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Abstract

The Binding Energy Distribution Analysis Method (BEDAM) protocol has been employed as part 

of the SAMPL4 blind challenge to predict the binding free energies of a set of octa-acid host-guest 

complexes. The resulting predictions were consistently judged as some of the most accurate 

predictions in this category of the SAMPL4 challenge in terms of quantitative accuracy and 

statistical correlation relative to the experimental values, which were not known at the time the 

predictions were made. The work has been conducted as part of a hands-on graduate class 

laboratory session. Collectively the students, aided by automated setup and analysis tools, 

performed the bulk of the calculations and the numerical and structural analysis. The success of 

the experiment confirms the reliability of the BEDAM methodology and it shows that physics-

based atomistic binding free energy estimation models, when properly streamlined and automated, 

can be successfully employed by non-specialists.

1 Introduction

The accurate prediction of the strength of molecular association is an important and largely 

unsolved problem from both chemical[1] and medicinal[2] perspectives. Conventional 

approaches, such as docking, have reached a high level of maturity as high-throughput 

virtual screening[3, 4, 5, 6] and structure prediction tools.[7, 8] However methods based on 

interaction-energy scoring alone[9, 10] are often not optimally suited to pick out trends at 

the level of resolution necessary to address finer aspects of drug development such as lead 

optimization, specificity, toxicity, and resistance. Atomistic physics-based free energy 

models, which take into account dynamical aspects of molecular recognition,[11, 12, 2, 13, 

14, 15, 16, 17, 18] have the potential to bridge this gap. However the reliability and general 

applicability of free energy models of binding remain to be fully established.[19, 20, 21, 22]
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Most of the work with physics-based free energy models reported in the literature has 

focused on small retrospective datasets, which do not give an accurate and unbiased picture 

of the state of the field. The SAMPL series of community blind challenges[23, 24, 25] and 

related efforts[26] have played a key role in giving an unbiased view of the advantages as 

well as the challenges related to the application of free energy models of binding. In the 

recent SAMPL4 experiment for example, our group has employed our free energy 

methodology to screen a large set of HIV integrase inhibitor candidates[27, 28] where full 

treatment of conformational dynamics and entropic effects was found to be key to reach the 

observed level of prediction accuracy.

While, with the help of experiments such as SAMPL, theories, models and practices 

continue to improve, one key obstacle towards wider adoption of free energy models is the 

scarcity of automated and easy to use software tools. For example, although automated tools 

are beginning to appear,[29] it is notoriously laborious to plan free energy transformations to 

compute the relative binding free energies of a set of compounds. In many circumstances, 

such as in virtual screening, differences in ligand scaffolds are too great to accommodate 

conventional free energy transformations. In this respect absolute rather than relative binding 

free energy methods offer some advantages. Additional obstacles towards adoption are due 

to learning barriers posed by molecular dynamics engines, each with its own set of 

parameters and settings (topology construction, force field parameter assignment, soft-core 

potentials, restraints, long-range electrostatic treatments, etc.)[20] often incompatible with 

other molecular dynamics engines. Addressing some of these usability issues and making 

binding free energy tools more user friendly would enable a wide community of non-

specialists to access binding free energy tools and to apply them in a variety of contexts, 

ultimately leading to new insights and discoveries.

As part of the octa-acid SAMPL4 affinity challenge, in this work we apply the Binding 

Energy Distribution Analysis Method (BEDAM), an absolute binding free energy protocol,

[30, 31] to the blind prediction of the binding free energies of a set of host-guest systems.

[32, 33] The bulk of the computational work reported here has been conducted by the 

students of the Statistical Thermodynamics class at the department of Chemistry at Rutgers 

University. The BEDAM method has been successfully applied to a variety of systems 

including protein-ligand binding complexes[30, 21, 34, 28] and host-guest complexes,[35] 

including the challenging ones presented as part of the previous SAMPL3 edition.[36]

In addition to a further opportunity for an unbiased validation of the methodology, the 

primary aim of the work has been to involve a group of students from various disciplines 

into a classroom project reflective of applied collaborative research. The BEDAM/SAMPL4 

host-guest exercise was particularly suited for this. It allowed a direct application on 

molecular systems of the statistical thermodynamics concepts covered in the course. As in 

actual research, outcomes were not known or guaranteed. In addition, given the relatively 

small size of the host-guest systems, the computational load was expected to be compatible 

with the time and computational resources available to the class. The work also involved 

studying literature material about the available laboratory measurements[37] in order to 

prepare the molecular systems appropriately and validate the computational protocol before 

applying it to obtain predictions.
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One of the challenges with the introduction advanced computational modeling tools in the 

classroom is that a significant amount of time is required to familiarize the students with the 

usage of the modeling software, the format for inputs and outputs, algorithmic details, etc. 

Besides consuming valuable class time, this process is often of limited utility to the majority 

of students who either are not directly engaged in computational research or whose home 

laboratories utilize a different suite of modeling software. This complication was largely 

bypassed here by using an easy-to-use graphical front-end (Maestro, by Schrödinger, Inc.) 

combined with the BEDAM automatic workflow tool developed in our laboratory.[38] This 

was essentially the same protocol we used to automate the free energy calculations for the 

SAMPL4 HIV integrase screening challenge.[28] The project was set up in such a way that 

students prepared the molecular systems using the graphical front-end, provided these to the 

BEDAM workflow which in turn produced, without further intervention, all of the inputs 

required by the molecular modeling package. The same workflow was used to process the 

simulation data to provide binding free energy estimates and to streamline structural and 

other thermodynamic analyses.

This study confirms that it is valuable from multiple perspectives to package complex free 

energy simulation protocols into a form that allows the automated processing of large 

datasets and at the same time is accessible to non-specialists. The features of the BEDAM 

methodology, which does not require explicit solvation, multiple complex free energy 

transformations and elaborate conformational restraining steps, are conducive to a high 

degree of automation.

2 Methods

2.1 Overall Organization of the Project

Our group focused primarily on the SAMPL4 HIV Integrase screening challenge.[25, 28] 

Participation to the octa-acid host-guest challenge was organized as a classroom experiment 

as part of the Statistical Thermodynamics graduate class that the senior authors (E.G. and 

R.M.L.) were teaching at the time. The aim of the experiment was to both recruit the help of 

students and expose them to a realistic applied research study. Contrary to most classroom 

experiences, but not unlike actual research scenarios, neither the students nor their 

instructors had knowledge of the “right” answers. However, also similar to most research 

scenarios, literature data was available to conduct validation of the model to gain confidence 

in the predictions.

Each student was assigned a small set of host-guest complexes to investigate. The molecular 

simulation software and related scripts and force field data were provided by the instructors. 

Students were responsible for building the molecular structures of the guests (either from 

scratch and/or starting from PubChem sources or using files provided by the SAMPL4 

organizers) using the Maestro program ensuring correct protonation, Lewis structure and 

initial conformation. The students were also responsible for building the initial conformation 

of the complex by placing the ligand in a reasonable binding mode within the cavity of the 

host. Students submitted the prepared files for the host and the guests to the automated 

BEDAM workflow[38] to generate input files for the parallel calculation with the IMPACT 
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program.[39] Students were also responsible for submitting the corresponding parallel jobs 

to a computing cluster and for retrieving and analyzing the resulting outputs.

Student reports on the host-guest experiment counted towards their final class grade. 

Students were asked to describe not only their calculations but also to observe overall 

binding affinity trends by retrieving and discussing the results obtained by other students. 

Conversely students were asked to complete their calculations and analysis within assigned 

deadlines so as to be able to promptly address requests from others. Again, this organization 

reflects actual collaborative research scenarios. At completion of the class the instructor 

collected the student predictions and submitted them to SAMPL.

2.2 The Binding Energy Distribution Analysis Method

The Binding Energy Distribution Analysis Method (BEDAM)[30] computes the absolute 

binding free energy  between a receptor A and a ligand B employing a λ-dependent 

effective potential energy function with implicit solvation[40] (see below) of the form

(1)

where r = (rA, rB) denotes the atomic coordinates of the complex, with rA and rB denoting 

those of the receptor and ligand, respectively,

(2)

is the effective potential energy of the complex when receptor and ligand are dissociated, 

and

(3)

is the binding energy function defined for each conformation r = (rB, rA) of the complex as 

the difference between the effective potential energies U(r) of the bound and dissociated 

conformations of the complex without internal conformational rearrangements. To improve 

convergence of the free energy near λ = 0, a modified binding energy function is employed 

of the form

(4)

where umax is some large positive value (set in this work as 1000 kcal/mol). This modified 

binding energy function, which is used in place of the actual binding energy function [Eq. 

(3)] wherever it appears, caps the maximum unfavorable value of the binding energy while 

leaving unchanged the value of favorable binding energies.[31]
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The binding free energy ΔGb is by definition the difference in free energy between the states 

at λ = 1 and λ = 0. The standard free energy of binding  is related to this by the 

relation[11]

(5)

where C° is the standard concentration of ligand molecules (C° = 1 M, or equivalently 1,668 

Å−3) and Vsite is the volume of the binding site (see below). The multistate Bennett 

acceptance ratio estimator (MBAR)[41, 42] is used here to compute the binding free energy 

ΔGb from a set of binding energies, u, sampled from molecular dynamics simulations at a 

series of λ values. For later use we introduce here the reorganization free energy for binding 

 defined by the expression[14]

(6)

where ΔEb = 〈u〉1 is the average binding energy of the complex and  is the standard 

binding free energy. The former is computed from the ensemble of conformations of the 

complex collected at λ = 1 and  is computed by difference using Eq. (6).

2.3 The AGBNP2 Solvation Model

The potential energy of the system is described by the OPLS-AA/AGBNP2 effective 

potential in which the OPLS-AA[43, 44, 39] force field accounts for covalent and non-

bonded interatomic interactions and the effect of the solvent is represented implicitly by 

means of the Analytic Generalized Born plus Non-Polar (AGBNP2) implicit solvent model.

[40] A full description of the AGBNP2 model is available elsewhere.[40] Here we give a 

brief summary of the elements that have been tuned for the present application (see below).

The AGBNP2 model computes the solvation free energy of the solute, ΔGsolv, as the sum of 

electrostatic, ΔGelec, non-polar, ΔGnp, and short-range solute-water hydrogen bonding, 

ΔGhb, contributions:

(7)

The electrostatic term is described by means of a variation of the continuum dielectric 

Generalized Born model.[45, 46] The non-polar term is further decomposed into a cavity 

hydration free energy ΔGcav, expressed in terms of solute surface areas, and a solute-solvent 

average dispersion interaction energy ΔGvdW given by the expression

(8)

where Bi is the Born radius of atom i, Rw = 1.4 Å represents the radius of a water molecule, 

ai is an van der Waals energy integration factor solely dependent on the Lennard-Jones 
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parameters of the solute atom and the water model,[47, 48] and αi ≃ 1 is an atom type-

dependent dimensionless adjustable parameter.[46]

The hydrogen bonding term,

(9)

is computed in terms of spherical hydration volumes w, typically located around hydrogen 

bonding donor and acceptor sites.[40] The geometrical parameter pw, expressed as the 

fraction of the hydration site not occupied by solute atoms, measures the effective water 

occupancy of the site and the adjustable parameter hw, which depends on the type of 

hydrogen bonding site, controls the strength of the solute-solvent interaction (or more 

precisely the portion of it not captured by the continuum model).[40] While normally used 

for hydrogen bonding sites contributing favorably to the solute hydration free energy, here 

and elsewhere[36, 35] we have also employed this same functional form to describe 

hydration sites contributing unfavorably to the hydration free energy (see below); the 

distinction being the sign of the hw parameter, negative for hydrogen bonding sites and 

positive for the unfavorable solvation free energy sites.

2.4 System preparation and tuning

The octa-acid host was prepared starting from the structure file provided by the SAMPL 

organizers using the facilities in the Maestro program (Schrödinger, Inc.) using standard 

OPLS2005 parameters. The guests were prepared similarly. All carboxylates of the host and 

the guests were modeled as unprotonated with a −8 overall net charge of the host. Both axial 

and equatorial conformations of cyclic alkyl rings of the guests were investigated separately. 

The axial conformations led to significantly less favorable binding free energies and were 

not considered in the analysis.

A preliminary binding free energy calculation for guest 1 with default AGBNP2 parameters 

resulted in an unstable complex, which was regarded as unreasonable. Accordingly, steps 

were taken to correct this defect. Given the hydrophobicity and depth of the binding cavity 

of the octa-acid host, it was reasoned that the cause of the discrepancy was due to water 

enclosure effects[49, 50] not well represented by our continuum solvent model. Two 

possible scenarios are likely: the cavity may be hydrated by restricted low entropy and/or 

high energy water molecules which, when released in the bulk due to guest binding, 

contribute favorably to binding. In the second scenario the cavity is partially dewetted 

resulting in weak interaction of host atoms in the interior of the cavity with the solvent. In 

the complex these are replaced by interactions between the host and the guest, again 

contributing favorably to binding. As indicated by explicit solvent simulations in which the 

binding cavity of the octa-acid host was observed to fluctuate from empty to completely 

filled with water,[51, 52] the two effects (low water entropy and low water occupancy in the 

cavity) may, in fact, occur concomitantly. Nevertheless, both effects contribute favorably to 

host-guest binding and, as described below, can be modeled similarly in the context of the 

implicit solvation model we have employed.
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As illustrated in Fig. 1 the interior of the host is composed of an outer larger cavity and an 

inner smaller cavity. Four alkyl hydrogen atoms of the host point towards the smaller cavity.

[37] Similar to a previous approach for a β-cyclodextrin host,[35] we employed these as 

attachment points for custom AGBNP2 hydration sites with unfavorable hydration strength 

parameters [hw in Eq. (9)]. The results submitted to SAMPL4 were obtained with hw = 2 

kcal/mol, although, given that these sites are significantly occluded even in the absence of a 

bound guest, their individual contribution to the binding free energy is only a fraction of this 

value. We used a different strategy to model water enclosure effects in the larger cavity of 

the host. This cavity is lined with aromatic rings lacking hydrogen atoms suitable to serve as 

attachment points for hydration sites. Instead, we opted to reduce the van der Waals α 

parameters [see Eq. (8)] for the aromatic carbon atoms lining this cavity from 0.7 to 0.5. 

Both modifications work towards making the hydration free energy of the host less favorable 

relative to the complex thereby decreasing the desolvation penalty for binding. Given the 

limited scope of the classroom experiment, a full parameter optimization campaign was not 

carried out. The same modified parameters above were applied to both sets of complexes, 

those with known binding affinities and those with unknown affinities as part of the 

SAMPL4 challenge.

2.5 Computational details

Force field parameters were assigned using Schrödinger’s automatic atomtyper.[39] Parallel 

alchemical Hamiltonian Replica Exchange molecular dynamics simulations were conducted 

with the IMPACT program.[39] The simulation temperature was set to 300K. We employed 

16 intermediate steps at λ =0, 0.001, 0.002, 0.004, 0.005, 0.006, 0.008, 0.01, 0.02, 0.04, 

0.07, 0.1, 0.25, 0.5, 0.75, and 1. The binding site volume was defined as any conformation in 

which the center of mass of the ligand was within 8 Å of the center of mass of the host. The 

ligand was sequestered within this binding site volume by means of a flat-bottom harmonic 

potential. Based on this definition the value of the term −kT lnC°Vsite in Eq. (5) is −0.15 

kcal/mol. No other restraints were applied.

BEDAM calculations were performed for 1.4 ns of molecular dynamics per replica (22.4 ns 

total for each complex). Data from the last nanosecond of each replica trajectory was used 

for free energy analysis. Binding free energy estimates converged quickly; differences 

between estimates obtained using the first third and the full data set were all smaller than 1 

kcal/mol. Binding energies were sampled with a frequency of 1 ps for a total of 16,000 

binding energy samples per complex. Uncertainties in the binding free energies were 

estimated from MBAR[41] and scaled by a factor of 10 to reflect the correlation length of 

approximately 50 ps estimated from binding energy trajectories of guest 1. The binding free 

energy predictions were submitted to the SAMPL4 octa-acid challenge on July 20 2013 and 

assigned prediction ID #140.

3 Results and Performance

3.1 Binding Free Energy Validation

Table 1 reports the computed binding free energies for the octa-acid complexes for which 

experimental binding free energies were available at the time of the SAMPL4 challenge.[37] 
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With the exception of the complexes with the two longest linear alkyl carboxylates 

(decanoate and octanoate) whose affinity is overestimated, there is good agreement between 

calculated and experimental binding free energies. The cause of the discrepancy for long 

chain carboxylates is not clear. The complex with the shorter hexanoate guest is predicted 

correctly and so are the complexes with the more compact adamantane and cyclohexane 

derivatives. As the SAMPL4 set did not contain long chain carboxylates, which appear 

problematic with the current model, we did not explore this issue further.

3.2 Blind Predictions

The blind binding free energy predictions submitted to SAMPL4 are listed in Table 2 and 

shown in Fig. 2 compared to the experimental measurements, which were not known to us 

prior to the submission of the predictions.[32] Trans-4-methyl-cyclohexane carboxylate 

(guest 7) and 4-chlorobenzoate (guest 4) are correctly predicted as the strongest and next to 

strongest binders in this set. The calculated binding free energies for these guests are in 

quantitative agreement with the experiments (for example for guest 7, −7.2 kcal/mol 

predicted vs. −7.6 kcal/mol experimentally). At the other end of the spectrum, benzoate 

(guest 1) and cyclopentane carboxylate (guest 8) are correctly predicted as the weakest 

binders, although for these two guests the agreement is not as quantitative (for benzoate the 

binding free energy is underestimated by 2.7 kcal/mol). In general, the computational model 

predicts larger variations in binding free energies than observed as confirmed by the greater-

than-one slope of the correlation line of the calculated binding free relative to experiments 

(Fig. 2). For example methylation at the trans position of guest 1 is predicted to favor 

binding by approximately 4 kcal/mol whereas measurements show a variation approximately 

half this value.

As the thermodynamic decomposition data in Table 2 shows, trends in binding affinity are 

generally determined by host-guest interaction energies measured by the binding energies 

ΔEb. The strongest binder (guest 7) is also the one with the most negative binding energy 

(−19.6 kcal/mol) whereas the weakest binders (guests 1 and 8) are the ones with the least 

negative binding energies (−9.3 and −10.2 kcal/mol, respectively). As it is often the case, 

however, the range of variation of the binding energy (10.0 kcal/mol) is significantly larger 

than the range of binding free energies (6.2 kcal/mol) due to the compensating effect of 

reorganization (  in Table 2). The reorganization free energy measures entropic 

losses and intramolecular strain of the host and the guest upon binding,[14] which generally 

become increasingly unfavorable with increasing strength of host-guest interactions. The 

strongest binder (guest 7) is also the one which incurs the highest reorganization penalty 

while the weakest binders incur the least. In the middle of the pack however the balance 

between favorable host-guest interactions and unfavorable reorganization losses are more 

complex. For example guest 2 would be predicted as the second strongest binder based on 

interaction energies alone overcoming guest 4 by more than 1 kcal/mol. Binding free energy 

scores however correctly predicts the opposite due to a 2 kcal/mol advantage of guest 4 in 

terms of reorganization penalty.

As summarized in the overview paper,[33] ours were judged as some of the most accurate 

predictions of the SAMPL4 challenge. Our submission ranked best (among the 13 octa-acid 
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entries made public) in terms of root mean square error with respect to both absolute and 

relative binding free energy measures. For the latter, using the notation in reference [33], the 

root mean square error after subtracting the average signed error was RMSE_o=1.3 and the 

root mean square error of all pairs of relative binding free energies was RMSE_r=0.9 kcal/

mol. Our predictions performed best also in terms of correlation slope (slope= 1.5, but 

interestingly behind a null model based on guest size), and second best in terms of 

correlation coefficient (R2 = 0.9). These quality metrics were statistically equivalent to those 

of absolute binding free energy predictions obtained by Ryde and coworkers with an explicit 

solvation model.[52]

The predominant binding mode seen in the simulations is, as expected, one in which the 

hydrophobic ring of the guest is set into the cavity with the carboxylate group oriented 

towards the solvent (Fig. 3). Substituents in the 4th position of the ring occupy the inner 

cavity of the host. This happens for guests 2, 3, 4, and 7. In these guests the substituent is in 

register to occupy the lower cavity of the host while leaving the carboxylate group optimally 

solvated. Guest 5, with the chlorine substitution at the 3rd position, prefers mostly to not 

occupy the inner cavity rather than sacrificing optimal solvation of the carboxylate group 

(see Fig. 3). The calculations generally reproduce the observed trend that binding to the 

inner cavity contributes to stronger binding. In agreement with the experiments complexes 

with guests 2, 4 and 7 are more strongly bound than their respective homologues (guests 1, 

5, and 6) not capable of occupying the inner cavity.

Experimental trends also identify interactions with the larger outer cavity as an important 

binding determinant for binding; an aspect that appears to be underestimated by the 

computational model. For example, guest 9, the third strongest binder experimentally despite 

the lack of interactions with the inner cavity, is ranked only fifth by the model. Similarly, as 

noted above, the affinities of guests 1 and 8, while ranked correctly, are significantly 

underestimated. On the other hand, the binding of guest 3 is also underestimated even 

though it occupies the inner cavity sacrificing in part good interactions with the outer cavity 

in order to accommodate the longer ethyl substituent. As noted,[32] the stronger observed 

binding of guest 3 relative to guest 2 is contrary to expectations and the model, predicting 

the opposite relative rankings, fails to shed light on the underlying molecular mechanism for 

the anomaly.

4 Discussion

Overall, binding affinity prediction methods have performed well on the SAMPL4 host-

guest challenge,[33, 52, 53, 54, 55] confirming the steady progress of the field, and the 

valuable contribution of blind experiments of this kind towards this progress. The binding 

free energy predictions made as part of this work were among the top scoring submissions 

for the octa-acid binding affinity challenge evaluated by the SAMPL4 organizers.[33] The 

present results, together with previous successful experiences in SAMPL challenges,[36] 

and the good ligand screening performance in the concurrent SAMPL4 HIV integrase 

challenge,[28] adds further confidence in the reliability of the BEDAM protocol for binding 

free energy estimation. The present work also demonstrates the accessibility of the 
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technology to non-experts, thanks to an automated workflow and the minimal set of 

structural assumptions required by the model.

As in previous work,[35] tuning of the implicit solvation model to properly treat enclosed 

hydration sites has been important to achieve good accuracy. Conventional solvation models 

based on homogeneous continuous descriptions of the solvent do not adequately treat 

hydration in deep hydrophobic solute cavities. In particular, it has been shown in several 

contexts that the displacement into the bulk of high free energy water molecules enclosed 

within receptor cavities can contribute favorably to ligand association.[49, 56] The atypical 

properties of water in molecular-sized volumes are difficult to model accurately even in the 

context of explicit representations of the solvent.[57, 58] As we have done in this work, our 

approach to address these challenges has been to parameterize empirical geometrical models 

against experimental data. The advantage of this approach is that it can yield, depending on 

the availability and quality of the experimental data, representations of the thermodynamics 

of hydration at a level of accuracy equivalent and possibly superior to models of higher 

complexity. However when adopting empirical approaches of this kind, transferability of 

parameters can not be assumed. In this work the choice of parameters was guided by 

existing experimental data on the octa-acid system[37] and previous experiences with 

similar hydration cavities in other host-guest systems.[36, 50, 35]

The octa-acid binding cavity is in many respects representative of hydrophobic binding sites 

on protein surfaces where complex hydration patterns significantly affect binding 

propensities.[49] The fact that reliable predictions were achieved in the present application 

despite very limited parameterization indicates that similar strategies could be successfully 

employed for protein receptors. Recent advances in inhomogeneous solvation theory 

analysis[50, 56] potentially offer a suitable route to automated parametrization from explicit 

solvent simulations.

The model generally confirms the expected trends in the SAMPL4 set of the octa-acid host 

system.[32] Guests capable of occupying the inner smaller cavity without sacrificing solvent 

exposure of the carboxylate group tend to bind the octa-acid host more strongly, and so are 

guests containing an alkyl ring rather than an aromatic ring. The model provides further 

insights and details on the molecular origins of these trends. For example it has been 

suggested that guest 4 (chlorine substituent at position 4) binds more strongly than guest 2 

(methyl substituent) due to added hydrogen bonding-like interactions between the chlorine 

atom and the benzal hydrogen atoms of the host pointing towards the inner cavity.[32] 

However the computational model, by predicting a stronger host-guest interaction energy for 

guest 2 relative to guest 4 by more than 1 kcal/mol (see column 5 in Table 2), appears to 

contradict this hypothesis. In our model the greater affinity of guest 4 for the host is due to 

its smaller reorganization free energy penalty relative to guest 2. We hypothesize that this is 

due to added intramolecular strain imposed on the host to open up the inner cavity slightly to 

accommodate the methyl group. This is an example of the commonly observed 

compensation between binding energies and reorganization free energy components:[35, 28] 

stronger receptor-ligand interactions are often achieved at the expense of entropic losses and 

intramolecular strain and, as a result, the outcome in terms of binding free energy is often 

the result of a subtle balance that is difficult to predict.
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As an additional example we find that the higher affinity of alkyl ring-containing guests is 

due to their stronger interaction energies with the host. For instance, the average binding 

energies of guests 6 and 7 are approximately 3 kcal/mol more favorable than those of the 

corresponding aromatic guests (guests 1 and 2). This is due to a combination of the larger 

number of hydrogen atom interaction centers in the alkyl ring and the smaller average 

distance between the carbon atoms of the guest and the atoms of the host afforded by the 

puckering of the ring. This conclusion is in agreement with the analogous analysis based on 

binding site volume occupancy.[32] Interestingly, in this case, unlike the example above, the 

stronger interaction energy actually translates into stronger binding affinity because the 

reorganization free energy component is either reinforcing the interaction energy difference 

(compare the reorganization free energy values of guest 6 and guest 1 in Table 1) or opposes 

it only slightly (guest 7 relative to guest 2).

The SAMPL4 host-guest binding experiment offered an invaluable opportunity to 

incorporate a realistic research task into a classroom context. The blind nature of the 

experiment, where no one was in possession of the right answer, created a unique 

collaborative network among students and among students and instructors. The choice of the 

best approach to solve each problem was worked out based on the collective wisdom of the 

class rather than being selected as the approach that gives the “right” answer. Validation of 

the model, just as it is in applied research, became not the goal of the exercise but rather the 

means to obtain a set of predictions of the highest quality possible.

To streamline the calculations, we employed a highly automated BEDAM workflow capable 

of preparing inputs for the molecular dynamics engine from a minimal set of user 

parameters: the structure files for receptor and ligand and the maximum center of mass 

distance between the two which defines the binding site volume (see Methods). This 

automation strategy, which has also been employed to automate hundreds of binding free 

energy calculations HIV integrase screening challenge as part of the same SAMPL4 

experiment,[28] enabled the simulations with little user knowledge of the system preparation 

details, input file syntax and parallel execution commands for the molecular dynamics 

engine. Key features of the Schrödinger’s molecular modeling environment, such as the 

graphical user interface and automatic force field parameter assignment, also played a key 

role in making these complex calculations accessible to students.

5 Conclusions

As part of the SAMPL4 blind challenge, we have employed the BEDAM protocol to predict 

the binding free energies of a set of octa-acid host-guest complexes. Our predictions 

consistently scored among the best submitted to SAMPL4 in this category (best in terms 

root mean square errors and correlation slope, and second best in terms of correlation 

coefficient). The experiment has been conducted as part of a hands-on graduate class 

laboratory exercise. Collectively the students, guided by the instructors, performed the bulk 

of the calculations and the numerical and structural analysis. Students were encouraged to 

share data and prepared reports, on which this work is based, discussing their results in the 

context of those of all of the other students. Overall, participation to this SAMPL4 challenge 

has been a very instructive experience to both the students and their instructors. The success 
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of the experiment confirms the reliability of physics-based atomistic binding free energy 

estimation models and it shows that these, when properly streamlined and automated, can be 

successfully employed by non-specialists.
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Figure 1. 
Surface representation of the octa-acid host (with guest 7 bound). The guest (green carbon 

atoms) occupies the central cavity which is composed of an outer large cavity and a deeper 

smaller cavity occupied in this case by the methyl group of the guest.

Gallicchio et al. Page 16

J Comput Aided Mol Des. Author manuscript; available in PMC 2016 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Calculated standard binding free energies of the SAMPL4 octa-acid complexes plotted 

against the corresponding experimental measurements. The continuous line is the 1:1 line 

and the dashed line is the least-squared line (slope=1.5).
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Figure 3. 
Representative structures of the complexes of the octa-acid host with the nine cyclic 

carboxylate guests investigated as part of the SAMPL4 challenge. The structures displayed 

here are the final frames of the trajectory of the BEDAM replica at λ = 1.
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Table 1

Calculated binding free energies for complexes of the octa-acid host with a set of guests with published 

experimental affinities.[37]

Guest a,b a

Decanoate −6.87 −10.6±0.4

Octanoate −6.02 −7.9±0.4

Hexanoate −4.85 −4.4±0.2

1-Adamantane carboxylate −8.25 −7.0±0.5

3-Noradamantane carboxylate −7.42 −8.1±0.5

Cyclohexane carboxylate −5.04 −5.3±0.2

aIn kcal/mol

bFrom reference [37].
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