
HAL Id: hal-02347132
https://hal.science/hal-02347132

Submitted on 10 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rescoring of docking poses under Occam’s Razor: are
there simpler solutions?

Michael Zhenin, Malkeet Singh Bahia, Gilles Marcou, Alexandre Varnek,
Hanoch Senderowitz, Dragos Horvath

To cite this version:
Michael Zhenin, Malkeet Singh Bahia, Gilles Marcou, Alexandre Varnek, Hanoch Senderowitz, et al..
Rescoring of docking poses under Occam’s Razor: are there simpler solutions?. Journal of Computer-
Aided Molecular Design, 2018, 32 (9), pp.877-888. �10.1007/s10822-018-0155-5�. �hal-02347132�

https://hal.science/hal-02347132
https://hal.archives-ouvertes.fr


Journal of Computer-Aided Molecular Design
 

Rescoring of Docking Poses under Occam's Razor - Are there Simpler Solutions?
--Manuscript Draft--

 
Manuscript Number:

Full Title: Rescoring of Docking Poses under Occam's Razor - Are there Simpler Solutions?

Article Type: Original Research Article

Keywords: Force Field Calculations, Docking, Scoring

Corresponding Author: Dragos Horvath, Ph.D.
CNRS
Strasbourg, FRANCE

Corresponding Author Secondary
Information:

Corresponding Author's Institution: CNRS

Corresponding Author's Secondary
Institution:

First Author: Michael Zhenin

First Author Secondary Information:

Order of Authors: Michael Zhenin

Malkeet Singh Bahia, Ph.D.

Gilles Marcou, Ph.D.

Alexandre Varnek, Ph.D.

Hanoch Senderowitz, Ph.D.

Dragos Horvath, Ph.D.

Order of Authors Secondary Information:

Funding Information:

Abstract: Ligand affinity prediction from docking simulations is usually performed by means of
highly empirical and diverse protocols. These protocols often involve the re-scoring of
poses generated by a Force Field (FF) based Hamiltonian to provide either estimated
binding affinities - or alternatively, some empirical goodness score. Re-scoring is
performed by so-called scoring functions - typically, a reweighted sum of FF terms
augmented by additional terms (e.g., desolvation/entropic penalty, hydrophobicity,
aromatic interactions etc.).  Sometimes, the scoring function actually drives ligand
positioning, but often it only operates on the best scoring poses ranked top by the initial
ligand positioning tool. In either of these rather intricate scenarios, scoring functions
are docking-specific models, and most require machine-learning-based calibration.
Therefore, docking simulations are less straightforward when compared to "standard"
molecular simulations in which the FF Hamiltonian defines the energy, and affinity
emerges as an ensemble average property over pools of representative conformers
(i.e. the trajectory).
According to Occam's Razor principle, additional model complexity is only acceptable if
demonstrated to bring a significant improvement of prediction quality. In this work we
therefore examined whether the complexity inherent to scoring functions is indeed
justified. For this purpose we compared S4MPLE (Sampler for Multiple Protein-Ligand
Entities), a general purpose conformation sampler based on the AMBER/GAFF FF,
complemented with continuum solvation terms with several state of the art docking
tools that rely on calibrated scoring functions (Glide, Gold, Autodock-Vina) in terms of
its ability to top-rank the actives from large and diverse ligand series associated with
various proteins. There is no clear winner of this study, where each program performed
well on most of the targets, but also failed with respect to at least one of them.
Therefore, a well-parameterized force field with a simple, energy-based ligand ranking
protocol appears to be as effective docking protocol as intricate rescoring strategies
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based on scoring functions. Such a tool that can sample the conformational space of
the free ligand, the bound ligand and the protein binding site using the same force field
can alleviate many of the approximations common to contemporary docking protocols
and allow e.g., for docking into highly flexible active sites when current scoring
functions are not well suited to estimate receptor strain energies.
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1 Abstract 

Ligand affinity prediction from docking simulations is usually performed by means of highly 

empirical and diverse protocols. These protocols often involve the re-scoring of poses generated by a 

Force Field (FF) based Hamiltonian to provide either estimated binding affinities – or alternatively, 

some empirical goodness score. Re-scoring is performed by so-called scoring functions - typically, a 

reweighted sum of FF terms augmented by additional terms (e.g., desolvation/entropic penalty, 

hydrophobicity, aromatic interactions etc.).  Sometimes, the scoring function actually drives ligand 

positioning, but often it only operates on the best scoring poses ranked top by the initial ligand 

positioning tool. In either of these rather intricate scenarios, scoring functions are docking-specific 

models, and most require machine-learning-based calibration. Therefore, docking simulations are less 

straightforward when compared to “standard” molecular simulations in which the FF Hamiltonian 

defines the energy, and affinity emerges as an ensemble average property over pools of representative 

conformers (i.e. the trajectory).  

According to Occam’s Razor principle, additional model complexity is only acceptable if 

demonstrated to bring a significant improvement of prediction quality. In this work we therefore 

examined whether the complexity inherent to scoring functions is indeed justified. For this purpose we 

compared S4MPLE (Sampler for Multiple Protein-Ligand Entities), a general purpose conformation 

sampler based on the AMBER/GAFF FF, complemented with continuum solvation terms with several 

state of the art docking tools that rely on calibrated scoring functions (Glide, Gold, Autodock-Vina) in 

terms of its ability to top-rank the actives from large and diverse ligand series associated with various 

proteins. There is no clear winner of this study, where each program performed well on most of the 

targets, but also failed with respect to at least one of them. Therefore, a well-parameterized force field 

with a simple, energy-based ligand ranking protocol appears to be as effective docking protocol as 

intricate rescoring strategies based on scoring functions. Such a tool that can sample the 

conformational space of the free ligand, the bound ligand and the protein binding site using the same 

force field can alleviate many of the approximations common to contemporary docking protocols and 

allow e.g., for docking into highly flexible active sites when current scoring functions are not well 

suited to estimate receptor strain energies.  
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2 Introduction 

Scoring functions1-8 are nowadays a key component of virtually every in Silico docking protocol, 

being used to evaluate the “pertinence” of the various ligand poses that are typically obtained from 

Force Field (FF)-based Molecular Mechanics (MM) calculations9-13. In general, scores are functions 

of a given geometry (pose) of the ligand-site complex, their arguments being either the internal 

coordinates (interatomic distances) in the complex or, more typically, empirical terms that are directly 

calculable from the said geometry (such as the number of established hydrogen bonds, the buried 

surface area or individual force-field-based energy terms).   

Traditionally1, the taxonomy of scoring functions distinguishes between “force field-based”, 

“knowledge-based” and “empirical” scoring functions – a rather vague and arguable classification. In 

principle, “FF-based” functions are, like the FF-based Hamiltonian of MM calculations, a weighed 

sum of the various terms (electrostatic, van der Waals, torsional, covalent, etc) provided by the 

employed FF. In standard force fields, the weights are by default set to one (at least formally – 

because in practice, the choice of an effective dielectric constant is just a means to weigh down the 

Coulomb term, etc.). By contrast, in scoring functions the weights are being fitted by multilinear 

regression, in order to have the scoring function output match experimental free energy/affinity values 

for training examples of binding site-ligand complexes. “Empirical” scoring functions follow exactly 

the same principle, except that they might include additional terms, not present in the initial FF (for 

example, entropy penalties, estimated by counting the number of rotatable bonds in the ligand which 

are assumed to be restricted upon binding the protein or terms related to buried surface area). These 

terms are generically merely “molecular descriptors” of the complex. In addition, terms may include 

potentials of mean force of an implicit solvent model (implicit desolvation, hydrophobic contact 

intensity estimators), which are not default FF terms – but might be added to the FF engine. However, 

FF energy components lack a rigorous physical meaning and are simply rather complex “descriptors” 

of the site-ligand complex. Thus, we do not see any real differences between “FF-based” and 

“empirical” scoring functions. In fact, all scoring functions are inherently empirical, raising some 

questions about the appropriateness of the often-seen expression “empirical scoring function”. Like 

elsewhere in the field of Quantitative Structure-Activity Relationships, QSAR14-17, there is, in 

principle, complete freedom in matters of the choice of the functional form and machine learning 

protocols. Therefore, it is of little practical interest to formally distinguish1 between “classical” linear 

regression-based scoring functions versus non-linear “machine-learned” approaches: multilinear 

regression too is formally a machine learning technique, even though the simplest one. 
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Knowledge-based7, 8, 18, 19 scoring functions are, however, inherently different, in as far as they 

imply no direct fitting of affinity values as the explained variable, nor do they require any knowledge 

of effective affinities for the “training” set of complexes. These functions are based on statistical 

analysis of relative occurrence rates of pairwise contacts in experimentally solved site-ligand 

complexes. The central working hypothesis behind the method is that the more energetically favorable 

the contact between two atoms of given types is, the more often it will occur in the experimentally 

solved structures (compared to some “baseline” probability of those atom types to touch “by chance” 

– a rather ill-defined concept, which is the weak point of the theory). Observed occurrence rates are 

thus converted to mean free energy contributions per contact. This is a methodologically distinct 

approach from the above-mentioned “fitted” scoring functions and suffers from specific drawbacks – 

such as its intrinsic inability to learn that geometries with bad contacts are not stable. In experimental 

crystal structures, there are no examples of bad contacts (else, the binding mode would not have been 

observed and used for training). Therefore, knowledge-based scores are typically provided with an 

additionally fitted repulsive van der Waals-like term. All this notwithstanding, the analogy to naïve 

Bayesian learning20 from observed occurrence rates clearly suggests that the approach is nevertheless 

yet another state-of-the-art machine learning technique. Concludingly, we wish to emphasize that 

scoring functions are quintessentially QSAR models based on predicted or experimental site-ligand 

geometries, covering various QSAR model building strategies, and inheriting all the strength and 

weaknesses of QSAR models. 

We would like to emphasize at this point that it is not always easy to draw a clear separation line 

between “force field engines” and “scoring functions” based on FF terms. The fact that “original” FF 

terms are reweighed in scoring functions is by no means a real difference – after all, the original FF 

terms are derived through empirical parameterization (which is conceptually equivalent to 

reweighting). Thus, the only clear distinction we can see between FF engines and scoring functions is 

their usage: the former are expected to work for a large range of sampling problems, while the latter 

are typically restricted to the a posteriori estimation of pose quality. However, the choice between 

these two formalisms should eventually only be based on the number of tasks (e.g., docking, 

conformational sampling, protein folding) in which each method excels The question we wish to 

address here is whether both these formalisms are needed as distinct entities, or whether a unified all-

purpose “force field” (or alternatively “scoring”?) engine might do the work all alone. The fact that 

many classical docking programs (including some used here) actually use the same “scoring” function 
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for both posing and docking is already an important step towards “unification”. Unfortunately, these 

scoring functions are not likely applicable to classes of molecular simulations other than docking.  

Docking pose rescoring, while practically wide spread, is theoretically questionable, as the 

“pertinence” of the poses should be granted by the algorithm that is proposing them. Poses should 

represent local minima at best, or stochastically generated geometries residing in low-energy areas of 

the ligand-site interaction energy surface, at least. One may argue that the scoring function should not 

be the one to pilot the docking, because its role is that of a “predictor” of the free energy of binding. 

However, free energy is an ensemble property and as such is associated with an entire conformational 

space zone. Therefore, it is not trivial whether – and, if so, how – it could be predicted based on a 

single geometry. Taking the ensemble average over many poses to estimate the binding free energy, as 

prone by fundamental statistical physics, is not a widespread approach. The idea has been tried – all 

while knowing that the limited set of docking poses cannot match the theoretical Boltzmann ensemble 

expected for rigorous docking21. However, it did not make it into “mainstream” docking programs – 

with the notable exception of MedusaDock22.  

Hence, most of the current docking approaches implicitly assume that a free energy score can be 

obtained from a single pose, and fitting is needed to compensate for all systematic errors committed 

by focusing on a single geometry instead of a conformational space zone (and by neglecting many 

aspects of the “docking event”; see below). This leads to an essential question: how to unambiguously 

define the geometry to be used as “the” representative of its conformational space neighborhood? 

State-of-the-art docking often uses docked ligand poses – hence, local minima of the FF-driven 

Hamiltonian. These correspond to perfectly arbitrary points on the scoring function landscape, as local 

minima of the latter do not coincide with the ones of the docking energy landscape. Docking programs 

are in general23 quite successful in retrieving ligand poses close (typically, within an RMSD<2 Å) to 

the “native” poses as published in the Protein Data Bank. However, having found one or a few pose(s) 

at RMSD<2 Å is by no means sufficient to ensure that the binding affinity is correctly predicted. The 

conformational space zone delimited by the RMSD<2 Å criterion is not a smooth region around the 

global energy minimum, but an extremely rugged landscape hosting a plethora of local energy 

minima. Ideally, a scoring function alleged to predict the property of an entire conformational space 

zone based on one of its representative geometries should return nearly-constant values for all 

geometries in that zone – thereby downscaling the impact of the actual choice of the representative 

geometry. In practice, there will be discrepancies within the scores assigned to the actual “successful” 

poses found by a (typically stochastic) sampling process if a scoring function different from the 
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docking function is used. This is expected even though the scoring function landscape is smoothed out 

by down-weighing the rugged non-bonded energy terms (typically, its weight in scoring functions is 

of the order of 0.1).  

Therefore using the actual scoring function to drive the poses i.e., let it serve as the objective 

function being minimized at the pose sampling step is likely to improve the reproducibility of finding 

poses corresponding to favorable scores. This is current practice in a few docking programs, such as 

MedusaDock24 or Gold25, 26, albeit in the latter the choice of using a same objective function for 

docking and scoring or not is left to the user (and adopted in the present work). The most widely 

spread strategy is however a “hybrid” one, with a classical (or on-purposed simplified) FF engine (for 

example, in Schrödinger’s Glide27-29), or another empirical approach such as ligand overlaying atop of 

a co-crystallized binder (in OpenEye’s FRED30-32) being used to rapidly generate many preliminary 

poses. These poses are then evaluated by the scoring function, and the pose(s) optimizing the scoring 

function value being returned as final docking pose(s). In this sense, it can be argued that such 

docking protocols are indeed using the scoring function to actually ‘guide’ the docking. However, 

such scoring function optimization is restricted to the problem space zones already representing (near) 

optimal docking solutions according to the objective function used for preliminary posing. For 

example, optimization of the ChemGauss4 scoring function in FRED is restricted to picking its locally 

best value over 729 poses generated by small-step rigid-body roto-translations of the initial pose 

representing the overlay atop of a co-crystallized reference ligand.  

It is somewhat difficult to assess where exactly state-of-the-art docking tools are positioned in the 

range between the two extreme paradigms: (a) complete sampling of the scoring function landscape 

over the entire docking problem space, versus (b) rescoring of poses generated by approaches that are 

different from the scoring function. The protocol for selecting “the” representative pose returning the 

“correct” (i.e., reflecting the free energy) score is often the result of an interplay between FF 

Hamiltonian/other posing generating protocols and scoring function optimization. This suggests that 

scoring functions may be rather docking protocol specific – not necessarily transferable. Moreover, 

stochastic docking approaches (which happen to be the most widely used), do not guarantee a 

complete reproducibility of all the potentially important details of the representative geometry to 

score. In addition, most of the scoring functions ignore the energetic and entropic costs of the 

conformational adaptation of the ligand to the site. Sometimes33, the ligand strain energy is evaluated, 

and subtracted from the total energy, on the basis of the conformers sampled in the presence of the 
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site. This however is a poor approximation of the ligand strain component if in absence of the site a 

ligand adopts other conformations. 

The role of empirical scoring functions is to compensate for all the systematic errors of the docking 

protocols, by means of an additional, machine-learned model, exploiting the output of the primary 

docking calculations as molecular descriptors. However, treating scoring as a machine learning 

problem comes with a price tag in the form of a limited Applicability Domain34, 35 (AD).  

Development of interaction fingerprint36-38 monitoring helped to focus virtual screening on 

compounds featuring already known ligand-site interaction patterns – the AD within which scoring 

functions are most likely to return accurate predictions. This helps to improve prediction accuracy, 

while sacrificing the unique theoretical ability of a docking tool to discover completely novel binding 

paradigms – so far unknown binding pharmacophores carried by novel molecular scaffolds. 

All these problems prompted us to explore the performances of the most simple and unambiguous 

approach – using the “default” FF-based Hamiltonian as implemented for example in S4MPLE 

(including a continuum desolvation term and hydrophobic/hydrogen bonding contact bonuses based 

on differentiable contact fingerprints) for both docking and scoring. If this approach would lead to 

high-quality Receiver Operating Characteristic (ROC) curves, similar to those obtained from scoring 

function, it would benefit from the advantage of simplicity and avoid all the previously outlined 

pitfalls and methodological incongruence. A “parameter-free” score should be understood as free of 

fitable terms that are specific for scoring.  

The straightforward candidate for calculating ROC curves would be the binding energy difference 

E, defined in equation (1) as the difference between the lowest energy level of the most stable 

ligand-site geometry, minus the lowest energy level of the most stable unbound ligand geometry, 

minus – with flexible docking – the lowest energy level of the most stable empty “apo” active site 

geometry. 

 

∆𝐸 = 𝑚𝑖𝑛𝑖〈𝐸𝑖〉
𝑙𝑖𝑔𝑎𝑛𝑑@𝑠𝑖𝑡𝑒 − 𝑚𝑖𝑛𝑖〈𝐸𝑖〉𝑙𝑖𝑔𝑎𝑛𝑑 − 𝑚𝑖𝑛𝑖〈𝐸𝑖〉

𝑠𝑖𝑡𝑒 (1) 

   

Ensembles <i> of the bound states “ligand@site”, free ligand and apo site geometries are to be 

generated by any arbitrary conformational sampling procedure, expected to converge (i.e. 

reproducibly rediscover the same lowest-energy geometries when initiated, e.g., from different 

starting points). Since it is known that solvent effects in general and, in particular, hydrophobic 

interactions, of entropic nature39, 40, are of utmost importance in ligand binding, the FF engine should 
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likely require the inclusion of a continuum solvation potential of mean force accounting for these key 

contributions. Even with this provision, a binding energy score accounting for solvent-related entropic 

effects is not yet a binding free energy – but the two values might display a sufficient degree of 

correlation, especially for targets in which enthalpy-entropy compensation41, 42 comes into play. If this 

is the case, then a docking protocol with no need for rescoring may prove successful in virtual 

screening. It solely requires (a) a consistent FF engine, accurately estimating intra- and intermolecular 

energies (solvent effects included), and (b) a conformational sampling protocol, able to reproducibly 

discover the relevant minima of the above-mentioned energy landscape. Such a docking protocol is 

thus perfectly compliant with the requirement of maximal simplicity, as prone by Occam’s razor 

principle – but can it compete with scoring function-endowed approaches? 

The conformational sampling program S4MPLE43-45 is well-suited for the candidate role of such a 

“rescoring-free” docking tool. First, being designed as a general tool for arbitrary conformational 

sampling problem, it can enumerate conformers for both free ligands, active protein sites – at user-

defined degree of flexibility, going from automated readjustment of rotatable directional hydrogen 

bonds to flexible residue side chains, to flexible protein loops – and protein-ligand complexes. 

Second, it implements both implicit desolvation and hydrophobic contact terms, as additional terms to 

its AMBER46/Generalized Amber47 (GAFF) FF engine, as mentioned in the preceding paragraph. 

Note that addition of the latter terms, in order to obtain the final “solvent-aware” FF engine, referred 

as “FitFF” in the original publication43 required the fitting of associated empirical parameters, the 

objective function being the classical “redocking success” (RMSD of pose with respect to ligand 

geometry in the experimental PDB structure).  E as defined in equation (1) can be straightforwardly 

obtained with S4MPLE. This is based on the same energy and PMF term enabling S4MPLE to fold 

small peptides such as the Trp cage (1L2Y), or to address “covalent” docking applied to fragment 

growing protocols – tasks that are out of the applicability domain of “classical” scoring functions. 

In order to compare the performance of “rescoring-free” S4MPLE to state-of-art docking tools, 

specific, non-trivial docking challenges were selected. Seven very different biological targets (GPCRs, 

kinases, other enzymes) of known 3D structure, and for which large sets of putative ligands are 

available (containing both binders and non-binders), were selected and standardized. The smallest set 

features 747 compounds, and the largest 6843. For the three most data-rich of the seven targets, 

compounds were randomly split into two equal-size sets, for deployment on different machines. Part 

of  the resulting eleven sets featured both real-life experimentally validated actives and inactives as 

reported in the ChEMBL48 database, while the others were sets of actives versus artificial decoys, 
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from the enhanced Directory of Useful Decoys, DUD-E49. S4MPLE (using FitFF as previously 

reported43, with no additional tuning of its parameters) was employed to both dock and sample the 

free candidate ligands within each set, then rank them by calculated E values according to equation 

(1). After sorting the set by increasing E value, the priority ranking of binders over non-binders was 

assessed by taking the area (AUC) under the ROC curve50. Eventually, the same sets of compounds 

were subjected to docking, rescoring and therewith associated ranking, with three popular, state-of-

the-art docking programs: Glide51, Gold52 and Autodock-Vina53. There is no absolute winner in this 

benchmarking study – all programs reached near-perfect results on some sets (ROC AUC ≥ 0.9) but 

experienced significant problems with at least one of the sets (ROC AUC≈0.5, meaning perfectly 

random ranking of candidate ligands). If the four docking tools were assigned gold/silver/bronze 

medals for each of the 11 individual challenges (sets), in decreasing order of their set-specific ROC 

AUC values, all the programs would have won “gold” at least once, and all except Gold would have 

also failed to obtain a medal at least once.  

S4MPLE does not stand out of the pool of the four benchmarked approaches – neither as the best, 

nor as the worst performer. However, it uses a FF-based Hamiltonian to drive the docking (by contrast 

to Gold and Autodock-Vina, using dedicated scoring functions as drivers), and does not feature any 

pose rescoring function, in contrast with Glide. It is true that the FF engine in S4MPLE is endowed 

with potentials of mean force for desolvation/hydrophobic effect that are typical to a scoring function. 

Yet, the current parameterization43 of these additional terms never relied on affinity-ranking 

simulations. Finally, S4MPLE is also useful for single-species (including peptide) sampling, i.e. it is 

not limited to a docking protocol requiring a protein site and an organic ligand. This allows for a 

consistent introduction of the energy penalty typically “paid” by the ligand when attaining the 

bioactive conformation. The results presented in this work therefore suggest that a direct, proper 

parameterization of the FF engine of docking tools may represent a more elegant and more 

parsimonious solution to the scoring problem. 

3 Methods 

3.1 Datasets 

Structure-activity sets automatically extracted from ChEMBL (v.20) for external validation of a 

drug space mapping project54 (see cited publication for the data curation protocol) were one key 

source of benchmark compounds of this work. Each set is associated to a protein target (enzyme or 
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receptor) and contains only compounds with experimentally known activities for that target. 

Compounds with the highest activity levels are marked as “active”, the others count as “inactive” (see 

cited paper for the activity label assignment procedure).  

Next, the QSAR modelability of each set was assessed, in order to demonstrate that assigned 

actives and inactives, unavoidable errors of the active/inactive labeling procedure notwithstanding, are 

separable based on the structural information contained in 2D ISIDA descriptors55. If successfully 

cross-validating QSAR models could be developed, then any docking failure to achieve such 

separation cannot be attributed to incoherent active/inactive labeling. SVM classification model 

building56 with evolutionary optimization of model parameters (including the choice of the ISIDA 

descriptor space) was undertaken for each set, following the default aggressive procedure of 12 times-

repeated three-fold cross-validation. The objective function of the model builder was cross-validated 

balanced accuracy (XV-BA). However, in order to enable the direct comparison to docking results, 

the performance of the best model (of maximal XV-BA) was expressed as a ROC AUC value, as 

follows: During each of the 12 repeated three-fold cross-validation procedure cycles, each compound 

is assigned exactly once to the left-out tier of items serving as external prediction set. Each compound 

harvests thus exactly 12 independent “votes” in favor or against the hypothesis that it is active. The 

total number of votes in favor was used as the scoring criterion with respect to which the set was 

sorted, in descending order, generating the cross-validated ROC curve and reporting its AUC. 

Seven targets associated with large, QSAR-modelable sets and with experimentally solved crystal 

structures were selected for this benchmarking study. As can be seen from Table 1, they include one 

GPCR (the Angiotensin receptor ATII), two kinase receptors and key enzymes of various families 

(cyclooxygenase, phosphodiesterase, protease, histone deacetylase). The Protein Data Bank structures 

of the targets were looked up, and if multiple structures were present, a convenient high-resolution 

representative, cocrystallized with a ligand was selected (see Table 1). As this benchmark considers 

only rigid-site docking, the problem of the site flexibility was ignored, neither has it been attempted to 

pick the site geometry potentially maximizing docking success over the considered sets. All crystal 

waters were deleted, and hydrogen atoms were added, following side chain protonation rules 

corresponding to physiological pH, by the VegaZZ57 software. Further active site preparation steps are 

docking software-specific and will be described below. 

 

Table 1: Targets considered for the benchmarking studies, with the ChEMBL IDs and the PDB 

code of the protein structure used for docking. 
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Target ChEMBL ID PDB Code Target Name 

CHEMBL1827 4OEX  Phosphodiesterase V 

CHEMBL1865 3GV4 Histone Deacetylase 

CHEMBL203 1XKK Epidermal Growth Factor Receptor 

CHEMBL204 1BHX Thrombin 

CHEMBL227 4YAY Angiontensin receptor II 

CHEMBL230 3LN1 Cyclooxygenase-2 

CHEMBL279 1YWN Vascular Endothelial Growth Factor Receptor 2 

 

For three of these targets (Thrombin, Cyclooxygenase-2 and Phosphodiesterase V), present in the 

extended Directory of Useful Decoys (E-DUD), the associated active/decoy sets were also co-opted 

into this study. As the DUD set of Cyclooxygenase-2 is very large (~14K compounds), it was 

randomly split into two sets, to be docked in parallel on different hardware. The sets, as two-column 

(SMILES, activity class) text files are provided as Supplementary Material. 

3.2 S4MPLE  

S4MPLE (Sampler For Multiple Protein-Ligand Entities), a molecular modeling program based on 

a Lamarckian genetic algorithm, has been described previously43-45. This conformational tool, 

allowing the selection of the degrees of freedom of the system to be considered during search, can be 

employed for a wide variety of simulation types: conformational sampling of ligands or small 

peptides, and docking of both fragment-sized and drug-sized compounds. There is no explicit limit 

with respect to the number of considered entities – simultaneous docking of multiple ligands is 

supported. The energy function relies on the force field (FF) formalism, and uses AMBER 46 and 

GAFF 47 to respectively simulate peptide and small organic moieties of the considered system. Here, 

all simulations are performed with the “Fit FF” energy scheme described, calibrated and validated 

previously43. The control of conformational similarity is performed by a symmetry-compliant pair-

based interaction fingerprint (PIF) which monitors two interaction types: close carbons contacts 

(based on C-C distance) and hydrogen-bonds. Contacts monitored in the fingerprints may contribute 

to the hydrophobic or hydrogen bonding energy terms if they are assigned non-zero weights. Two 

configurations of the system are considered equivalent if the Hamming58 distance between their 

fingerprints is lower than a user-defined threshold. The program is written in object-Pascal, and used 

in command-line mode. 
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3.3 S4MPLE Docking Protocol 

3.3.1 Active Site Preparation 

All protein atoms were fixed, by enumerating their sequence numbers into the dedicated 

fixed_atoms file. S4MPLE uses a predefined cutoff of 12 Å for non-bonded interactions. Protein 

atoms that are too far from the active site in order to ever come within 12 Å to any ligand atom would 

merely slow down calculations by requesting the continuous update of their distances to ligand atoms. 

Therefore, docking was not run on the entire protein, but on the selection of relevant residues that 

have at least one atom at less than 10 Å from any of the co-crystallized ligand, herewith used to define 

the active site region. Moreover, S4MPLE requires the user-specified input of “hot spots” – key 

solvent-accessible atoms, chosen preferentially at the bottom of the site cavity, which are used for 

random prepositioning of the ligand into the active site. These may, but do not have to include site 

atoms seen to make contacts to the cocrystallized PDB ligand. Their choice has no impact on the 

docking energy function (they are not used to tether the ligand). 

3.3.2 Ligand Preparation 

Ligands, initially provided as standardized SMILES, preprocessed by the standardization tool of 

the Strasbourg virtual screening web server http://infochim.u-strasbg.fr/webserv/VSEngine.html, 

underwent an automated conversion, by means of an in-house tool developed on the basis of the 

ChemAxon API,  to a fully protonated initial 3D structure. The tool relies on the tautomer59 and 

respectively pKa plugin60 to generate the most probable microspecies of the expected main tautomeric 

form (alternatively, users might request several tautomeric/protonation states to be generated, and 

each to be docked as an independent candidate – but the option was not used here). Explicit hydrogens 

are assigned, and a single conformer is then generated, by the conformer plugin. Eventually, the 

charge plugin61 is used to assign Gasteiger charges to this structure. Last, the tool detects flexible rings 

and proposes, for each, the single bond to be formally “broken” in order to enable intra-cyclic 

torsional axes to be driven by S4MPLE. Next, antechamber62 and other utilities, as called by GAFF 

pilot scripts, are used to assign GAFF ligand types, and to automatically generate associated FF 

parameters for the internal coordinates found in the ligand, if such did not yet exist. FF types and 

Gasteiger charges are added as data S4MPLE-readable fields to the MDL sd file used to store the 

proposed initial conformer of the ligand. The fully parameterized sd file and – if applicable – the file 

http://infochim.u-strasbg.fr/webserv/VSEngine.html
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with the aforementioned intra-cyclic bonds are added to the tar archive of the ligand set, the final 

product of the ligand preprocessing script.  

As GAFF parameterization is bound to generate new FF parameters, all ligands were processed on 

a same Linux machine, in a sequential way (parallelization of the task is difficult, because of the risk 

of concurrent writing access of new parameters to the updatable FF files). Nevertheless, the process is 

conveniently fast (hundreds to thousands of ligands/hour, depending on their complexity). Note that 

updated FF files need to be exported to the hardware platforms used for docking, if they are different 

from the machine used for ligand preprocessing. 

3.3.3  S4MPLE Docking 

S4MPLE docking scripts were written for parallel processing of ligand sets on various types of 

hardware: local multicore workstations, SLURM-driven clusters or gLite-driven computer grids. 

Irrespective of the environment, the procedure begins by extracting all the data pertaining to a given 

ligand into a dedicated directory, then running a 200-generation evolutionary conformational search 

with S4MPLE, on the free ligand, at default settings. This basic setup is considered to be sufficient for 

rather rigid, drug-like ligands. Most stable free ligand conformers are stored on disk, together with 

their intramolecular energies 〈𝐸𝑖〉𝑙𝑖𝑔𝑎𝑛𝑑. Next, active site data (molecular file as Tripos mol2, plus the 

required fixed_atoms and hot_spots files) are added to this directory. Upon restart, S4MPLE will thus 

detect the presence of two partner molecules, and seamlessly switch into “docking” mode.  

A first brief simulation is run with the S4MPLE testDiff option, in order to calibrate the optimal 

cutoff for the interaction fingerprint dissimilarity value minfpdiff, representing the threshold at which 

two conformers are considered as redundant, and thus pruned during the evolutionary process. The 

proper management of population diversity has been found to be of paramount importance with 

respect to ensuring the convergence/reproducibility of evolutionary simulations. As ligands vary in 

sizes, so does their interaction fingerprint, making it difficult to come up with a universally applicable 

minfpdiff value – hence, the need to calibrate it for each system. The population initialization 

procedure, normally serving as the first step for the evolutionary simulation, is called repeatedly (10 

times). After each call, the interaction fingerprints of the randomly generated population members are 

compared to each other, generating the complete Hamming distance matrix for all pairs of conformers 

in the population. The lowest, mean and maximal Hamming distances for each population are stored. 

The average of these lowest, mean and maximal Hamming distances over the 10 visited random 
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populations are output to the disk. The minfpdiff threshold is defined as 90% of the average of the ten 

lowest intra-population Hamming distances. 

Eventually, the main docking simulation is started as a G=1000-generation evolutionary 

optimization, with the above-determined minfpdiff value as a population diversity control parameter. 

Top poses are generated and stored together with their energy values 〈𝐸𝑖〉
𝑙𝑖𝑔𝑎𝑛𝑑@𝑠𝑖𝑡𝑒.  The energy of 

the ground state of the apo protein is not of direct interest in this study, being constant throughout a 

set of ligands bound to a same target. Therefore, the docking index  for the current ligand can be 

directly estimated as 〈𝐸𝑖〉
𝑙𝑖𝑔𝑎𝑛𝑑@𝑠𝑖𝑡𝑒 − 〈𝐸𝑖〉𝑙𝑖𝑔𝑎𝑛𝑑. After completion of docking calculations for all 

ligands, these can be rank ordered by increasing , and the “final” ROC curve can be generated in 

order to determine the area under it, the final benchmarking criterion. However, because S4MPLE 

will report the so-far best energy value achieved at every generation, it is also possible to 

retrospectively trace the ROC curve of “premature” results that would have been obtained if the 

docking process would have been stopped at G<1000 generations, by taking the so-far best energy 

value reached at generation G instead of the final 𝑚𝑖𝑛𝑖〈𝐸𝑖〉
𝑙𝑖𝑔𝑎𝑛𝑑@𝑠𝑖𝑡𝑒. The variation of the ROC AUC 

as a function of performed number of generations may be informative about the minimal required 

computational effort needed in typical S4MPLE docking simulations. 

3.4 Docking with Glide, Gold and Autodock-Vina 

Prior to docking with Glide, Gold and Autodock-Vina, ligands and proteins (except for Gold; see 

below) were prepared using Schrödinger Maestro's (Version 10.5, 2016-1 release) LigPrep and Prep 

Wiz applications (respectively) with default settings, except the following: 

LigPrep: Protonation states were calculated at pH = 7±0.5 and specific chiralities were retained.  

Prep Wiz: Water molecules were deleted, missing side chains were added (if needed), pKa values 

were calculated (at pH = 7) to assign the correct protonation states for all titratable residues and 

finally, restrained minimization was carried out.  

3.4.1 Glide27-29  

Glide docking  was performed via Schrodinger’s Maestro (Version 10.5, 2016-1 release) using 

default settings. The grid location and size were set automatically defined, based on the 

crystallographic ligands. Docking calculations were performed using the standard precision protocol 

(Glide – SP), and only a single pose having the best Glide score was retained. 
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3.4.2 Gold25, 26  

Gold docking was performed with version 5.5.  Prior to docking, all protein-ligand complexes were 

prepared following a standard ‘wizard’ workflow as implemented in the interactive 3D visualization 

program Hermes (version 1.8.2). As part of this process all crystallographic water molecules were 

removed. In all cases the ligand binding site was defined based on the coordinates of the 

crystallographic ligand. Docking was performed with default parameters (10 docking runs for each 

ligand, 105 generations for each run, flip all planar R-NR-1R2, flip protonated carboxylic acids, 

default torsion angle distributions). Both docking and scoring used the (default) CHEMPLP scoring 

function. Following docking, a single best docking conformation of each input ligand was selected 

based on the CHEMPLP score. 

3.4.3 Autodock-Vina53  

Protein and ligand structures were converted to pdbqt format, using Auto Dock Tools 1.5.6 and the 

appropriate scripts (as implemented in MGLtools). All rotatable bonds of the ligands were allowed to 

freely rotate, while the protein was held rigid. Partial charges calculated by LigPrep were retained. 

Docking was performed with Autodock Vina 1.1.2 using default parameters.  In all cases, the grid box 

was centered on the active site of the protein and the spacing between the grid points was set to 1 Å.  

Docking was streamlined using in-house written scripts. A single pose with the best score was 

retained for each ligand. 

 

4 Results & Discussion 

4.1 QSAR Modelability of Benchmarking Data Sets 

Table 2 below provides an overview of the eleven benchmarking sets, reporting their size, number 

of compounds being labeled as “active” and, eventually, the cross-validated ROC-AUC of the SVM 

classification models generated as described in §3.1, in order to assess the modelability of the sets. 

Here, good modelability – taken as success in achieving robustly cross-validating classification 

models – is a demonstration that the sets are actually rich in structure-activity information. The 

compounds labeled as active are structurally distinct from the tested inactives, as well as from DUD 

decoys – in a sense that can be captured by molecular descriptors such as the ISIDA fragment counts 

used here. This also means that activity labels are being reliably assigned, experimental error and 
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empiricism of the label assignment protocol notwithstanding – or else the classes would not be 

separable in a cross-validated machine learning attempt. This is true throughout the eleven sets, even 

though they widely differ in terms of the degree of imbalance between the actives and inactives: the 

fraction of actives may range from almost 50% to merely 3%.  

Actually, all the sets are almost perfectly separable by machine learning. This is perhaps not 

surprising, noting that on one hand these targets are amongst the best known in drug design, thus 

benefitting from large and coherent series of tested ligands. Furthermore, the evolutionary model 

optimizer is being given the option to choose the most suitable ISIDA fragmentation scheme, out of 

one hundred considered possibilities that were preselected because of their recurrent success in QSAR 

model building. They not only cover various strategies to define fragments (atom sequences, circular 

fragments, Carhart-style63 atom pairs, etc) but also propose different coloring schemes (by atom type, 

by FF type, by pharmacophore type), capturing distinct chemical information64, 65. Some of these 

schemes are seen to precisely encode the structural patterns that best correlate with activity on a given 

target. It is also important to note that ChEMBL “real-life” series of tested actives and inactives are 

very well separable, while DUD sets are perfectly separable. The distinction between actives and 

human-selected decoys is structurally much more obvious than the ones between actives and inactives 

which were actually designed to be actives, and are therefore quite often forming genuine “activity 

cliffs”.   

 

Table 2: The eleven benchmarking sets, denoted as (data source)_(target PDB code), where 

“data source” indicates either the ChEMBL ID of the target corresponding to the PBD code (for 

ChEMBL sets of actually tested actives and inactives) or “DUD” for sets of actives and decoys. 

SVM ROC-AUC is reported for the SVM classification models built in order to assess the 

modelability of these sets. 

SET Set size Number of 

Actives 

SVM 

ROC-AUC 

CHEMBL1827_4OEX 1427 683 0.978 

DUD_4OEX 2065 88 0.999 

CHEMBL1865_3GV4 747 231 0.966 

CHEMBL203_1XKK 5019 1212 0.985 

CHEMBL204_1BHX 2915 1272 0.970 

DUD_1BHX 2528 72 0.999 
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CHEMBL227_4YAY 948 403 0.997 

CHEMBL230_3LN1 3129 626 0.967 

DUD.1_3LN1 6843 213 0.999 

DUD.2_3LN1 6842 213 0.999 

CHEMBL279_1YWN 5235 1532 0.974 

 

4.2 S4MPLE Docking Performance as a Function of Sampling Effort 

How would premature stopping of the docking procedure impact the relevance of E scores as a 

ligand prioritization criterion? Since E is based on the lowest FF energy found by the evolutionary 

simulation, this question can be easily answered by monitoring the decrease of energy of the so-far 

most stable pose after each generation G. Using these so-far best pose energies instead of the final 

energies following simulation completion (at G=1000) allows a direct monitoring of the ROC AUC 

values as a function of conformational sampling effort at docking stage. This study, the results of 

which are illustrated in Figure 1, has a two-fold interest: 

- First, it represents an internal consistency check of the docking procedure: the docking score E is 

expected to gain in proficiency as sampling improves. Such a behavior would demonstrate that 

docking works because of the specific ligand-site contacts being discovered, and their importance 

to the binding energy being highlighted. Should E scores turn out to be “relevant” and separate 

actives from inactives in spite of obviously insufficient sampling (say, after only 10 evolutionary 

generations), this would likely hint to some artefactual behavior – presumably, size artifacts in a 

set where “actives” are larger, thus prone to show more non-specific contacts. Fortunately, this is 

not observed: ROC AUC is seen to steadily increase – even if final results may be deceiving for 

the few sets that are not successfully docked by S4MPLE. Some better-than-random results are 

nevertheless obtained even at 10 generations. Unsurprisingly, they all concern DUD sets, which 

were already demonstrated to be “too easy” to separate, thus most likely to suffer from biases as 

above-mentioned. The presence of the “twin” sets DUD_3LN1, equal-size random halves of the 

Cycloxygenase-2 DUD set furthermore provides an idea of the reproducibility of the ROC AUC 

trends. They are expected and indeed found to behave similarly, in spite of their processing on 

different computer systems. 

- Last but not least, the study provides an estimated value for the maximal number of generations, 

i.e. a termination criterion for S4MPLE runs: a few hundreds of generations appear to be sufficient 
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for most of the targets. This is significantly less than the 1000 used here and consistent with the 

previous study43 aimed at properly reproducing native ligand poses. It is debatable whether some 

of the shown curves might have pursued their growth beyond 1000 generations – in particular in 

the case of Thrombin CHEMBL204_1BHX known for its rather flexible ligands, and which fails 

to rise beyond the randomness threshold of ROC AUC=0.5. 

 

 

Figure 1: Dependence of S4MPLE ROC AUC scores on the docking effort, expressed in terms of 

evolutionary generations. 

4.3    Benchmarking of S4MPLE versus Classical Docking/Rescoring 

Approaches 

First, it is important to point out that S4MPLE is not a dedicated docking tool, but a broad 

applicability range conformational sampler. As such, it is significantly slower than commercial 

docking programs: one full ligand docking procedure may take several hours on a x86_64 core. 

Therefore, parallelization of the S4MPLE docking effort on clusters and computer grids is mandatory. 
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Last but not least, this benchmarking should be regarded as a global comparison of the four docking 

protocols. If one docking protocol were to systematically stand out as the best (or worst), it would 

unfortunately not be possible, on the basis of herein reported results, to link this outstanding behavior 

to any specific feature of the docking protocol – it might be due to differences in the handling of the 

protein site, in the handling of ligand protonation states, in the pose sampling procedure or eventually 

in the pose rescoring – or absence thereof. Systematic underperformance of a tool may also be a 

warning of a systematic malpractice in the hands of an inexperienced user. Fortunately, no such trends 

were noticed. All docking protocols were kept to default choices of operational parameters (i.e. no 

tuning of the latter was undertaken in order to maximize the performance of any given tool) in order to 

provide a fair comparison.  

As can be seen from Table 3 below (columns NOK), not all the compound set members could be 

successfully docked by all the tools. On one hand, S4MPLE was “privileged” by the fact that 

compound import and standardization already relied on ChemAxon tool, so that chemotypes causing 

problems with the ChemAxon API were tacitly discarded before the final compilation of docking sets. 

Thus, all the compounds successfully passed the ChemAxon-driven ligand preprocessing phase, and 

the very versatile GAFF parameter generation/assignment tool. On the other hand, S4MPLE was 

disadvantaged because it was operated on failure-prone computer grids and public clusters. Indeed, 

docking of several ligands failed due to grid or cluster malfunctions. Because of practical constraints, 

those simulations were not restarted. Commercial software, running on stable multi-CPU 

workstations, often registered failures, presumably caused by internal parameterization problems for 

specific chemotypes. 

 

Table 3: Benchmarking results, reporting the numbers of successfully processed set members 

(NOK – highlighted in red when outstandingly low; compare to set sizes in Table 2) and the 

resulting ROC AUC scores, for each of the benchmarked docking tools. AUC cell coloring reflects 

“medals” given for each challenge: “gold”, “silver”, “bronze” and “taillight”, in decreasing ROC 

AUC order. If AUC was below 0.55, a “taillight” status is assigned by default.  

SET/METHOD 
S4MPLE GLIDE GOLD AutoDock-Vina 

NOK AUC NOK AUC NOK AUC NOK AUC 

CHEMBL1827_4OEX 1423 0.636 1370 0.576 1427 0.786 1427 0.590 

DUD_4OEX 2031 0.671 2051 0.773 2063 0.757 2063 0.591 

CHEMBL1865_3GV4 731 0.552 744 0.453 747 0.549 742 0.603 
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CHEMBL203_1XKK 4676 0.706 4985 0.713 5012 0.686 5011 0.550 

CHEMBL204_1BHX 2662 0.473 2896 0.526 2907 0.624 2759 0.609 

DUD_1BHX 2355 0.785 2523 0.898 2528 0.813 2528 0.628 

CHEMBL227_4YAY 927 0.878 948 0.892 948 0.907 948 0.767 

CHEMBL230_3LN1 3084 0.666 2662 0.757 3126 0.725 3124 0.743 

DUD.1_3LN1 6748 0.879 5382 0.969 6835 0.952 6835 0.925 

DUD.2_3LN1 6793 0.865 5417 0.990 6837 0.933 6837 0.924 

CHEMBL279_1YWN 5148 0.745 5212 0.618 5232 0.701 5231 0.679 

 

The analysis of ROC AUC scores above firstly shows that all sophisticated, time-consuming 3D 

docking calculations lag far behind ultrafast 2D machine-learned models (see Table 2), in terms of 

active/inactive separation. The comparison is however not fair – the machine-learned models were 

specifically trained on these sets. Even though the employed three-fold cross-validation scheme was 

as “aggressive” as feasible, the left-out compounds likely had reasonably near neighbors in the 

learning sets used to calibrate the models predicting them.  

It is very likely that training set for the scoring functions in Glide, Gold and Autodock-Vina are 

insignificantly or not at all overlapping with the herein employed compounds. This notwithstanding, 

results in Table 3 nevertheless confirm the “nearly pathological” ability of separation of DUD actives 

versus decoys: DUD sets consistently have the best ROC AUC scores, all software confounded 

(including 4OEX, but to a lesser extent). This raises – once more – the question of the usefulness of 

artificial benchmarking sets, in the context where public and experimentally validated structure-

activity data is increasingly available. 

As for S4MPLE, it was set up using a completely different paradigm (native ligand redocking 

success) on completely unrelated compounds and targets – meaning that the additional FF parameter 

fitting only focused on the position of the docking energy minima, but completely ignored the 

question of their actual depth.  

The key conclusion that emerges from Table 3 is that all four docking protocols are seen to behave 

remarkably similarly in this test. “Difficult” docking sets – notably the ChEMBL-extracted Thrombin 

set CHEMBL204_1BHX and the Histone Deacetylase set CHEMBL1865_3GV4 – are a real 

challenge for all methodologies. Easy sets – of DUD provenience – are well-docked by most tools. 

Even if one would exacerbate the observed ROC AUC value differences by assigning “medals” to the 

docking protocols in terms of strict performance ranking, as was done in Table 3, this would still not 
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highlight any obvious winner of the benchmarking challenge. Autodock-Vina appears most often in 

the “taillight” position, especially when considering that S4MPLE earned two of its taillight scores 

with excellent ROC AUC values close to 0.9. Glide is often a winner, but often rather disappointing, 

while Gold and S4MPLE overall steady, reasonably successful approaches.  In terms of means of 

ROC AUC values over all compound sets, Gold reaches a value of 0.77±0.12, followed by Glide with 

0.74±0.17, S4MPLE with 0.71±0.13 and Autodock-Vina, with 0.69±0.13. Means of the best and of 

the worst performer are within less than one standard deviation, which is another way to highlight the 

absence of any significant differences in the overall proficiency of these approaches. 

Finally, we wish to point out that other metrics for evaluating the performances of docking tools 

are available, for example, the ability of the tool to reproduce experimentally observed binding modes. 

However, most docking tools are able to find at least one pose which is close (RMSD-wise) to the 

experimental binding mode. The problem is that these poses are seldom ranked in the first place. 

Thus, the so-called scoring problem is more complicated than the so-called docking problem and 

therefore in this work we focus on the former. 

5 Conclusion 

Having an additional layer for ligand pose rescoring therefore does not seem to bring any direct 

competitive advantage for docking. Implementing a very simple continuum solvent model in the FF 

engine is an option shown to be equally effective, but conceptually more parsimonious –  in the sense 

of Occam’s Razor principle – over the to-date privileged procedure of scoring function fitting. 

Moreover, improving the FF is an intrinsic necessity of molecular modeling and should benefit all the 

possible applications of the method, not only docking. By contrast, scoring function fitting is a 

docking-specific problem. Although S4MPLE energy well depth was never subjected to explicit fine-

tuning, the method performed just as well as dedicated docking techniques. This notwithstanding, it 

cannot be ignored that all methods did outright or nearly fail for certain compound sets – meaning that 

explicit fine-tuning of S4MPLE energy well depth should be undertaken, as a potential way to 

contribute to the much-needed improvement of docking methodology. 
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7 Supplementary Information 

The program S4MPLE (x86_64) version can be dowloaded from our laboratory web site 

http://infochim.u-strasbg.fr (see Downloads). A tar file with compound series being used in this work 

is provided as Supplementary Information. 
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