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Abstract

The Drug Design Data Resource aims to test and advance the state of the art in protein-ligand
modeling, by holding community-wide blinded, prediction challenges. Here, we report on our
third major round, Grand Challenge 3 (GC3). Held 2017-2018, GC3 centered on the protein
Cathepsin S and the kinases VEGFR2, JAK2, p38-a,, TIE2, and ABL1; and included both pose-
prediction and affinity-ranking components. GC3 was structured much like the prior challenges
GC2015 and GC2. First, Stage 1 tested pose prediction and affinity ranking methods; then all
available crystal structures were released, and Stage 2 tested only affinity rankings, now in the
context of the available structures. Unique to GC3 was the addition of a Stage 1b self-docking
subchallenge, in which the protein coordinates from all of the cocrystal structures used in the
cross-docking challenge were released, and participants were asked to predict the pose of CatS
ligands using these newly released structures. We provide an overview of the outcomes and
discuss insights into trends and best-practices.
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2 Introduction

Computer-aided drug design (CADD) technologies have enormous potential to speed the
discovery of new medications, and to lower the costs of drug discovery. When the three-
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dimensional structure of a targeted protein is known, two key goals of CADD are to predict
the bound conformation (pose), of candidate ligands; and to predict, or at least correctly
rank, the binding affinities of candidate ligands for the target'-3. Today, multiple technical
approaches to these problems are available in various software packages*® and
computational chemists routinely face the challenge of deciding which method is best to use
in a given scenario and how best to use it. Similarly, those developing new methods must put
their innovations in the context of existing approaches. However, evaluations of CADD
methods are typically retrospective, which is decidedly suboptimal method given that these
methods must work prospectively in actual drug discovery project. Moreover, different
methods are frequently benchmarked using different datasets, making it difficult to compare
multiple methods on an equal footing.

The Drug Design Data Resource (D3R; www.drugdesigndata.org) was founded to address
these problems by providing the research community with opportunities to compare CADD
methods on shared, prospective datasets. Building on the prior Community Structure
Activity Resource (CSAR)®9, D3R has now held three major challenges®11 and we report
here the outcome of Grand Challenge 3 (GC3). This challenge is the largest to date, focusing
on seven high quality datasets across five subchallenges for pose and affinity ranking
predictions. It also includes a new self-docking stage, designed to evaluate docking program
performance using the protein structure solved with the query ligand. The conclusions
provided by GC3 largely overlap with those of prior studies’~17, with a few novel
observations. In all, 28 research groups participated in GC3, submitting a total of 375
predictions. Here, we detail the datasets, challenge submission assessment procedures, and
prediction results, while seeking lessons regarding best practices and trends in the field. A
complementary set of articles from individual challenge participant labs accompanies this
overview in the present special issue of the Journal of Computer-Aided Molecular Design.

3 Methods

3.1 Datasets and subchallenges

Grand Challenge 3 comprised five subchallenges (Supplementary Table 1). Subchallenge 1
included both pose-prediction and affinity ranking components and was based on 24
Cathepsin S (CatS) ligand-protein cocrystal structures (Figures 1A and 1B), along with the
CatS IC50s of 136 compounds, which included many in the cocrystal structures. A
histogram of the pIC50 values is provided in Supplementary Figure 1. Experimental details
pertaining to the CatS dataset can be found in the supplementary materials'8. Both the
affinity and pose prediction CatS ligands are large and flexible with molecular weights of
530 to 810 Da and with 6 to 14 rotatable bonds. The 24 compounds with available cocrystal
structures fall into two chemical series. The first series contains 22 of the 24 pose prediction
CatS ligands (all but CatS_4 and CatS_6) that contain a tetrahydropyrido-pyrazole core. All
members of the second series (CatS_4 and CatS_6) contain a pyridinone core. The
tetrahydropyrido-pyrazole and pyridinone cores are demonstrated in Figures 1B and C,
respectively. Compounds in the first series display consistent binding modes with CatS,
except that CatS 7, CatS 9, and CatS 14 bind with the core flipped relative to the other
members of the series (Figure 1D). CatS_11 was omitted from Pose 1 RMSD statistics
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because it was found during analysis to be present in PDB entry 3kwn. This was missed
initially due to an incorrect bond order assignment. Further details regarding all CatS
compounds are provided in the supplementary material (Supplementary Table 2). Assay and
crystallization conditions for the CatS subchallenge data are also provided in the
supplementary material (folder SM_CatS_expt).

Subchallenges 2-5 included only affinity predictions or ranking and are based on
dissociation constants (Kg4) of various ligands for five kinases. To construct these datasets,
the D3R team selected ligand-kinase pairs for Kq measurements from a large matrix of
available ligand/kinase screening data (single concentration percent inhibition) that has since
been published®. Histograms of the pKq values are provided in Supplementary Figure 1.
Details of the experimental Ky measurement procedures may be found in the supplementary
material folder SM_KinaseData_DiscoverX. Prior to the challenge, some of the dissociation
constants and the full set of percent inhibition data were unblinded by Drewry et al.1°. As
the challenge pertains to the prediction of Kgs, we omitted the disclosed Kgs from our
evaluation statistics. We further note that, given that the submitted predictions in general
correlated worse with the K values than did the experimental percent inhibition data in
Drewry et al. (Table 7), our assessment is that the availability of the percent inhibition data
did not significantly affect the results of the challenge.

That said, this partial unblinding should be kept in mind when assessing the kinase results.
Subchallenge 2 involved 85, 89, and 72 diverse ligands for kinases vascular endothelial
growth factor receptor 2 (VEGFR?2), Janus Kinase 2 (JAK2), and p38-a (mitogen-activating
protein kinase 14 (MAPK14), respectively; 54 of these ligands were assayed for all three
kinases. Subchallenges 3 and 4 aimed to generate activity cliffs2? and include, respectively,
17 congeneric compounds with Ky values for JAK2, and 18 congeneric compounds with Ky
values for the kinase Angiopoietin-1 receptor (TIE2). Because GC3 contains two different
subchallenges involving JAK2, we will use the terms JAK2 SC2 and JAK2 SC3 to
differentiate between the two corresponding datasets. Finally, subchallenge 5 consisted of
Kq values for two compounds for the wild type and five mutants of the nonphosphorylated
ABL1 protein: ABL1(F3171), ABL1(F317L), ABL1(H396P), ABL1(Q252H), and
ABL1(T315I).

Although GC3 included components designed to test explicit solvent alchemical free energy
methods, as done in prior Grand Challenges'911, only one submission used such an
approach, so these components are not discussed in the present paper.

3.2 Posing the Challenge

Similar to GC20151 and GC219, GC3 followed a two stage format for the CatS dataset,
including a docking component in Stage 1 and affinity ranking components in both Stages 1
and 2. In addition, for the first time, Stage 1 was split into two parts, Stages 1a and 1b. In
Stage 1a, participants were asked to dock 24 CatS ligands into a CatS structure of their
choosing from the Protein Data Bank (PDB) archive (https://rcsh.org); this constituted a
cross-docking challenge because participants did not have the protein coordinates from the
cocrystal structure with each ligand. At the end of Stage 1a, all 24 protein structures, without
ligands, were released publicly, and participants were again invited to dock all 24 CatS
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ligands to their respective protein cocrystal structures from the released set; this constituted a
self-docking challenge. In both Stages 1a and 1b, participants were allowed to submit up to
five poses per ligand, where their single best guess was designated as Pose 1. Because the
kinases subchallenges did not include any new cocrystal structures, they were included only
in the Stage 2 affinity component of GC3. Prior to the start of the challenge, participants
were notified that the cocrystal structure with ligand CatS_14 has a dimethylsulfoxide
(DMSO) molecule in a critical bridging location; and six other cocrystal structures with six
other ligands, CatS_2, CatS_17, CatS_20, CatS_22, CatS_23, and CatS_24, have a sulfate
(SO4) ion in a critical bridging location. In order to facilitate the docking of these ligands,
representative structures of Cathepsin S, with the key SO4 and DMSO, but no ligands, were
provided in the dataset, and participants were invited to use this information in their docking
calculations. In addition, we asked participants to use the provided SO4-bound structure as
the reference structure for superposition of all pose predictions, in order to facilitate
evaluation.

3.3 EVALUATION OF POSE AND AFFINITY PREDICTIONS

Predictions were evaluated with the approach used for GC2015! and GC210, as summarized
below. The scripts used to evaluate pose and affinity predictions evaluation scripts are
available at Github (drugdesigndata.org/about/workflows-and-scripts). Pose predictions were
evaluated in terms of the symmetry-corrected RMSD between predicted and crystallographic
poses. These were calculated with the binding site alignment tool in the Maestro Prime Suite
(align-binding-sites), where a secondary structure alignment of the full proteins is
performed, followed by an alignment of the binding site Ca atoms within 5 A of the ligand
atoms2L. Evaluations in this article are limited to the best guess poses (Pose 1, see above),
unless otherwise noted. However, we also generated statistics for the pose with lowest
RMSD to the crystallographic pose (“Closest Pose”), and for the mean across all <5 poses
provided (“All Poses™); these additional analyses are provided on the D3R website.

Affinity predictions were evaluated in terms of the ranking statistics Kendall’s 2223 and
Spearman’s p24. Compounds with experimental Kq values reported only as >10 uM were
excluded from these ranking evaluations, but were used in an alternative classification
metric, which is described in the following paragraph. (Ranking statistics for the full set of
compounds are reported in Supplementary Table 3) The number of ligands per target
including or excluding Kq or IC50 > 10 pM and their respective highest affinities are
reported in Table 1. Uncertainties in these statistics were obtained by recomputing them in
10,000 rounds of resampling with replacement, where, in each sample, the experimental
IC50 or Ky data were randomly modified based on the experimental uncertainties.
Experimental uncertainties were added to the free energy, AG, as a random offset §G drawn
from a Gaussian distribution of mean zero and standard deviation RTIn(lg,). In this
evaluation, the value of Ig, was set to 2.5, based on the estimated experimental uncertainty.
For this challenge we do not compute the Pearson’s correlation metric or root-mean square
error (RMSE) given that we ask participants to consistently provide only their ranking of
compounds. The present article focuses on the Kendall’s T results, which is regarded as
having advantageous statistical properties?®, and the Spearman’s p results may be found on
the D3R website (drugdesigndata.org).
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Compounds with experimental Ky values reported only as =10 uM were considered in GC3
by defining these compounds as “inactive”, while compounds with reported K4 values were
defined as “active”. We then used the Matthews correlation coefficient?6, a metric of
classification accuracy, to assess how well each submission performed at distinguishing
these two sets of compounds. Thus, if a given subchallenge comprised N, known actives and
N; known inactives, by the present criterion, we assigned the top-ranked N, compounds in
the prediction set as “predicted actives” and the remaining N; compounds as “predicted
inactives” and compared this classification with the experimental classification.

As in previous challenges, two null models were used as performance baselines for ranking
ligand potencies; the null models were then evaluated using Kendall’s ts and Matthews
correlation coefficient in the same manner as the submitted predictions. The null models are
“Mwt”, in which the affinities were ranked by decreasing molecular weight; and clogP, in
which affinities were ranked based on increasing octanol-water partition coefficient
estimated computationally by RDK:it27. Null models were not calculated for the ABL1 target
since this subchallenge only contains two ligands.

In GC3, 28 unique participants submitted a total of 375 prediction sets, as detailed in Table
2. The following subsections provide an overview of outcomes. Details of the methods and
their performance statistics may be found in Supplementary Tables 4, 5, 7, and 8; further
information, including raw protocol files, identities of submitters (for those that are not
anonymous), and additional analysis statistics can be found on the D3R website (https://
drugdesigndata.org). Many submissions and methods are further discussed in articles in this
special issue by the participants themselves.

3.4 Pose predictions

3.4.1 Overview of pose prediction accuracy—The CatS ligands appear to have
presented a difficult docking challenge, as few submissions had a mean or median Pose 1
RMSD below 2.5 A (Figure 2). By comparison, roughly half of the submissions met one of
these criteria for the HSP90 and FXR pose prediction challenges in GC2015! and GC210,
respectively. Nonetheless, the best prediction sets did well, with lowest median RMSDs of
1.87 Aland 1.01 A, in Stages 1a and 1b, respectively.

The differences between mean and median RMSD values were often large (Figure 2),
suggesting that the RMSD probability distributions have fat tails and are asymmetric. This is
confirmed by inspection of the boxes and whiskers in Figure 2 and of the RMSD
distributions themselves in Supplementary Figure 2. Indeed, even some of the top
performing methods still generate rather inaccurate poses. These observations demonstrate
the value of considering both mean and median in evaluating docking performance. For
example, although not the top performing method in Stage 1a (Figure 2) as judged by
median, submissions ygégg and djcg4 both have low means and have the smallest pose
prediction standard deviations of all top performing methods. Interestingly, both submissions
used OMEGA and ROCS; but while yg6égg coupled these tools with the GLIDE docking
code, djcg4 used Rosetta ligand.
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3.4.2 Analysis by docking methodology—A variety of methods yielded either a
mean or median RMSD<2.5 A across all ligands, in both Stage 1a (Table 3A) and Stage 1b
(Table 3B). Given the relatively wide spread of RMSD values within each submission (see
prior paragraph), it is not clear that any one of these high-performing methods should be
considered “best”. Multiple software packages are represented in these relatively successful
approaches, including Glide28:29, ICM30, LeadFinder3!, POSIT32, and SMINA33, and in-
house codes from the Kozakov34 and Bonvin groups3®. Much as previously observed9.11 a
given docking code could generate widely varied levels of accuracy when used in multiple
submissions, as shown in Table 4 for several software packages that appear in multiple
prediction sets. Thus, success was not determined only by what software was used, but also
how it was used.

Interestingly, all but two of the top-performing submissions in Stage 1a (Table 2a) used
visual inspection to help with their pose predictions; the exceptions are b6t0o (MolSoft) and
4ery5 (in-house Monte Carlo). In contrast, only one of the ten lowest-performing methods,
based on Pose 1 median RMSD, used visual inspection (data not shown). This is in
agreement with results previously found in GC20151, where the more successful methods
tended to use visual inspection, though GC2 reported the opposite findingl. Thus, it is not
clear whether visual inspection is a significant determinant of success; presumably, its value
will depend on the expertise of the scientist. It is also worth noting that the use of visual
inspection makes it difficult to use these challenges to assess the accuracy of the
computational methods used, since it depends on factors outside the algorithms.

3.4.3 Analysis by ligand—An evaluation of pose prediction accuracy by ligand, rather
than by docking method (Figure 3), suggests that some ligands are more difficult to dock
correctly than others, although the large data ranges (see boxes and whiskers in Figure 3)
make this assessment uncertain. The two pyridinone ligands, CatS 4 and CatS 6, fall toward
the right in these graphs, and were the worst overall performing ligands in Stage 1b.
Similarly, the ligands with the flipped binding mode, CatS 7, CatS 9, and CatS 14, fall to the
right in the Stage 1a RMSD distribution, though only in the center of the Stage 1b
distribution. Thus, the poses of the pyridinones and the flipped-mode tetrahydropyrido-
pyrazoles may have been more difficult to predict on average. We further analyzed the
statistics of the flipped binding mode ligands, CatS_7, CatS_9, and CatS_14, by calculating
pose 1 RMSD statistics for each submission on only these cases (Supplementary Table 9).
Of the 5 submissions that obtained a median Pose 1 RMSD < 2.5 A, all were already present
in the top submitter category in Table 3. This demonstrates that methods that performed well
overall also tended to perform well in the difficult binding mode flip case. However, the
results become less clear when considering the results of Stage 1b. The submission rr5gx,
which employed a Medusa docking protocol, was the second ranked submission by mean
Pose 1 RMSD on the flipped binding mode ligands, with an impressive RMSD of 1.4 A, but
with a 3.37 A median pose 1 RMSD on the full set. Another interesting example is CatS_11,
whose structure was available in in PDB entry 3kwn. (This entry is now superseded by 5qc4
as a result of our refinement process, which revealed that a pyrrole group in 3kwn was non-
planar.) Nonetheless, the predicted poses of CatS_11 were not especially accurate, as
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CatS_11 was the 7th ranked ligand in Stage 1a and the 9t in Stage 1b, with median RMSDs
of 5.1 and 8.8 A, respectively.

3.4.4 Use of related crystal structures—The structure of a protein binding site can
vary significantly in response to the binding of varied ligands, and the inability to adequately
capture such responses is regarded as an important limitation in molecular docking36-38,
One method to reduce the resulting errors is to dock each ligand into a protein structure that
was solved with a similar ligand, as the binding site is likely to have already adopted a
suitable conformation. Indeed, prior grand challenges'1-10 as well as prior works by
others32:3940 sypport a view that docking into an available receptor structure solved with a
similar ligand increases the probability of correctly predicting ligand poses. This result
seems to have percolated into the strategies employed in GC3, as 64% of submissions (34 of
53) in Stage 1a docked to the publicly available structure with the most similar ligand, in
contrast to 45% (23 of 51) in GC210. During GC3, approximately 28 CatS crystal structures
were present in the PDB. We performed a 2D Tanimoto coefficient (tc) comparison between
the challenge compounds and those present in available cocrystal structures of CatS. The
results (Supplementary Table 10) show that six of the 24 CatS ligands had a tc greater than
0.6 with a ligand in the PDB at the time of the challenge. Results of GC3 provide continued
support for the benefit of using ligand similarity to guide the selection of the receptor for
docking (Table 3, and Supplementary Table 6 discussed below), as all of the top submissions
in Table 3 are listed as having used available crystal structures to guide docking. The
submissions in Table 3 that used ligand similarity used either the ROCS method*! or
unspecified methods to do so. As a control, we also inspected the use of available crystal
structures in the 10 submissions with largest median RMSD. Here, of the 10 submissions
with largest median pose 1 RMSD, 6 used ligand similarity guided docking. We visually
inspected a handful of the poses from these submissions and observed that the ligands were
docked to the wrong portion of the binding pocket. If an incorrect subpocket is chosen for
docking, ligand similarity guided receptor selection is not sufficient to prevent erroneous
predictions.

The problem of accounting for binding site conformational adaptation does not obtain in the
setting of self-docking, where a ligand is fitted back into the protein crystal structure with
which it was cocrystallized. We, therefore, anticipated higher accuracy pose predictions in
Stage 1b, where participants were provided with the precise protein structure determined
with each bound ligand. It was, therefore, unexpected that overall accuracy was lower in
Stage 1b than in Stage 1a (Section 3.4.1). However, this broad comparison may be hard to
interpret because the participants and methods are not matched between these two stages.
For a more meaningful comparison, we identified 13 participants who submitted predictions
in both Stages 1a and 1b (Supplementary Table 6). Of these 13 participants, six used the
same docking methodology in Stage 1a and 1b. For these participants, we quantified the
performance change on going from Stage 1a to Stage 1b as R = 100(X,; — Xp)/ X}, where X
is the median Pose 1 RMSD in Stage 1a, and X} is the median pose 1 RMSD in Stage 1b.
Across the six submissions, the mean improvement, <mi>, was modest, at 9.06%. However,
the range of R was large, —9.05% to +46%, indicating significant improvement in some
cases. (See Supplementary Table 6 for details.) These results support the value of similarity-
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guided docking but also emphasize the persistent importance of other factors. Thus, even a
method that could reliably model the effects of binding on the receptor structure might not,
in itself, yield large improvements in docking accuracy.

3.5 Affinity predictions

In this section, we evaluate the accuracy of predicted potency rankings for six different
protein targets: CatS and the kinases ABL1, JAK2, p38-a, TIE2, and VEGFR2 (Table 5,
Fig. 4). For CatS, the availability of 23 crystallographic poses in Stage 2 but not Stage 1
allows an examination of the role of structural data as a determinant of ranking accuracy. For
the kinase measurements, some experimental Ky values were reported as = 10 uM, making
them difficult to include in standard metrics of ranking accuracy. We made use of these data
by categorizing these compounds as “inactive”, and using the Matthews correlation
coefficient, a classification statistic, to quantify the ability of the prediction methods to
classify compounds as active or inactive. Finally, we examine the correlation of the kinase
K4 measurements with corresponding single-concentration percent inhibition data available
to us when we were choosing which K4 measurements to purchase. This analysis allows an
interesting comparison between the accuracy of an experimental high-throughput (single-
concentration) screen and the computational methods deployed in GC3.

3.5.1 Overview of potency ranking and active/inactive classification—Most of
the ranking predictions correlate positively with the experimental data (Fig. 4, and
Supplementary Table 7). Indeed, among all three Grand Challenges to date, GC3 yields the
highest potency ranking accuracy, with values of Kendall’s © exceeding the highest prior
GC2 value of 0.46, for ABL1 (0.52 +/- 0.3), JAK2 SC2 (0.55 +/- 0.08), JAK2 SC3 (0.71 +/
- 0.16), and TIE2 (0.57 +/- 0.24). This boost in performance is not attributable to
differences in the ranges of affinities, as both challenges have a similarly wide range of
affinities in each of their datasets. Nonetheless, this trend is also followed by a boost in null
model performance, for JAK2 SC3 (Mwt 0.56 +/- 0.16) and TIE2 (clogP 0.57 +/- 0.28).
The molecular weight and clogP models outperform the mean Kendall’s ¢ values in five and
three of the seven targets, respectively. Additionally, some targets appear to have been more
challenging than others. This is particularly evident for the VEGFR2, JAK2 SC2, and p38-a
subchallenge, which involved a set of 55 ligands that are common between three kinases, yet
the average Kendall’s t values range from —0.1 for p38-a, to 0.02 for JAK2 SC2, and 0.22
for VEGFR2 (Fig. 4). Similarly, looking at the performance across the two ligand sets for
JAK2 (SC2 and SC3), we observe a slight increase in Kendall’s ts of the top-performing
methods for JAK2 SC3 (Fig. 4). Similar to the kinase targets, most of the ranking predictions
for the CatS target also yield positive correlations with experimental data in both Stages 1
and 2. The large errors associate with the Kendall’s < statistics in some of the targets is due
in large part to the differences in number of ligands; in particular, ABL1, JAK2 SC3, and
TIE2 include relatively small numbers of compounds (Table 1).

For the first time, GC3 included many compounds with experimental K4 values reported
only as 210 uM. These were excluded from our Kendall’s < ranking evaluations. However,
we further evaluated all submissions against the full compound sets, using the Matthews
correlation coefficient (Fig. 5, Supplementary Table 8), a classification metric. Most of the
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ranking predictions yield favorable Matthews correlation coefficients for the classification of
active versus inactive compounds. This trend is followed by above average null model
performances, where the molecular weight and clogP models outperform the mean Kendall’s
T values in five and four of the five targets, respectively, if we account for the reverse
ranking performance of clogP in the case of p38-a and TIE2. Surprisingly, for TIE2, we see
a notable performance across many of the methods with 56% of submissions reaching a
Matthews correlation coefficient = 0.55. Interestingly, TIE2 was designed as an activity cliff
subchallenge to test the ability of current methods in detecting large changes in affinity due
to small changes in chemical structure. Thus, the outstanding performance in TIE2 may
reflect the ability of scoring function to classify congeneric ligands with a large activity cliff
between actives and inactives. Furthermore, simple null models in which potency ranked by
clogP and molecular weight have Matthews correlation coefficients of —0.8 and 0.78,
respectively. JAK2 SC3 was also designed as an activity cliff subchallenge. However, the
results are not as favorable in this case, which may be because it doesn’t have as sharp
distinction between actives and inactives; i.e., the pKy (-log(Ky)) distribution of TIE2 is
bimodal with peaks near the extremes, while the pKy distribution of JAK2 SC3 is unimodal,
and has a smaller range.

3.5.2 Analysis by affinity prediction methodology—As in GC219, the majority of
submissions used structure-based approaches to rank the ligands, while a minority used
ligand-based approaches. The two approaches performed similarly across most
subchallenges, in terms of both Kendall’s T and Matthews correlation coefficients. The most
notable exception was JAK2 SC2, where multiple structure-based methods (max t = 0.55)
outperformed the top-performing ligand-based approach (nzud3; © = 0.15) (Supplementary
Table 7).

As noted above, a number of methods exceeded the top performing methods in GC2. Here,
the top-performing methods, based on Kendall’s t© (Table 5) and Matthews correlation
coefficient (Table 6), are now reviewed. For ABL1, the top-performing methods include the
Rhodium docking and scoring algorithm developed by Southwest Research Institute (t=
0.52 +/- 0.3; 308xi), and a topology-based machine-learning method by Guo-Wei Wei
group*2 (t = 0.52 +/- 0.3; rdn3k) (Table 5). For JAK2 SC2, among the top-performing
methods is a combination method of gnina docking and a convolutional neural network
scoring model from the group of David Koes (t = 0.55 +/- 0.08;zdyb5)*3. This method
noticeably outperformed all other methods for this target, where the next top-performing
method has a Kendall’s < of 0.36 +/- 0.09 (7yjh3) and uses a custom ICM-score and 3D
atomic property field quantitative structure—activity relationships (QSAR) model developed
by Molsoft LLC (Table 5). For JAK2 SC3, three methods scored above the top-performing
Kendall’s < in previous challenges. These include a knowledge-based scoring function,
itscore2, from the group of Xiaogin Zou (t = 0.71 +/- 0.16; 87mci) and two variations of a
convolutional neural network docking and scoring method from the group of David Koes
group™® (t = 0.60 +/- 0.17 and 0.56 +/- 0.17; bi2k and yghg5) (Table 5). Lastly, for TIE2,
the top-performing methods include two topology-based machine-learning methods from the
group of Guo-Wei Wei group?? (t = 0.57 +/- 0.24 and 0.57 +/- 0.22; uuhe and y7gxv), and
a convolutional neural network docking and scoring method from the group of David Koes*3
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(z= 0.5 +/- 0.23; xpmn7) (Table 5). Another notable prediction set for the CatS dataset in
Stage 1 was submitted by Molsoft LLC (vtuzm); this exceeded all other methods by at least
one standard deviation of 0.06 for that dataset (Table 5). We further report on the top-
performing methods based on the classification metric, Matthews correlation coefficient
(Table 6). As noted above TIE2 sees a notable performance across many of the methods
employed. One method, in particular, was able to achieve a Matthews correlation coefficient
of 1, thus classifying eight actives and 10 inactives perfectly. This was done at Southwest
Research Institute using their proprietary Rhodium docking and scoring algorithm.

In GC3, we also observed increased use of machine- and deep-learning methods. These
methods spanned conventional machine-learning methods, topology-based machine-
learning, convolutional neural networks, and methods that combine physics-based and
machine-learning models. However, based on the violin plots it is not clear that such
methods performed better overall than methods using alternative approaches, as machine-
learning methods appear in the top and bottom tails of the distribution (Figures 7 and 8).
Both types of approaches, provided similar overall performance for all targets, with the
exception of TIE2, for which all but three submissions used machine-learning (Figures 7 and
8).

3.5.3 Relationship between affinity ranking accuracy and pose prediction—
We used the CatS subchallenges to examine whether knowledge of the crystallographic
poses of the ligands to be ranked would improve affinity rankings. Thus, we evaluated the
Stage 1 and Stage 2 Kendall’s < statistics for the 18 CatS ligands for which affinity data
were available and crystallographic poses were released between the two stages. (CatS 1 to
CatS 24, excluding CatS 7, 9, 11, 14, 19, and 21) (Supplementary Table 11). Much as seen
in prior Grand Challenges!®11 and prior literature?, Stage 2 affinity rankings were no more
accurate overall than Stage 1, even though crystallographic poses had been revealed for
every ligand (Fig. 6). However, Fig. 6 does show a slight increase in the top Kendall’s ¢ in
Stage 2 relative to Stage 1. For example, the topology-based machine-learning methods from
the group of Guo-Wei Wei“2 yielded values of Kendall’s < in Stage 2 of 0.15 — 0.56 (median
0.36; submissions 6jekk, ymv87, yf20t, sdrvf, pgrod, mhtOp, and 5d0rq), compared with
Stage 1 values of —0.11 — 0.21 (median 0.03; submissions (04kya, t3dbz, tq8gb, xyy85,
m70q4, and hnOqy) (Supplementary Table 8).

3.5.4 Comparison of experimental high-throughput kinase screening data
and computational predictions—As noted in the Methods section, the kinase Ky
datasets were measured specifically for use in GC3. In choosing the measurements to be
carried out, we referred to a much larger matrix of existing compound-kinase interaction
data that had been obtained based on high throughput screening (HTS), single-concentration
measurements of percent inhibition!®. Such measurements are less reliable than K values
derived from titration curves, and it is of interest to consider how their reliability compares
with that of the computational methods used in this challenge. We, therefore, evaluated the
correlation of the HTS percent inhibition data with the Kd data in terms of Kendall’s < and
the Matthews correlation coefficient (MCC) (Table 7) and compared these with the best
results from the computational methods. For JAK2 SC3, p38-a, TIE2, and VEGFR2, the

J Comput Aided Mol Des. Author manuscript; available in PMC 2020 January 10.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Gaieb et al.

Page 11

correlation coefficients for HTS versus Kq are ~0.8 (better than the computational results).
However, the HTS results correlate poorly with K4 for ABL1 (< 0.24, MCC -0.43), and here
computational methods performed well relative to single shot experiments. However, it is
possible that this outcome reflects in part the fact that ABL1 has a small ligand set, so good
agreement with the measured Kd values could more readily occur by chance, given the
variance of the computational methods. In addition, the calculations yield a Matthews
correlation coefficient value of 0.49 for JAK2 SC2, which is close to the HTS result of 0.54.

4 DISCUSSION

This was the largest D3R GC to date in term of datasets, with six different protein targets
and 5 subchallenges, and with a total of 465 prediction sets submitted by 28 research groups.
It was encouraging to see the highest performance to date on affinity rankings, though it is
not clear how much this improvement is due to methodological improvements and how
much to the nature of the systems used in the challenge. For unknown reasons, only one
submission used full free energy methods, in contrast with extensive use of this approach in
prior challenges!®. (GC3 included challenge components specifically designed for such
methods.) We observed increased use of machine-learning methods married to structure-
based modeling, though such methods did not, overall, perform better than those without
machine learning.

New to GC3 was inclusion of an initial cross-docking challenge, which was then converted
to a self-docking challenge for the same set of ligands and protein. On one hand, the general
lack of improvement on going to self-docking was unexpected, since there is no longer
uncertainty regarding the protein conformation corresponding with each ligand. On the other
hand, it is perhaps encouraging that the cross-docking methods employed here approached
self-docking accuracy. Other broad observations from GC3 largely reprise those of prior
GCs. Thus, making full use of available structural data tended to improve the accuracy of
pose prediction, and, in most cases, little to no improvement in ranking accuracy was
obtained when protein-ligand crystal structures are provided. The difficulty of obtaining
accurate rankings despite having what are arguably bona fide poses highlights the pressing
need for improved scoring or energy functions.

Two new evaluation issues arose in this challenge. First, we suggest that the quality of a
docking method be assessed not only in terms of its mean or median RMSD, but also
through metrics that quantify the width of pose RMSD distributions, such as standard
deviation. Thus, a method which yields a median RMSD of 1 A but a maximum RMSD of 6
A might be considered less desirable than one with a worse median RMSD of 2 A but a
lower maximum of 3.5 A. Second, this is the first GC to assess ligand rankings for their
ability to classify compounds as active versus inactive, viathe Matthews correlation
coefficient. Given that more effective identification of experimentally-verified hit
compounds from large compound libraries is a prime application of docking and scoring
methods, future blinded challenges designed specifically to test this capability could be of
significant interest.
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The present challenge also provides a unique comparison of computational accuracy with
the accuracy of experimental high throughput screening data. Because we selected the
kinase K4 measurements to be carried out based on available high throughput measurements,
GC3 allowed a new comparison of computational methods with HTS. (It is remarkable that
prior studies comparing HTS with docking and scoring have used different metrics, because
they have focused on identification of active compounds within large, diverse libraries of
putative inactives*®.) Although HTS data were generally more predictive of the K values,
this was not universally true. For two datasets, the best computational methods did well
relative to the HTS measurements. This encouraging observation lends support to the value
of available computational methods and to the prospects for further improvement in
modeling technologies.

5 Conclusions

1. Docking a ligand into a receptor conformation from a cocrystal structure
determined with a similar ligand tended to improve docking accuracy.

2. Conversion of a cross-docking challenge into a self-docking challenge led to
modest overall improvement in pose predictions, with some methods showing
marked improvement.

3. The accuracy of the poses used in affinity rankings did not correlate well with the
accuracy of the affinity predictions.

4, Docking results can be quite inconsistent, often generating skewed distributions
of pose RMSDs with fat tails. Therefore, reporting both mean and median is
informative, and it is of interest to explore ways of narrowing RMSD
distributions.

5. It is not clear that machine-learning methods performed better overall than
alternative approaches.

6. Although experimental HTS data were generally more predictive of Ky values
than current computational methods, the best computational methods
outperformed the HTS measurements for two of the datasets.

7. A given docking algorithm can yield a wide range of accuracies, depending on
how it is used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: A.

Binding poses of all 24 CatS ligands used in GC3 with the crystallographic surface
displaying shallow and surface-exposed nature of the CatS binding pocket. B.
Tetrahydropyrido-pyrazole core scaffold found in 22 of the CatS ligands and C. Pyridinone
core scaffold found in 2 of the CatS ligands. D. Core scaffold flip in the Tetrahydropyrido-
pyrazole core exemplified for ligands CatS_1 (brown) and CatS_7 (green).
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Figure 2 A.

Box plots of pose 1 RMSD statistics for all Stage 1a pose prediction submissions. B. Box

plots of pose 1 RMSD statistics for all Stage 1b pose prediction submissions. Data labels are
submission IDs. Red diamonds: means. Red lines: medians. Green boxes: interquartile

ranges. Whiskers: minimum and maximum RMSDs. The results are ordered from left to

right by increasing median RMSD.
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Figure 3. A.

Box plots of RMSD statistics, across submissions, for each ligand in Stage 1a. B. Box plots
of RMSD statistics across submissions, for each ligand in Stage 1b. Data labels are ligand
IDs. See Figure 2 for details.
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Figure 4.

Violin plots of Kendall’s © ranking correlation coefficients between predicted rankings and
experimental IC50 rankings for the CatS dataset in Stages 1 and 2, and for predicted and
experimental Ky values for all six kinase datasets: ABL1, JAK2 SC2, JAK2 SC3, p38-a,
TIE2, and VEGFR2. Mean, minimum, and maximum Kendall’s <s for each target are shown
by whiskers. Null models based on clogP and molecular weight are shown in green and
purple, respectively. Null models were not calculated for the ABL1 target since this
subchallenge only contains two ligands. The number of ligands for each subchallenge is

given above each column.
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Violin plots of Matthews correlation coefficients between predicted classifications and
experimental K classifications of active and inactive compounds for all six kinase datasets:
ABL1, JAK2 SC2, JAK2 SC3, p38-3, TIE2, and VEGFR2. Mean, minimum, and maximum
Matthews correlation coefficients for each target are shown by whiskers. Null models based
on clogP and molecular weight are shown in green and purple respectively. Null models
were not calculated for the ABL1 target, since this subchallenge only contains two ligands.
The number of ligands for each subchallenge is given above each column.
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Figure 6.
Violin plots of Kendall’s t ranking correlation coefficients between predicted rankings and

experimental IC50 rankings for the CatS dataset in Stages 1 and 2, using only the 18 ligands
for which crystallographic poses had been provided in Stage 2 (CatS 1 to CatS 24, excluding
CatS 7,9, 11, 14, and 21). Mean, minimum, and maximum Kendall’s <s for each CatS stage
are shown by whiskers.
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Figure 7.
Violin plots of Kendall’s t ranking correlation coefficients between predicted rankings and

experimental rankings for submissions that use machine learning (“yes”) and those that do
not (“no”) in each target dataset: CatS dataset in Stages 1 and 2, ABL1, JAK2 SC2, JAK2
SC3, p38-a, TIE2, and VEGFR2. Mean, minimum, and maximum Kendall’s <s for each
target are shown by whiskers. Null models based on clogP and molecular weight are shown
in green and purple, respectively. Null models were not calculated for the ABL1 target, since
this subchallenge only contains two ligands.
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Violin plots of Matthews correlation coefficients between predicted classifications and
experimental K classifications of active and inactive compounds for submissions that use
machine learning and those that don’t in each target dataset: ABL1, JAK2 SC2, JAK2 SC3,
p38-a, TIE2, and VEGFR2. Mean, minimum, and maximum Matthews correlation
coefficients for each target are shown by whiskers. Null models based on clogP and
molecular weight are shown in green and purple, respectively. Null models were not
calculated for the ABLL target, since this subchallenge only contains two ligands.
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