial pose, H171 protonated at Nε

AVX17375_2 Binder –8.7 Good initial pose, H171 doubly protonated

AVX17734_1 Nonbinder –4.7 Large ligand, gas phase sampling not converged

AVX17375_3 Nonbinder –7.6 Same as above

AVX38743_5 Binder –2.1 Good initial pose, H171 protonated at Nε

AVX38743_5 Binder –7.9 Good initial pose, H171 doubly protonated

AVX40813_0 Nonbinder –4.9 H171 protonated at Nε

AVX62525_3 Nonbinder –4.1 H171 protonated at Nε

a
In kcal/mol
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