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Abstract

The previously reported procedure to generate “universal” Generative Topographic Maps (GTMs) of the drug-like chemical
space is in practice a multi-task learning process, in which both operational GTM parameters (example: map grid size) and
hyperparameters (key example: the molecular descriptor space to be used) are being chosen by an evolutionary process in
order to fit/select “universal” GTM manifolds. After selection (a one-time task aimed at optimizing the compromise in terms
of neighborhood behavior compliance, over a large pool of various biological targets), for any further use the manifolds are
ready to provide “fit-free” predictive models. Using any structure—activity set—irrespectively whether the associated target
served at map fitting stage or not—the generation or “coloring” a property landscape enables predicting the property for
any external molecule, with zero additional fitable parameters involved. While previous works have signaled the excellent
behavior of such models in aggressive three-fold cross-validation assessments of their predictive power, the present work
wished to explore their behavior in Virtual Screening (VS), here simulated on hand of external DUD ligand and decoy series
that are fully disjoint from the ChEMBL-extracted landscape coloring sets. Beyond the rather robust results of the univer-
sal GTM manifolds in this challenge, it could be shown that the descriptor spaces selected by the evolutionary multi-task
learner were intrinsically able to serve as an excellent support for many other VS procedures, starting from parameter-free
similarity searching, to local (target-specific) GTM models, to parameter-rich, nonlinear Random Forest and Neural Network
approaches.

Keywords Generative topographic mapping - Multi-task learning - Ligand-based virtual screening - Big data - Universal
maps - ChEMBL - DUD - Neural networks

Abbreviations Introduction

GTM Generative topographic mapping

UGTM Universal generative topographic mapping Generative Topographic Mapping (GTM) [1] is a dimen-
GA Genetic algorithm sionality reduction method corresponding to a probabilistic
Ccv Cross-validation extension of Self-Organizing Maps (SOM) [2]. In order to
DUD Directory of Useful Decoys project the data onto a 2D latent space, the method injects a
NN Neural network 2D hyperplane, called manifold, into the descriptor space,
RF Random forest in which each item of the “Frame Set” (FS) spanning this

space corresponds to a point defined by its high-dimensional
descriptor vector. The manifold is mathematically described
Electronic supplementary material The online version of this by a square grid of reference points (nodes) and a set of
article (https://dm.org/lo.1097/§10822-019-00188-)(} contains Radial Basis Functions (RBF, Gaussian functions). The
supplementary material, which is available to authorized users. . B . . . .
FS items serve to “bend” the manifold in order to make it

< Alexandre Varnek visit a maximum of their descriptor space positions. Using
varnek @unistra.fr a gradient descent, the method tries to fit positions of the
Lab F Chemoint o Faculty of Chemi RBF centers, in order to maximize Gaussian function levels

aboratory of t-hemotnlormatics, bacuity of Chemisiry, at all the FS data points. In other words, it tries to fit the
University of Strasbourg, 4, Blaise Pascal Str., S . .
67081 Strasbourg, France data maximizing a LogLikelihood (LLh) value, which is a
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is built, each compound is characterized by its LLh value
and is described by the vector of its probabilities to “reside”
in each node. This vector, R, representing the probability
of compound & to reside in node 7 is called the responsibility
vector. Since any compound is certain to reside somewhere
on the map, ), R, = 1, Vk. A library of several compounds
can be described by the vector of cumulated responsibilities
CR of its members k, CR, = Y, R,;. Given compounds of
known property or bioactivity values, an activity/property
Landscape can be created and visualized. This is useful
not only for data visualization and analysis but also as a
QSAR/QSPR model. After projecting a new compound on
it, the class/property value can be easily predicted from the
landscape.

Initially, GTM was tested as a tool for Quantitative
Structure—Activity Relation (QSAR) tasks on typical struc-
ture—property sets [4, 5], where the known actives and inac-
tives of the set were used both as FS and as property set for
coloring of the herewith fitted manifold. From this perspec-
tive, the initial descriptor space yielding the top predictive
manifold could be freely tuned, together with the manifold
parameters (number of nodes, number of Gaussians, Gauss-
ian width and Regularization term). The resulting GTM thus
represents a predictive model fully dedicated to a specific
QSPR problem, and exclusively trained on specific QSPR
data. It is the results of a typical single-task learning process,
like many other in Ligand-Based Virtual Screening: Deci-
sion Trees, Artificial Neural Networks (ANN), Support Vec-
tor Machine, Similarity search on binary fingerprints, etc.
[6, 7] In addition to this list, SOM method was also tried as
a VS technique in many studies [8—10]. For instance, it was
used to identify several purinergic receptor agonists [10].
Later, SOM was compared with a Similarity search with
data fusion, and, despite a poor predictive performance, the
results of such comparison show that in principle SOM can
be used as a tool for the VS tasks [8].

However, GTM was also tested successfully as a tool for
large public chemical database (PubChem-17, ChEMBL-17
and FDB-17) visualization and analysis [3]. In 2015, Sidorov
et al. [11] used GTM in order to create a compound set-
independent “‘universal” map of Chemical Space (CS).
The manifold and its underlying descriptor space were not
selected with respect to any peculiar property but were
aimed at representing the best possible consensus, ensuring a
broad “polypharmacological competence”, i.e. ability to host
predictive property landscapes for a maximum of diverse
properties. Conceptually, this is a form of Multi-Task Learn-
ing (MTL): based on a generic FS randomly picked to cover
the entire ChEMBL CS, structure—activity data from about
100 unrelated target-specific series of ligands of known pK;
values were used to challenge each manifold in terms of its
ability to “host” predictive activity landscapes for each of
these series. Selection with respect to the mean predictive

@ Springer

performance over all series produced not an optimal mani-
fold dedicated to a given QSPR problem, but a best-compro-
mise manifold of optimal robustness and ability to host any
arbitrary property landscape, all while maintaining a certain
predictivity level. This ability was eventually validated in
showing that it can easily distinguish active from inactive
compounds for more than 400 ChEMBL targets (others than
the ~ 100 used for selection). Results report an averaged Bal-
anced Accuracy (BA) higher than 0.6 for all the targets (none
of which served for map parameter selection).

The above approach is thus related to MTL [12, 13], con-
sisting in learning the choices (descriptors, GTM grid size,
etc.) leading to a “consensual” manifold, i.e. learning the
choices that are generally relevant to QSPR in drug design,
all targets confounded.

MTL is a wide-spread strategy in chemoinformatics and
is embodied by numerous distinct strategies, from the use of
calculated properties by a previously fitted model as input
descriptor to a higher-order model (feature nets [14], FN),
to multiple-output multilayered ANNs [13] to strategies
in which both ligands and targets are descriptor-encoded
(computational chemogenomics [15-19]). Conceptually, the
“universal” map approach is different from all the above
and is closest related to the multiple-output multilayered
ANNs. Manifold building conceptually matches the fitting
of parameters of the common layers of the ANN, crystalliz-
ing the knowledge of the common features that are impor-
tant to all the learning tasks. Landscape creation by coloring
with specific data sets, followed by prediction, matches the
task-specific output neurons of the ANNs—with the notable
difference that the latter may still be fine-tuned to improve
task-specific predictability. By contrast, at given manifold,
coloring of a landscape by projection of a property set and
thereupon-based prediction is deterministic and parameter-
free. Thus, there is no perfect analogy between the “univer-
sal” GTM style of MTL and above-mentioned classical MTL
methods. Unlike chemogenomics approaches, “universal”
manifolds do not require at all any injection of informa-
tion about the considered targets, which can be of arbitrary
diversity. While chemogenomics focusses on groups of
related activities (i.e. for biologically related targets) “uni-
versal” manifolds were successfully hosting landscapes for
completely unrelated chemical and biological properties,
ranging from target-specific activities to cell- or organism-
based screen results. Learning features that are “universally”
important in structure—activity relationships ensures, on one
hand, the generality of “universal” GTMs. On the other, gen-
erality will unsurprisingly result in lesser predictive propen-
sity for some targets, as the inductive transfer of knowledge
operating at manifold construction step basically resumes to
a generic ability to span drug-relevant CS.

So far, no comparison of GTMs and—in particular—
of Universal GTMs (UGTM) to other VS methods was
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undertaken. In order to evaluate the quantitative benefits of
building “universal” manifolds, their performance in VS was
compared to—firstly—single-task “local” GTMs, dedicated
to each biological properties, and also to state-of-art single-
task machine learning methods, namely Similarity search
and Similarity search with data fusion, Neural Networks
(NN), and Random Forest (RF).

Methods
Data

For this project two public databases are used: ChEMBL
(version 23) [20] and Directory of Useful Decoys (DUD)
[21]. To extract the data, the previously described [11] tar-
get-specific structure—activity series extraction protocol has
been reenacted on the later release 23 of the ChEMBL data-
base. A total of 618 human single proteins were retained,
after “categorization” of ChEMBL-reported activity
scores into “actives” and “inactives”, respectively. To this
purpose, a set of activity classification rules embodied in
scripts (available in Supplementary Material of the cited
paper) were applied. Compounds with reported percentage
of inhibition were considered inactive if values were below
50%, otherwise they were ignored. If dose-response activity
measures were available, various cutoffs ranging from low
nanomolar to micromolar range were tried out. Compounds
better than the threshold were labeled “active” (a minimum
of 15 required), the ones of activity weaker that the ten-fold
threshold value were “inactives” (at minimum 50), with in-
between molecules being ignored (in order to facilitate the
separation problem). The actual target-specific cutoff even-
tually retained was the one ensuring a reasonable balance,
closest to one active (or more) for four inactives (but never
exceeding parity one active: one inactive—series having, at
all considered cutoffs, more reported actives than inactives
were discarded). Files (labeled Target-ChEMBLID.smi_ID_
class) reporting, for each target, the standardized SMILES
string, compound ChEMBL ID and assigned class are now
provided-as Supplementary Material for the nine targets of
the VS simulation, together with their corresponding DUD
files. Equivalent data for the remaining 609 targets used in
internal validation are available upon request.

Next, DUD data were used to extract independent, exter-
nal compound series, by focusing on the subset of ChEMBL
targets that are also present in DUD and pruning all DUD
compounds already encountered in the ChEMBL series.
This often meant elimination of virtually all the actives from
the DUD series, thus failure to obtain an external data set.
However, in nine cases (Table 1) the DUD target-specific
series contained sufficiently numerous original actives and

Table 1 A list of nine DUD targets taken for the external validation

Target ID Target name

CHEMBL1827 Phosphodiesterase SA

CHEMBL1952 Thymidylate synthase

CHEMBL251 Adenosine A2a receptor

CHEMBL260 MAP kinase p38 alpha

CHEMBL279 Vascular endothelial growth factor receptor 2
CHEMBL301 Cyclin-dependent kinase 2

CHEMBLA4282 Serine/threonine-protein kinase AKT
CHEMBLA4338 Purine nucleoside phosphorylase
CHEMBLA4439 TGF-beta receptor type I

were retained for external validation of ChEMBL-trained
models (Table 2).

Structure standardization, assignment of activity classes
(active vs. inactive) for structures associated to human tar-
gets, and rejection of targets with too small or too imbal-
anced structure—activity series were employed as already
described. DUD compounds were likewise standardized, and
their given activity class labels (active vs. inactive =decoy)
were adopted as such. The set of data passed the data cura-
tion procedure contained 1.5M and 914K compounds from
ChEMBL and DUD databases, respectively.

Molecular descriptors

One hundred different fragmentation schemes supported
by the ISIDA Fragmentor software, [23, 24] and gathered
according to the experience of previous works [3, 11] were
used as a starting pool for the search of suitable descriptor
space. Recall that descriptor space selection is a key meta-
parameter of the evolutionary map sampling tool.

Universal (multi-task) GTM manifolds

For technical reasons (the release of a major, faster version
of the GTM software), the already published “universal”
map selection protocol has been rerun, with another impor-
tant change with respect to the previously published version;
the use of structure—activity class series as selection sets
instead of the originally employed (less data-rich) structure-
pK; (continuous) affinity data. Out of the 618 ChEMBL
structure—activity series, 236 were randomly designed as
selection sets (see file “selection.targets” in the zipped data-
set repository in Supplementary Material) for UGTM train-
ing (attached “external.targets” enumerates the remaining
382 targets not involved in selection). The FSs were con-
structed as sets of random ChEMBL samples of different
sizes (between 8.5K and 26K compounds). Here, a GA was
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used to optimize GTM parameters, such as the number of
nodes, the number of Gaussian functions (RBF), the regu-
larization coefficient and the width of an RBF. In addition
to the best descriptors set and the best GTM parameters, GA
also has chosen the most suitable descriptors normalization
scheme. At a given GTM parameter set, the manifold train-
ing procedure is run in incremental mode [25]. The size of
each block was 10,000 compounds. Then, for each selection
set, a threefold cross-validation of the current manifold was
performed, where landscapes are iteratively built based only
on 2/3 of the ChEMBL set, while the remaining tier will

be projected into the landscape and ranked by a probability
to be active, representing the “color” (relative population
of actives vs. inactives) in their target area. For technical
details about the rigorous formalism to construct and pre-
dict with class and activity landscapes, please refer to our
previous GTM publications. According to this selection cri-
terion of mean threefold cross-validated BA of prediction,
four best universal maps, each based on a different descriptor
space, with the mean BA ranging within 0.7-0.75 have been
selected (Table 3). Corresponding GTM parameters and FS
sizes are presented in Table 4.

Table 2 The datasets used for

. Target ID DUD data sets ChEMBL data sets Thresholds®
the screening procedure
Actives  Inactives  Total Actives  Inactives  Total  K/IC/ECs, (nM)
CHEMBLI1827 170 25,334 25,504 691 824 1515 50
CHEMBL1952 63 6113 6176 124 455 579 1000
CHEMBL251 79 28,001 28,080 1303 3618 4921 100
CHEMBL260 100 32,925 33,025 1453 2567 4020 100
CHEMBL279 94 22,595 22,689 2047 4663 6710 100
CHEMBL301 189 25,675 25,864 638 2305 2943 500
CHEMBLA4282 52 14,228 14,280 725 2619 3344 500
CHEMBLA4338 102 6334 6436 100 111 211 50
CHEMBLA4439 82 8013 8095 282 385 667 50

2Compounds with dose—response affinity value below or equal to threshold (in nM) are considered active,
while those with values exceeding the 10-fold threshold value are inactives. At intermediate activities,
compounds are discarded from the ChEMBL set. Note that the DUD definition of “actives” does not com-
ply to the same rules—they routinely include co-crystallized ligands, irrespective of their affinitics

Table 3 The best selected descriptors sets [23]

Map Abbreviation Definition Descrip-
tor set
size

1 IA-FF-FC-AP-2-3  Sequences of atoms with a length of two to three atoms labeled by force field type and formal charge 987

flag, using all paths

2 IIRAB-FF-1-2 Atom-centered fragments of restricted atom and bonds of a length one to two atoms labeled by force 1029

field types

3 IAB-PH-FC-AP-2-4 Sequences of atoms and bonds of a length two to four atoms labeled by pharmacophoric atom types and 779

formal charges using all paths
4 1A-2-7

Sequences of atoms of a length two to seven atoms 728

Table4 Selected GTM meta-

Map FS size Number of Number of Regularization ~ RBF width Normaliza-
parameters for the four best nodes per line ~ RBF per line coefficient tion scheme®
chromosomes chosen by the
genetic algorithm 1 17,000 41 23 1.122 1.1 2

2 17,000 47 29 0.018 1.6 1

3 25,500 37 19 0.017 2.1 2

4 25,500 38 19 3.55 1.9 2

“The standardization schemes: 1—centering on the mean value; 2—Z-normalization (centering on the
mean value and division by the standard deviation)
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Monitored success scores

In this benchmarking study, the mean area under the
Receiver Operating Characteristic (ROC AUC) when pre-
dicting half of the compound series based on landscapes
colored (or models learned, for other methods—vide infra)
on the other half is used in the internal validation proce-
dure. This further on named <AUC>,,, criterion will be
consistently used to compare models (except for single-
query similarity searching, where it cannot be defined—
see following subsection). The mean is taken over ten
independent repeats of the above procedures, where split-
ting into training and kept-out compounds is fully rand-
omized. No specific care is taken to ensure that each com-
pound is strictly kept out once and only once per iteration.

Internal validation results were alternatively depicted as
density distribution plots of the ROC AUC values over the
training subsets (Figs. 1, 2, vide infra). For each method
each ChEMBL target-specific set returns the ten distinct
ROC AUC values from the randomized internal validation
experiments described in the “Methods” section. Plotting the
density (number of targets) in counting each target 10 times,
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into the specific bins matching each of its ROC AUC values
achieved on the random splits (and followed by a normali-
zation of the density to compensate for multiple counts)—
would however produce one “global” histogram, with no
information on the expected fluctuation of density bar
heights. Estimating those error bars is however of paramount
importance, in order to ensure that the histogram shape is
not an artefact of the peculiar randomized choice of training/
test splits. For this specific purpose, this work proceeds to
first generate “splitting accident-prone” histograms, consid-
ering each target-specific compound set to be represented by
one randomly picked ROC AUC out of the 10. Depending on
the pick, the set will be counted in a lower or higher bin, i.e.
its localization on the X axis will reflect the intrinsic uncer-
tainly induced by the train/test splitting. Every set is counted
exactly once—only its X-axis bin may fluctuate. Therefore,
every such “splitting accident-prone” histogram will differ
in shape. One thousand of these are generated, which allows
a thorough monitoring of the expected fluctuation of bar
heights as a consequence of splitting artefacts. Eventually,
the plot shows the mean bar heights (which converge to the
above-mentioned “global” histogram) with associated error
bars (if readable—occasionally, fluctuations are too small).

Fig. 1 ROC AUC values for the selection set and rest targets: a map 1, b map 2, ¢ map 3, d map 4

M selection
Hrest
0.4 0.5 0.6 0.7 0.8 0.9 1
(b)
M selection
Hrest
04 05 0.6 0.7 0.8 0.9 1
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(d)
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Fig.2 Internal validation results on 618 ChEMBL targets: single- f latent spaces, g NN, and h RF. Here, Desc. 1-4 correspond to the
query Similarity search in a descriptors and b latent spaces, ¢ UGTM, descriptors sets shown in the Table 3
d local GTM, Similarity search with data fusion in e descriptors and
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In actual virtual screening, the DUD series is projected
onto the “complete” landscape generated from the entire
ChEMBL set. To estimate the predictive performance
of a particular map, ROC AUC (further on referred to as
VSAUQC) is computed, after ranking DUD compounds as
above-mentioned [26].

Benchmarked models

For each of the 618 targets, single-task (local) models
were set up in each out of four descriptors spaces chosen in
Table 3 using the following methods:

Regular (local) GTM

Similarity search

Similarity search with data fusion
RF

NN

Depending on the nature of the model, setting it up
requires distinct protocols, involving parameter selection or
fitting (local GTM, PF, NN) or decisions on used similarity
scoring, etc. These aspects will be detailed in the dedicated
paragraphs below, while the same success score monitoring
procedure outlined above was applied to all models. The
descriptors normalization scheme was not changed and cor-
responds to the one that is shown in Table 4.

The parameters of local GTM were not optimized, but
were taken by default: the number of nodes is 625 (25 % 25),
the number of Gaussian functions is 144 (12x 12), the width
of a Gaussian function is 2.82, the regularization coefficient
is 1.0. To perform the experiments with NN and RF, SciKit
Learn implementations of Multi-Layer Perceptron (MLP)
(https://scikit-learn.org/stable/modules/neural_netwo
rks_supervised.html) and RandomForestClassifier (https://
scikit-learn.org/stable/modules/ensemble.html#forest) were
employed [26-29]. Here, the MLP parameters are taken by
default: the number of hidden layers is 1, the number of
the nodes in a layer is 100, the rectified linear unit function
(relu) is used as an activation function [30], and the “adam”
solver is used for the weights optimization [31]. Backpropa-
gation approach is applied to train the net [26-28]. In case of
RF, an ensemble of trees is built on a random half of com-
pounds where the original ratio actives/inactives is kept. All
the parameters are taken by the default, mentioned in SciKit
Learn (https://scikit-learn.org/stable/modules/ensemble.html
#forest), where the number of trees in a forest is 10.

As a gold standard for the VS tasks, Similarity search
and Similarity search with data fusion were chosen. Both
these methods are based on a simple similarity principle:
similar compounds should share similar activity. Therefore,
the idea of similarity searching is to find compounds out of a

screening pool which are similar to the reference point with
a known label (i.e. active). While there are better suited cri-
teria [32, 33] to specifically monitor neighborhood behavior
compliancy, herein the generally applicable ROC AUC crite-
rion is used to score the potential predictive performance of
the method, after ranking candidates in decreasing similarity
order (Tanimoto scores) to the used query. Also, as an alter-
native to a simple similarity searching, similarity searching
with data fusion is taken. Within this approach the screening
pool is compared not to one but to N reference compounds
(in this project the pool of reference compounds was chosen
to embody a randomly picked 50% of all ChEMBL actives
available for a target). To rank a candidate, the highest Tani-
moto score is taken out of the N computed values. As it
was done earlier, in order to ensure reproducible results,
averaging out the dependence on the randomly picked query
compound(s), all similarity-based calculations were repeated
10 times, and the mean ROC AUC was computed for each
target. In single-query searches, the <AUC> value resulted
from 10 individual similarity ranking simulations using 10
randomly picked active queries. With data fusion, 10-fold
repeats of searches employing one half of the pool of actives
generate the corresponding <AUC>,, criterion that will be
directly compared with equivalent <AUC>, criteria of the
other VS methods, and the single-search <AUC>.

Eventually, the DUD pool was screened to obtain a
VSAUC score using only the data fusion-based strategy, i.e.
ranked according to their Tanimoto score with respect to
their nearest neighbor of the entire corresponding ChEMBL
series.

In order to measure the impact of dimensionality reduc-
tion/information loss by the GTM transformation of initial
descriptors into responsibility vectors, similarity searching
was performed in both descriptor and GTM responsibility
vector spaces.

Results and discussion
Internal validation of the new UGTM versions

For above-cited technical reasons, this article introduces
new, refitted “universal” GTM manifolds using a new GTM
software release and extended selection sets of 236 (ran-
domly picked) ChEMBL structure—activity class series
associated to as many single protein targets. This under-
taking is completely independent of the herein presented
VS benchmark, as it focuses on the “multi-task” learn-
ing of the optimal compromise in terms of neighborhood
behavior compliance over a large panel of targets, and even
though this by no means a preparation step of the actual VS,
UGTM performance analysis must be briefly discussed here.
First, it must not be forgotten that, out of the 618 ChEMBL
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target-specific series exploited by this study, 236 have a spe-
cial status with respect to UGTMs: they served as selection
sets for the optimal UGTM manifolds. This concerns two
of the nine targets used in the VS simulation are included
here (CHEMBL4439 and CHEMBL1952). By contrast, the
remaining 382 external sets (including the other seven VS
targets) were never used in UGTM tuning. It is thus legiti-
mate to verify whether these 236 targets are favored—better
predicted—by UGTMs, with respect to the latter. Figure 1
reports the distribution of “selection” versus “external” tar-
get-specific sets with respect to the internal validation ROC
AUC values (see density distributions plots, in the Scoring
section of methods). While the histograms show the expect-
able shift in favor of better results for the selection sets, this
trend is very limited. Therefore, in the following analysis, no
further distinction between selection and external ChEMBL
sets will be done—statistics will indiscriminately refer to the
set of 618 target-specific series. Furthermore, this observa-
tion is interesting, as it proves that MTL over ~200 struc-
ture—activity sets associated to fully non-related biological
properties allows to cartograph the drug-relevant CS with
a precision that is sufficient to ensure a same level of pre-
diction accuracy for a large number of distinct biologically
relevant targets to date.

Last but not least, let it be noted that even for the two
targets CHEMBL4439 and CHEMBL 1952 which served at
map selection stage, the external validation by VS is noless
rigorous than for any other of the herein benchmarked mod-
els. Any predictive model issued from supervised learning
uses target-related information for calibration, and then is
challenged to predict an independent compound set—as is
the case here (DUD molecules filtered in order to ensure
that they do not include any ChEMBL members). For all the
nine targets, “coloring” of UGTM manifolds with ChEMBL
data is the prerequisite to predict the likelihood to be active
for the external DUD compounds—this is the equivalent of
aforementioned model “calibration”, except that it occurs in
a deterministic and non-supervised manner—the manifold
being already given. To resume, for two targets the injec-
tion of training information into UGTM models implies
both manifold fitting and coloring, whilst for the seven oth-
ers it implies only non-supervised manifold coloring. In
either case, external validation concerns independent, never
encountered compounds.

Internal validation benchmark

Comparative internal validation results for the various meth-
ods in terms of the above-defined <AUC>,, (<AUC> for
single-query similarity screening) are given in Fig. 2. The
poorest results come from single-query similarity, which
is normal because the quantity of injected knowledge
(one active reference) is minimal. Things are even worse

@ Springer

after dimensionality reduction: moving to responsibilities
decreases performances even more. Nevertheless, with 50%
of the mass of known actives used to color GTM fuzzy class
landscapes, predictivity increases dramatically over single-
query searches, and in spite of moving into the responsibility
vector space.

Local maps are, as expected, better than universal maps.
To begin with, they are already based on molecular descrip-
tors known—thanks to the MTL of UGTM hyperparam-
eters—to be generally pertinent choices, for a large pool
of targets, Even though their control parameters were set to
default values (likewise, the parameters of UGTMS being
locked to the ones defining the best compromise neighbor-
hood behavior), the degrees of freedom controlling the
“bending” of their manifolds are now free to adjust specifi-
cally in response to the dedicated structure—activity series.
Local maps might presumably be improved even more if
their hyperparameters would be optimized.

Yet, similarity with data fusion, which is comparable
to the GTM-based approach in terms of input SAR knowl-
edge—50% of the actives—outperforms the former when
driven in the original descriptor spaces: projection on a map
inexorably costs in terms of information loss.

Eventually, NNs and RFs, are machine-learning
approaches featuring a wealth of tunable parameters—unlike
the fixed Universal and local GTM manifolds. Therefore,
they are clearly the better performers.

In view of virtual screening of the DUD series, the
best map for each target has been selected basing on its
<AUC>, score. The number of targets for which the best
map/descriptors space achieves a <AUC>,,, > 0.8 have been
counted for each method (Fig. 3).

700

Number of targets with <AUC>;,, > 0.8

Fig.3 The number of targets for which the best model over the four
descriptor spaces returns <AUC>,,,>0.8. If, for a target, at least one
of the four models of given type, based on the four descriptor spaces
reaches this threshold, then the target will be added to the type bin:
A—similarity search in initial space, B—similarity search in respon-
sibility space, C—UGTM, D—Ilocal GTM, E—similarity search with
data fusion in initial space, F—similarity search with data fusion in
responsibility space, G—NN, H—RF
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The bar chart in Fig. 3 keeps the trend seen in Fig. 1
and demonstrates that RF and NN outperform the GTM
approach. At the same time, local GTM demonstrates the
ability to be used successfully for 490 targets which makes
it comparable with Similarity search with data fusion, which
successfully handles 555 of the targets.

Virtual screening simulation using DUD compounds

The last part of the project is devoted to the retrieval, by
VS, of actives among DUD compounds, with the ChEMBL-
data-driven models. As it was described earlier, nine targets
were found in common for DUD and ChEMBL (Tables 1,
2), where the smallest series includes more than 6000 com-
pounds from DUD and more than 200 compounds from
ChEMBL. The most data-rich target contains more than
33,000 compounds from DUD and more than 6000 com-
pounds from ChEMBL.

Note that the DUD classification into actives and (pre-
sumably) inactive decoys is conceptually different from the
classifications employed in the training sets. DUD actives
may, for example, include co-crystallized ligands of high
micromolar to millimolar potency, which are far from
qualifying as “actives” by ChEMBL standards. This fact
is potentially harmful for the external “prediction” perfor-
mance monitored here—yet, this class of artefacts generally
applies to classification models, which are the last recourse
in response to highly heterogenous affinity measures that
cannot be directly compared unless they are converted to
“classes” according to more or less rigorous criteria. How-
ever, relative comparison of method performances should
still be possible—if extrapolation from ChEMBL data to
the DUD set is successfully accomplished by at least some
methods, failure to do so by others cannot be ascribed due to
classification artefacts. This is the case in the present work.

To screen the DUD pool, the best maps were chosen
based on their mean ROC AUC value obtained in internal-
validation (Table 5).

In this VS simulation, the QSAR-based approaches
were used, with the hypothesis (colored landscape, learned
model) being based on the entire ChEMBL series of the nine
above-mentioned targets. Single-query similarity searching
was not considered here, as its intrinsic limitations due to the
poverty of injected knowledge (a single active) were clear
from internal validation results. In addition to ROC AUC,
an Enrichment Factor (EF) within the 10% of top ranked
compounds was added as a second criterion to estimate the
quality of the predictions. The results of the external valida-
tion are shown in the Figs. 4 and 5.

Here, the predictive performance for the UGTM approach
varies within 0.55+0.9 in terms of ROC AUC and within
0.2-6.2 in terms of the EF. Local GTMs show much bet-
ter performance (ROC AUC ranges within 0.75-0.9, EF
ranges within 2.2-8.2). While NNs were on par with RF
and outperformed GTM models in terms of internal valida-
tion results, it appears that they are no longer systematically
among top performers in VS, where similarity searching,
RF and local GTM models are often much more robust. The
activity landscapes and the DUD projections done for the
target CHEMBL4282 and presented in Fig. 6 show that most
of the DUD compounds are within the occupied zones (in
other words, within the GTM applicability domain).

It is also seen from the DUD and ChEMBL activity land-
scapes that active DUD compounds are projected onto active
zones of ChEMBL, which makes the ROC AUC and EF
very high.

Discussion

The construction procedure of “universal” maps supporting
multiple predictive landscapes on a same GTM manifold
is a novel strategy in MTL. It is atypical in several aspects:

e First, it includes both operational parameters of the GTM
model and hyperparameters. The key hyperparameter
here is the choice of the molecular descriptor space,

Table5 ROC AUC values and

. . Target ID UGTM Local GTM Similarity search ~ Similarity scarch NN RF

corresponding descriptors space in initial space in latent space

for the best models computed

within the internal validation CHEMBLI827  0.89/4*  0.882 0.92/2 0.82/4 0.97/1 09771
CHEMBLI1952  0.88/4 0.84/4 0.85/4 0.76/4 0.92/1  0.92/3
CHEMBL251 0.84/3 0.84/2 09172 0.81/3 09572  0.96/3
CHEMBL260 0.76/2 0.77/2 0.9/3 0.81/3 0.95/3  0.95/1
CHEMBL279 0.74/2 0.71/3 0.89/3 0.76/3 0.93/3  0.93/4
CHEMBL301 0.82/4 0.83/4 09172 0.8/3 09472 0.95/3
CHEMBL4282  0.83/3 0.88/2 0.94/2 0.83/3 0962  0.96/2
CHEMBLA4338  0.83/1 0.86/3 0.85/3 0.78/3 09472 0.93/2
CHEMBL4439  0.88/2 0.9/2 0.89/2 0.87/3 09472 0.94/3
*Mean ROC AUC/No. of a map/descriptors space corresponded to Table 3
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Fig.4 The comparison of

the VS methods, where each
column corresponds to the best
map in terms of its ROC AUC
value computed in the internal
validation (see Table 5)

Fig.5 The EF for different VS
approaches where the EF value
is given for the map with the
highest ROC AUC value com-
puted in the internal validation
(see Table 5)

VSROCAUC

@ Universal GTM

- O Neural Networks

@ Random Forest

M@ Sim. search with data

fusion in initial space

B Sim. search with data
fusion in resp. space

W Local GTM

B Universal GTM

ONeural Networks

VS Enrichment Factor

allowing the procedure to select those descriptor spaces
which remain neighborhood behavior-compliant after
GTM-driven dimensionality reduction

Second, its multi-task nature is given by the construction
of a common manifold, which is, per se, an unsupervised
learning process aimed at maximizing the coverage of
FS compounds by this manifold. This common manifold
is challenged to host fuzzy classification landscapes for
many different biological targets. Each of them is a clas-
sical single-task model for the property associated to the
ligands that were used to color the specific landscape.
However, since these landscape-based predictive mod-
els do not feature any specific fitable parameters, their
quality can be regarded as an intrinsic property of the
underlying common manifold. Creation of the manifold
implicitly provides access to as many landscape-driven
predictive models as available property-annotated ligand
series. The MTL—here primarily consisting in selecting
optimally suited descriptor spaces and optimally asso-
ciated GTM grid size, manifold flexibility parameters,
etc.—was directed by the goal of discovering (hyper)
parameter combinations maximizing the mean quality of

@ Springer

B Random Forest

@ Sim. search with data
fusion ininitial space

B Sim. search with data
fusion inresp. space

W local GTM

236 distinct ““selection” series of target-specific activity-
annotated ligands

Third, it does not focus on specific transfer of knowledge
within biologically related targets, such as is the case in
computational chemogenomics. This MTL simultane-
ously addressed the rather exhaustive set of all human
protein targets with sufficient activity annotations in
ChEMBL, all protein families confounded. Neither
the 236 “selection” series of target-specific activity-
annotated ligands, nor the remaining 382 series used
for external validation (with comparable success rate
to the former 236) include any intended family-specific
bias in terms of biological targets. Here, MTL would
not target typical questions like “What are the common
features of kinase binders?”, but more general “What are
the common features of bioactive molecules, all targets
confounded?”

Uncovering the few ISIDA fragmentation schemes that

are optimally suited for this endeavor is a first key result
of this atypical multitask learning setup. Since descriptor
spaces cannot host predictive GTM models unless they are,
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Universal GTM

Local GTM

ChEMBL fuzzy
class landscape

active

inactive

DUD compounds projected
as dots at the mass center
of their  responsibility
clouds on the ChEMBL
class landscape

active

inactive

DUD fuzzy class
landscape

active

inactive

Fig.6 Fuzzy class landscape representations of the (ChEMBL and respectively DUD) sets associated to target CHEMBL4282 on universal map

3 (left) versus the local GTM (right)

per se, neighborhood behavior-compliant, it is unsurprising
to observe that all the alternative approaches—from data-
fusion-driven similarity searching to target-dedicated local
GTM, RF and NN models—were rather successful, both in
terms of internal validation and external VS. There was no
need to rescan, for each predictive method, the entire set of
available molecular descriptor spaces—the choices of the
evolutionary UGTM builder were appropriate. Note that the
100 different descriptor spaces out of which the four herein
used were selected have themselves emerged as a histori-
cal accumulation of descriptor spaces that were used in the
past [3, 11], on rather unrelated problems such as library
comparison, and were seen to be successful. In this sense,
if we declare all the cases in which knowledge from pre-
vious experiences is actively used to restrain the scope of
effectively considered working hypotheses as some form of
“multi task” learning, then MTL is rather the rule than the
exception in chemoinformatics.

UGTM models are remarkably robust in VS—for
models with zero adjustable parameters, albeit they are

systematically outperformed—in particular with respect
to enrichment of the top selection—by the equally param-
eter-free data-fusion similarity searching, not affected by
information loss upon dimensionality reduction. However,
UGTM models are specifically failing to rank a significant
number of actives among the top 100 candidates—they are
not effective in ensuring high EF values in VS. By contrast,
their global ROC AUC scores show that they do, overall,
manage to eventually rank actives ahead of most of the inac-
tives, only slightly less effective than the other methods—
without systematically placing actives at the top of the list.

Responsibility vectors are still maintaining some degree
of neighborhood behavior-compliance, but their use in
similarity searching is not recommended, as landscape-
driven prediction on UGTM manifolds is the more power-
ful method. Note that data fusion-based similarity screening
with Q actives being used as queries would scale like QxN
in terms of computational effort required to virtually screen
a database on N candidates. By contrast, landscape-based
prediction effort is simply proportional to N and does not
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depend on the training set size used to create the predictive
landscape. Thus, the latter would become computationally
more interesting after a given Q value—not to mention all
the benefits stemming from intuitive visualization provided
by the GTM approach.

Conclusions

The previously reported strategy to generate “universal”
maps, able to support predictive models for a broad spectrum
of biological activities represents a generic MTL approach,
where optimal molecular descriptors are selected alongside
with optimal operational parameters of the GTM algorithm.
A first important outcome of the approach is uncovering
“multicompetent” molecular descriptor spaces that remain
neighborhood behavior-compliant even after the dimension-
ality reduction process—Ileading to GTM responsibility vec-
tors and ultimately to a (x, y) point in 2D GTM latent space.
These tend to correspond to ISIDA fragmentation schemes
restricted to rather small fragment sizes but incorporating
information-rich atom labels such as pH-dependent phar-
macophore types or CVFF force field types.

It could be shown that descriptors herewith selected are
not only an excellent support for GTMs, but also for many
other predictive models—starting with plain similarity
screening. In this sense, all models here implicitly benefit-
ted from the initial MTL, which provided a pool of four
descriptor spaces that turned out to be highly relevant for
all the envisaged QSAR model building procedures for more
than 600 completely independent targets.

Tanimoto-score-based similarity screening (using a data
fusion scenario, thus ensuring that the amount of informa-
tion injected into it—active examples—matches the sizes of
the training sets used by other approaches) is actually more
successful than UGTM-driven predictions, as information
loss upon dimensionality reduction is unavoidable.

Local GTMs, where manifolds are allowed to focus on
the chemical subspace populated by a single target-specific
ligand series, are unsurprisingly better performers than their
universal, consensus-oriented counterparts. Note, however,
that the latter would always represent a better choice when-
ever the activity-annotated data set pertaining to a target of
interest is not sufficient to support the fitting of local maps.
The same holds true for parameter-rich non-linear RF and
NN models.
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