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Abstract

We assess the ability of our convolutional neural network (CNN)-based scoring functions to 

perform several common tasks in the domain of drug discovery. These include correctly 

identifying ligand poses near and far from the true binding mode when given a set of reference 

receptors and classifying ligands as active or inactive using structural information. We use the 

CNN to re-score or refine poses generated using a conventional scoring function, Autodock Vina, 

and compare the performance of each of these methods to using the conventional scoring function 

alone. Furthermore, we assess several ways of choosing appropriate reference receptors in the 

context of the D3R 2017 community benchmarking challenge. We find that our CNN scoring 

function outperforms Vina on most tasks without requiring manual inspection by a knowledgeable 

operator, but that the pose prediction target chosen for the challenge, Cathepsin S, was particularly 

challenging for de novo docking. However, the CNN provided best-in-class performance on 

several virtual screening tasks, underscoring the relevance of deep learning to the field of drug 

discovery.
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1 Introduction

Predicting whether a given small molecule binds strongly to a protein target of interest and 

explaining the strength of that interaction are topics of major importance in computational 

drug discovery [1–4]. Developing new, more accurate methods for performing these tasks 

holds significant promise in combating the blight of human disease [5], but these methods 

must be tested on de novo case studies or blinded challenges to ensure that performance 

expectations are not inflated by inadvertent tuning to preexisting datasets for which the 

answers were publicly known when the predictions were made [6, 7]. The annual Drug 

Design Data Resource (D3R) blind challenge provides just such an opportunity to evaluate 
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new methods behind a veil of ignorance, assessing how the gamut of strategies currently 

under development in the community perform on a series of novel tests [8, 9].

Typical problems to be solved in a drug discovery pipeline include predicting absolute 

binding affinities [10–12], accurately ranking compounds in order of binding strength [9, 

13–15], predicting the probable molecular configuration during binding [1, 2], and 

performing each of these tasks under various conditions of dataset construction with 

relevance to drug design [8, 9, 16–18], e.g. congeneric compound series, wild type and 

point-mutated forms of a target protein, and predicting target specificity for compounds that 

bind to a set of related proteins. By designing challenges that are diverse in terms of both 

their chemical content and predictive classes, computational models can be comprehensively 

assessed in terms of their accuracy, ability to generalize, and (if applicable) their transfer 

learning capacity. Specific strengths and weaknesses of a particular model compared to 

others can be identified, and interrogating the failures of particular approaches is particularly 

valuable as we continue to pursue methodological advances.

Methods of estimating the relative strength of binding broadly range from physics-based to 

statistical in their approaches. Physics-based methods [19–27] typically rely on force fields 

parameterized from first principles and experimental data and may compute binding free 

energies directly using methods that are theoretically exact. In practice their accuracy is 

limited by both the adequacy of their configurational sampling and the accuracy of their 

force field parametrization; the former is generally limited by time considerations, as are the 

methods chosen to compute binding free energies. Empirical scoring functions [28, 29, 29–

34] use terms that represent features or interactions known to be relevant to molecular 

binding, and they may be parametrized (e.g. using parametric machine learning methods) to 

recapitulate experimental data such as binding affinities. Knowledge-based methods [35–41] 

are statistical potentials that favor contacts that appear with high frequency in the datasets 

from which they are computed.

Nonparametric machine learning methods, such as neural networks, learn both their 

parameters and model structure from data [42, 43]. As a result, they are less constrained by 

the frontiers of our knowledge during their construction - that is, they are not limited to the 

set of structures we can imagine imposing on them, or the set of features we can imagine 

providing them as input. They may take as descriptors the types of inputs found in 

widespread use among empirical scoring methods, including measures of electrostatic 

attraction or interaction fingerprints [40, 44–49], but they may also be trained using an 

approach that avoids overt featurization and instead provides minimally processed 

experimental structural data as input to the network [10, 50–53]. That has been our approach 

in our recent work developing grid-based convolutional neural networks (CNNs), which are 

remarkably successful at image classification [54–56], trained to perform various tasks 

relevant to protein-ligand scoring and pose prediction [57–59].

We used the 2017 D3R Grand Challenge 3 (GC3) as an opportunity to evaluate the 

performance of our default CNN-based scoring model (the version used for the challenge 

was commit b3fa6ae) in comparison with other state-of-the-art methods, including Autodock 

Vina [34, 60], a conventional empirical scoring function. Our CNN-based scoring models 
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are implemented as part of the gnina molecular docking program, which is available under 

an open source license at https://github.com/gnina.

2 Methods

Our general workflow is shown in Figure 1. We used a structure-based docking and scoring 

approach, with pose sampling fundamentally based on the Autodock Vina scoring function 

as implemented in smina [28], a fork of the original project with increased support for 

minimization and custom scoring function development. We used our CNN scoring function 

to both further refine and simply rescore the poses generated by docking with smina, using 

the CNN affinity prediction and pose score as the basis for distinct submissions. This 

yielded a minimum of four unique CNN-based submissions for each subchallenge. We 

compare to smina’s performance to test whether the CNN model is capable of improving on 

the accuracy of an existing scoring model, and independently evaluate the performance of 

the affinity and scoring outputs, as well as the CNN’s ability to score putative binding modes 

and sample those modes itself.

D3R Grand Challenge 3 consisted of five subchallenges, the first of which consisted of three 

phases. Only the multiphase subchallenge 1 involved a pose prediction component, while all 

subchallenges involved predicting affinities and/or affinity rankings. Subchallenge 1, for 

which the target was Cathepsin S, involved both cross-docking (stage 1A) and redocking 

(stage 1B) tasks for 24 ligands for which ligand-protein co-crystal structures were available 

but unreleased until after stage 1B, and predicting affinity rankings for 136 compounds that 

were a superset of those 24 both before (stage 1A) and after (stage 2) unblinding of the co-

crystal structures. The remaining four subchallenges all involved kinases. The stated aim of 

subchallenge 2 was to test compound selectivity prediction; accordingly, it featured the 

kinases VEGFR2, JAK2, and p38α and 54 compounds for which Kd values were available 

for all three of these proteins. Subchallenges 3 and 4 were both designed to test accuracy at 

predicting large changes in binding affinity due to small changes in compound structure; in 

subchallenge 3 the target was again JAK2 and it involved 17 congeneric compounds, while 

in subchallenge 4 the target was TIE2 and it involved 18 congeneric compounds. 

Subchallenge 5 was designed to test accuracy at predicting the effect of target protein 

mutations on compound binding affinity, and its target was the wild type and five mutants of 

the target ABL1, with only two compounds. Subchallenges 2–4 did not specify the 

phosphorylation state of the target proteins, while subchallenge 5 noted that all proteins were 

unphosphorylated; we simply used the phosphorylation state of the reference receptors 

chosen from the PDB. Subchallenge 3 noted that chiral compounds were measured as a 

racemic mixture, and so for this subchallenge we docked all enantiomers of each compound.

2.1 CNN Training

Our architecture, input format, and training approach have been described previously [57–

59]. Briefly, we designed a four-dimensional grid-based input representation consisting of a 

vector of spatially distributed atom densities for each supported atom type, where atom types 

fundamentally distinguish between protein and ligand atoms, different elements, and the 

protonation states of those atoms. The density of a particular atom within its relevant atom 
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channel is represented as a piecewise continuous function g(d, r), where d is the distance 

from the atom center and r is the van der Waals radius:

g(d, r) =
e

− 2d2

r2
0 ≤ d < r

4
e2r2d2 − 12

e2r
d + 9

e2 r ≤ d < 1.5r

0 d ≥ 1.5r

(1)

The CNN maps its input to an output value that is either a probability distribution over class 

labels (i.e.whether or not a given input is a binding pose) or a real-valued affinity prediction. 

The architecture used during D3R GC3 can be found in Figure 2.

The CNN was trained using poses generated by redocking the 2016 PDBbind refined set 

[61] using the Autodock Vina scoring function as implemented in smina. Poses within 2Å 

RMSD are labeled as actives for the binary classification output and given the binding 

affinity as the target value for the regression output, while all other poses are labeled as 

inactives for the purposes of binary classification and are penalized (via a hinge loss) only if 

the predicted affinity is too high. In order to increase the number of active examples in the 

training set, these docked poses were supplemented with crystal poses minimized using the 

Autodock Vina scoring function. The training set was then further expanded by performing 

three rounds of iterative training during which a model was trained, used to refine the 

docked poses, and then the poses resulting from that process labeled based on the crystal 

structure and added to the training set for the next round. Using this training set of 250,000 

poses, the final model was trained for 150,000 iterations with a batch size of 50 using our 

customized version of the GPU-optimized Caffe [62] deep learning framework. Each batch 

was balanced to contain an equal number of positive and negative examples (low and high 

RMSD poses) as well as stratified by receptor so that every receptor target was uniformly 

sampled, regardless of the number of docked structures. At each iteration, a random rotation 

and translation was applied to every input complex in order to prevent the network from 

learning coordinate-frame dependent features.

2.2 Pose Generation

The basic information provided for each subchallenge consisted of SMILES for the relevant 

compounds and FASTA sequences for the relevant proteins. RDKit [63] was used to 

generate a three-dimensional conformer based on the provided SMILES for each compound; 

only one conformer was required (or one conformer per enantiomer in subchallenge 3) 

because the conformational space of the ligand was subsequently explored during docking. 

Each protein was used to query Pocketome [64] for relevant PDB accession IDs. All 

available holo structures were aligned and visually inspected to manually select a 

conformationally diverse subset of reference structures for docking. Table 1 shows the PDB 

accession IDs for the reference structures that were chosen. The IDs associated with ABL1 

include 1FPU, 1OPJ, and 2G1T (used as references for the wild type protein and also point-

mutated in PyMOL[65] as references for the F317I, F317L, and Q252H mutations); 2G2F, 
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2G2H, and 2G2I (references for the H396P mutation); and 2V7A (reference for the T315I 

mutation). The generated conformers for each compound were then docked into the 

corresponding reference receptor ensemble using Vina; an additional set of docked poses 

was generated by performing the final minimization of the poses sampled by Vina during the 

Monte Carlo routine with the CNN pose scoring layer (“CNN refinement”) - this is a hybrid 

technique where the fast Vina scoring is used for the Metropolis criterion during Monte 

Carlo sampling and the slower CNN scoring is only used to minimize ligand poses selected 

by the sampling. The Vina docked poses were then rescored using both the CNN scoring and 

affinity layers, and the CNN refined poses were also rescored using the CNN affinity layer. 

Ranking the poses by score thereby produces a maximum of five predictions per 

subchallenge, although CatS phase1B (the redocking subchallenge) featured ten submissions 

due to redocking either with crystal waters present or absent. The top five poses for each 

method were submitted for the pose prediction tasks, while scoring tasks utilized the top-

scoring pose for each compound to make the scoring prediction and compound ranking. 

Vina’s predictions were only submitted for CatS; for the other targets only the CNN-based 

predictions were officially submitted, though we show the results of Vina scoring for 

comparison in the ensuing analysis. Furthermore, we also show our results for ABL1 

(subchallenge 5) using the same methods as were used in the rest of the challenge, although 

the required calculations were completed after the end of the challenge period.

3 Results

General information about the targets used in D3R GC3 is found in Table 1, including the 

aforementioned PDB IDs used to produce binding poses as well as basic measures of the 

similarity of the challenge targets and compounds to their most comparable targets and 

compounds used in the training set. In particular, the third column shows the PDB accession 

ID of the target in the training set that has highest sequence similarity to each GC3 target, 

and the fourth column shows the mean and maximum Tanimoto coefficient for that target’s 

co-crystal ligand to the accompanying GC3 tar get’s compounds. Tanimoto coefficients were 

calculated using OpenBabel [66] with FP2 fingerprints. Notably, while the most similar 

target to TIE2 does not have high global sequence similarity compared with the other D3R 

targets and their most similar training set target, it is FGFR1, whose catalytic domain is 

known to be highly similar to TIE2[67]. From these data we can conclude that while our 

training data included at least one target that was highly similar to each of the GC3 targets, 

the associated poses used for training did not include compounds that were particularly 

similar to the GC3 compounds; therefore GC3 may serve as a fair test of the CNN’s 

generalization ability.

3.1 Pose Prediction

The GC3 pose prediction task was limited to a 24 compound subset of the Cathepsin S 

subchallenge. Participants were asked to provide predicted binding poses without (stage 1A) 

and with (stage 1B) knowledge of the cognate receptor structure for each compound. Up to 

five poses could be submitted. To maintain an automated and general approach for the 

submission, we produced poses by docking into a diverse receptor ensemble, using the entire 

binding site as the search space. Figure 3 shows the RMSD of the best pose submitted per 
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compound for each scoring method, grouped by the method and showing the RMSD 

distribution for each challenge stage. The following statistics are computed based on the 

best-submitted pose per compound. The method associated with the lowest mean RMSD 

among all our submissions in stage 1A was using the CNN pose scoring model to rescore 

Vina-generated docked poses (“CNN Scoring Rescore”); its mean RMSD was 8.35Å and its 

rank among all submissions based on the mean RMSD was 31/44. The method associated 

with the lowest median RMSD among all our submissions in stage 1A was using the CNN 

pose scoring model to refine poses sampled by Vina during the Monte Carlo search (“CNN 

Scoring Refine”); its median RMSD was 8.16Å and its rank among all submissions based on 

the median RMSD was 31/44. The method associated with the lowest mean and median 

RMSD among all our submissions in stage 1B was using the CNN pose scoring model to 

rescore Vina-generated docked poses; its mean RMSD was 9.70Å and its rank among all 

submissions based on the mean RMSD was 23/47. Its median RMSD was7.33Å and its rank 

among all submissions based on the median RMSD was 13/47.

3.1.1 Sampling—Our CatS pose prediction performance was generally poor, even when 

redocking. A pose within 2.5Å RMSD was sampled for only a third of the test compounds. 

Nine poses were sampled per ligand, per reference receptor, resulting in 45 poses per ligand 

in stage 1A and 18 poses per ligand in stage 1B. Redocking in particular was characterized 

by high variance in the best-predicted RMSDs across the set of test compounds. Docking 

into the large CatS binding site using our scoring methods yielded predictions that were 

distributed throughout the search space, but in reality binding appears to be localized to a 

specific region.

Figure 4 shows the center of mass locations for available reference structures and for our 

top-ranked predictions. The GC3 compounds are densely clustered in one region of the 

pocket, while the available experimental data from the PDB support a somewhat larger 

binding region (and potentially more diverse binding modes). However, both Vina and the 

CNN produced many high-ranking poses that appeared in a different region of the pocket 

altogether. In particular, when docking with water using Vina the average distance to the 

closest center of mass in the set of D3R ligands is 8.11Å, and the average distance to the 

closest center of mass in the set of reference receptor ligands is 6.00Å; when using the CNN 

for the final refinement the average distance to the closest center of mass in the set of D3R 

ligands is5.00Å, and the average distance to the closest center of mass in the set of reference 

receptor ligands is 3.97Å. When docking without water using Vina the average distance to 

the closest center of mass in the set of D3R ligands is 4.01Å, and the average distance to the 

closest center of mass in the set of reference receptor ligands is 2.48Å; when using the CNN 

for the final refinement the average distance to the closest center of mass in the set of D3R 

ligands is 3.18Å, and the average distance to the closest center of mass in the set of 

reference receptor ligands is 2.22Å. Thus both methods produced on average more poses in 

the region of the pocket where the GC3 ligands actually bind when docking without crystal 

waters, but the CNN was better in both cases at generating as top-ranked poses those that 

were closer to the general region of the pocket where the crystal ligands appear.

While docking without crystal waters present resulted in more poses in the general region of 

the pocket where the GC3 ligands bind, when low RMSD poses (here defined as those 

Sunseri et al. Page 6

J Comput Aided Mol Des. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



within 2.5Å) were sampled, they were most often produced by docking and refinement that 

utilized the crystal waters. Table 2 shows all 28 of the low RMSD poses sampled by any 

docking method for both stage 1A (the cross-docking task) and stage 1B (the redocking 

task). Rows are grouped by compound ID and sorted internally by the pose RMSD to the 

crystal pose. Values that are not relevant in a particular column are indicated with N/A; 

specifically, no waters were used during cross-docking and therefore the solvent category is 

N/A for poses sampled during that task, and the Vina score is N/A for poses generated by 

the CNN scoring model refinement method.

Significant categorical features are highlighted, including: cross-docking versus redocking; 

poses produced by full Vina docking versus Vina Monte Carlo sampling followed by 

refinement with the CNN scoring model; crystal waters used or removed; and rank among 

all of that compound’s poses scored by a particular method, with any rank within the top five 

highlighted. The CNN scoring model was used to both rescore Vina’s poses and produce its 

own refined poses, and the CNN affinity model was used to rescore both Vina’s docked 

poses and the CNN refined poses. Consequently, these methods have two associated sets of 

rankings for each compound, which correspond to separate submissions to the challenge; 

they may therefore have up to two poses at any given rank in the table. Additionally, poses 

generated by docking with and without waters are grouped together to produce the ranking 

shown in the table; the effect of solvent will be explored in greater detail in section 3.1.3.

Only 8/24 compounds had any pose within 2.5Å RMSD of the crystal pose; only 3 had a 

low-RMSD pose sampled during the cross-docking task, while 7 had a low-RMSD pose 

sampled during redocking. It is notable that all five low-RMSD poses generated during the 

cross-docking task were produced by using the CNN for final refinement, though these 

poses were ranked in the top five only twice, once by the CNN scoring model (which 

sampled them) and once by the CNN affinity model (which re-scored them). CNN 

refinement outperformed Vina for only one compound during the redocking task (CatS 24), 

though it produced nearly as many low-RMSD poses (11 poses to Vina’s 12). Though the 

CNN’s sampling was guided at a coarse-grained level by Vina, which was used during 

Monte Carlo sampling, it is worth noting that in most cases its refinement did not move 

“good” poses in such a way that they were no longer “good” according to our threshold, and 

that in a few cases the CNN appears to have succeeded in moving a pose closer to the crystal 

pose than Vina did, as evidenced by succeeding in sampling a good pose during stage 1A, by 

improving on the best Vina pose RMSD, or by producing more low-RMSD poses than Vina 

did. Examples of cases where the CNN improved on a Vina pose (as shown in Table 2) 

include CatS 5, CatS 10, CatS 15, CatS 17, CatS 20, and CatS 24. A notable exception is 

CatS 11; only Vina sampled a low RMSD pose for that compound.

3.1.2 Rescoring—Vina and the CNN combined only sampled a low-RMSD pose for a 

third of the CatS compounds. When Vina sampled a low-RMSD pose during the challenge, 

the CNN scoring model was more likely than either Vina or the CNN affinity model to 

identify it as the top-ranked prediction for the associated compound. Fig 5 shows the best 

possible performance given the poses sampled with Vina (red lines), and then shows how 

significantly each scoring model deviated from that performance in its selection of top-

ranked poses.
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The CNN scoring model outperforms the other models when using the receptor ensemble 

approach utilized during the challenge as well as when performing redocking. The CNN’s 

improved performance on stage 1A, in Figure 5a, is marginal; the CNN scoring model 

appears to be the only method to feature a top-ranked pose within 5Å RMSD when choosing 

among the poses sampled by Vina. Figure 5b, showing stage 1B performance, is more 

unequivocal, with the CNN scoring model nearly matching the best possible performance for 

low RMSD poses while the other methods fail to identify several available low-RMSD 

poses.

Figures 5c and 5d show new analyses performed after the subchallenge ended; they utilize 

preexisting experimental data to guide pose prediction. The available PDB structures of CatS 

were queried to identify the crystal ligand with the highest Tanimoto coefficient with each 

GC3 compound, and the GC3 compound was then aligned by scaffold to that crystal ligand 

using up to 100 conformers. In (c) the scaffold was chosen by generating a Murcko 

decomposition of each query and reference compound and the maximum common 

substructure of these were aligned; in (d) the scaffolds were chosen by visual inspection. 

The aligned poses were then minimized and rescored according to the same procedure used 

to sample and rescore poses for the original submissions, and the compounds were also 

cross-docked into a box defined by the binding pose of the chosen reference. This method is 

less general than docking agnostically into regions of the pocket, since it relies on 

information about similar ligands being available, but it produces significantly improved 

pose prediction performance in this case. Using this procedure for sampling, Vina 

outperforms the CNN at identifying available low-RMSD poses, though all methods fail to 

approach the “best available” performance.

3.1.3 Solvent effects—Redocking in stage 1B, for which crystal waters were available, 

affords an opportunity to examine whether Vina and the CNN scoring models differ in their 

abilities to correctly rank poses generated with and without crystal waters. Figure 6 shows 

the RMSD of the best pose submitted per-compound using each method. Including solvent 

increases the variance in the best predicted RMSDs, producing an apparently bimodal 

distribution with peaks at both lower and higher RMSDs than the medians of the 

distributions without solvent. The method that used the CNN for both refinement and the 

final ranking (“CNN Scoring Refine”) may slightly improve on Vina’s performance by both 

reducing the density at high RMSD when sampling with solvent and by shifting the median 

toward a slightly lower RMSD when sampling without solvent.

Figure 7 considers how many times a given method provided a pose ranking that deviated 

from that pose’s true ranking by specific amounts. A perfect classifier would have its entire 

density at 0, and greater spread corresponds to a less accurate ranking; compared to a 

correlation metric, this analysis gives information about where ranking deviations occur. All 

methods have lower standard deviation of their ranking error when ranking poses sampled 

with solvent than those sampled without it. They also have kurtosis closest to 0 when 

sampling with solvent - Vina and CNN scoring both have kurtosis around 0 in that case, 

compared with kurtosis of −0.393 and −0.492 respectively when sampling without solvent, 

and −0.163 and −0.370 respectively when ranking all poses. CNN scoring is less skewed 

when ranking poses sampled without solvent than Vina is (−0.026 versus −0.132), which 
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corresponds to making fewer errors in misclassifying high RMSD poses as low RMSD 

poses. Vina’s skew is consistently negative, with its most negative skew when ranking poses 

sampled with solvent, while CNN scoring has positive skew when ranking poses sampled 

with solvent. The CNN affinity model has consistently more negative kurtosis and higher 

standard deviation than the other two methods, which accords with its generally worse 

performance at pose prediction.

3.1.4 Crystal pose scoring—Since so few low-RMSD poses were sampled, it merits 

investigating whether our poor CatS pose prediction performance was primarily a sampling 

problem (potentially due to too large a search space) or whether our scoring methods 

generally failed to score poses near the crystal pose well when performing sampling in the 

CatS binding site. To do this, we both re-scored the crystal poses using all three scoring 

methods and also minimized those poses using Vina and the CNN scoring model, then re-

scored the minimized poses with the CNN scoring and affinity models as appropriate.

As one measure of the accuracy of a scoring method, we can use the re-scored crystal and 

minimized crystal poses to determine at which rank they appear when ranking them among 

the poses sampled during the challenge. Figures 8 (crystal poses) and 9 (minimized crystal 

poses) show the results of performing that ranking. Vina and the two CNN refinement-based 

methods rank the crystal poses for over half of the compounds at the lowest position in the 

ranking (rank 20), while the CNN affinity model rescore of the crystal pose ranked with its 

rescore of Vina-sampled poses (“CNN Affinity Rescore”) places the crystal poses for over 

half the compounds in the last three positions of the ranking. In contrast, the CNN scoring 

model rescore of Vina-sampled poses ranks the crystal poses for 8 compounds in its top 5 

poses, and it accounts for over half of the crystal poses by rank 8. Only Vina and the CNN 

scoring model rank any crystal poses in their top 5 for any of the compounds.

Methods were somewhat more likely to place crystal poses minimized with respect to their 

own scoring function at a high rank than the crystal poses themselves. The CNN refinement 

method with the scoring model ranking has one such pose in its top 5, and all methods 

feature at least one minimized crystal pose in their top 10. Vina has more mimimized crystal 

than crystal poses in its top 5, and their average rank is higher; in contrast the CNN scoring 

model applied to rescoring Vina’s poses (“CNN Scoring Rescore”) has fewer of Vina’s 

minimized crystal poses in its top 5 than it had crystal poses, but it ranks half of the 

compound’s minimized crystal poses in the top 10 compared with Vina’s ranking of half 

within the top 12.

These figures and the associated underlying data suggest that the CNN scoring model has a 

slight preference for the true crystal poses over Vina’s minimized crystal poses. Specifically, 

8 crystal poses appeared in its top 5 while 5 Vina-minimized crystal poses appeared in its 

top 5. 10 of those poses were crystal/minimized crystal pairs, with 3 crystals appearing at a 

higher rank than their minimized partner and 2 minimized poses appearing above their 

crystal partner; when a minimized pose appeared above the crystal, the average deviation in 

their ranks was 1, but when a crystal was ranked higher, the average deviation in their ranks 

was 2.3. The remaining 3 poses were crystal poses for which the corresponding minimized 

crystal pose appeared outside of the top 5. In contrast, Vina ranks 4 minimized crystals at 
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rank 1, followed by their corresponding crystal poses at rank 2, and then a lone minimized 

crystal pose at rank 3. However, since CNN refinement generally produced poses even 

further away from the crystal pose, and the CNN scoring refinement pose generation method 

mostly ranked those poses over the crystal or minimized crystal poses, it is not the case that 

the CNN scoring model generally has a global minimum closer to the CatS crystal pose than 

Vina does; all that appears to be true is that the crystal pose is typically closer to a CNN 

scoring model minimum or saddle than a Vina-produced pose is. Furthermore, across all 

models it is true that the crystal pose or the nearest local minimum according to either Vina 

or the CNN pose scoring model generally do not coincide with the global minimum.

3.1.5 Pose optimization and scoring—Figure 10 takes a closer look at a projection 

of the landscape of the three scoring models in the region around the crystal poses for the 

CatS pose prediction compounds (the CNN scoring model output, which is a probability, has 

had the logit transform applied). The left column shows the RMSD of the poses produced by 

minimizing crystal poses with Vina and the change in score associated with the CNN affinity 

model (10a), CNN scoring model (10c), and Vina (10e). The right column shows the RMSD 

of the poses produced by minimizing crystal poses with the CNN scoring model and the 

change in score associated with the CNN affinity model (10b) and the CNN scoring model 

(10d).

One pattern that emerges is that minimizing with the CNN scoring model (middle right) 

tends to produce poses that are further from the crystal than Vina does; it also produces a 

larger range of changes in score, with a distribution that is potentially bimodal, including 

examples for which it performed comparatively large rearrangements of the input to produce 

correspondingly large changes in the final score. This does not appear to happen when 

performing minimization with Vina, suggesting that the CNN scoring model has a smoother 

landscape, at least around these minima, since it moves a larger distance before converging; 

alternatively Vina may on average have minima nearer to the crystal pose than the CNN 

scoring model does, or a combination of both factors may be relevant. Additionally, it is 

evident that the CNN scoring model is not correlated with Vina, nor is it correlated with the 

CNN affinity model; the only scoring model relationship that shows any correlation is the 

CNN affinity model with Vina.

Figure 10f shows a related analysis for crystal pose minimization; challenge stages 1 and 2 

involved submitting affinity predictions that were based on poses generated as described. For 

stage 1 the analysis above demonstrates that these poses were typically far from the true 

poses, while the process of minimizing the crystal poses produced low-RMSD poses that 

coincided with a scoring model local minimum for nearly every compound (one compound 

was minimized to a configuration that was slightly outside of our definition of “low-RMSD” 

but is still much closer to its crystal pose than the stage 1 poses were). Notably, our 

submission for stage 1 produced the top-ranked correlation for predicting the affinity 

rankings of the cocrystal ligand CatS subset among all GC3 submissions, and our overall 

affinity rankings were also reasonably well-correlated during stage 1 (Table 3). However, in 

stage 2, with unblinded cocrystal structures available, our affinity prediction performance for 

CatS actually worsened. Additionally, the method that produced good correlations when 

predicting affinities for the cocrystal ligand subset was the CNN affinity model, which we do 
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not train to predict poses. Thus we have some reason to suspect that our CNN affinity 

rankings for CatS are pose insensitive, or at least that whatever aspect of the poses that is 

useful for predicting affinities is not related to the experimental validity of those poses. 

Figure 10f shows that while Vina’s affinity prediction correlation significantly improves 

when using just the minimized crystal poses compared with the random poses from stage 1, 

and the CNN scoring refinement method improves to a lesser extent, the CNN scoring 

method that simply rescores Vina’s poses has virtually identical correlation in these two 

cases (i.e. the poses do not matter) and the two CNN affinity-based methods actually have 

worse performance when using the correct poses.

3.2 Affinity rankings

Next we consider our performance at producing affinity rankings. Table 3 shows the ranks 

and Spearman ρ correlations of our best performing CNN models, as well as whether they 

outperformed Vina according to this metric. We find that the CNN models, particularly CNN 

scoring, generally outperform Vina at producing scores that correlate with compounds’ true 

affinity. Additionally, the correlations associated with both JAK2 subchallenges, as well as 

the TIE2 subchallenge, are relatively strong, and the overall rank of our best submissions for 

those subchallenges are competitive with others who participated in GC3, as shown in the 

table’s rank column. It is notable that the best-performing method for two of those three 

correlated sets of predictions is the CNN affinity model. In contrast, our performance on 

target p38α in the original challenge was extremely poor.

Table 4 shows the ranks and Matthews correlation coefficients in a manner similar to the 

previous table; this statistic represents performance at binary classification of actives. This 

analysis suggests that the CNN affinity model has an advantage at active/inactive 

discrimination when compared with both the CNN scoring model and Vina.

3.2.1 Correlations—Figure 11 shows the correlations associated with all the methods 

we used to generate affinity rankings, as well as the correlation that can be obtained by 

simply using the compounds’ molecular weight (the molecular weight ranking is misleading 

for target ABL1, since there are only two compounds that have differing affinities for ABL1 

mutants, and the molecular weight gives a high correlation here but completely fails at the 

prediction task for which the challenge was designed).

There is no one method that performs well across all targets. The CNN scoring model is the 

top-performing method on one of the JAK2 subchallenges, while the CNN affinity model is 

the top-performing method on the other, and for each method it is the case that in the 

subchallenge for which they are not the top-ranked method, they actually perform very 

poorly. From this figure, it is not clear whether the CNN affinity or CNN scoring model is 

better-suited to performing the affinity ranking task; each performed well on half of the 

targets shown here, and the targets on which one method performed well preserve the pattern 

seen with JAK2 - one CNN model having highly correlated scores for a target is mutually 

exclusive with respect to the other CNN model.

Similarly, Figure 12 shows the Matthews correlation coefficients associated with all the 

methods used to generate affinity rankings for each target for which this analysis is 
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appropriate, as well as the correlation obtained by using molecular weight. It again suggests 

that the CNN affinity model has an advantage at active/inactive classification over the other 

methods, where it is the best-performing method on four of the targets and comparable to the 

best-performing method on another; here its consistent good performance is unique among 

the discrimination methods used.

3.2.2 AUCs—As an alternative view of the CNN ranking performance, Figure 13 shows 

the per-target ROC plots for the six subchallenges that had compounds with affinities both 

above and below 10μM, with affinities at or above that point being considered inactive and 

affinities below that point considered active. Figure 14 instead shows box-plots of the AUCs 

derived from the ROC plots in Figure 13. In this binding discrimination task, the CNN 

affinity model is clearly better than the CNN scoring model, and it is generally better than 

Vina as well, especially when the poses it is scoring were produced via refinement with the 

CNN scoring model.

3.2.3 Ligand similarity-based retrospective—Since we did not use ligand similarity 

between prediction compounds and available reference structures to identify possible 

binding modes during the challenge, we considered whether using this information would 

have been beneficial when producing affinity rankings (particularly on the targets for which 

we performed poorly). To that end, we utilized the approach described in section 3.1.2 to 

perform alignment, minimization, and docking based on the available reference structure 

whose crystal ligand had highest similarity to each query compound.

The results of this approach on pose prediction were shown in Figure 5c and Figure 5d, 

while its effect on the correlation of the final scores (when taking the top-ranked prediction 

for each compound as its predicted affinity) is shown for CatS in Figure 15a (which shows 

the correlation produced by the same method used to generate 5d). In general, when using 

our current scoring functions for CatS, methods that produce better poses also produce 

worse correlation for the predicted affinities - for example, our original stage 1A Spearman ρ 
was 0.37, while the ligand-similarity based method shown in 5d and 15a had a best-case 

Spearman ρ of 0.14.

We also performed this analysis to generate new predictions for p38 using ligand similarity. 

The best correlation produced by that analysis is shown in Figure 15b. This method 

produced good correlation using the CNN scoring model, particularly when the scoring 

model was used to sample poses itself in the final refinement. Notably, these results were 

dependent on the method used to identify similar ligands as well as the alignment method; 

for CatS, Tanimoto distance computed with OpenBabel FP2 fingerprints and a scaffold 

alignment (using the hand-selected scaffold) produced the best results for pose prediction 

(though no similarity-based method we tried produced correlation that matched our original 

stage 1 submission), while for p38α the best result was produced using a Tanimoto distance 

computed with RDKit Daylight-like fingerprints and O3A shape alignment.
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4 Discussion

The 2017 D3R Grand Challenge presented diverse subchallenges spanning several classes of 

problems in computational chemistry. There was one pose prediction component that 

ultimately encompassed both redocking and cross-docking for a single target, and several 

affinity prediction/ranking components that were constructed to test binding discrimination 

and affinity prediction in different contexts. We used this opportunity to evaluate the 

convolutional neural network-based scoring functions we have been developing, particularly 

recent work that enables us to use the CNN to optimize input poses. We found that although 

our performance was best-in-class when performing affinity ranking for two of the targets 

(three of the subchallenges), our performance was average on two of the other targets and 

poor on a third. Additionally, our performance at pose prediction was limited not only by 

inadequate sampling, but also by failures of both Vina and the CNN to identify crystal and 

near-crystal poses as high-ranking poses when they are sampled. In both cases poor 

performance at ranking is partially due to mistakenly identifying other poses that are 

actually far from the crystal pose as being better, though we have not yet identified the 

causes of these failures. However, when using the CNN to rescore poses generated by Vina, 

the CNN was in some cases much better than Vina at correctly ranking low-RMSD poses. It 

also exhibited some promising signs when guiding sampling itself; it sampled several low-

RMSD poses during CatS cross-docking, when Vina did not sample any, and also sampled a 

low-RMSD pose for CatS 10 during redocking when Vina failed to do so, though the reverse 

is true for CatS 11.

We see a general trend in the CNN performance that accords with what we have previously 

observed, which is that we often “get what we train for.” Specifically, the CNN scoring 

model is a relatively effective predictor of low RMSD structural poses, while the CNN 

affinity model has indifferent performance at this task; conversely the CNN affinity model 

may have a slight advantage when it comes to discriminating between active and inactive 

compounds for a given target, as evidenced by the Matthews correlation (Table 4 and Figure 

12), ROC curves (Figure 13), and associated AUCs (Figure 14), though the CNN affinity 

and scoring models both produced scores that correlate with the experimental affinities on 

some tasks and failed on others. Additionally, the differing performance between Vina and 

the CNN when performing redocking with and without crystal waters present might be 

related to the zero-node relevance analysis we have conducted [59], which suggests that the 

CNN may be implicitly interpreting empty regions in the input as containing solvent. This 

may enable the CNN to outperform Vina in the absence of explicit solvent, though further 

analysis is required to understand this phenomenon. More fundamental differences exist 

between the functional landscapes of Vina and the CNN, as evidenced by our simple 

projections in the regions around the crystal pose. Since we would like to achieve rapid 

convergence to a minimum, the CNN’s tendency to make large movements that also 

significantly improve a pose’s score is actually a desirable property (compared with Vina’s 

smaller changes to optimize the input); however, this property is only useful if the 

movements are actually bringing the input closer to the true global minimum, which is still 

frequently not the case for the CNN.
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All our methods appear to have difficulty with CatS in particular, and although we can use 

reasonable, automated approaches to generate either low-RMSD poses or reasonably 

correlated affinity predictions for this target, we have not yet found a single method that can 

do both simultaneously in this case. This suggests that something about its binding modes is 

represented poorly by our current models and merits further investigation. The CNN appears 

to have additional issues, since it performs significantly worse than Vina at pose prediction 

when using the alignment-and-minimization approach taken in Figure 5c and Figure 5d, but 

was able to identify low-RMSD docked poses during stage 1b (Figure 5b). Since we have 

not explicitly trained for cross-docking, perhaps it has more difficulty identifying a ligand’s 

pose as being similar to a binding pose when it is in a foreign binding site, as in the ligand 

similarity-based analysis. We are currently training to improve cross-docking performance, 

so we will be able to test whether our performance on this task improves with such training. 

Ultimately we hope that further interrogation of our performance on D3R GC3 will help us 

achieve even better performance when we apply the CNN to prospective drug discovery 

tasks in the future.
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Fig. 1: 
Workflow used to produce gnina convolutional neural network-based predictions for binding 

poses and binding affinity rankings.
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Fig. 2: 
Architecture of the neural network used to rescore and refine poses. The input is a voxelized 

grid of Gaussian atom type densities.
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Fig. 3: 
Per-compound best RMSDs for each method’s submissions in stage 1A (cross-docking, left) 

and stage 1B (redocking, right). Pose prediction submissions consisted of the top 5 poses 

according to each scoring method.
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Fig. 4: 
Center of mass locations for the unblinded crystal poses of the GC3 CatS co-crystal ligands 

(green), the co-crystal ligands of the reference PDB structures used during phase 1 docking 

(blue), and the highest ranked docked poses for each compound generated by redocking (the 

stage 1B task) with Vina (gray), and CNN refinement (gold). The left subfigure shows the 

results from docking with crystal waters present, while the right subfigure shows the results 

from docking without them.
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Fig. 5: 
Number of poses within a given RMSD that can be found as a top-ranked pose using Vina or 

re-scoring Vina-generated poses with the CNN scoring or affinity models for CatS stage 1A 

(a), stage 1B (combining poses sampled with and without solvent) (b), and two ligand 

similarity-based methods ((c) and (d)). The performance that would be attained if the 

sampled pose with the lowest RMSD were selected as the top pose is shown in red.
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Fig. 6: 
Per-compound best RMSDs for each method’s submissions in stage 1B, split between 

solvent (left) and no solvent (right).
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Fig. 7: 
Deviation of pose rankings from their true ranking, for docking with (a) and without (b) 

water. A classifier is more accurate if it is more strongly peaked around the center; a perfect 

predictor would have all of its density at 0. Combining poses generated with and without 

solvent produces (c).
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Fig. 8: 
Performance of each method at ranking the re-scored crystal poses among all other poses 

generated during stage 1B and the minimized crystal pose.
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Fig. 9: 
Performance of each method at ranking the minimized crystal pose among all other poses 

generated during stage 1B and re-scored crystal pose.

Sunseri et al. Page 27

J Comput Aided Mol Des. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10: 
(a-e) Change in score vs. change in RMSD for crystal pose minimization, showing 

differences and correlation (or lack of correlation) in the functional landscape between the 

different scoring methods. The logit of the CNN score was used to compute ΔScore on the 

relevant plots. (f) Change in Spearman ρ when scoring with the high RMSD stage 1 CatS 

poses versus scoring with the minimized crystal poses.
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Fig. 11: 
Spearman ρ of each scoring method with the associated experimental data for each target; 

compounds with Kd ≥10μM have been omitted. Black lines indicate error bars computed by 

bootstrapping the correlation for 10,000 iterations by resampling data points with 

replacement. For the bootstrapped correlations, the experimental data was perturbed with 

randomly generated Gaussian noise ϵ 𝒩 0, RT  ln Ierr , where Ierr was taken to be 2.5.
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Fig. 12: 
Matthews correlation coefficient of each scoring method with the associated experimental 

data for each target. The Ki compounds with Kd ≥10μM were taken as inactive, and the 

corresponding Ki bottom-ranked compounds for each prediction method were also taken as 

inactive. The remaining compounds in both cases were taken as active, and the resulting set 

of true/predicted pairs were used to compute the correlation. Error bars are not shown as this 

procedure is not amenable to bootstrapped error estimates.
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Fig. 13: 
ROC curves for all GC3 targets for which there were compounds with Kd ≥ 10μM and 

compounds with Kd < 10μM; the former were considered inactive and the latter active for 

the purposes of this figure.
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Fig. 14: 
Boxplots of AUCs across all methods and GC3 targets for which there were compounds with 

Kd ≥ 10μM and compounds with Kd < 10μM; the former were considered inactive and the 

latter active for the purposes of this figure.
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Fig. 15: 
Performing the scoring and affinity ranking process again using ligand structural information 

for(a) CatS and (b) p38α. The best and worst overall submissions from the original 

challenge are shown with the new results. Using this process, we had worse performance on 

predicting CatS affinity rankings but much better performance on p38α.
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Table 1:

Targets that appeared in at least one of the subchallenges of D3R Grand Challenge 3, with the PDB IDs used 

as references for docking; the most similar target in the PDBbind 2016 refined set, used to train the CNN, with 

its similarity to the provided FASTA sequence for the D3R target; mean and maximum Tanimoto coefficient of 

the crystal ligand associated with the PDBbind refined set target to the compounds in the challenge.

Target reference PDB IDs PDBbind/similarity mean/max Tanimoto

CatS 2F1G, 2HXZ 2G7Y,3KWN 2HHN 2HHN/0.991 0.209/0.256

JAK2(SC2) 2W1I, 3E62 3JY9, 3UGC 4AGC, 5I4N 5UT2, 5UT5 5UT6 4JIA/0.980 0.291/0.437

VEGFR2 1VR2, 1YWN 2OH4, 2P2H 2P2I, 2GU5 3B8R, 3VNT 4ASE/0.657 0.214/0.414

p38α 1M7Q, 1OVE 1W82, 1W83 1WBS, 2GHL 2ZB1, 3ITZ 3L8S, 3NNU 1YQJ/0.978 0.278/0.488

JAK2(SC3) 2W1I, 3E62 3JY9, 3UGC 4AGC, 5I4N 5UT2, 5UT5 5UT6 4JIA/0.980 0.357/0.413

TIE2 2OO8, 2OSC 2P4I, 2WQB 3L8P, 4X3J 4V01/0.482 0.239/0.363

ABL1 1FPU, 1OPJ 2G1T,2G2F 2G2H,2G2I 2V7A 3K5V/0.979 0.302/0.332
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Table 3:

The rank of our top-performing CNN method among all submissions to D3R GC3 affinity ranking tasks, along 

with the Spearman ρ associated with that method, and the Spearman ρ associated with Vina’s predictions. The 

higher correlation between the best-performing CNN method and Vina’s is bolded. The ABL1 results were not 

submitted during the challenge period and all official submissions were partials, so we do not show a rank 

here.

Target Rank ρ Method Vina

CatS (1a) 6/53 0.37 CNN scoring refine 0.19

JAK2 (SC2) 1/27 0.74 CNN scoring refine 0.05

VEGFR2 14/33 0.39 CNN scoring refine 0.51

p38α 7/29 0.04 CNN scoring refine −0.34

JAK2 (SC3) 2/18 0.75 CNN affinity refine −0.33

TIE2 3/18 0.67 CNN affinity rescore 0.14

ABL1 N/A 0.56 CNN affinity rescore/refine (tie) 0.72
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Table 4:

The rank of our top-performing CNN method among all submissions to D3R GC3 affinity ranking tasks based 

on active/inactive discrimination, along with the Matthews correlation coefficient associated with that method, 

and the Matthews correlation coefficient associated with Vina’s predictions. The higher correlation between 

the best-performing CNN method and Vina’s is bolded. The ABL1 results were not submitted during the 

challenge period and all official submissions were partials, so we do not show a rank here.

Target Rank MCC Method Vina

JAK2 (SC2) 3/27 0.44 CNN affinity refine 0.07

VEGFR2 1/33 0.53 CNN scoring rescore 0.34

p38α 9/29 0.21 CNN affinity refine 0.15

JAK2 (SC3) 2/18 0.23 CNN affinity refine −0.55

TIE2 1/17 (tie) 0.78 CNN affinity rescore 0.55

ABL1 N/A 0.56 CNN affinity rescore/refine (tie) 1.00
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