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Abstract

The opportunity to prospectively predict ligand bound poses and free energies of binding to the 

Farnesoid X Receptor in the D3R Grand Challenge 2 provided a useful exercise to evaluate 

CHARMM based docking (CDOCKER) and λ-dynamics methodologies for use in “real-world” 

applications in computer aided drug design. In addition to measuring their current performance, 

several recent methodological developments have been analyzed retrospectively to highlight best 

procedural practices in future applications. For pose prediction with CDOCKER, when the protein 

structure used for rigid receptor docking was close to the crystallographic holo structure, reliable 

poses were obtained. Benzimidazoles, with a known holo receptor structure, were successfully 

docked with an average RMSD of 0.97 Å. Other non-benzimidazole ligands displayed less 

accuracy largely because the receptor structures we chose for docking were too different from the 

experimental holo structures. However, retrospective analysis has shown that when these ligands 

were re-docked into their holo structures, the average RMSD dropped to 1.18 Å for all ligands. 

When sulfonamides and spiros were docked with the apo structure, which agrees more with their 

holo structure than the structures we chose, 5 out of 6 ligands were correctly docked. These 

docking results emphasize the need for flexible receptor docking approaches. For λ-dynamics 

techniques, including multisite λ-dynamics (MSλD), reasonable agreement with experiment was 

observed for the 33 ligands investigated; root mean square errors of 2.08 and 1.67 kcal/mol were 

obtained for free energy sets 1 and 2, respectively. Retrospectively, soft-core potentials, adaptive 

landscape flattening, and biasing potential replica exchange (BP-REX) algorithms were critical to 
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model large substituent perturbations with sufficient precision and within restrictive timeframes, 

such as was required with participation in Grand Challenge 2. These developments, their 

associated benefits, and proposed procedures for their use in future applications are discussed.
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1 Introduction

The prediction of protein-ligand binding poses and binding affinities with accuracies 

sufficient to guide experimental drug discovery is an ongoing challenge for the field of 

computer aided drug design. A plethora of computational methodologies exists from which 

insights into target specific molecular recognition can be gained [5,6, 26,27,47], including 

docking and virtual screening approaches [34,29,30], QSAR and informatics[5], and 

rigorous all-atom free energy and molecular dynamics simulations [26,2,13,1]. Yet 

community-wide blinded challenges, including the SAMPL [51], CSAR [11], and D3R 

Grand Challenges [19], continue to teach us that additional improvements are needed. For 

example, docking results from CSAR 2014 and D3R Grand Challenge 2015 exercises 

suggest that scoring or rank-ordering ligand affinities is more challenging than pose 

prediction, and, as observed in previous challenges, scoring results did not improve even 

when crystal structures of bound ligands were supplied (often termed “Stage 2” scoring or 

rank-ordering). Extrinsic factors in the docking setup, system preparation, and pose selection 

based on user “chemical intuition” were further observed to cause differences in predictive 

accuracies [11,19]. For binding free energy predictions, errors have typically ranged 1–2 

kcal/mol for even the most successful methods, and explicit solvent, alchemical free energy 

simulations have tended to provide greater reliability over other free energy approaches 

[51,19].These blinded challenges have been useful exercises to evaluate method 

performance in a prospective manner, and facilitate community wide comparisons across 

many methodologies [51,11,19]. We note that there is a lack of community sharing of the 

underlying force field or scoring functions between participants. We suggest that 

significantly more progress would come if all participants had the opportunity to utilize their 

approaches with the force fields and scoring functions used by others.

In this D3R challenge, referred to as Grand Challenge 2, participants were invited to 

investigate a number of different ligands bound to the Farnesoid X Receptor (FXR). 

Pharmaceutically, FXR is a target of interest to treat a number of metabolic and vascular 

diseases, including dyslipidemia, atherosclerosis, and diabetes [17,37,36,3], but, 

computationally, FXR is challenging to address. For example, it has known conformational 

flexibility in the binding site, and binds a variety of ligands with differing size, shape, 

chemical moieties, and binding poses [17,37,36,3]. As part of this challenge, the ligands to 

investigate included known benzimidazole and isoxazole based ligands [17, 37,36,3], as well 

as two previously unpublished series of sulfonamide and spiro containing compounds and a 

handful of miscellaneous molecules. In total, 102 ligands with experimental affinities 
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(IC50s) in the high picomolar to micromolar range were provided for investigation, including 

10 inactive molecules (Fig. 1). Stage 1 of Grand Challenge 2 focused on pose prediction and 

ordinal ranking of ligand affinity. Upon completion, 36 crystal structures were released 

typifying the binding mode for each ligand series. Stage 2 then repeated docking and scoring 

of all 102 ligands. Alchemical free energy calculations were welcomed at either stage of the 

challenge.

Our own objective in participating in Grand Challenge 2 was to evaluate the performance of 

two CHARMM based simulation technologies [10,9,25]: (i) molecular dynamics based 

docking (CDOCKER) [49,18] and (ii) λ-dynamics free energy methodologies 

[33,32,4,22,15]. Introduced at the turn of the century, CDOCKER was developed to deliver 

improved docking efficiency and accuracy via the exploration of ligand conformational 

space with molecular dynamics simulated annealing and soft-core potentials. Using a rigid, 

grid-based potential for the protein, and an all-atom representation of the ligands, a docking 

success rate of ~70% was achieved. Accuracy further improved by 6–10% when docked 

structures were subjected to a full force field minimization as the final step to docking [49]. 

More recent improvements to CDOCKER include flexible side chain sampling concurrent 

with ligand docking [18]; however, due to time restraints, these new advances were not fully 

explored in this challenge. For λ-dynamics, a number of improvements have been made 

within the past 5–7 years. Notably, the ability to model many substituent perturbations at 

multiple sites around a ligand core, termed multisite λ-dynamics (MSλD), has allowed 

much larger chemical spaces to be explored than previously possible [32,4,22]. More 

recently, algorithmic advances have introduced biasing-potential replica exchange to 

accelerate λ-space sampling, new soft-core potentials to facilitate small to large substituent 

perturbations, and new biasing potentials to flatten the alchemical free energy landscape and 

improve end-point sampling [4,22]. Many of these improvements are still in the 

developmental phase. The opportunity to explore their usefulness in a “real-world” 

application afforded by Grand Challenge 2 proved a useful exercise to evaluate the current 

status of their progress and encourage on-going developments.

In this publication, we briefly review the approaches taken for pose prediction and free 

energy calculation. We do not discuss affinity scoring because we used the scoring function 

in Autodock Vina[41], which is not developed in our lab. We discuss our approach in solving 

the problems posed by Grand Challenge 2 and the submitted results. For λ-dynamics, results 

obtained after the submission deadline with methodological developments happening 

concurrently with participation are also discussed. For both CDOCKER and λ-dynamics, 

this report includes a retrospective analysis of method developments and subsequent results 

to highlight areas of improvement for future applications.

2 Methods

2.1 Ligand Parameterization

For simplicity, ligand numbering will be referred to by number only (e.g. FXR_10 will be 

referred to as 10). Smile strings supplied by D3R were converted into three dimensional 

ligands using MarvinSketch [35]. Ligand protonation states were assigned manually such 

that carboxylic acids were deprotonated and the amine in ligand 2 was protonated. Prior to 
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force field parameterization, each ligand was geometrically optimized using PM6 semi-

empirical calculations in Gaussian [39,20]. Ligands were then parameterized using 

ParamChem [44,45], a molecular typing engine corresponding to the CHARMM general 

force field [43–45].

2.2 Protein-ligand Docking

In this challenge, the CHARMM-based CDOCKER [49] method was used for docking. 

CDOCKER is a protein-ligand docking program written in CHARMM script that makes use 

of the diverse functionalities available in CHARMM, such as the CHARMM force field, 

atom manipulation, energy minimization, and molecular dynamics engine [9]. To accelerate 

energy and force calculations, CDOCKER uses a grid-based potential for representing non-

bonded interactions between protein and ligand, i.e., rigid receptor docking, which can be 

pre-calculated based on the structure of the protein. The docking protocol described in a 

prior article was followed in this challenge [49]. Each stage of the docking protocol, 

including generation of grid potentials for non-bonded interactions between protein and 

ligand, generation of initial conformations of ligands, molecular dynamics (MD) based 

simulated annealing and minimization, and ranking of docked poses, is detailed in the 

following sections.

Generating Grid Potentials for FXR Non-bonded Interactions—To accelerate the 

calculation of energies and forces in simulated annealing and energy minimization 

applications described below, a grid potential was generated around the FXR binding pocket 

for both van der Waals and electrostatic interactions. The size of the grid was equal to the 

longest dimension of the native ligand plus 10 Å. The center of the grid is placed at the 

geometric center of the ligand. The grid spacing was 0.5 Å. To facilitate the MD-based 

simulated annealing algorithm to search for the lowest energy pose, the following soft-core 

potential was used to calculate the grid potential:

(1)

where  is the regular non-bonded interaction energy, without soft-core potentials. Emax, a, 

and b are constants. The value of Emax controls the level of softening for the soft-core 

potential. The values of a and b are determined by the conditions that the energy and force at 

the cutoff distance are continuous. Two grid potentials, referred to as soft-grid-1 and soft-

grid-2, with different levels of softening, i.e., different values of Emax, were calculated and 

used in the following simulated annealing stages. The detailed values of Emax are shown in 

Table 1.[49]

Generation of Initial Ligand Conformations—Prior to performing MD-based 

simulated annealing to dock the ligands to FXR, initial low energy conformations of each 

ligand in vacuum were computed. With simulated annealing, ligands were heated up from 

300 K to 1000 K in 104 MD steps with a step size of 1 fs and then cooled back down from 

1000 K to 100 K in 2 × 104 steps with a step size of 1 fs. Simulated annealing was repeated 
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200 times, identifying 200 initial conformations per ligand. Final ligand conformations were 

subsequently optimized using steepest descent energy minimization for 100 steps.

Molecular Dynamics based Simulated Annealing and Minimization—MD-based 

simulated annealing was next used to search for the lowest energy bound pose for each 

ligand. Initial starting coordinates were generated by random rotations and translations of 

each of the 200 initial ligand conformations generated in the above step until the interaction 

energy was smaller than 3000 kcal/mol. Simulated annealing then commenced in two 

phases: a heating and a cooling phase. In the heating phase, the soft-grid-1 grid potential was 

used for calculating the non-bonded interaction energies between ligands and FXR, and MD 

was run with temperature increases from 300 K to 700 K in 4.5 ps. The cooling phase 

comprised three stages. In the first stage, the soft-grid-1 grid potential was used and the 

temperature in the MD simulations was decreased from 700 K to 300 K over 21.0 ps. In the 

second and third stages, the soft-grid-2 grid potential was used. In the second stage, the 

temperature was decreased from 500 K to 300 K in 10.5 ps, and in the third stage, the 

temperature was decreased from 400 K to 50 K in 4.5 ps. The MD step size used in all 

simulated annealing stages was 1.5 fs. Finally, the grid potential was deleted and the 

terminal ligand conformations were minimized within the all-atom protein environment. In 

the minimization, the van der Waals and electrostatic interactions were switched off between 

8 Å and 10 Å using potential switching and force switching, respectively. A distance 

dependent dielectric constant of 3 was used for electrostatic interactions. The above MD-

based simulated annealing and minimization protocol is based on the CDOCKER paper. [49]

Ranking Resulting Poses—Each initial conformation of a ligand was repeatedly docked 

21 times using MD-based simulated annealing and minimization. Overall, the docking 

protocol generated 4200 poses for each ligand. These resulting poses were ranked based on 

the sum of intra-ligand energy and protein-ligand interaction energies. Five poses were 

selected from the lowest energy poses for each ligand that were also structurally distinct, 

with the root mean square deviations (RMSDs) of at least 1 Å between all selected poses. 

For benzimidazole ligands, only the lowest scored pose was submitted for evaluation. For all 

other ligands, all 5 selected poses were submitted. These selected poses were ranked using 

AutoDock Vina [41], and the lowest score for each ligand was submitted as the binding 

affinity score.

2.3 Free Energy Methods

Grand Challenge 2 specified two sets of ligands for computing relative binding free energies. 

The first set was composed of 15 sulfonamides, while the second set was composed of 18 

spiros. Multisite λ-Dynamics [33,32] was used to predict relative binding free energies 

within these two sets of compounds. MSλD is a free energy technique which has undergone 

a renaissance in recent years. This free energy challenge provided an opportunity to test 

many new MSλD developments.

In standard free energy methods, like FEP [52] and TI [40], λ is an alchemical parameter 

that tunes the potential between two ligands. Simulations are then run at closely spaced 

values of λ to compute relative free energies between the two ligands in a series of discrete 
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steps. In MSλD, λ is treated as a dynamic variable with velocity and mass that moves under 

the forces due to the potential. λ may be generalized to a multidimensional λ space to 

consider transitions between several different ligands within a single simulation, resulting in 

greater computational efficiency [33]. In addition, λ variables may be associated with 

perturbations at multiple sites [32]. With these generalizations, the potential energy function 

becomes

(2)

where M is the number of substitution sites, Ns is the number of competing substitutions at 

site s, λsi is the alchemical scaling factor for substituent i at site s, V (x0, x0) is the 

interaction of the environment atoms among themselves, V (x0, xsi) + V (xsi, xsi) is the 

interaction of the atoms xsi in site s, substituent i with the environment and themselves, V 
(xsi, xtj) is the interaction between atoms from two different sites, and VBias is a biasing 

potential used to enhance sampling. Relative free energies are determined from the free 

energy difference between two thermodynamic half cycles, in this case within bound and 

solvated simulations of the ligands. Within each half cycle, the free energy may be estimated 

from the populations of each physical ligand according to ∆G = −kBT ln P. Populations are 

determined by counting the number of frames for which the λ’s of a particular ligand are 

greater than a cutoff of 0.99 at all sites.

Recent advances in MSλD include the development of implicit constraints, biasing potential 

replica exchange (BP-REX), adaptive landscape flattening, the introduction of soft-core 

potentials, and porting CHARMM MSλD simulations to GPUs. Constraints are required to 

ensure that the λ variables at a specific site remain between zero and one, and sum to unity. 

With implicit constraints, these conditions are automatically satisfied, with the added bonus 

that the implicit constraints may be tuned to focus sampling on the physically relevant 

endpoints [31]. In the implicit constraints, a new set of variables, θsi, become the alchemical 

dynamical variables, and these θ values are mapped back to λsi values by the relation

(3)

BP-REX uses replica exchange to swap biasing potentials among simulations, to drive the 

system between physical states, and has been shown to substantially accelerate sampling [4]. 

Adaptive landscape flattening adds biasing potentials to remove barriers in alchemical space 

to speed transitions between substituents [22]. In particular, deep endpoint traps occur for 

large perturbations, and biasing potentials that flatten these traps speed sampling by several 

orders of magnitude and thus allow MSλD to explore perturbations like the ones performed 
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in this work. Beyond the cited biasing potentials [22], which included linear, quadratic, and 

endpoint terms, an additional biasing potential of the form

(4)

with σ = 0.18 was also used. The introduction of soft-core interactions has led to much more 

robust and self-consistent free energy estimates [22], so soft cores were used universally in 

this work. Finally, MSλD has been introduced into the domdec [25] module of CHARMM 

[10,9] and ported to Graphic Processing Units (GPUs). This very recent development meant 

we were also assessing code correctness during D3R, but this advance enabled substantial 

simulation speedups.

Simulation Setup—MD-based MSλD simulations employed similar procedures as 

previously reported [4]. Simulations were run in CHARMM [10,9] using the domdec 

package [25]; retrospective BP-REX simulations were run using a modified version of 

CHARMM still under development within the CHARMM community. The CHARMM36 

force field for proteins [7,8] was used with TIP3P water [28] and ligand parameters were 

obtained using MATCH [50] and the CGenFF force field [43]. Protein simulations were 

started from crystal structures 1hqmf with ligand 17 and 1kjyp with ligand 12 provided by 

D3R at the end of stage 1 of the challenge. Titratable residues in the proteins were assigned 

their typical protonation states corresponding to physiological pH. Specifically, aspartic and 

glutamic acids were deprotonated, and lysine and arginine were protonated. Histidines in 

free energy set 1 were arbitrarily protonated on the δN. Histidines in free energy set 2 were 

protonated on the N, except for His298, which was protonated on the δN, as guided by the 

Reduce program [48] and the Molprobity webserver [12]. Protein simulations were run in 

100 mM NaCl with at least a 10 Å buffer of water on each side of the protein-ligand 

complex in a cubic cell with periodic boundary conditions. Solvent simulations were 

similarly run in pure water with 10 Å between the ligands and the periodic box edge. 

Simulations were initially run in the NVT ensemble at 298 K using Langevin dynamics with 

a friction coefficient of 10 ps−1 and later also run in the NPT ensemble at 1 atm and 298 K 

using a Langevin pressure piston and a Hoover thermostat. MD time steps of 1.6–2.0 fs were 

used for all simulations and SHAKE was used to constrain all hydrogen-heavy atom bond 

lengths [42]. Non-bonded cutoffs were set to 12 Å and were force switched to zero from 10 

to 12 Å. Particle mesh Ewald (PME) [14,16] methods were not used to treat long-range 

electrostatic interactions in these calculations. Unless otherwise noted, dihedral potentials 

were not scaled by λ in order to ensure reasonable geometries even when ligands were 

switched off. CHARMM NOE restraints were used to harmonically restrain analogous 

atoms in different substituents to the position of that atom in the first substituent. This 

increases phase space overlap and improves sampling. In FE1, the first heavy atoms of the 

substituents were restrained together. Since MSλD in CHARMM has not implemented core 

swaps yet, FE1_4 required a more complex treatment: atoms in the thiophene and R1 phenyl 

rings were shared by the two ligands, while the bicycle and R2 phenyl rings were duplicated 
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to represent both ligands. Duplicated portions were held together by 6 restraints. In FE2 the 

1 positions of all rings and the 4 positions of six-membered rings were restrained together.

In order to calculate relative free energies with MSλD, each free energy set was divided into 

subgroups of similar ligands. Free energy set 1 (FE1) was divided into FE1_1 (17, 49, 46, 

101, 98, 96, 102), FE1_2 (17, 91, 47, 99, 95, 48, 100), FE1_3 (17 and 45), and FE1_4 (91 

and 93). Free energy set 2 (FE2) was divided into FE2_1 (10, 12, 76, 84, 74, 85, 88), FE2_2 

(12, 89, 82, 78, 77, 83, 81), and FE2_3 (10, 12, 38, 41, 73, 75, 79). These groups are 

depicted in Figures 2 and 3. Biasing potentials were iteratively determined for each FE1 and 

FE2 subgroup with adaptive landscape flattening [22] over a total of 30–35 ns of sampling. 

Next, 100 ps of equilibration was performed. Finally, 5 independent production runs of 20 ns 

each were performed using different random velocity seeds, for a total of 100 ns of 

production sampling. Standard deviations were calculated over the 5 duplicate production 

simulations for each binding free energy calculation. Relative free energies were computed 

with respect to reference compounds 17 and 10 for FE1 and FE2, respectively.

3 Results

3.1 Docking Results

In the challenge, the FXR apo crystal structure was provided, but 26 other holo structures of 

FXR were found in the PDB database with different ligands bound, including 

benzimidazoles. After clustering the 26 holo structures using Bio3D[38], two representative 

structures were chosen for use in our docking protocol: 3OKI [37] and 3DCT [3]. Because 

the bound ligand in 3OKI is a benzimidazole compound, this structure was exclusively used 

for docking the benzimidazole ligands of the challenge. All other ligands were docked to 

both 3OKI and 3DCT structures. We used an RMSD cutoff of 2 Å to decide if the docked 

pose was correct.

The docking results are shown in Fig. 4. For all the benzimidazole ligands except ligand 13, 

the top-1 ranked docking poses have a RMSD less than 2 Å with respect to the native poses. 

For all the other ligands, except ligand 5, the top-1 ranked docking poses all had an RMSD 

greater than 2 Å. Errors in most of the miscellaneous ligands were high among all 

participants, due to their significantly varied binding poses from other compounds, so it is 

not surprising that CDOCKER failed to identify these poses. Retrospectively, it is also not 

surprising that the benzimidazole ligands were docked correctly, because the benzimidazole 

holo structure of FXR was available in the PDB database and was used. To test whether the 

correct pose for other ligands could be identified with the correct FXR holo structure 

corresponding to each ligand, we re-docked all 35 ligands into their corresponding D3R 

supplied native holo structures of FXR. The results are shown in Fig. 5 (A), where all 35 

ligands except ligand 18 were re-docked correctly and the average RMSD for the top-1 re-

docked ligands is 1.18 Å. Both the prospective and retrospective re-docking results show 

that CDOCKER is quite reliable in re-docking, but emphasize the importance of choosing a 

reasonable receptor structure model for docking if flexible receptor docking is not 

employed[18].
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The reliability of CDOCKER on re-docking suggests that one possible reason for the poor 

results when docking non-benzimidazole ligands is that the FXR structures used for docking 

were too different from the crystallographic holo structures. Fig. 6 shows the RMSD 

between FXR apo and holo structures. The holo structures of the benzimidazole ligands are 

all similar to each other but quite different from the holo structures of all the other ligands, 

except ligand 5, as well as the FXR apo structure. Compared with the 3OKI structure, the 

3DCT structure is more closely related to the holo structures of the non-benzimidazole 

ligands. In our original docking protocol, we docked all non-benzimidazole ligands with 

both 3OKI and 3DCT. Our submitted 5 poses were the lowest 5 energy poses among all 

poses docked with both 3OKI and 3DCT structures. One potential artifact of this approach is 

that for non-benzimidazole ligands the poses docked with 3OKI could be incorrectly favored 

over those docked to 3DCT because of a lower calculated energy. For example, for 10, the 

lowest energy docked pose was from the 3OKI structure, which has a RMSD of 6.11 Å; 

however, the other 4 submitted poses were poses docked with 3DCT and of these 4 poses, 

the lowest RMSD was only 2.75 Å. Similarly, all 5 submitted poses for 15 and 4 out of 5 

submitted poses for 17 were poses docked with 3OKI, but for which the RMSDs were 

greater than 4.0 Å (Fig. 4 (B)).

Compared with both 3OKI and 3DCT structures, the apo structure agrees more closely to the 

holo structures of non-benzimidazole ligands. Therefore the docking protocol was run again 

for all ligands with the FXR apo structure. The results are shown in Fig. 5 (B). Compared 

with the submitted docking results using the 3OKI and 3DCT structures shown in Fig. 4, the 

results using the apo structure became worse for benzimidazole ligands, as expected, but 

much better for non-benzimidazole ligands, especially the sulfonamide and spiro ligands. 

This makes sense because the benzimidazole holo structure is quite different from the apo 

structure, and the correct pose can not be found using a rigid receptor docking protocol. For 

non-benzimidazole ligands, using the top-1 ranked pose, 2 out of 3 sulfonamide ligands 

were docked correctly and all 3 spiro ligands were docked correctly.

3.2 FE1 Results

Free energy set 1 consisted of 15 ligands with multiple sites of chemical substitutions, 

including a ligand core change from a piperidinyl fused pyrazole bicyclic ring to a 

piperidinyl fused pyrrole. These perturbations were investigated by breaking up the set into 4 

subgroups, as described earlier. Upon completion of the initial NVT calculations, two 

problems immediately stood out: first the equilibration procedure for the simulations did not 

equilibrate the pressure, and so the protein and solvent simulations ran at roughly −1150 and 

−600 atm, respectively. (Similar differences were observed in both FE1 and FE2.) Second, in 

FE1_1, ligand 101 was negatively charged, and this led to an obvious artifact, as 101 had a 

predicted relative binding free energy of 11.6 kcal/mol, relative to the reference compound 

17, while other ligands were within a few kcal/mol. This is unsurprising, as it is well known 

that charge changes can lead to large errors in free energy calculations [40,24,21].

To address these issues, additional simulations with pressure coupling were run; 

unfortunately, these simulations did not finish in time for the D3R submission deadline. 

Furthermore, a modified FE1_1 system with a protonated (neutral) 101 ligand was run in the 
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NPT and NVT ensembles. In the neutralized FE1_1 system, only the NPT simulation 

finished in time, therefore NVT results were used for all ligands except 101. For 101, the 

neutral NPT result was used by finding the relative binding free energy of 101 relative to the 

mean of the other six ligands, and adding that to the mean of the other six ligands in the old 

charged NVT result. Uncertainties were obtained with bootstrap analysis by sampling from 

the 5 independent runs. Correlation with experiment is shown in Fig. 7a. The mean unsigned 

error (MUE) and root mean square error (RMSE) relative to ligand 17 was 1.77 and 2.08 

kcal/mol, respectively (Table 2). The root mean square error with respect to the mean, or 

center, (RMSEc) was 2.00 kcal/mol. The Pearson correlation coefficient of 0.04 was poor. In 

most instances, large errors were obtained because ligands were predicted to bind more 

favorably than experimentally observed. For example, ligands 96 and 102, were predicted to 

be more favorable than reference compound 17 by ~0.5–1.5 kcal/mol. The three inactive 

compounds, 48, 49, and 99, were also predicted as false-positives. In contrast, ligands 91 

and 101 were predicted to be less potent than compound 17 by ~1.0–2.0 kcal/mol more than 

experimentally observed (Table 2).

Biasing potential replica exchange (BP-REX) has been shown to substantially improve 

convergence of MSλD results in previous studies [4], but was previously incompatible with 

the domdec module of CHARMM. As mentioned in the methods section, a domdec-

compatible version of BP-REX was written, but was not ready in time for the submission 

deadline. Consequently, BP-REX was applied retrospectively to determine whether this 

enhancement would improve the computed free energies. BP-REX was applied with the 

NVT ensemble to neutral FE1_1 and FE1_2, and with the NPT ensemble to all four sets. 

Typically dihedrals are not scaled by λ and NOE restraints are used to ensure overlap of 

analogous atoms in the ligands in order to improve sampling. These features were removed 

in the BP-REX simulations of FE1 out of concern they might introduce artifacts, though 

additional simulations suggested they had little effect.

BP-REX results are shown in Fig. 7b–c and Table 2. Results from the NVT ensemble 

simulations yielded an MUE, RMSE, and RMSEc of 1.64, 1.99, and 1.34 kcal/mol, 

respectively; the Pearson correlation coefficient was 0.01. Findings from the NPT ensemble 

simulations showed larger errors (MUE of 2.49, RMSE of 2.84, RMSEc of 1.37 kcal/mol, 

and a Pearson correlation coefficient of −0.16). In this case, the difference between RMSE 

depending on reference arises because of larger errors in the reference compound 17. This is 

especially acute in the NPT ensemble because the reference ligand and a few others with 

larger substituents became less favorable than in the NVT ensemble. This makes sense as the 

NVT results included both a component for binding, and an artifact due to transfer of the 

ligand from a higher pressure (solvent at −600 atm) to a lower pressure (protein at −1150 

atm) system, which is favorable for larger ligands. Consequently NPT removed this artifact 

which had been making results appear artificially good.

3.3 FE2 Results

Free Energy Set 2 consisted of 18 ligands with two sites of chemical alterations. These 

ligand sets were divided into three subgroups (Fig. 3) to calculate relative free energies of 

binding with MSλD. The first two groups, FE2_1 and FE2_2, maintained a constant R2 

Ding et al. Page 10

J Comput Aided Mol Des. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



group of 4-COO-phenyl with an ionic charge of -1 and featured changes to the aromatic ring 

attached to the sulfonamide moiety of the ligand core (the R1 site). The third group, FE2_3, 

investigated changes at both R1 and R2 sites. Although many of the perturbations involved 

the addition or transformation of only a small handful of heavy atoms, usually considered 

ideal for pairwise FEP or TI calculations, the connectivity of the various groups made setting 

up MSλD calculations more difficult. For example, 78, 77, and 83 all feature an R1 phenyl 

ring with two chlorine atoms attached (Fig. 3); however, the 2,6-, 2,3-, and 2,5-dichloro 

patterns of substitution meant that the entire aromatic ring for each ligand would have to be 

considered as a separate substituent with MSλD. This was further reinforced by the need to 

sample between benzene and thiophene rings at R1. Similar to problems observed in the FE1 

ligand set, ligand charge changes provided another complication. While the majority of the 

FE2 ligands contained a carboxylic acid group at R2, which was originally modeled in its 

anionic form, four ligands featured neutral R2 groups, thus requiring an ionic to neutral 

perturbation. Original attempts to model transitions between neutral and ionic substituents 

concurrently in FE2_3 resulted in extremely poor λ sampling, significant end-point 

trapping, and a roughly 8 kcal/mol divide between neutral and charged ligands. Long range 

electrostatic corrections, such as the PME correction [14,16], were not incorporated into the 

present simulations, so it is possible that these difficulties were a result of how electrostatic 

interactions were represented. The difficulties encountered were alleviated by protonating 

ligands 10 and 12 in FE2_3 to make a separate, neutral subgrouping of ligands. No 

thermodynamic correction was performed to connect FE2_3 with the results from FE2_1 

and FE2_2, and thus FE2_3 results are treated separately in the discussion below.

The FE2 results submitted to Grand Challenge 2 are graphically shown in Fig. 7d and 

reported in Table 3 (Submitted NVT). For all ligand perturbations in FE2, the MUE, RMSE, 

and RMSEc were 1.26, 1.67, and 1.62 kcal/mol, respectively, scoring 12th in RMSE 

accuracy among all participants. The Pearson correlation coefficient was 0.45. Standard 

deviations (SD) between independent runs were generally 0.8–0.9 kcal/mol, with one as 

high as 1.37 kcal/mol for ligand 78. The average SD is less than 0.20 kcal/mol for the 

solvated ligand, so most of the uncertainty originates from the protein simulations. Of the 18 

relative free energies, only 6 predictions had errors greater than 2.0 kcal/mol, two of which 

were the inactive compounds 41 and 75. Unfortunately, 41 was predicted to be a false-

positive with a computed free energy of binding of −2.16 kcal/mol, compared to the 

experimental lower limit of 1.70 kcal/mol. This may have occurred because the ester moiety 

in 41 and the carboxylic acid in 12 maintain a similar hydrogen bond to the neighboring 

Asn297 residue, yielding similar poses throughout most of the MD trajectories, and the 

carboxylic acid fails to form other strong interactions in its protonated state to differentiate 

its binding ability. A false positive was also observed with 38, although to a lesser extent. 75 

shows the correct inactive result, though it is difficult to gauge its true accuracy when the 

reported IC50 is a lower limit (>100 μM). Other molecules in the set seem to be well 

represented, including 84, 89, 82, 77, and 73, with unsigned errors near or below 0.5 kcal/

mol. Most of these are found in FE2_1 and FE2_2, leading to the reduced MUE/RMSE 

errors for this subgrouping compared to FE2_3. Interestingly, ligand 12, present in both 

FE2_1 and FE2_3, is predicted to have ∆∆Gbind of −0.36 and −1.95 kcal/mol, respectively. 

Two possible sources of error for this discrepancy include incomplete sampling or 
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protonation state differences. Although both sources of error likely contribute, neither was 

able to be fully explored prior to the deadlines of the challenge. Retrospectively, the 

sampling issue was investigated with BP-REX enhanced sampling.

Upon completion of a domdec-compatible version of BP-REX, the above FE2 simulations 

were repeated in the NVT ensemble with replica exchange (BP-REX NVT in Table 3, Fig. 

7e). Only three independent calculations for each subgroup were performed, and the 

standard deviations (SDs) averaged 0.4 kcal/mol, with a maximum SD of 0.81 kcal/mol. For 

FE2, slight improvements in accuracy were observed by employing the replica exchange 

algorithm, decreasing the MUE and RMSE to 1.11 and 1.54 kcal/mol. Some notable 

improvements are observed, for example 75 and 79 are closer to experiment with errors near 

1.0 kcal/mol, compared to the 2.0–2.2 kcal/mol errors observed previously, but the majority 

of compounds maintained similar errors to those observed in the Submitted NVT set. 

Notably, however, the precision of the results is much improved. The reduction in standard 

deviation is accompanied by a slightly better correlation of 0.48 (Fig. 7e). Some outliers still 

occur, such as 78, 81, and 41, but most of the other data points nicely fall within ± 1.0 

kcal/mol of the ideal = x curve. Furthermore, single site transition rates increased from an 

average of 60 transitions per ns without replica exchange to 160 transitions per ns with BP-

REX. Thus the replica exchange algorithm successfully improves λ sampling and yields 

more precise free energy results. It is clear that for modeling large substituent changes with 

MSλD, such as was performed for both FE1 and FE2, the BP-REX algorithm should be 

employed to obtain the most precise results [4].

Owing to the improvements in FE1 from running MSλD simulations in the NPT ensemble, 

BP-REX simulations for FE2 were also repeated, but only a single calculation was 

performed for each subgroup (BP-REX NPT in Table 3, Fig. 7f). Because the substituted 

phenyl R1 and R2 rings all occupied about the same space at each respective site, the 

benefits of alleviating pressure artifacts observed with FE1 were largely absent here. And 

indeed, errors were observed to increase in moving from the NVT ensemble to the NPT 

ensemble. It is not immediately clear why poorer results are obtained and future 

investigations are pending to learn more from this system. A preliminary investigation of 

convergence for the BP-REX NPT simulations revealed poorer λ sampling for substituents 

from 75 and 78, which also show the largest ∆Gbind errors of 4.6 and 5.5 kcal/mol. 

Therefore additional sampling or further optimization of biasing potentials could reduce 

noise in these ligands and improve correlation with experiment. Removing them from the 

analysis reduces the MUE to 1.49 kcal/mol.

4 Discussion

4.1 Docking

Rigid receptor docking with CDOCKER successfully identified the correct ligand bound 

poses in re-docking experiments where the correct holo structure of the protein was used. In 

contrast, it is also clear that large protein conformational changes induced by ligand binding 

significantly increased docking difficulty and limited predictive accuracies. In addition, side 

chain placement is also important when the receptor structure used for docking has multiple 

alternative conformations, which occurs when part of the receptor has partial occupancy. For 
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example, some spiros and sulfonamides, such as 10 or 15, show steric clashes with one of 

two alternative positions of His298 and Asn297 in the FXR apo structure, which prevents 

the rigid receptor docking from identifying the correct docking pose if the wrong alternative 

conformation of the receptor is used.

Retrospectively, we also tried adding side chain flexibility with flexible CDOCKER into the 

current docking protocol (the detailed results are not shown). We observed mixed results 

when the simulated annealing search remained the same as the rigid receptor docking 

procedure. The results from flexible side chain docking do look promising for several 

ligands, as it can identify the correct docking poses within the top 5 poses, which is 

impossible for rigid protein docking to identify, as there is collision between the correct 

poses and the apo protein structure. Adding protein side chain flexibility greatly increases 

the search space. More exhaustive conformational search will be needed in order to further 

improve the flexible protein side chain docking results. To accelerate the conformational 

search, in ongoing work we are parallelizing the search by moving the flexible protein side 

chain search on to GPUs.

4.2 Binding Free Energy Prediction

Ligand perturbations of the size present in the D3R challenge have been previously shown to 

require soft-core potentials to obtain consistent results and adaptive landscape flattening to 

sample effectively [22]. Consequently these corrections were used throughout this study. In 

addition, porting MSλD calculations to GPUs provided speed-ups of a factor of 5–10 

compared to prior CPU protocols, allowing more simulations to be run on a local GPU 

cluster within the timeframe of Grand Challenge 2 and during retrospective analysis. After 

submitting predictions for FE1 and FE2, two additional corrections were applied to improve 

accuracy. First, BP-REX was implemented with domdec to enable GPU acceleration of BP-

REX simulations. BP-REX resulted in improved statistical precision and lower RMSE, 

suggesting simulations converged to force field values more efficiently. Second, simulations 

were run in the NPT ensemble rather than the NVT ensemble. Unfortunately, although this 

removed a source of error due to differing pressures in the solvent and protein-bound 

simulations, the results appear to be slightly poorer when the NPT ensemble is used. In FE1, 

these larger errors can be attributed primarily to increased errors in the reference ligand. In 

FE2, the increased errors can be partly attributed the fact that only a single 20 ns run was 

performed in the NPT ensemble, giving less converged estimates. In addition, sampling and 

convergence could be slower in the NPT ensemble, similar to what was observed with 

ligands 75 or 78 in FE2.

Ligand charge changes remain an unresolved difficulty encountered in Grand Challenge 2. It 

is undoubtedly necessary to account for long range electrostatic effects to obtain accurate 

results in ligand perturbations between ligands with different net charges [24,46]. Charge 

changes especially plagued FE2, where ligands were treated as negative in FE2_1 and 

FE2_2, but had to be neutralized in FE2_3 to connect with other neutral ligands. There is no 

reason to expect that free energy estimates will be the same between protonated and 

deprotonated ligands. Methods to account for long range electrostatic effects, such as 

particle mesh Ewald [14, 16], have been recently developed for Constant pH MD [23], a 
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special class of λ dynamics, and needs to be fully incorporated into future MSλD 

capabilities. Other potential sources of error beyond the reach of MSλD are force field 

errors and discrepancies between the measured IC50s and the true dissociation constants.

In conclusion, in the current work we show that the CHARMM-based docking and free 

energy approaches, CDOCKER and MSλD, perform quite reasonably in pose prediction and 

free energy estimation. Furthermore, this D3R exercise allowed us to push ongoing 

developments to refine the algorithmic approaches we are using in this domain. However, we 

also note a significant weakness in the current structure of this and related exercises. While 

blind challenges are useful to refine and test various computational approaches for protein-

ligand docking and free energy of protein-ligand binding methodologies, they do not enable 

participants to access the underlying models and force fields used by others. In the context 

of our CHARMM-based approaches, we are, for example, agnostic to the force fields 

utilized in the simulations. Thus, comparison of the core sampling methodologies could be 

directly assessed relative to the force fields used by other participants, permitting a clear 

assessment of whether observed differences arise from algorithms and sampling or force 

fields differences. We, therefore, strongly urge the organizers of D3R, and related blinded 

assessments, to move to a model whereby participants are able to share their force field 

models, thereby enabling truly “apples-to-apples” comparison between protocols and 

methods.

All topology and system set up files used for this challenge are available upon request.
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Fig. 1. 
Representative ligands from each class: benzimidazole (6), isoxazole (4), sulfonamide (17), 

and spiro (10).
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Fig. 2. 
The partitioning of ligands in free energy set 1 into subgroups for MSλD calculations.
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Fig. 3. 
The partitioning of ligands in free energy set 2 into subgroups for MSλD calculations.
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Fig. 4. 
RMSD of docked poses with respect to native poses. (A) RMSD of the lowest energy poses 

for all 35 ligands sorted based on ligand types; (B) (opaque) RMSD of the lowest energy 

poses for non-benzimidazole ligands; (transparent) Lowest RMSD among 5 lowest energy 

poses for the corresponding ligands. The blue dash line in both (A) and (B) corresponds to 

an RMSD of 2 Å
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Fig. 5. 
Root-mean-square deviation (RMSD) of docked poses with respect to native poses. (A) 

Results of re-docking, in which the corresponding holo structure of FXR was used. (B) 

Results of docking using the apo structure of FXR. (opaque) RMSD of the lowest energy 

poses; (transparent) Lowest RMSD among 5 lowest energy. The blue dash line corresponds 

to the RMSD of 2 Å.
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Fig. 6. 
Root-mean-square deviation (RMSD) between protein structures of FXR. The black dashed 

lines are used to separate different ligand types.
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Fig. 7. 
Computed free energies of binding (kcal/mol) versus experimental results for FE1 (a–c) and 

FE2 (d–f). Submitted results are shown (a and d) along with results of BP-REX simulations 

in the NVT (b and e) and NPT (c and f) ensembles. The black dashed lines represents the 

ideal y = x correlation. Centered RMSE (RMSEc) and Pearson correlation coefficient (R) 

are given for each data set.
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Table 1

The numerical values of Emax (kcal/mol) used for van der Waals, electrostatic attractive, and repulsive energies 

in soft-core potentials.

grid potential Emax(vdW) Emax(att) Emax(rep)

soft-grid-1 0.6 −0.4 8.0

soft-grid-2 3.0 −20.0 40.0
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Table 2

Relative Free Energies of Binding (kcal/mol) for Free Energy Set 1

FXR Ligand Expt. Submitted NVTa BP-REX NVT BP-REX NPT

FE1_1

17 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

46 2.59 0.98 ± 1.38 0.89 ± 0.28 −0.59 ± 0.80

49 2.87b 0.23 ± 0.66 0.45 ± 0.29 −0.32 ± 0.54

96 2.56 −0.37 ± 0.57 −1.11 ± 0.24 −1.64 ± 0.68

98 1.67 0.66 ± 0.76 0.07 ± 0.39 −0.90 ± 0.51

101 2.11 3.50 ± 1.05 1.77 ± 0.28 0.09 ± 0.86

102 2.14 −1.58 ± 0.52 −0.92 ± 0.32 −0.76 ± 0.36

MUE 1.90 1.83 2.58

RMSE 2.23 2.21 2.85

FE1_2

17 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

47 1.95 5.80 ± 0.70 1.58 ± 0.65 0.71 ± 0.40

48 2.87b 1.82 ± 0.80 0.64 ± 0.93 0.63 ± 0.29

91 2.15 4.17 ± 0.35 2.78 ± 0.76 1.38 ± 0.60

95 2.20 1.74 ± 0.55 −0.18 ± 0.70 −1.53 ± 0.50

99 2.87b 1.82 ± 0.46 0.47 ± 0.83 −0.33 ± 0.37

100 1.89 3.45 ± 0.33 2.37 ± 0.78 1.52 ± 0.41

MUE 1.43 1.21 1.65

RMSE 1.84 1.57 2.12

FE1_3

17 0.00 0.00 ± 0.00 N/Cc 0.00 ± 0.00

45 2.14 −0.24 ± 0.30 N/Cc −0.60 ± 0.21

FE1_4

91 2.15 4.17 ± 0.35 N/Cc 1.38 ± 0.60

93 2.42 1.53 ± 0.46 N/Cc −2.61 ± 0.62

All FE1 Groups

MUE 1.77 1.64 2.49

RMSE 2.08 1.99 2.84

RMSEc 2.00 1.34 1.37

a
Submitted results did not use BP-REX enhanced sampling.

b
Inactive ligand (IC50 >100 μM).

c
Not calculated (N/C) for BP-REX NVT.
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Table 3

Relative Free Energies of Binding (kcal/mol) for Free Energy Set 2

FXR Ligand Expt. Submitted NVTa BP-REX NVT BP-REX NPTc

FE2_1 and FE2_2

12 −2.71 −0.36 ± 0.80 −0.33 ± 0.34 1.37

10 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00

76 1.19 −0.05 ± 0.79 0.20 ± 0.17 1.19

84 −0.13 0.41 ± 0.99 0.78 ± 0.41 2.25

74 −1.28 −0.49 ± 0.76 −0.51 ± 0.33 1.49

85 −1.74 −1.07 ± 0.70 −0.98 ± 0.23 0.52

88 −1.39 −2.25 ± 0.48 −2.23 ± 0.24 −0.36

89 −1.21 −1.56 ± 0.98 −1.50 ± 0.59 −1.15

82 −2.04 −1.56 ± 0.92 −1.49 ± 0.49 −0.37

78 −3.14 −0.36 ± 1.37 −0.06 ± 0.43 2.35

77 −1.85 −2.40 ± 0.90 −2.65 ± 0.39 −1.21

83 −1.68 −1.80 ± 0.89 −1.42 ± 0.37 −0.14

81 −0.44 −2.76 ± 0.91 −2.76 ± 0.38 −0.83

MUE 1.09 1.16 1.86

RMSE 1.38 1.45 2.45

FE2_3

12 −2.71 −1.95 ± 0.83 −2.41 ± 0.72 −2.32

41 1.70b −2.16 ± 0.92 −2.08 ± 0.81 −1.67

10 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00

38 1.70b 0.33 ± 0.46 0.71 ± 0.30 0.26

73 0.41 −0.08 ± 0.54 0.29 ± 0.36 −1.35

75 1.70b 3.76 ± 0.81 2.75 ± 0.52 6.31

79 −0.18 2.08 ± 1.01 0.72 ± 0.20 1.71

MUE 1.80 1.19 2.31

RMSE 2.12 1.70 2.75

All FE2 Groups

MUE 1.26 1.11 1.88

RMSE 1.67 1.54 2.54

RMSEc 1.62 1.50 2.16

a
Submitted results did not use BP-REX enhanced sampling.

b
Inactive ligand (IC50 >100 μM).

c
Only one production calculation was performed and hence standard deviations were not calculated.
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