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Abstract

Induced fit or protein flexibility can make a given structure less useful for docking and/or scoring. 

The 2015 Drug Design Data Resource (D3R) Grand Challenge provided a unique opportunity to 

prospectively test optimal strategies for virtual screening in these type of targets: heat shock 

protein 90 (HSP90), a protein with multiple ligand-induced binding modes; and, mitogen-activated 

protein kinase kinase kinase kinase 4 (MAP4K4), a kinase with a large flexible pocket. Using 

previously known co-crystal structures, we tested predictions from methods that keep the receptor 

structure fixed and used (a) multiple receptor/ligand co-crystals as binding templates for 

minimization or docking (“close”), (b) methods that align or dock to a single receptor (“cross”), 

and (c) a hybrid approach that chose from multiple bound ligands as initial templates for 

minimization to a single receptor (“min-cross”). Pose prediction using our “close” models resulted 

in average ligand RMSDs of 0.32 Å and 1.6 Å for HSP90 and MAP4K4, respectively, the most 

accurate models of the community-wide challenge. On the other hand, affinity ranking using our 

“cross” methods performed well overall despite the fact that a fixed receptor cannot model ligand-

induced structural changes,. In addition, “close” methods that leverage the co-crystals of the 

different binding modes of HSP90 also predicted the best affinity ranking. Our studies suggest that 

analysis of changes on the receptor structure upon ligand binding can help select an optimal virtual 

screening strategy.
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Introduction

Major challenges in virtual screening are the inadequate scoring functions to evaluate the 

affinity of docked poses, and the difficulty to predict ligand induced flexibility observed in 

many important therapeutic targets [1-5]. To evaluate improvements in this area, the Drug 

Design Data Resource (D3R) developed the 2015 Grand Challenge, a community-wide 

experiment for researchers around the world to prospectively test docking and scoring 
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methodologies against blinded data from two targets: heat shock protein 90 (HSP90), a 

protein that binds following an induced fit mechanism [6], i.e., the unbound or apo structure 

undergoes significant structural rearrangements upon ligand binding; and, mitogen-activated 

protein kinase kinase kinase kinase 4 (MAP4K4), a kinase with a large pocket that includes 

sizable flexible loops [7].

The most commonly used scoring functions can basically be classified into three types as 

Kitchen et al. summarized [1]: force-field-based scoring (e.g., D-Score [8], G-Score [8], 

GOLD [9], AutoDock [10], DOCK [11], Glide [12], SIE [13]), empirical scoring (e.g., 

LUDI [14, 15], F-Score [16], ChemScore [17], SCORE [18], Fresno [19], X-SCORE [20], 

AutoDock Vina [21]) and knowledge-based scoring (e.g., DrugScore [22], SMoG [23]). In 

the 2010 Community Structure-Activity Resource (CSAR) Exercise, Carlson and 

collaborators analyzed the performance of different scoring functions on the CSAR-NRC 

data set [5, 24]. The results indicated that most of the scoring functions had comparable 

performance (R2=0.3-0.4) and the best R2 were achieved by AutoDock and AutoDock Vina 

(R2=0.55) [5]. Despite the poor performance of scoring, many docking methods did well in 

predicting poses within 2.0 Å of the crystal conformation [3, 5].

Over the last few years, the Camacho lab has steadily built novel platforms for drug 

discovery, from predictions of druggable sites [25], to pharmacophore-based interactive 

virtual screening technologies that search billion size libraries in seconds [26]. We also 

developed Smina [27], a version of AutoDock Vina specially optimized to support high-

throughput minimization and scoring. Based on our current implementation in AnchorQuery 
[28], Smina can minimize 10,000 compounds into a fixed receptor in about 10 seconds 

(details will be published elsewhere), the same time scale required for docking a single 

compound to a flexible receptor [1]. More recently, we have shifted our attention to 

improving our virtual screening pipeline [26-28]. We participated in the 2013/14 CSAR 

challenge that involved rank-ordering compounds to homology models of the receptors with 

a given protein primary sequence, identifying close-to-native bound conformations out of a 

set of decoy poses, and rank-ordering the affinity of sets of congeneric compounds to a given 

protein. Our predictions were among the best in the field [29, 30]. We showed that the most 

significant contribution to a meaningful enrichment of native-like models was the 

identification of the best receptor structure for docking and scoring. In particular, we showed 

that ranking a set of 31 congeneric compounds cross-docked to the tRNA (m1G37) 

methyltransferase (TRMD) structure with the largest pocket resulted in an impressive R2= 

0.67, whereas other receptor structures yielded R2 ~ 0.

Here, we report our participation in the 2015 D3R Grand Challenge, where we performed a 

comprehensive analysis of different strategies for predicting docking poses and ranking 

affinities for two highly flexible targets: HSP90 and MAP4K4. These strategies included 

methods that utilize all available receptor/ligand co-crystals (“close”), all available ligands 

and a single holo-receptor structure (“min-cross”) and only a single receptor/ligand co-

crystal (“cross”). As in the 2013/14 CSAR competition [29], we found that the method that 

predicted the best docking poses was not the same as the ones that predicted the best ranking 

of active compounds. Similarly, different methods were shown to predict the optimal ranking 

of active compounds for HSP90 and MAP4K4, i.e., “close” and “cross”, respectively. 
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Inspection of the type of flexibility exhibited by each target, i.e., induced fit versus large 

flexible pocket, suggests guiding principles for selecting the optimal virtual screening for 

flexible targets. We note that these findings are strongly supported by the fact that our 

prospective pose predictions and affinity rankings for HSP90 to the 2015 D3R Grand 

Challenge were the best in the community-wide experiment.

Methods

We tested the performance of five major methods (Fig. 1) on both pose and affinity 

predictions. Several variants of the methods were also applied to special cases, which will be 

discussed later in the specific challenges.

The methods used the following applications that are freely available for academic research. 

Structure preparation: all receptor structures were superimposed using the “align” command 

in PyMOL 1.7 [31]. Conformer generation: For structural alignment, 20 conformers were 

generated using Omega2 [32] with default settings. Chemical similarity: Babel 2.3.2 [33] 

was used with fingerprint 3 (FP3) to identify the most similar or “closest” compound among 

known ligands. The co-crystal receptor corresponding to the “closest” compound is referred 

to as “closest” receptor. Conformer alignment: Structural alignments were performed using 

Open3DALIGN 2.282 [34]. Minimization: Aligned conformers are minimized to a given 

receptor using Smina [27] with default settings. Docking: Compounds were docked with 

Smina with default parameters and AutoDock Vina [21] scoring function. A reference 

compound was used to define the docking box. The Vina-predicted energy was used to select 

the best ranked docked pose.

Align-close method

(a) Conformers were generated for each compound in the test set. (b) The “closest” 

compound among known bound ligands was identified. (c) Conformers were aligned to the 

“closest” compound. (d) Aligned conformers were minimized to the “closest” receptor. (e) 

The best Vina score was used to predict affinity for the compound.

Dock-close method

(a) The “closest” compound among known bound ligands was identified. (b) Compounds 

were docked to the “closest” receptor using “closest” ligand as reference to define docking 

box. (c) The best Vina score was used to predict affinity for the compound.

Min-cross method

(a) Conformers were generated for each compound. (b) The “closest” compound was 

identified. (c) Conformers were aligned to the “closest” compound. (d) The aligned 

conformers were minimized to all known bound receptors. (e) The best Vina score to each 

receptor was used to predict affinity. (f) Optimal receptor for virtual screening is selected 

(see below).
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Align-cross method

(a) Conformers were generated for each compound. (b) Conformers were aligned to every 
known bound ligand. (d) Aligned conformers were minimized to the corresponding bound 

receptor. (e) The best Vina score among conformers was used to predict affinity to each 

receptor structure. (f) Optimal receptor for virtual screening is selected (see below).

Dock-cross method

(a) Compounds were docked to every known bound receptor using its bound ligand as 
reference. (b) The best Vina score to each receptor was used to predict affinity. (c) Optimal 

receptor for virtual screening is selected (see below).

These five methods can be grouped by receptor selection. The optimal receptor for “cross” 
methods (min-cross, align-cross and dock-cross) was chosen by comparing the Vina scores 

for each receptor with experimental data (IC50, see Supplementary Table 1 and 2). We 

calculated Spearman's rank correlation coefficient (Spearman ρ) and coefficient of 

determination (R2) to select the optimal receptor that performs the best for affinity ranking 

in our training set. Similarly, we compared the best-scored poses - for each receptor with the 

crystal poses to generate the ligand root-mean-square deviation (RMSD), and computed the 

percentage of poses that have a RMSD less than 2 Å to select the optimal receptor for pose 

prediction. For testing data, we use the best-performing receptor in the training data set to 

rank affinity and predict poses. For “close” methods (align-close and dock-close), there is no 

optimal receptor, but multiple receptor/ligand co-crystals are used for predictions.

Results

HSP90 Challenge

Challenge—(1) Predict binding modes of six HSP90 compounds. (2) Predict affinity 

ranking of P=180 HSP90 compounds, among this set, 33 unidentified compounds were said 

to have no inhibition. (3) Predict relative/absolute free energy of three small sets of 

compounds. Analyses of the 180 compounds show that they all fall into three chemical 

scaffolds (aminopyrimidines, benzimidazolones and benzophenone-like, Fig. 2C-2E. Upper 

panels show scaffolds, and lower panels show examples). Two unpublished structures, 

4YKR and 4YKY, were provided as examples of benzimidazolones and benzophenone-like 

compound binding.

Binding Pocket Analysis—There are N=179 PDB plus two unpublished HSP90 

structures bound to small molecules, with I=69 of them having known IC50 (from 

BindingDB [35], BindingMOAD [36] and PDBBind [37], Supplemental Table 1). We 

superimposed all the known receptors to the receptor structure in 4YKR. Interestingly, a 

distal loop (L2 between H4 and H5, Fig. 2A) is very adaptive upon different ligand binding. 

Basically, all co-crystal structures can be grouped into four distinct conformations based on 

the adaptive loop (red cartoon in Fig. 2A): close, helix, open and half-close (a conformation 

between open and close). The histograms of these binding modes in the whole dataset and 

sub-dataset with IC50 are shown in Fig. 2F. The core binding pocket is quite rigid and 

stable, and four crystal water molecules are observed to participate in ligand binding (Fig. 
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2B). Three waters are highly conserved despite the different adaptive loop conformations 

(Fig. 2G). These analyses suggest that the ligand-binding pocket of HSP90 consists of a 

rigid core part with a conserved water-mediated interacting network and a ligand-dependent 

adaptive loop. Therefore, when preparing models for docking and alignment/minimization, 

we kept conserved water molecules as part of the receptors.

Methods—We applied the five methods listed in Fig. 1 (i.e., align-close, dock-close, min-

cross, align-cross, and dock-cross) for both pose prediction and affinity ranking. For affinity 

ranking, we also devised several variations of the previous methods as potential 

improvements for ligand alignment, and others. (a) min-cross-scaffold and align-close-
scaffold methods: Given the limited set of scaffolds that presumably capture the core ligand 

interactions, for min-cross and align-close methods we aligned the test compounds to the 

three scaffolds shown in Fig. 2C-2E (see, e.g., Fig. 3B) instead of the chemically “closest” 

compounds as in Fig. 3A. (b) min-cross-pose and align-close-pose methods: Instead of 

using as templates ligand structures from co-crystals, we use the actual predicted poses by 

“close” methods as templates for alignment in min-cross and align-close methods (see, e.g., 

Fig. 3C). (c) dock-close-filter and align-close-filter: We also used the aforementioned 

predicted poses for manually selecting inactive compounds in testing set. We then overruled 

the Vina score and moved this set of compounds to the bottom of the affinity ranking for the 

two methods that had best performance in training set. (d) HSP90 score 1-4: We used 

machine learning and forward selection methodologies to develop four HSP90-specific 

scoring functions from the set of energy terms available in Smina [27] (see Supplemental 

Table 2 for the selected parameters and weights). A training dataset was constructed by 

cross-docking the I=69 compounds with published IC50 data to crystal structure 4EFU 

(optimal receptor for dock-cross method) with the default Smina settings. HSP90 score 1 

and 2 functions were trained on active compounds (measured by Spearman ρ), while HSP90 

score 3 and 4 were trained to maximize the discrimination of active versus decoy 

compounds which were obtained from the HSP90 dataset in the DUD-E database [38] 

(measured by AUC). (e) 3DQSAR-align-pose and 3DQSAR-dock-pose: The relatively 

large amount of binding data made quantitative structure–activity relationship (QSAR) 

possible. Using Open3DQSAR 2.3 [39], we trained 3DQSAR models with the 69 HSP90 

structures with IC50 data. We applied the trained models to the predicted poses in the testing 

set from “close” methods.

Phase 1: Pose prediction results: Retrospective study of known ligands demonstrated that 

dock-close and align-close methods predicted the most accurate poses. For the analysis 

shown in Fig. 3D the co-crystal of each ligand was first removed from the dataset, and poses 

were then predicted based on the remaining co-crystal structures in the training set. Given 

the large dataset of available co-crystal structures, our results reflect the empirical 

observation that crystallographic information is superior to any computational model. 

Hence, we were able to predict high-accuracy poses for all six testing compounds. We took 

the top five poses predicted by “close” methods (sorted by Vina score), and submitted the 

best models. The mean RMSD for the first ranked and best pose were 0.46 Å and 0.32 Å, 

respectively. Fig. 3F-3H show an example of the best-predicted poses of each scaffold. The 

predicted pose for HSP90-44 had a flexible group sticking out of the binding site. We used 
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molecular dynamics to predict the most likely conformation, yet the co-crystal shows that 

this group is stabilized by Lys58 from the second HSP90 monomer in the dimer structure 

(Fig. 3E). When structural data is available, our results demonstrate that “close” methods are 

significantly better in pose prediction than “cross” methods, while dock-cross have an upper 

limit of about 50% success rate using a single receptor structure.

Phase 2: Affinity prediction results: The results of our predictions are summarized in 

Table 1. Dock-close (Spearman ρ=0.42, R2=0.26) and align-close (Spearman ρ=0.45, 

R2=0.24) methods have the best performance. The relative performance of the five methods 

is consistent between the training set and our submitted predictions (Fig. 4A). An interesting 

question to ask is whether for the “cross” methods, were we able to predict the optimal 

receptors? The answer is that our R2 analysis correctly predicted an open structure (Fig. 2A) 

as optimal receptor. However, in retrospect, we found that other open structures were 

marginally better, see Testing (best) in Fig. 4A. Thus, a receptor is only assumed to be 

“optimal” based on the data available. Overall, the relatively similar outcomes of “close” and 

“cross” methods suggest that our scoring function cannot account for the change in free 

energy associated with different receptor structures, and therefore ranking ligands to 

induced-fit targets is still limited.

Alignment is an area that can be improved particularly for large and/or low similarity 

compounds. Thus, we developed two variants of the above methods to test different 

structural alignments. First, we surmised that aligning to the scaffold would lead to better 

core interactions (Fig. 2C-2E). Although this was the case in our training data set, the 

opposite was observed for “-scaffold” methods in the testing set (Fig. 4B). In retrospect, we 

found that our method was able to improve some bad alignments, but it also eliminated some 

good ones. The latter was particularly true for benzophenone-like compounds whose 

structures are quite diverse. Second, using our models for the testing set as “predicted 

closest” templates also failed to improve the affinity ranking, observing only a minor “-

pose” improvement for min-cross in the training set (Fig. 4B). The failure may come from 

the inadequacy of the force field to smoothly remove clashes upon minimization. In 

summary, neither aligning to scaffolds nor to predicted poses improved affinity ranking 

relative to aligning to the “closest” compound.

As a control of blind versus human predictions, we visually inspected all dock-close and 

align-close poses and predicted whether they were binders/active or non-binders/inactive (“-

filter” methods in Table 1). Humbly, the blind methods performed better than the subjective 

human filtered scores. In hindsight, one problem is that a compound may bind but it might 

also be deemed inactive. For instance, HSP90-176 and HSP90-110 are both inactive 

compounds (Fig. 4D-F), yet, compound 176 binds HSP90 (4YKY), same thing happened for 

our binding model for HSP90-110 (Fig. 4F) that is based on a highly similar co-crystal 

(3B26 in Fig. 4E).

The 3DQSAR models perform poorly in affinity ranking (Table 1 and Fig. 4C). The major 

reason seems to be that there were no cases for aminopyrimidine scaffold among the 69 

compounds with IC50 data. Therefore, when applying the models and functions to testing 

set, they did poorly at scoring aminopyrimidine compounds.
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The HSP90 score 1-2 were trained to better rank active compounds, and their predicted 

ranking was similar to other “cross” methods. However, these scoring functions had a 

meaningful improvement in the discrimination between actives and inactives (Fig. 4C). On 

the other hand, the HSP90 score 3 and 4 that were specially designed solely to distinguish 

actives from inactives. As expected, these methods performed poorly in affinity ranking. 

However, training on inactive compounds from the DUD-E database did not improve the 

discrimination of active compounds. In hindsight, we realized that the inactive compounds in 

the testing set had different scaffolds than the DUD-E decoy compounds. Thus, in all 

likelihood the observed discrimination might be close to random. These results show how 

dangerous is to evaluate machine learning scoring functions without a rigorous 

benchmarking. Overall, these results indicate that target specific scoring functions and 

3DQSAR models can do better at distinguishing active from inactive compounds than the 

default Vina scoring function used in the methods in Fig. 1.

MAP4K4 Challenge

Challenge—(1) Predict the binding modes of P=30 MAP4K4 compounds. (2) Predict 

affinity ranking of P=18 MAP4K4 compounds. The structural data available for MAP4K4 

were fairly limited. Only N=8 published co-crystal structures of MAP4K4 bound to small 

molecules were found in the PDB, and all of them (I=8) had IC50 data (from BindingDB 

[35], and literature [40, 41]). MAP4K4 is a kinase with a large ATP binding pocket 

surrounded by several flexible regions (Fig. 5A): residues 171-to-190, residue 30-to-39 (P 

loop) and residue 60-to-75 (αC). Residue 171-190 is a disordered region that is not resolved 

in most co-crystals [42]. The P loop links two β-sheets, β1 and β2, in the binding groove, 

and acts as a lid to adaptively adjust conformation upon ligand binding. Helix αC is also 

flexible and the loop between αC and β3 is sometimes not resolved.

Methods—We first applied the five methods described in Fig. 1 for pose prediction and 

affinity ranking. Scaffolds of testing compounds were quite different from the eight 

published ligands. Thus, we enriched our structural sampling by collecting an additional 

eight co-crystal structures of related kinases (Supplemental Table 1), which we only used to 

improve the alignment of compounds in the MAP4K4 binding pocket. Otherwise, the 

methods are the same as for HSP90. For affinity ranking, we also tested: (1) Min-cross-pose 
and align-close-pose (see description in HSP90 challenge methods); (2) Co-crystal-min: 
Since for Phase 2 we learned the co-crystal structures of all the testing compounds, we 

ranked these ligands using Vina scores after minimization; (3) Interaction-based ranking: 
Since the Vina scoring function does not have a directional Hydrogen bond term, we 

generated an alternative ranking by counting the number of intermolecular hydrogen bonds 

between the compound and the receptor.

Phase 1: Pose prediction results: Analysis of the training set showed that only the align-

close method predicted top quality models (Fig. 5B). Contrary to HSP90 where dock-close 

performed very well, docking on the large kinase pocket performed very poorly. However, 

expanding the set of ligands to those bound to homolog kinases allowed us to find related 

compounds for 27 out of the 30 testing compounds, using align-close for pose prediction 

resulted in a mean RMSD for the first predicted poses and best poses of 2.6 Å and 1.6 Å, 
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respectively. Figure 5C and Fig. 5D show successful examples of pose predictions with 

reference in MAP4K4 training set or other kinases (CHK1). Two particularly bad 

predictions were MAP-17 and MAP-20. For MAP-17, we predicted a binding mode similar 

to MAP-12 and MAP-13, however, the co-crystal showed that the compound is not as deeply 

buried (Fig. 5E). For MAP-20, the reference structure we used was 3FV8 from JNK3. Here, 

the co-crystal revealed a pose that is 180° rotated from our predicted pose (Fig. 5F). Without 

these two incorrect predictions, our mean RMSD was 1.1 Å. The above notwithstanding, our 

results produced the best overall models of D3R, and our method proved to be a robust 

approach for pose prediction of kinases even when there is limited available data.

Phase 2: Affinity prediction results: The ranking predictions of the 18 MAP4K4 

compounds are summarized in Table 2. Our best submitted predictions were obtained using 

the min-cross and min-cross-pose methods (Spearman ρ=0.41, R2=0.28). Based on the IC50 

data, we predicted 4OBP as the optimal receptor for all “cross” methods, achieving a 

remarkable Spearman ρ=0.8 in the training set. Of course, this prediction lacked statistical 

significance due to the small number of IC50’s. For Phase 2, we were given the co-crystal 

structures of all the compounds in the testing set but we still selected the same optimal 

receptor as in Phase 1. Hence, as shown in Table 2, results from Phase 1 and Phase 2 did not 

show significant differences for most of the methods. The two methods that improved were 

min-cross-pose and interaction-based methods, in which predicted poses were replaced by 

co-crystal poses. However, it is important to note that our retrospective analysis shows that 

with more affinity data our approach could have improved the affinity ranking (see Testing 

best Fig. 6A). In fact, just choosing MAP23 as our optimal receptor would have resulted on 

a Spearman ρ=0.57, comparable to the best prediction for this target in the D3R challenge.

Several variations of the main methods resemble “close” methods that overall did not 

perform as well as some “cross” methods. Figure 6B showed that min-cross-pose and align-

close-pose, which in Phase 2 aligned compounds to the crystal poses as opposed to the 

“closest” poses, had almost the same Spearman outcomes. Consistent with our training data 

predicting “cross” methods superior to “close” methods, the co-crystal-min method that 

combined scores from different receptors performed poorly. The interaction-based method 

(Table 2 and Fig. 6B) showed that hydrogen bonding is important in determining the affinity 

of the compounds, highlighting a limitation of the Vina scoring function.

Discussion

The Drug Design Data Resource (D3R) 2015 Grand Challenge provided a unique platform 

for the prospective validation of new methods addressing two of the fundamental challenges 

in computer-aided drug discovery: predicting the pose of compounds bound to a non-

cognate receptor (the cross-docking problem) and ranking series of congeneric compounds 

based on their affinity (the scoring problem). For the last several decades, the field has 

worked to develop solutions to these problems and many advances have been made. 

However, most evaluations of docking and scoring are retrospective wherein the correct 

answers (poses or affinities) are already known [3]. This retrospective analysis can lead to an 

unintentional bias to overestimate the performance of the method as the persons developing 

the methods may notice problems that can lead them to the circumstantial corrections of 
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flaws in the workflow. Unfortunately, this does not reflect the real world use-case of docking 

and scoring methods where the correct answers are unknown until tested experimentally. 

This highlights the importance of prospective validation of methods as the true test of their 

performance since after the submission of the predictions, no further tweaking of parameters 

or workflows can take place.

The 2015 Grand Challenge featured two challenging and therapeutically relevant targets: 

HSP90 and MAP4K4. Here we presented five methods for pose prediction and affinity 

ranking that we employed in the challenge: align-close, dock-close, min-cross, align-cross 

and dock-cross. As reported, our approach of using “close” methods for pose predictions, 

where all available crystallographic information (mostly co-crystals) is used, yielded the 

most accurate poses in the community-wide experiment for both targets. Consistent with our 

earlier work [29], align-close was particularly robust for both flexible targets. Although 

dock-close predicted better-docked poses to the rather tight pocket of HSP90, the same 

method failed predicting good poses in the much larger binding site of MAP4K4. The reason 

is that docking to a large pocket naturally relies more on scoring to select among several 

“reasonable” poses.

Affinity ranking is still a major challenge in drug discovery, where sometimes not even the 

co-crystal structure helps much. Part of the problem is that often scoring functions are 

optimized for virtual screening, whereas calculating the true binding free energy is a 

multidimensional process that involve different interaction energies, water molecules, 

polarization effects, conformational changes and dynamics in the two components. The 

methods that we present here are aimed to optimize virtual screening technologies. As such 

we keep the receptor structure fixed for docking and/or minimization. With this constraint, 

we find that “cross” methods had more robust predictions than “close” methods, stressing 

the limitations scoring different receptor structures. Interestingly, for HSP90, dock-close had 

slightly better predictions than dock-cross. Analyses of the HSP90 bound structures suggest 

that dock-close performed better because the induced-fit binding process modifies the distal 

helix of the binding pocket but keeps the core motif almost intact (Fig. 2A), providing a 

better normalization between receptors. The latter is very different from MAP4K4 where 

most of the binding pocket is malleable (Fig. 5A), and the binding energy associated with 

those differences varies greatly.

There is still significant room for improvements. For instance, our methods use Vina scoring 

function, which represents the state of the art in open source scoring functions but it is still 

far from perfect [5]. Additionally, it is well known that experimental data coming from 

different assays is not well normalized. The above notwithstanding, compared with 3D-

QSAR and machine learning algorithms, the structure-based methods sketched in Fig. 1 

were significantly more reliable with limited data (Table 1). From a methodology point of 

view, we have shown that “close” methods show great power to predict poses. For affinity 

ranking, the choice of methods seems to be more dependent on the binding pocket features. 

Consistent with MAP4K4, another kinase from CSAR 2013/14 competition, SYK, had 

“cross” methods as the best ranking method [29], whereas for TRMD, a target with a rigid 

and buried pocket perhaps resembling HSP90, dock-cross performed the best [29]. These 

results suggest a preference of method selection in different pocket types, but the specific 
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features that dominate the selection of the optimal method remains to be determined. In the 

2013/14 CSAR competitions, we suggested that the structure with the largest binding pocket 

should have the best performance [29]. Similar analyses have been applied to HSP90 and 

MAP4K4, but no strong correlations were observed. Further research is needed to 

understand what are the conditions to select the optimal receptor or set of receptors that 

would predict the best ranking of compounds.

In presenting the results of our participation in the D3R 2015 Grand Challenge, we have 

validated five major methods for pose prediction, docking and scoring. These methods 

prospectively predicted the overall best poses for both flexible targets and best affinity 

ranking (Spearman ρ) for HSP90. Furthermore, these general methods can be adapted and 

applied in a number of different situations by modifying the scoring functions or docking 

protocols, improving the outcome of virtual screening experiments.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. “Close” and “cross” methods for affinity ranking and pose prediction
Align-close and dock-close methods minimize and dock to the “closest” receptor for each 

compound. Min-cross, align-cross and dock-cross methods minimize and dock to all 

available receptors and select “optimal” receptor based on available experimental data (see 

Methods). This is shown in the figure by the greyed-out shapes in the “cross” methods that 

ultimately select one optimal receptor. Red blocks and arrows correspond to alignment, blue 

blocks and arrows correspond to minimization, green blocks and arrows correspond to 

docking.
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Figure 2. HSP90 adopts at least four ligand-induced binding modes
A. Four conformations of HSP90 ligand-induced binding pocket based on the nearby 

adaptive loop (L2, between H4 and H5 [43]): close (2WI5), helix (4EFU), open (3RLR), 

half-close (3B28) (white cartoon: HSP90, red cartoon: flexible loop, orange ticks: small 

molecules) B. Four waters in the binding pockets labeled from 1 to 4 (white cartoon: HSP90, 

red sphere: water molecules) C. Aminopyrimidine scaffold and compound (2XDX) D. 
Benzimidazolone scaffold and compound (4YKR) E. Benzophenone-like scaffold and 

compound (4YKR) F. Histogram of binding modes among the N=181 known co-crystal 

structures and I=69 structures with IC50 data. (N: number of co-crystals, I: number of co-

crystal with IC50 data) G. Histogram of conservation frequency of water molecule in Fig. 

2B shows that three crystal waters are 100% conserved.
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Figure 3. “Close” methods predicted high-accuracy poses for six HSP90 compounds
A-C. Examples of different alignment methods in HSP90 challenge. A. A compound is 

aligned to the “closest” compound. B. A compound is aligned to one of the three scaffolds. 

C. A compound is aligned to the predicted pose. D. Performance of pose prediction using 

different methods in the training set (N: number of co-crystals) E. Lysine 58 from another 

HSP90 stabilizes the conformation of the extending functional group of HSP90-44. (white 

and red stand for two different HSP90 monomers. sticks: HSP90-44; meshes: HSP90; lines: 

lysine 58 of HSP90; black dash: hydrogen bonds) F-H. Best predicted poses are aligned to 

the co-crystal structures. F. HSP90-40 is an example of aminopyrimidines (RMSD 0.14 Å). 

G. HSP90-73 is an example of benzimidazolones (RMSD 0.28 Å). H. HSP90-175 is an 

example of benzophenone-like compounds (RMSD 0.27 Å). (white sticks: crystal pose of 

the compounds; magenta sticks: best pose prediction of the compounds; white meshes: 

HSP90 surface; grey lines: HSP90 residues close to the binding groove).
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Figure 4. “Close” methods have better performance than “cross” methods for affinity ranking in 
HSP90 challenge
A. Prediction rates on: training set, testing set submitted prospectively, and testing (best) set 

reassessed retrospectively. Optimal receptors for align-cross, min-cross and dock-cross were 

(prospectively) 3OWD, 4BQJ, 3K98 and (retrospectively) 3T10, 3RLP, 3OWD, respectively. 

N: number of co-crystals, I: number of co-crystal with IC50 data, P: number of compounds 

for prediction. B. Results of variant methods: aligning to scaffold, to predicted pose, and 

using human expertise to eliminate non-binders. C. Distinguishing active from 33 inactive 

compounds using general methods, human discrimination, 3DQSAR, and special purpose 

scoring functions to discriminate HSP90 ligands. The lower panel shows binding/non-

binding AUC performances, and upper panel shows the corresponding affinity ranking. D-F. 
Examples of binding poses of inactive compounds. D. Co-crystal of inactive compound 176 

(4YKY). E. Co-crystal from PDB 3B26 (unknown IC50). F. prediction for compound 110 

(inactive).
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Figure 5. Align-close predicted the best models for 30 MAP4K4 compounds with a mean RMSD 
of 1.6 Å
A. Flexible regions around the MAP4K4 binding pocket adapt to different conformations 

upon ligand binding. (left panel: 4OBO, right panel: 4U44, white cartoon: MAP4K4, red 

cartoon: flexible loop/helix, orange sticks: small molecules) B. Pose prediction performance 

across different methods in training set. C, D. Alignment of our best-predicted pose with the 

co-crystal structure. MAP-14 is an example of aligning to compound from MAP4K4 

(RMSD 0.67 Å). MAP-02 is an example of aligning to the compound from other kinase 

(CHK1, 4QYH) (RMSD 0.79 Å). E, F. Two cases we did poor in pose prediction: MAP-17 

and MAP-20. (white sticks: crystal; magenta sticks: predicted; white meshes: MAP4K4 

surface; grey lines: MAP4K4 residues close to the binding groove).
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Figure 6. “Cross” methods perform better than “close” methods for affinity ranking of MAP4K4 
ligands
A. Five methods in training set, submitted testing set, and retrospective best predictions for 

testing set. Optimal receptors for align-cross, min-cross and dock-cross were (prospectively) 

4OBP, 4OBP, MAP03 and (retrospectively) MAP29, MAP16, 4U45, respectively. Overall, 

min-cross and align-cross performed better in our submitted predictions. N: number of co-

crystals, I: number of co-crystal with IC50 data, P: number of compounds for prediction. B. 
Comparison of several pose related methods. (Spearman ρ and R2 are generated by 

comparing the Vina scores from different methods and experimental IC50 data).
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Table 1

Affinity ranking prediction results of HSP90 challenge.

Method Phase 
a Spearman ρ Kendall Tau 

b

align-close P1, P2 0.45 0.31

dock-close P1, P2 0.42 0.29

align-cross P1, P2 0.33 0.22

dock-cross P1 0.37 0.25

align-close-scaffold P1, P2 0.42 0.3

min-cross-pose P2 0.26 0.18

align-close-pose P2 0.37 0.26

align-close-filter P1, P2 0.38 0.26

dock-close-filter P1, P2 0.38 0.26

HSP90 score 1 P1 0.17 0.12

HSP90 score 2 P1 0.23 0.16

HSP90 score 3 P1 −0.01 −0.01

HSP90 score 4 P1 0.09 0.06

3DQSAR-align-pose P2 0.18 0.13

3DQSAR-dock-pose P2 0.24 0.16

a
P1 means this method was submitted for evaluation in HSP 90 Phase 1 challenge. P2 stands for Phase 2.

b
Spearman ρ and Kendall Tau are from D3R result evaluation.
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Table 2

Affinity ranking prediction results of MAP4K4 challenge.

Spearman Value Kendall Tau Value 
a

Method

Phase 1 Phase 2 Phase 1 Phase 2

align-close 0.33 - c 0.22 -

dock-close 0.03 - 0.06 -

min-cross 0.41 0.41 0.29 0.29

align-cross 0.11 0.11 0.07 0.07

dock-cross 0.06 0.01 0.06 -0.01

min-cross-pose 0.31 0.41 0.23 0.29

align-close-pose - 0.29 - 0.22

interaction-based 0.30 0.37 0.22 0.27

co-crystal-min - 0.33 - 0.33

a
The results are from D3R results evaluation.

b
This method is not submitted in this Phase.
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