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Abstract

Advanced mathematics, such as multiscale weighted colored subgraph and element specific 

persistent homology, and machine learning including deep neural networks were integrated to 

construct mathematical deep learning models for pose and binding affinity prediction and ranking 

in the last two D3R Grand Challenges in computer-aided drug design and discovery. D3R Grand 

Challenge 2 focused on the pose prediction, binding affinity ranking and free energy prediction for 

Farnesoid X receptor ligands. Our models obtained the top place in absolute free energy prediction 

for free energy set 1 in stage 2. The latest competition, D3R Grand Challenge 3 (GC3), is 

considered as the most difficult challenge so far. It has five subchallenges involving Cathepsin S 

and five other kinase targets, namely VEGFR2, JAK2, p38-α, TIE2, and ABL1. There is a total of 

26 official competitive tasks for GC3. Our predictions were ranked 1st in 10 out of these 26 tasks.
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Introduction

With the availability of increasingly powerful computers and fast accumulating molecular 

and biomolecular datasets, one can dream of a possible scenario that all the major tasks of 

drug design and discovery can be conducted on computers [1–3]. Virtual screening (VS) is 

one of the most important aspects of computer-aid drug design (CADD) [4]. VS involves 

two stages, namely, the generation of different ligand conformations (i.e., poses) when a 

compound is docked to a target protein binding site, and the prediction of binding affinities. 

It is generally believed that the first stage can be well resolved by available techniques, such 
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as molecular dynamics (MD), Monte Carlo (MC), and genetic algorithm (GA) [5–7]. 

However, The development of scoring function (SF) for binding affinity prediction with high 

accuracy still remains a formidable challenge. In general, current SFs can be classified into 

four different categories, namely force-field-based ones, knowledge-based ones, empirical-

based ones and machine learning-based ones [8]. Among them, force-field-based SFs, such 

as COMBINE [9] and MedusaScore [10], emphasize the physical description of protein and 

ligand interactions in the solvent environment, including van der Walls (vdW), electrostatics, 

hydrogen bonding, solvation effect, etc. Typical Knowledge-based SFs represent the binding 

affinity as the linear sum of pairwise statistical potentials between receptor and ligand 

atoms. KECSA [11], PMF [12], DrugScore [13], and IT-Score [14] are some of the well-

known examples. The empirical-based SFs, in fact, make use of multiple linear regression to 

construct a linear combination from different physical-descriptor components such as vdW 

interaction, hydrophobic, hydrogen bonding, desolvation, dipole, etc. The renowned 

candidates for empirical-based SFs include X-Score [15], PLP [16], and ChemScore [17], 

etc.

Recently, machine learning including deep learning has emerged as a major technique in 

CADD. By using advanced machine learning algorithms, such as random forest (RF) and 

deep convolutional neural network, the machine learning-based SFs can characterize the 

non-additive contributions of functional groups in protein–ligand binding interactions [18]. 

Such a characterization can help machine learning-based SFs consistently maintain their 

accuracy in binding affinity predictions for a variety of protein–ligand complexes [19–23]. 

However, the performance of machine learning-based SFs depends crucially on the training 

data quality and statistic distribution. Additionally, it also depends on selected features that 

might or might not accurately and completely describe the protein–ligand binding 

interactions. We assume that the intrinsic physics of interest of complex biomolecules and 

interactions lies on low-dimensional manifolds or subspaces embedded in a high-

dimensional data space. Based on this hypothesis, we have recently proposed several low-

dimensional mathematical models that dramatically reduce the structural complexity of 

protein–ligand complexes and give rise to surprisingly accurate predictions of various 

bimolecular properties. For example, we proposed a multiscale weighted colored graph 

(MWCG) model to simplify protein structures and analyze their flexibility [24]. The 

essential idea of this method is to use the graph theory to represent the interactions between 

atoms in a molecule in an element-level collective manner. The MWCG approach has been 

shown to be over 40% more accurate than the Gaussian network model on a set of 364 

proteins [24].

In addition to graph theory simplification, we have also developed the topological 

abstraction of complex protein structures. In order to describe the topological changes such 

as the opening or closing of ion channels, the folding or unfolding of proteins, and the subtle 

change in binding site after the protein–ligand binding, we take the advantage of topological 

methods to study the connectivity of different molecular components in a space [25] which 

can represent important topological entities such as independent components, rings and 

higher dimension faces. However, since the conventional topology and homology are metric 

or coordinate free, they capture very little biomolecular geometric information and thus are 

unable to efficiently characterize biomolecular structures. Persistent homology (PH) is a new 
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branch in algebraic topology. It embeds the geometric information into topological 

invariants. By changing a filtration parameter such as the radius of atoms PH creates a 

family of topological spaces for a given set of atoms. As a result, the topological properties 

of a given biomolecule can be systematically analyzed and recorded in terms of topological 

invariants, i.e., the so-called Betti numbers, over the filtration process. The resulting 

barcodes monitor the “birth” and “death” of isolated components, circles, and cavities at 

different geometric scales. The persistent homology framework together with practical 

algorithms was introduced by Edelsbrunner et al. [26] and formal mathematical theories 

were developed by Zomorodian and Carlsson [27]. A zeroth dimensional version was also 

introduced earlier under the name of size function by Frosini and Landi [28]. Primitive 

applications of PH to computational biology has been reported in the literature [29–31]. 

Recently, we have developed a variety of advanced PH models to analyze the topology–

function relationship in protein folding and protein flexibility [32], quantitative predictions 

of curvature energies of fullerene isomers [33, 34], protein cavity detection [35], and the 

resolving ill-posed inverse problems in cryo-EM structure determination [36]. In 2015, we 

introduced some of the first combinations of PH and machine learning for protein structural 

classification [37]. Topological descriptors were further integrated with a variety of deep 

learning algorithms to achieve state-of-the-art analysis and prediction of protein folding 

stability change upon mutation [38], drug toxicity [39], aqueous solubility [40], partition 

coefficient [40], binding affinity [21, 22], and the virtual screening of active ligands and 

decoys [23].

In this paper, we report the performance of our mathematical deep learning models on pose 

and binding affinity prediction and ranking in the last two D3R Grand Challenges, namely 

D3R Grand Challenge 2 (GC2) and D3R Grand Challenge 3 (GC3). The GC2 was initiated 

in 2016 and consisted of two stages. The first stage asked participants to predict the 

crystallographic poses of 36 ligands for the target of farnesoid X receptor (FXR). In 

addition, there were affinity ranking task for all 102 compounds and absolute free energy 

prediction for two designated subsets of 18 and 15 small molecules. In the second stage, 

participants were asked again to submit the affinity ranking and free energy after the release 

of 36 crystal structures. In GC2, we employed our mathematical deep learning models to 

select the best poses from docking software generated poses for binding affinity ranking and 

prediction tasks. Our models achieved the top place in affinity ranking for the free energy set 

1 in stage 2.

In addition, our results for the latest Grand Challenge, i.e., GC3, are presented in this paper. 

The third Grand Challenge, took place in 2017, is the largest in terms of the number of 

competitive tasks since 2015. It consisted of five subchallenges. Subchallenge 1 was about 

Cathepsin S. It comprised two stages with tasks the same as ones in the GC2. There were 24 

ligands with crystal structures and their binding energies spread three orders of magnitude 

for 136 compounds. Subchallenge 2 focused on kinase selectivity. It has three kinase targets, 

namely VEGFR2, JAK2, and p38-α with their numbers of compounds being 85, 89, and 72, 

respectively. This subchallenge only asked participants to submit affinity ranking for each 

kinase dataset. Subchallenge 3 involved the binding affinity ranking and free energy 

prediction of target JAK2. It consisted of a relatively small dataset with 17 ligands having 

similar chemical structures. In subchallenge 4, there were 18 congeneric ligands with Kd 
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values for kinase TIE2. In addition to asking for the affinity ranking of 18 compounds, 

subchallenge 4 asked participants to predict the free energies of two subsets with 4 and 6 

compounds, respectively. The last subchallenge in GC3 concerned the binding affinity 

ranking of different mutants on protein ABL1. There were two compounds and five different 

mutation sites. Overall, our models performed well in GC3. Specifically, we obtained the 

first place in 10 out of a total of 26 predictive tasks.

Methods

In this section, we briefly describe our computation methods and algorithms developed for 

GC2 and GC3.

Ligand preparation

All ligands in Grand Challenges are provided in the SMILES string format. They are 

converted to the optimal 3D structures and protonated at pH 7.5 using LIGPREP tool in 

Schrödinger software [41]. Before employing Autodock Vina [42] for docking, Gasteiger 

partial charges were added to these ligands via MGLTools v1.5.6 [43].

Protein structures selection and preparation

Except for subchallenge 1, all the receptor structures in GC3 are supplied in the protein 

sequence format. We utilized the homology modeling task in Maestro of Schrödinger 

software [44] to obtain 3D structure predictions. In addition, we make use of the crystal 

structures available in the Protein Data Bank (PDB) for each protein family (see the 

supporting information for a complete list). These collected protein structures were prepared 

using the protein preparation wizard provided in Schrödinger package [41] with default 

parameters except enabling the FILLSIDECHAINS option.

Docking protocols

We use a number of docking protocols in GC2 and GC3. Among, a machine learning 

protocol was developed in our own lab. Motivated by earlier work [45], we carried out four 

different docking strategies, namely align-close, align-target, close-dock and cross-dock, to 

attain the best poses for binding affinity predictions. We also used induced fit docking (IFD) 

and unrestricted IFD in our pose predictions.

Protocol 1: machine learning based docking—We developed a machine learning-

based scoring function to select the poses generated by GOLD [46], GLIDE [47], and 

Autodock Vina [42]. Given a ligand target, we at first formed a training data of complexes 

taken from the PDB. The criteria for such selections are based on the similarity coefficient, 

measured by fingerprint 2 (FP2) in Open Babel v2.3.1 [48], of ligand in the complex. Then, 

we utilized docking software packages such as GOLD, GLIDE, and Autodock Vina to re-

dock ligands to protein in those selected complexes. A variety of docking poses was 

distributed into 10 different RMSD bins as follows: [0,1], (1,2], …, (9,10] Å. In each bin, we 

clustered decoys into 10 clusters based on their internal similarities. The docking poses 

having the smallest free energy were selected as the candidate for their clusters. As a result, 

one may end up with a total of 100 poses for each given complex. We employed all these 
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decoy poses to form a training set with labels defined by their RMSDs. Our topological 

based deep learning models were utilized to learn this training set. Finally, we employed this 

established scoring function to re-rank the poses of the target ligand produced by docking 

software packages.

Protocol 2: align‑close—In the align-close method, we select ligand available in the 

PDB that has the highest chemical similarity to the target ligand. Here, the similarity score 

was measured by fingerprint 2 (FP2) in Open Babel v2.3.1 [48]. It is also noted that all the 

processed structures in this procedure were conducted in the Schrödinger suite 2017–4 [49]. 

A ligand was aligned to its similar candidates by the flexible ligand alignment task in 

Schrödinger’s Maestro [50, 51]. Then, the resulting aligned ligand is minimized to the co-

crystal structure of the most similar ligand by Prime in Schödinger package [49, 52, 53].

Protocol 3: align‑target—In the align-target protocol, the homology modeling tool in 

Maestro was used to construct protein 3D structures from given sequences, and the aligned 

ligands obtained from the align-close procedure are minimized with respect to 

corresponding receptors.

Protocol 4: close‑dock—The fourth docking strategy is called as close-dock. Based on 

previous docking methods, one can identify the most similar structure in the PDB to a given 

D3R ligand. This procedure also gives us the corresponding co-crystal structure, i.e., the so-

called closet receptor. In the close-dock approach, Autodock Vina is used to docki the target 

ligand to its corresponding closet receptor. The best pose is selected based on Autodock 

Vina’s energy scoring.

Protocol 5: cross‑dock—The next approach in our docking methods is named cross-

dock. This is basically a cross docking method in which the close receptors are the co-

crystal structures of the ligands having the similar chemical characteristics to the interested 

ligand. In the cross-docking procedure, we use Autodock Vina to dock the D3R ligands to 

their close receptors. Those poses that have the smallest binding energies are selected as the 

best poses.

Protocol 6: constraint‑IFD—Similarly to the align-target protocol, we used the 

homology modeling module in Maestro to generate 3D structure from a given sequence. For 

the docking procedure, we employed the induced fit docking (IFD) [54–56] in Maestro with 

restricting docking poses to the closet ligands with a tolerance of 3 Å. The best pose was 

selected due to the ranking from IFD.

Protocol 7: free‑IFD—This protocol is exactly the same protocol as Constraint-IFD 

except for no constraint during the run of induced-fit docking.

Multiscale weighted colored subgraph representation

Weighted colored subgraph (WCS) method describes intermolecular and intramolecular 

interactions as pairwise atomic correlations [24]. To apply the WCS for analyzing the 

protein–ligand interactions, we convert all the atoms and their pairwise interactions at the 

binding site of a protein–ligand complex with a cutoff distance d into a colored subgraph 
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G(Vd, E) with vertices Vd and edge E. As such, the ith atom is labeled by its position ri, 

element type αi and co-crystal type βi. Thus, we can express vertices Vd as

V d = (ri, αi, βi) ri ∈ ℝ3, αi ∈ C, βi ∈ S, ri − rj
< d for some 1 ≤ j ≤ N such that βi + βj = 1, i = 1, 2, …, N , (1)

where c = {C, N, O, S, P, F, Cl, Br, I} contains all the commonly occurring element types in 

a complex, and s = {0, 1} a bipartite graph label that if the ith atom belongs to protein then 

βi = 0, otherwise βi = 1. Hydrogen element is omitted since it does not present in the crystal 

structures of most protein–ligand complexes. To describe pairwise interactions between the 

protein and the ligand, we define an ordered colored set P = (α, 0) α′, 1 . Here, α ∈ {C, N, 

O, S} is a heavy atom in the protein, and α′ ∈ {C, N, O, S, P, F, Cl, Br, I} is a heavy atom in 

the ligand. With that setting, it is trivial to verify that set P has a total 36 partitions or 

subgraphs. For example, a partition P1 = (C, 0)(O, 1)  contains all bipartite pairs CO in the 

complex with the first atom is a carbon in the protein and the second atom is an oxygen in 

the ligand. For each set of element pairs Pk, k=1,2,…,36, a set of vertices, V Pk is a subset 

of Vd containing all atoms that belong to a pair in Pk. Therefore, the edges in such WCS 

describing potential pairwise atomic interactions are defined by

EPk
σ, τ, ζ = Φτ, ζ

σ ri − rj (αi, βi)(αj, βj) ∈ Pk; i, j = 1, 2, …, N , (2)

where ri − rj  defines a Euclidean distance between ith and jth atoms, σ indicates the type 

of radial basic functions (e.g., σ = L for Lorentz kernel, σ = E for exponential kernel), τ is a 

scale distance factor between two atoms, and ζ is a parameter of power in the kernel (i.e., ζ 
= κ when σ = E, ζ = v when σ = L). The kernel Φτ, ζ

σ  characterizes a pairwise correlation 

satisfying the following conditions

Φτ, ζ
σ ri − rj = 1 as ri − rj 0, (3)

Φτ, ζ
σ ri − rj = 0 as ri − rj ∞ . (4)

Commonly used radial basis functions include generalized exponential functions

Φτ, x
E = e− ri − rj /τ(ri + rj) κ

, κ > 0, (5)

and generalized Lorentz functions

Φτ, v
L ri − rj = 1

1 + ri − rj /τ(ri + rj) v , v > 0, (6)

where ri and rj are, respectively, the van der Waals radius of the ith and jth atoms.
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In the graph theory or network analysis, centrality is widely used to identify the most 

important nodes [57]. There are various types of centrality such as degree centrality [58], 

closeness centrality [59], harmonic centrality [60], etc. Specifically, while the degree 

centrality is measured as a number of edges upon a node, closeness and harmonic 

centralities depend on the length of edges and are defined as 1/∑j ri − rj  and ∑j1/ ri − rj
respectively. Our centrality used in the current work is an extension of the harmonic 

formulation by our correlation functions

μi
k, σ, τ, v = ∑

j = 1

V Pk
wijΦτ, v

σ ri − rj , ((αi, βi)(αj, βj)) ∈ Pk,

∀i = 1, 2, …, V Pk ,
(7)

where wij is a weight function assigned to each atomic pair. In the current work, we choose 

wij = 1 if βi + βj = 1, otherwise wij = 0, for all calculations to reduce dimension of the 

parameter space. To describe a centrality for the whole graph G(V Pk, EPk
σ, τ, ζ) we take into 

account a summation of the node’s centralities

μk, σ, τ, v = ∑
j = 1

V Pk
μj

k, σ, τ, v (8)

Since we have 36 choices of the set of weighted colored edges Pk, we can obtain 

corresponding 36 bipartite subgraph centralities μk,σ,τ,v. By varying kernel parameters (σ, τ, 

v), one can achieve multiscale centralities for multiscale weighted colored subgraph 

(MWCS) [24]. For a two-scale WCS, we obtain a total of 72 descriptors for a protein–ligand 

complex.

Algebraic topology based molecular signature

The geometry of biomolecular systems together with the complex interaction patterns allows 

us to build topological spaces upon the systems which facilitate powerful topological 

analysis. The topological analysis provides us a description of the molecular system that 

captures a collection of key aspects of the system including the multiscale description of 

geometry, the characterization of interaction network in an arbitrary dimension, and the 

important physical and chemical information, which ensures the success of the downstream 

machine learning modeling. In this section, we first briefly describe the background of 

persistent homology. Then, we demonstrate how to apply it to biomolecular systems to 

obtain a rich but concise description.

Persistent homology—We describe the theory of persistent homology in the framework 

of simplicial homology in a geometric sense where topological spaces are represented by 

collections of points, edges, triangles, and their higher-dimensional counterparts. A k-

simplex is a collection of (k + 1) affinely independent points in ℝn with n ≥ k. If the vertices 

of a simplex is a subset of the vertices of another simplex, it is called a face of the other 
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simplex. Simplices of various dimensions are building blocks of a simplicial complex which 

is a finite collection of simplices satisfying two conditions: (1) the faces of any simplex in 

the complex are also in the complex and (2) the intersection of two simplices in the complex 

is either empty or a common face of the two. A simplicial complex can be used to discretely 

represent or approximate a topological space. Given a simplicial complex X, a k-chain is a 

formal sum of all the k-simplices in X which is defined as

c = ∑
i

aiσi, (9)

where σi is a k-simplex in X and ai is a coefficient in a coefficient set of choice such as a 

finite field ℤp with a prime p. The set of all k-chains with the addition operator in the 

coefficient group forms a group called the kth chain group denoted Ck(X). The chain groups 

of different dimensions are connected by a collection of homeomorphisms called the 

boundary operators forming a chain complex,

…
∂i + 1 Ci(X)

∂i Ci − 1(X)
∂i − 1 …

∂2 C1(X)
∂1 C0(X)

∂0 0. (10)

It suffices to define the boundary operator on simplices, and then, such a definition can be 

extended to general chains.

∂k(σ) = ∑
i = 0

k
( − 1)i v0, …, vi, …, vk , (11)

where v0,…, vk are vertices of the k-simplex σ and v0, …, vi, …, vk  means the codim-1 face 

of σ be omitting the vertex vi. The boundary operator has an important property that

∂ko∂k + 1 = 0. (12)

With the boundary operators, we can define boundary groups and cycle groups which are 

subgroups of chain groups. The kth boundary group is defined to be the image of ∂k+1 

denoted ℬk(X) = Im ∂k + 1 . The kth cycle group is defined to be the kernel of ∂k denoted 

Zk(X) = Ker ∂k . It can be seen that ℬk(X) ⊆ Zk(X) following the property in Eq. (12). 

Then, the kth homology group is defined to be the quotient group

ℋk(X) = Zk(X)/ℬk(X) . (13)

Intuitively, the kth homology group contains elements associated to k dimensional holes 

which are not boundaries of (k + 1)-chains to characterize the topology.

The theory described above computes the homology of various dimensions of a topological 

space to obtain a multidimensional characterization of the space. However, this is not 

enough for the cases where the objects are also multiscale. Therefore, instead of only 

computing homology for a fixed topological space, we can build a sequence of subspaces of 

the topological space and track how homology evolves along this changing sequence. This 

sequence is called a filtration,
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∅ = X0 ⊆ X1 ⊆ ⋯ ⊆ Xm − 1 ⊆ Xm = X . (14)

The filtration naturally induces an inclusion map connecting the homology groups of a 

certain dimension,

ℋk X0 ℋk X1 … ℋk Xm − 1 ℋk Xm . (15)

Then for a homology generator δ ∈ ℋk Xi , it is said to be born at i if it is not an image of 

the inclusion map from ℋk Xi − 1  and it is said to die at i + 1 if it mapped to the empty set 

or another homology generator that is born before i by the inclusion map from ℋk Xi . 

Persistent homology tracks how these homology generators appear and disappear along the 

course of the filtration resulting in a robust multiscale description of the original topological 

space. The birth and death of each generator can be represented by a half-open interval 

starting at the birth time and stopping at the death time. There are several visualization 

methods for collections of such intervals such as barcodes and persistence diagrams.

Topological description of molecular systems—To describe molecular systems 

using persistent homology, the atoms can be regarded as vertices and different constructions 

of filtrations can reveal different topological aspects of the system.

To describe a complex protein geometry, an efficient filtration using alpha complex [61] can 

be employed. To build an alpha filtration, a Voronoi diagram is first generated for the 

collection of points representing the atoms in the system. The final frame of the topological 

spaces at the end of the course of filtration is constructed by including a k-simplex if there is 

a nonempty intersection of the (k + 1) Voronoi cells associated to its (k + 1) vertices. The 

filtration of the space can be constructed by associating a subcomplex to each value of a 

filtration parameter є. The subcomplex associated to є is defined as

Xalpha (ϵ) = σ ∈ X σ = v0, …, vk , ∩i V (vi) ∩ Bϵ(vi) ≠ ∅ (16)

where V(vi) is the Voronoi cell of vi and Bє(vi) is an є ball centered at vi.

A more abstract construction of filtration via the Vietoris–Rips complex can be used to 

address other properties of the system such as protein–ligand interactions. Given a set of 

points with a pairwise distance (not necessarily satisfying triangular inequality), the 

subcomplex associated to a filtration parameter є is defined to be

XRips(ϵ) = σ ∈ X σ = v0, …, vk , d(vi, vj) ≤ 2ϵ  for 0 ≤ i, j ≤ k , (17)

where d is the predefined distance function and X is the collection of all possible simplices. 

Tweaking the distance function can help emphasize on different properties of the system. 

For example, in a protein–ligand complex, setting the distance between an atom from the 

protein and an atom from the ligand to the Euclidean distance while setting the distance 

between atoms from the same molecule to infinity will emphasize the interaction pattern 

between two molecules [21]. Also, we can assign values between atoms according to a 

specific distance of interest by using kernel functions as distances [21]. We have proposed 
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element specific persistent homology, which is a family of persistent homology groups 

defined on various topological subspaces, to encode physical interactions into various 

topological invariants [21, 38]. By computing persistent homology on the subsets of the 

atoms, we can extract different chemical information. For example, the element specific 

persistent homology computation on the collection of all carbon atoms describes the 

hydrophobic network or the structural basis of the molecule while computation on the 

nitrogen and oxygen atoms characterizes the hydrophilic networks [21]. For the 

characterization of small molecules, we can use a multilevel element specific persistent 

homology to both describe the covalent bonds and noncovalent interactions in the molecule 

[23].

The element specific persistent homology results (barcodes) can be paired with machine 

learning models in several ways. For example, Wasserstein metric can be applied to measure 

similarities among the barcodes of different proteins, which can be used with methods such 

as nearest neighbors and manifold learning [23]. The element specific persistent homology 

barcodes can also be turned into fixed length feature vectors by discretizing the range of 

barcode and counting the persistence, birth, and death events that fall in each subinterval. 

The statistics of element specific persistent homology barcodes can also be used for 

featurization [23]. These fixed length features can be used with powerful machine learning 

methods such as the ensemble of trees and deep learning neural networks [21, 22]. The 

barcodes can also be transformed to representations similar to images and used in a 1-

dimensional or a 2-dimensional convolutional neural networks [22, 23].

Machine learning algorithms

The machine learning methods used in our prediction fall into two categories, ensemble of 

trees and deep learning. A schematic illustration of our mathematical deep learning 

modeling is given in Fig. 1.

Ensemble of trees—The basic building block of this type of methods is a decision tree 

which identifies key features to make decisions at the nodes of the tree. Due to its simple 

structure, it is usually considered as a weak learner especially in the case of highly nonlinear 

problems or applications with high dimensional features. Ensemble of trees methods build 

models consisting of a collection of decision trees with the assumption that grouping the 

weak learners can improve the learning capability. We mainly used random forest and 

gradient boosting trees for our prediction. Random forest builds uncorrelated decision trees 

with each tree being trained on a resampling of the original training set (bootstrap). On the 

contrary, gradient boosting trees add one tree to the collection at a time along the direction 

of the steepest descent of the loss of the current collection. As these two models attempt to 

reduce error in two different ways, they behave differently in the bias-variance trade-off 

where the random forest is better at lowering bias and gradient boosting trees focus more on 

reducing variance. Therefore, a higher level bagging of models of different kinds can further 

improve the performance. The ensemble learning methods are also robust and overfitting can 

be reduced by learning partial problems. For example, each tree can be trained with a 

random subset of the training data and a subset of the features and the model complexity can 

be constrained by setting maximum tree depth. Both our graph theory based models [20, 62] 
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and algebraic topology based models [21, 23] achieve top-class performance with the 

ensemble of trees methods.

Deep learning—When the feature is complex or there is some underlying dimension in 

the feature space, deep learning models can further imporve the performance of the 

predictor. For example, a spatial dimension associated to the filtration parameter lies in the 

persistent homology representation of protein–ligand systems. This enables the usage of the 

powerful convolutional neural networks (CNNs) which have been extremely successful in 

the field of computer vision and image analysis. The neural networks we used in the 

prediction are in the category of feedforward networks where the signal from the previous 

layer undergoes a linear transformation to the current layer, then the current layer applies a 

nonlinear activation function and sends the signal to the next layer. Classical deep neural 

networks are constructed by stacking fully connected layers where every pair of neurons in 

two adjacent layers are connected. Different rules of neuron connections and parameter 

sharing have resulted in a number of powerful deep learning models that flourish in various 

application domains. CNNs take advantage of the feature structure where there are spatial 

dimensions and only allow local connections with the parameters shared along the spatial 

dimensions which significantly lowers the dimension of the parameter space. Also, the 

flexibility of neural networks allows learning different but related tasks together by sharing 

layers, i.e., a type of multi-task learning. We applied convolutional neural networks and 

multi-task learning in our predictions which further advanced the capability of our models 

[22, 23].

To make use of both MWCG and algebraic topology features, we carried out two different 

schemes for the energy prediction. In the first approach, we used random forest to learn the 

biomolecular structure represented by MWCG, and used CNNs with topological features. 

The final predictions for this method was the consensus results between the energy values 

predicted by two aforementioned machine learning strategies. We name this method EP1. In 

the second approach, MWCG and topological features were mixed and fed into the CNNs 

model. The energy value predicted by these deep learning networks was submitted. We 

name this model EP2. We employed available PDBbind data sets (http://pdbbind.org.cn) as 

the training data.

Results and discussion

Here, we provide the results of our mathematical deep learning models in two recent Grand 

Challenges, i.e., GC2 and GC3.

Grand Challenge 3

There are five subchallenges in GC3 involving a total of 12 affinity prediction submissions 

and 2 pose prediction challenges, resulting in 26 different competitive tasks. Our 

submissions were ranked 1st in 10 of these 26 tasks as shown in Table 1 for additional 

information. While we employed align-close, align-target, close-dock and cross-dock 

protocols for pose generations in subchallenges 1–4, we applied constraint-IFD and free-IFD 

procedures for kinase mutants in subchallenge 5. The combination of MWCS and algebraic 

topological descriptors was utilized as the features in the random forest and deep learning 
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methods. Also, we were interested in seeing how the docking features can enhance our 

mathematical descriptors by including the Autodock Vina scoring terms in some 

submissions. In fact, these additional docking features did not improve our available models. 

The following is the detailed discussion of our performance for each subchallenge task.

Subchallenge 1—The protein target for this challenge is Cathepsin S. There are 24 

ligand–protein co-crystal structures and 136 ligands having binding data (IC50s). There are 

two stages in this subchallenge. Stage 1 asks participants to submit pose predictions, affinity 

rankings, and energy predictions. Stage 2 asks similar tasks except for pose predictions. Co-

crystal structures were released for the second stage.

In order to examine the performances of scoring functions on the binding affinity when the 

ligand pose errors do not contribute to the final outcome, D3R organizers evaluated the 

accuracy of all submitted methods on 19 ligands having crystallographic poses. With this 

setting, our models attained the first places for the following tasks: free energy set in stage 1, 

scoring and free energy set in stage 2. It is worth mentioning that only stage 2 has the 

experimental structures. Stage 1 is still affected by the pose prediction errors. That explains 

why our predictors performed decently for scoring task in stage 1 with the best Kendall’s τ = 

0.23, but they achieved a state-of-the-art result for the same task in stage 2 with the best 

Kendall’s τ = 0.54 (receipt ID 6jekk). Figure 2 depicts the ranking of all participants on the 

affinity ranking of 19 ligands in stage 2. The best free energy predictions on the ligands with 

experiment structures were also attained by our predictions. Particularly, in stage 1, our 

prediction with receipt ID fomca obtained RMSEc = 0.33 kcal/mol. In stage 2, we 

accomplished RMSEc = 0.29 kcal/mol with receipt ID v4jv4. Those results support that our 

mathematical deep learning models indeed gain a better performance when no pose 

prediction errors are involved.

Subchallenge 2—In this subchallenge, there are 3 kinase families, namely VEGFR2, 

JAK2, and p38-α with number of ligands being 85, 89 and 72, respectively. The challenge is 

to rank affinities of all ligands in each kinase family. Our predictors do not perform well on 

these datasets. Our best result is the second place on the active/inactive classification of 

VERGFR2 set. Our best Matthews correlation coefficient (MCC) on such task is reported to 

be 0.48 from receipt ID rtv8m.

Subchallenge 3—The third subchallenge involves the kinase JAK2 which already 

appeared in the second one. However, this challenge only comprises 17 compounds with 

small changes in chemical structure. Subchallenge 3 consists of two tasks, namely affinity 

ranking and relative binding affinity predictions. We obtained the first place on the binding 

energy prediction with the centered RMSE as low as RMSEc = 1.06 kcal/mol (receipt ID 

4u5ey). On the affinity ranking, the performance of our models is unremarkable. However, 

we still manage to sit at the second place on the active/inactive classification with Mathew 

correlation coefficient = 0.23 with receipt ID yqoad.

Subchallenge 4—Similar to the third subchallenge, the fourth one consists of 18 ligands 

with small changes in chemical structures. However, the new protein family, TIE2, is 

considered. The tasks are still to give an affinity ranking for 18 ligands and absolute or 
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relative binding energies for two subsets of 4 and 6 compounds. It is interesting to see that 

our model perform extremely well for the TIE2 dataset. We achieve the first place for all the 

evaluation metrics taken into account for this subchallenge. Specifically, for the affinity 

ranking excluding Kds > 10 μM, our model, receipt ID uuihe, produces the best Kendall’s τ 
and Spearman correlation coefficient among all of the participants with values being 0.57 

and 0.76, respectively. When one is interested in active/inactive classification by including 

compounds having Kds > 10 μM, our model, receipt ID uuihe, is still ranked the first place 

with MCC = 0.78. On the absolute free energy predictions, the top results are still produced 

by our models. Specifically, on Set 1, our predictor with receipt ID vwbp8 was ranked the 

first place with MCC = 1.0. On Set 2, our model with receipt ID 5g8ed attained the RMSEc 

= 1.02 kcal/mol which is the lowest among all submissions.

Subchallenge 5—The last subchallenge in the GC3 measures the accuracy of models on 

the binding affinity change prediction upon the mutation. ABL1 is the protein target for this 

subchallenge, and there are two compounds and five mutants. The challenge is to predict the 

ranking of all mutants for each of two ligands. Our models perform pretty decently for this 

task. Our best submission has receipt ID rdn3k which achieves the best Kendall’s tau (τ = 

0.52) for affinity ranking excluding Kds > 10 μM.

Grand Challenge 2

The second Grand Challenge had 36 ligands with crystal structures and binding data for 102 

ligands. All these compounds bind to the FXR target. The predictive tasks are the same as 

those of Subchallenge 1 in GC3. Specifically, GC2 consisted of two stages. The first stage 

included (i) pose prediction for 36 ligands; (ii) binding affinity ranking for 102 compounds; 

and (iii) absolute or relative free energy predictions for two subsets of 18 and 15 ligands, 

respectively. The second stage with released structures asked the same tasks as in the 

previous one except for the pose prediction.

We employed the machine learning based scoring function to select the best poses for all 

prediction tasks, i.e., docking Protocol 1. The free energy values were predicted by scheme 

EP1. Although our pose ranking power was not impressive, the free energy predictions of 

our model performed pretty well. Specifically, our submission with receipt ID 5bvwx was 

ranked the second place in the free energy set 1 of stage 1 with RMSEc = 0.68 kcal/mol. In 

stage 2, our models improved the accuracy of the energy prediction of compounds in the 

aforementioned free energy set. In fact, we obtained the first place in term of Kendall’s tau 

value (τ = 0.41) with receipt ID 4rbjk. That was also the highest Kendall’s tau value among 

all submissions in two stages for the free energy set 1. Figure 3 plots the performance of all 

submissions on the free energy set 1 in stage 2. Our submissions are highlighted in the red 

color.

Conclusion

In this work, we report the performances of our mathematical deep learning strategy on the 

binding affinity tasks in D3R GC2 and across five subchallenges in D3R GC3. The 

multiscale weighted colored graph and element specific persistent homology representations 

are the main descriptors in our models. We also employed a variety of machine learning 
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algorithms including random forest and deep convolutional neural networks for the energy 

predictions. Overall, in GC2, our predictive models achieved the top place in free energy 

prediction for free energy set 1 in stage 2. In GC3, our submissions were ranked 1st in 10 

out of 26 official evaluation tasks. These results confirm the predictive power and practical 

usage of our mathematical deep learning models in drug design and discovery. It is worthy 

to mention that the docking accuracy is still a bottleneck of our affinity prediction 

performance. We have tried a variety of docking protocols, namely align-close, align-target, 

close-dock, cross-dock, constraint-IFD, and free-IFD, for pose selection in GC3. However, 

none of them showed a dominant role in binding affinity accuracy. In addition, when one 

excludes the pose prediction error, Kendall’s tau of our model improves from 0.21 to 0.54 on 

the affinity ranking of compounds in Cathepsin S subchallenge. Therefore, the development 

of a state-of-the-art docking protocol is the major task in our roadmap to improve the 

accuracy of binding energy prediction when crystallographic structures are not available. 

Further improvement in the mathematical representations of protein–ligand binding using 

differential geometry is also under our consideration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of mathematical learning prediction using deep learning and/or ensemble of trees
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Fig. 2. 
Performance comparison of different submissions on affinity ranking of 19 ligands having 

crystallographic poses in stage 2 of subchallenge 1 of D3R GC3. All of our submissions are 

shown in the red color. Our best prediction having receipt ID 6jekk achieved the top 

performance with Kendall’s τ = 0.54
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Fig. 3. 
Performance comparison of different submissions on free energy prediction for free energy 

set 1 in stage 2 of D3R GC2. All of our submissions are highlighted in the red color. Our 

best prediction having receipt ID 4rbjk achieved the top performance with Kendall’s τ = 

0.41
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