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Abstract

Fast Fourier Transform (FFT) based approaches have been successful in application to modeling 

of relatively rigid protein-protein complexes. Recently, we have been able to adapt the FFT 

methodology to treatment of flexible protein-peptide interactions. Here, we report our latest 

attempt to expand the capabilities of the FFT approach to treatment of flexible protein-ligand 

interactions in application to the D3R PL-2016-1 challenge. Based on the D3R assessment, our 

FFT approach in conjunction with Monte Carlo Minimization (MCM) off-grid refinement was 

among the top performing methods in the challenge. The potential advantage of our method is its 

ability to globally sample the protein-ligand interaction landscape, which will be explored in 

further applications.

Introduction

Development of the Fast Fourier Transform (FFT) based sampling methods for 

macromolecular interactions has been the focus of our group for a number of years. The 

major advantages of FFT methods are their globality and speed: by calculating the 

interaction energy of two rigid bodies as a sum of correlation functions it becomes possible 

to quickly sample the interaction landscape, evaluating billions of putative interactions on a 

grid in a matter of minutes.
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Unsurprisingly, FFT-based methods became popular in the field of protein-protein docking 

[1–5], where the two interacting macromolecules can be approximately viewed as rigid. Our 

own protein docking server ClusPro has repeatedly performed as the top automated server in 

CAPRI - a community-wide protein docking competition [6–8].

Recently we have successfully expanded the capabilities of our FFT docking method to 

treatment of flexible peptide interactions [9]. This was achieved by docking multiple peptide 

conformations drawn from a library of PDB-derived fragments. This implies that an FFT-

based approach can be suitable for modeling of protein-small molecule interactions even in 

the case when ligand flexibility needs to be taken into account.

In this work, we describe our first steps to construction of such docking protocol in 

application to the targets from the D3R PL-2016-1 challenge. We show that an FFT-based 

approach in conjunction with short Monte Carlo Minimization (MCM) refinement 

simulations is able to provide accurate pose predictions for the various targets in the 

challenge. The top-ranked poses produced by our approach for the 2 challenge datasets have 

mean RMSDs of 0.559 and 1.420 Angstrom, and were among the best predicted poses in the 

D3R PL-2016-1 round according to the assessors. This work demonstrates the feasibility of 

using FFT-based sampling approaches for modeling of flexible protein-ligand interactions.

Methods

D3R 2016 challenge and test datasets

The D3R 2016 PL-2016-1 Challenge was based on the two datasets provided by Barry 

Stoddard and David Baker. Each of these datasets contained a series of closely related 

proteins (sequence identity >90% within each series) artificially designed to bind a single 

ligand, 17-hydroxyprogesterone (17-OHP) or 25-hydroxycholecalciferol (25-D3) 

respectively. Throughout the text, we refer to the datasets using the names of the target 

ligands.

The 17-OHP binding dataset consisted of two protein-ligand co-crystal structures: 

PL-2016-1-O-1 and PL-2016-1-O-2, resolved with resolutions of 2.5 and 2.0 Angstrom, 

respectively, and provided to the challenge participants with ligands removed. The goal of 

the challenge was to predict the ligand binding poses for each of the two protein-ligand 

complexes and rank proteins within this series by their affinity to 17-OHP.

The 25-D3 binding dataset contained three protein-ligand co-crystal structures referred as 

PL-2016-1-C-1, PL-2016-1-C-2 and PL-2016-1-C-3, with resolutions of 1.9, 2.1 and 1.9 

Angstrom and, again, with ligands removed. Similarly to the previous case, the D3R 

challenge participants were expected to predict the ligand binding pose for each complex. 

The affinity prediction challenge, however, was different: the goal was to predict the relative 

affinity of PL-2016-1-C-1 to 25-D3 and its other ligand, vitamin D3.

Notably, for both datasets the water-mediated interactions were assumed to play an 

important role, and the crystal structures provided by the organizers included crystal waters. 
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The ligands were available in 2D representations as SDFiles, and, therefore, an additional 

challenge was to correctly predict the puckers of nonplanar rings for 17-OHP.

Up to 5 ligand poses per protein were allowed for submission in each docking prediction. 

Affinity prediction was to be submitted as absolute affinity in nM, as relative affinity, or as a 

simple ranking of proteins by their affinity.

Docking and scoring protocol

The overall structure of the docking protocol is presented in Fig. 1.

The whole protocol consisted of the 5 major steps:

First, multiple possible conformers of the ligand featuring various possible torsion angle 

orientations and different nonplanar ring puckers were generated. For this purpose we 

employed Confab - a systematic generator of low energy conformers [10]. At the end of this 

stage 10 lowest-energy conformers for 25-D3 and vitamin D were retained for future 

processing. For 17-OHP only 5 low conformers were generated, likely due to the rigidity of 

the molecule.

Pre-generated conformers were then used as inputs for our FFT-based rigid body global 

docking program PIPER [1]. Using an FFT-based approach greatly accelerates the solution 

of the rigid body search problem, and allows to perform global sampling of protein-ligand 

interaction landscape in affordable time, evaluating billions of putative protein-ligand 

orientations on a grid. Performing docking of a rigid protein to multiple pre-generated ligand 

conformers allowed to account for ligand flexibility within the FFT based docking 

framework, similar in style to our recently developed FFT based peptide docking protocol 

[9].

Docking of each ligand conformer constituted a single FFT docking run; the resulting low-

energy poses from different runs were merged to form a pool of 1000 poses and then 

clustered together. Docking poses serving as cluster centers were retained for later 

optimization stages.

Rigid docking poses generated with FFT served as starting points for an in-house Monte 

Carlo minimization algorithm [11–13]. Since all proteins present in the two datasets had a 

large central cavity, in each case such cavity was assumed to be the target binding site, and 

thus only poses located within the cavity were further refined. During the MCM stage, all 

ligand torsions were treated as rotatable, except for those localized within closed rings. 

CHARMM19-based energy function augmented with knowledge-based hydrogen bonding 

and GBSA terms was used for scoring of generated conformations as previously described 

in [12]. Each MCM trajectory consisted of 10,000 Monte Carlo steps, and conformations 

corresponding to all accepted moves were retained.

In the final stage of the docking pipeline, all accepted Monte Carlo conformations were 

rescored with crystal waters using a Vina [14] based energy function. Structural water 

molecules in the binding site are known to mediate protein-ligand interactions, and correct 

placement of waters was shown to improve the scoring of ligand poses [15]. The 
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minimization step in MCM drives ligands toward local minima and greatly reduces the 

number of poses for rescoring. Rescored poses were clustered with a 1.0 Angstrom RMSD 

cutoff after which the lowest-energy poses from each cluster were reported as final docking 

predictions. These final predictions were ranked according to their Vina scores.

For the purpose of scoring in D3R, we simply used the Vina scoring function of the top 

docking models.

FFT based rigid body docking

FFT docking was performed with PIPER [1] using a variation of the protocol described 

previously [16]. In short, given a protein receptor and a ligand conformer, we explore the full 

discretized conformational space of receptor-ligand rigid body orientations using the Fast 

Fourier Transform correlation approach. In the process of sampling the protein remains 

fixed, while the ligand is rotated and translated. Rotational degrees of freedom are sampled 

from a semi-uniform set of 70,000 rotations constructed using layered Sukharev grid 

sequence, and translations are sampled on a 3D grid with 1.0 Angstrom spacing.

The advantage of the FFT approach is that if the energy function is written down as a sum of 

several correlation functions, then for a single rotation of the ligand (or, in our case, ligand 

conformer), energy values for all possible translations can be evaluated very efficiently using 

P forward and one inverse Fourier transforms, where P is the number of correlation terms in 

the energy function. Thus if N denotes the size of translation grid in each dimension, then 

the complexity of the FFT approach per one rotation is 0 (N3ln(N)), as opposed to 0(N6) for 

the direct approach. In PIPER, the FFT calculations are repeated for all 70,000 rotations of 

the ligand, and a single lowest-energy pose is retained for each rotation, resulting in a total 

of 70,000 low energy poses.

For the purpose of small molecule docking, we use an energy function composed of 

attractive (Eattr) and repulsive (Erep) Van der Waals contributions, as well as an electrostatic 

term with Born correction (Eelec) [17]: E = Evdw + w2Eelec. Here individual terms are 

computed as:

where r is the distance between atoms i,j and D is an Born radius. For consistency, we use a 

standard set of weights previously developed for protein docking applications: w1 = 1, w2 = 

750.

When docking the D3R targets, a separate docking run was performed for each ligand 

conformer, resulting in 10 docking runs for for each target from the 25-D3 dataset and 5 

docking runs for those from the 17-OHP dataset. An equal number (100 for 25-D3 dataset 

targets and 200 for 17-OHP) of lowest-energy poses from each run were taken to form a 

pool of 1000 poses, which were then clustered together with a clustering radius of 1.0 

Angstrom and cluster centers of the 10 largest clusters retained as final FFT docking models.
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Monte Carlo Minimization refinement

For the purpose of flexible docking pose optimization, we have updated the Monte Carlo 

minimization (MCM) package previously developed in our lab for protein docking 

refinement[11–13], with capabilities for sampling ligand torsional degrees of freedom. 

Additionally the algorithm provides full support for sampling ligand rigid body degrees of 

freedom, and allows for side-chain flexibility on the receptor side. Random moves are 

coupled with fast local minimization of the generated poses carried out using a manifold-

based optimization algorithm. In the latest version of the code, our previously reported 

custom energy function [12] and Vina [14] energy function can be used for pose evaluation, 

and pose acceptance is guided by a Metropolis criterion. Here we provide a brief overview 

of the major algorithmic features of our MCM package.

In our approach, the treatment of ligand flexibility is based on the common assumption that 

the changes in covalent bond-lengths and bond-angles can be neglected. In this context, the 

whole ligand can be viewed as a set of rigid molecular clusters (aromatic rings, methyl 

groups, etc.) interconnected by rotatable bonds. The only internal degrees of freedom of the 

ligand are, therefore, associated with torsional moves around such rotatable bonds, and 

description of the ligand as a whole can be given in terms of 6 rigid body and d torsional 

degrees of freedom, where d is the number of torsions. Overall, such ligand representation is 

typical for small molecule docking methods (e.g. [14, 18]. To correctly handle the changes 

in the molecule upon torsional moves, we employ a torsion tree data structure as described 

in previous work [13].

An interesting observation that comes from representing molecular configurations in terms 

of rigid body orientations and torsions is the fact that the underlying space of such 

representation is, a manifold, that is, a locally Euclidean topological space, which is formed 

as a direct product of the rigid motion space, S0(3) × R3, and the internal motion space, Td = 

(S1 × S1 ×...× S1)d times. This allows us to perform local energy minimization directly on this 

6+d -dimensional space, as opposed to doing full-atomic minimization. We have recently 

shown that manifold optimization can achieve a speedup with a factor of 5 over the full-

atomic minimization, which provides a considerable speedup of the protocol.

Protein flexibility is taken into account by allowing movable side-chains. In practice, this is 

achieved by sampling a predefined set of rotameric states for each residue in the binding 

site. Possible rotamers are taken from the Dunbrack rotamer library [19]. Additionally, we 

allow off-rotamer flexibility by employing the same torsion tree representation of side-

chains as that used for the ligand.

Each step of MCM, consists of 3 stages: (1) perturbation of ligand conformation, (2) sliding 

receptor and ligand into contact with simultaneous side chain repacking, and (3) local 

refinement using a manifold optimization algorithm. Figure 2 provides a brief visual 

summary of a single MCM step.

When docking the D3R targets, each simulation was started from a rigid docking model 

generated in the FFT docking stage, and only the models found in the central cavity were 

refined (3 models for all targets except PL-2016-1-O-2, for which 2 models were processed). 
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Translation steps of up to 1.0 Angstrom, rotations of up to 5 degrees, dihedral steps of up to 

0.2 radian and sliding steps of 0.1 Angstrom were used. Since bound protein structures were 

available, side chain flexibility was disabled. Simulations of 10,000 steps were performed 

for each target.

Results and discussion

Predicted docking poses and affinities

The summary of docking results for the 2 datasets is presented in Table 1. Results are 

assessed in terms of averaged RMSD for the top-1 ranked poses, best submitted poses and 

all submitted poses. For the 17-OHP dataset the reference X-ray structure had 4 copies of the 

protein, with bound ligand conformations showing differences among the copies, so the 

evaluations were done using the copy which provided the lowest RMSD. For visual 

reference, top-1 docking poses for all submissions are presented in FIgure 3, overlaid onto 

ligand X-ray structures.

As can be seen from the table, we obtained good docking predictions for both datasets, 

featuring sub-Angstrom mean best pose RMSDs. Notably, for all targets in the 17-OHP 

dataset our best pose predictions happened to be the ones that we ranked first. A somewhat 

lower mean quality of top ranked poses for the 25-D3 dataset was mainly caused by 

suboptimal top docking pose quality for the PL-2016-1-C-1 case (see Fig 2A, A*). A better 

model was, however, present in the top-5 poses submitted, so the mean best pose RMSD is 

significantly lower. Overall, in terms of mean pose 1 RMSD our pose predictions were 

ranked first for 17-OHP dataset and fourth for the 25-D3 dataset out of 13 groups that 

participated (in terms of mean best pose RMSD it’s first and third accordingly). However, it 

should be noted that the results from best performing groups were very close to each other.

Scoring results are summarized in Table 2. Note that for the 17-OHP series the values 

correspond to affinities of two different proteins to the same ligand, while for the 25-D3 

series the values are for the affinities of the same protein (PL-2016-1-C-1) to different 

ligands. In both cases our predicted affinity ranking was agreeing with experimental data.

Conclusion

In this work, we report on the feasibility of a multistage docking pipeline consisting of an 

FFT-based sampling stage followed by MCM refinement, applied to small molecule docking 

in the D3R PL-2016-1 challenge. In this application, with the location of the binding site 

known beforehand, the quality of pose predictions produced by the method was on par with 

the top performing methods, as judged by the D3R assessment. This result demonstrates that 

FFT sampling with off-grid minimization has potential to achieve sufficient accuracy for 

successful flexible small molecular docking. The advantage of the proposed approach is the 

possibility to develop global systematic sampling of the protein-ligand configurational 

space, which would require incorporation of accurate knowledge-based scoring functions 

[17, 20–25] and further validations on docking benchmarks [26, 27].
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Figure 1. 
Ligand pose prediction protocol.
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Figure 2. 
The structure of a single MCM step.
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Figure 3. 
Top ranked poses submitted in the D3R 2016 Grand Challenge for 25-D3 (A, B, C) and 17-

OHP (D, E) datasets. X-ray structures of the ligands are presented in blue, docking models 

in yellow. Crystal waters interacting with ligands are depicted as red spheres. For 

PL-2016-1-C-1 case (A) our top-ranked model was not the best out of the 5 models 

submitted, so the best model ranked 3 is presented in the inset (A*).
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Table 1

Assessment of ligand docking pose predictions for the 17-OHP and 25-D3 datasets. Predictions were 

evaluated in terms of ligand root mean square deviations (RMSD) relative to its position in the X-ray structure. 

The values presented in the table have been averaged over the protein targets in each dataset (2 for 17-OHP 

and 3 for 25-D3).

RMSD

Dataset # of poses submitted Mean pose 1 Mean best pose Mean all poses

17-OHP 10 0.559 0.559 4.390

25-D3 15 1.420 0.908 1.320
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Table 2

Affinity predictions for the 17-OHP and 25-D3 datasets. Predictions were made based on top-ranked ligand 

docking pose using Vina-based scoring function.

Dataset Receptor Ligand Experimental affinity (μM) Predicted affinity (Vina based score)

17-OHP PL-2016-1-O-1 17-OHP 0.060 ± 0.008 −11.57187

PL-2016-1-O-2 17-OHP 15 ± 2 −10.96171

25-D3 PL-2016-1-C-1 25-D3 0.300 ± 0.040 −10.40789

PL-2016-1-C-1 D3 ~2 −10.29677
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