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Abstract

We present the performances of our mathematical deep learning (MathDL) models for D3R Grand 

Challenge 4 (GC4). This challenge involves pose prediction, affinity ranking, and free energy 

estimation for beta secretase 1 (BACE) as well as affinity ranking and free energy estimation for 

Cathepsin S (CatS). We have developed advanced mathematics, namely differential geometry, 

algebraic graph, and/or algebraic topology, to accurately and efficiently encode high dimensional 

physical/chemical interactions into scalable low-dimensional rotational and translational invariant 

representations. These representations are integrated with deep learning models, such as generative 

adversarial networks (GAN) and convolutional neural networks (CNN) for pose prediction and 

energy evaluation, respectively. Overall, our MathDL models achieved the top place in pose 

prediction for BACE ligands in Stage 1a. Moreover, our submissions obtained the highest 

Spearman correlation coefficient on the affinity ranking of 460 CatS compounds, and the smallest 

centered root mean square error on the free energy set of 39 CatS molecules. It is worthy to 

mention that our method on docking pose predictions has significantly improved from our 

previous ones.

1 Introduction

The Drug Design Data Resource (D3R) offers blind communitywide challenges of ligand 

pose and binding affinity ranking predictions.1–3 Benchmarks in D3R contests contain high 

quality structures and reliable binding energies supplied by experimental groups before the 

publication. These challenges provide computer-aided drug design (CADD) community a 

great opportunity to validate, calibrate, and develop drug virtual screening (VS) models. The 

latest D3R Grand Challenge 4 (GC4), took place from September 4th 2018 to December 4th, 

2018. GC4 presented two different protein targets, Cathepsin S (CatS) and beta secretase 1 

(BACE), which were generously supplied by Janssen Pharmaceuticals and Novartis, 

respectively. There were two stages in GC4. The first one has two subchallenges, namely 

Stage 1a and Stage 1b. In Stage 1a, participants were asked to predict the pose, rank the 

affinity, and estimate the free energy of BACE ligands. Following Stage 1a, Stage 1b 
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revealed the receptor structures and participants were asked again to predict the 

crystallographic poses of 20 BACE ligands. There was no affinity calculation in this stage 

1b. The second part of GC4 was called Stage 2 which contained the affinity rankings and 

free energy challenges for both BACE and CatS compounds. In this last stage, participants 

were able to take advantage of experimental structures of BACE complexes released right 

after stage 1b.

A successful VS model requires a reliable ligand conformation generation and highly 

accurate scoring function to predict binding affinities. There are several state-of-the-art 

software packages to take care of the first component of VS, for example, Autodock Vina,4 

GOLD,5 GLIDE,6 ICM,7 etc. Unfortunately, one may fail dramatically to achieve decent 

poses if blindly using these software programs. The pose prediction results in Grand 

Challenge 3 (GC3) clearly demonstrated this issue.3 The second component of VS relates to 

the development of scoring function (SF) for binding affinity predictions. Basically, one can 

classify SF methods into four different types, namely force-field-based SF, knowledge-based 

SF, empirical-based SF, and machine learning-based SF.8 The force-field-based SFs 

commonly emphasize van der Walls (vdW) interactions, electrostatic energy, hydrogen 

bonding descriptions, solvation effects, and so on. The well-known SFs for this category are 

COMBINE,9 MedusaScore,10 to name only a few. Typical examples of knowledge-based 

SFs are,11 DrugScore,12 KECSA,13 and IT-Score,14 which utilize protein-ligand pairwise 

statistical potentials in an additive manner to predict binding affinities. One can regard the 

empirical-based SFs as simple machine learning-based SFs since these SFs employ linear 

regression schemes to construct predictive models using various physical features, for 

instance vdW interactions, Lennard-Jones potentials, hydrogen bonds, electrostatics, 

solvation, and torsion information, etc. PLP,15 ChemScore,16 and X-Score17 are the well-

known representatives in this category. The last type of binding affinity SFs is machine 

learning-based approaches which have recently arise as the most advanced technique in 

CADD. One of the pioneer work on this SF category is RF-Score18 based on the Random 

Forest (RF) algorithm19 and their features as the numbers of atom pairwise contacts. Thanks 

to the nonlinear representation of the sophisticated machine learning frameworks, machine 

learning-based SFs can characterize the non-additive contributions from functional group 

interactions in the binding affinity calculations.20–26

The availability of massive biological datasets, along with the accessibility to high-

performance computing cluster (HPCC), has made machine learning-based models an 

emerging technology in biomolecular data analysis and prediction. However, the accuracy of 

machine learning-based SFs highly depends on whether their features are able to capture the 

physical and chemical information in protein-ligand interactions. Moreover, the direct use of 

three dimensional (3D) biomolecular structures in the deep learning network is immensely 

expensive. This hindrance mainly causes by the hefty number of degrees of freedom in the 

3D macromolecular representations and the number of atoms varying among different 

structures. Therefore, there is a pressing need to develop innovative representations of 

protein-ligand complexes for machine learning methods.

Mathematical deep learning (MathDL) encompasses a family of scalable low-dimensional 

rotational and translational invariant mathematical representations integrated with advanced 
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machine learning, including deep learning algorithms.27 Its hypothesis is that the intrinsic 

physics of macromolecular interactions lie in low-dimensional manifolds. Based on such 

hypothesis, we have developed a number of mathematical tools originated from geometry, 

topology, graph theory, combinatorics, and analysis to simplify macromolecular complexity 

and reduce their dimensionality. For example, differential geometry provides a high-level 

abstraction of macromolecular complexes.28 In molecular biophysics, differential geometry-

based framework has shown its efficiency in modeling solvation-free energies29, 30 and ion 

channel transport.31–35 However, in those applications, differential geometry information is 

largely restricted to the separation of solvent and solute domains in facilitating the Poisson-

Boltzmann model or the Poisson-Nernst-Planck model. In geometric modeling, differential 

geometry has been utilized for the qualitative analysis of biomolecule properties.36, 37 Also, 

potential protein-ligand binding sites can be recognized via concave and convex regions of 

molecular surfaces indicated by minimum and/or maximum curvatures.37, 38 Most recently, 

the roles of different kinds of curvature in solvation free energy models have been 

investigated.39 However, the efficiency of the aforementioned differential geometry models 

is limited due to neglecting of atomic level information. Element interactive manifolds 

(EIM) were proposed to address this problem in differential geometry-based geometric 

learning (DG-GL).25 These EIMs successfully encode the pivotal physical, chemical, and 

biological information stored in high-dimensional data into low-dimensional manifolds, 

rendering a powerful approach for predicting solvation free energy, drug toxicity, and 

protein-ligand binding affinity.25

Another low-dimensional mathematical approach is the topological representation of 

biomolecular structures. In topological data analysis, one can capture the connectivity of 

macromolecules or molecular components. Topological invariants, such as independent 

components, rings, cavities, and higher dimension faces in terms of Betti numbers help to 

characterize the conformation change upon the protein-ligand binding process, the folding 

and unfolding of proteins, and the opening or closing of ion channels.40 The traditional 

topological descriptors, unfortunately, cannot discriminate the geometric difference among 

various macromolecular structures. Persistent homology (PH), a new branch of algebraic 

topology, utilizes a filtration parameter to generate a family of topological spaces and 

associated invariants, which contain richer geometric information.41,42 PH has been applied 

to computational biology.43–45 However, these applications were mostly limited to 

qualitative analysis. Recently, we have devised PH for the quantitative analysis of protein 

folding energy, protein flexibility,46 ill-posed inverse problems of cryo-EM structures,47 

predictive models of curvature energies of fullerene isomers,48, 49 and protein pocket 

detection.50 In 2015, we introduced one of the first combinations of PH descriptors and 

machine learning algorithms.51 Since then, the integration of PH and machine learning has 

become a very popular approach in topological data analysis. Nonetheless, this approach is 

not good enough for biomolecular systems. It turns out that PH neglects chemical and 

biological information in its topological simplification of geometric complexity. Element-

specific PH was introduced to retain chemical and biological information.22 The integration 

of element-specific PH and machine learning algorithms has found great success in the 

predictions of protein folding free energy changes upon mutation,52 binding affinity,22–24 

drug toxicity,53 partition coefficient, and aqueous solubility.54 It has been employed for the 
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classification of active ligands and decoys.24 All of these new topological models 

outperformed other state-of-the-art methods on various common benchmarks.

Similarly to topology, graph theory also accentuates the connectivity between vertices to 

define graph edges. There are two major types of graphs: geometric graphs and algebraic 

graphs. Geometric graphs concern the pairwise connectivity between graph nodes and 

represent it in terms of “topological index”,55,56 graph centrality,57–59 and contact map.60,61 

The algebraic graph theory expresses the connectivity via eigenvalues, particularly, the 

second-smallest eigenvalue of the Laplacian matrix, known as Fiedler value, which is often 

used to analyze the stability of dynamical systems.62 Graph theory has been widely used in 

many interdisciplinary studies. In biophysics, it is employed to model protein flexibility and 

long-time dynamics in normal mode analysis (NMA)63–66 and elastic network model 

(ENM).60, 67–72 Since graph theory offers a nature representation of molecular structure, it is 

a common approach for analyzing chemical datasets56, 73–77 and biomolecular datasets.
60, 78–83 Although there was much effort in constructing various graph representations in the 

past, graph based quantitative models are often less accurate than other competitive models 

in the analysis and prediction of biomolecular properties from massive and diverse datasets. 

Indeed, in the protein stability changes upon mutation analysis, the other models23, 52, 84 are 

more accurate than the graph-based approach.85 In addition, the graph theory based 

Gaussian network model (GNM) is not competitive in protein B-factor predcitions.86 One of 

the main reasons is that there is no systematic representation of interactions among different 

chemical element types in a molecular structure. Additionally, many graph approaches do 

not describe non-covalent interactions. To overcome these limitations, we have proposed 

novel multiscale weighted colored subgraphs in both geometric graph and algebraic graph 

schemes to achieve the state-of-the-art performances in the predictions of protein B-factor,87 

protein-ligand binding affinity,21, 26 docking,26 and virtual screening.26

Our MathDL models using graph theory and algebraic topology were employed in the D3R 

Grand Challenges since GC2 and has obtained many encouraging results. Specifically, our 

prediction of the free energy set in Stage 2 was ranked the best in GC2 in our first 

participation of D3R competitions.27 In our second participation, i.e. GC3, our submissions 

achieved the top places in 10 out of 26 official contests.27 These achievements have 

confirmed the predictive power and efficiency of our MathDL models in drug design and 

discovery. However, there were still some shortcomings existing in our previous approaches 

mostly concerning the pose generation performance and ability to rank affinities of 

compounds with diverse chemical structures.

In the current D3R challenge, i.e. GC4, we have brought in two new technological aspects in 

our approach. First, we have further developed powerful differential geometry and algebraic 

graph-based MathDL models to assist our algebraic topology based methods. Additionally, 

we have extended our MathDL approach with more advanced deep learning architectures 

like generative adversarial networks (GAN).88 We have achieved very promising results with 

top places in pose prediction, affinity ranking and free energy estimation. The rest of this 

paper is devoted to more detailed discussions of our methodologies and their performances 

in D3R GC4.
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2 Methods

We describe the mathematical methods underpinning our MathDL models in this sections.

2.1 Differential geometry representation

2.1.1 Multiscale discrete-to-continuum mapping—Given a molecule having N 
atoms. Denote ri and qj, i = 1 ··· N, respectively, an atomic coordinate and a partial charge of 

the jth atom. A discrete-to-continuum mapping89–91 represents the unnormalized molecular 

density at an arbitrary point r ∈ ℝ3 as follows

ρ r, ηk , wk = ∑
j = 1

N
wjΦ r − rj ; nj , (1)

where ||r–rj|| is the Euclidean distance of the point r and the jth atom in a given molecule. If 

all wj are set to 1, ρ(r, ηk , wk ) indicates a molecular density, whereas ρ(r, ηk , wk )
serves as molecular charge density with wj = qj for all j. In the present work, we utilize 

Autodock Tools (http://autodock.scripps.edu/resources/adt/index_html) to assign the 

Gasteiger charges for small molecules and macromolecules. Additionally, ηj are 

characteristic distances and Φ is a monotonically decreasing kernel featuring the similarity 

between two 3D data points. To ensure the existence of the geometric representations such 

as curvatures, Φ is chosen to be monotonically decreasing C2 function satisfying the 

following conditions

Φ r − rj ; ηj = 1, as r − rj 0, (2)

Φ r − rj ; ηj = 0, as r − rj ∞ . (3)

It is noted that radial basis functions meet admissibility conditions (2) and (3). Commonly 

used correlation kernels are generalized exponential functions

Φ r − rj ; ηj = e− r − rj /nj
κ
, κ > 0; (4)

and generalized Lorentz functions

Φ r − rj ; ηj = 1
1 + r − rj /ηj

ν , ν > 0 . (5)

Moreover, one can use correlation kernels to model the electrostatic interaction between two 

charged articles as the following

Φ r − rj , qi, qj; c = 1
1 + e−cqiqj/ ri − rj

, (6)

where, qi and qj are the partial charges of two atoms, and c is a nonzero tunable parameter. It 

is noted that Φ described in Eq. (6) does not follow the admissible conditions (2) and (3). It 
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is, therefore, only utilized to generate electrostatic persistent homology. All the Φs discussed 

in the current work were determined by one of Eqs. (4) – (5). Here, Φ takes 3D coordinates 

and kernel parameters as the input variables and maps them to a real number: ℝ3 ℝ. 

Therefore, Φ values totally depend on atom coordinates or grid point positions and are 

rotationally and translationally invariant.

It is expected that C2 delta sequences of the positive type discussed in an earlier work92 can 

function well for the correlation kernel purposes. To obtain multiscale discrete-to-continuum 

mapping, one can employ more than one set of scale parameters. In the current work, the 

aforementioned mapping was applied to protein-ligand complexes.

2.1.2 Element interactive densities—In order for differential geometry (DG) 

representations to effectively capture the crucial physical and biological information of large 

and diverse biomolecular datasets, we must employ DG to feature non-covalent 

intramolecular molecular interactions in a molecule and intermolecular interactions in 

molecular complexes, such as protein-protein and protein-ligand.

Additionally, the accuracy of the DG representations can be upgraded by element-level 

descriptions which result in scalable low-dimension manifold representations of high 

dimensional structures. For instance, to describe the pairwise interactions between protein 

and ligand, we consider frequently occurring element types in proteins and ligands. 

Particularly, the commonly occurring element types in proteins are C, N, O, S and 

commonly occurring element types in ligands are H, C, N, O, S, P, F, Cl, Br, I. That gives 

rise to 40 element pairwise groups. We do not include hydrogen in protein element types 

since H is usually absent from most datasets in the Protein Data Bank (PDB). Note that 

during our validation process, the pairwise interactions between different atom types did not 

enhance the overall performance of our models (this may be due to the limited data size.). 

Thus, we only carried out the element-specific interactions for the sake of simplicity.

Based on a statistical analysis, the frequently occurring element types in the biomolecular 

dataset are denoted as C = {H, C, N, O, S, P, F, Cl, · · ·}. For convenience, Ck represents the 

kth element in the set C. For example, C5 = S. An ith atom in a given molecule is associated 

with its coordinate ri, element type αi, and partial charge qi. The non-covalent interactions 

between atoms of element type Ck and Ckʹ are assumed to be described by the correlation 

kernel Φ

Φ( r − rj ; ηkk′) αi = Ck, αj = Ck′; i, j = 1, 2, …, N; ri − rj > ri + rj + σ , (7)

where ri and rj are the atomic radii of ith and jth atoms, respectively and σ is the mean value 

of the standard deviations of ri and rj in the interested dataset. The covalent interactions are 

excluded due to the constraint ||ri – rj|| > ri + rj + σ. In addition, ηkkʹ is a characteristic 

distance between the atoms, which depends only on their element types.

To construct the element interactive densities, we define atomic-radius-parametrized van der 

Waals domain of all atoms of kth element type as25

Nguyen et al. Page 6

J Comput Aided Mol Des. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dk: = ∪ri, αi = Ck B(ri, rk), (8)

in which B(ri, ri) is a ball with a center ri and a radius ri, and rk is the atomic radius of the 

kth element type. Thus, Dk depends on atom coordinate ri and its atomic radius. Note that, 

Dk does not define any vdW interactions but a domain to construct the surface density. The 

element interactive density between domain Dk and all atoms of kʹth (k ≠ kʹ) element type is 

given by

ρkk′(r, ηkk′) = ∑
j

αj = Ck′
ri − rj > ri + rj + σ, ∀αi ∈ Ck

wj Φ ( r − rj ; ηkk′), r ∈ Dk .
(9)

When kʹ = k, the element interactive density ρkk is now induced only by van der Waals 

domain Dk. In this case, we exclude the covalent interactions based on the position of the 

density input. Assuming r ∈ Dk
i , with Dk

i = B(ri, ri), αi = Ck, the element interactive density is 

then formulated by

ρkk(r,ηkk) = ∑
j

αj = Ck
ri − rj > 2rj + σ

wjΦ( r − rj ; ηkk) .
(10)

For the sake of simplicity, we chose wj = 1 for all cases. Since element interactive density is 

obtained by the addition of correlation kernels, it belongs to C2 on the closed domain of Dk. 

We construct element interactive manifolds by restricting the set of points at a given level set 

of the density as shown in Fig. 1.

2.1.3 Element interactive curvatures—Given an element interactive density ρ(r), one 

can calculate the Gaussian curvature (K), the mean curvature (H), the minimum curvature 

(κmin), and the maximum curvature (κmax) for the resulting manifold as the following:37, 93

K = 1
g2 [2ρxρyρxzρyz + 2ρxρzρxyρyz + 2ρyρzρxyρxz

− 2ρxρzρxzρyy − 2ρyρzρxxρyz − 2ρxρyρxyρzz
+ ρz2ρxxρyy + ρx2ρyyρzz + ρy2ρxxρzz
− ρx2ρyz2 − ρy2ρxz2 − ρz2ρxy2 ],

(11)

H = 1
2g

3
2

[2ρxρyρxy + 2ρxρzρxz + 2ρyρzρyz − (ρy2 + ρz2)ρxx − (ρx2 + ρz2)ρyy − (ρx2

+ ρy2)ρzz],
(12)
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κmin = H − H2 − K, (13)

κmax = H + H2 − K, (14)

where g = ρx2 + ρy2 + ρz2.

To construct unified curvature quantities for various biomolecular structures, we study the 

element interactive curvatures (EIC) at the atomic center and formulate them as25

Kkk′
EI (ηkk′) = ∑

i
Kkk′(ri, ηkk′), ri ∈ Dk; k ≠ k′ (15)

and

Kkk
EI(ηkk) = ∑

i
Kkk(ri, ηkk), ri ∈ Dk

i , Dk
i ⊂ Dk . (16)

Eqs. (15) and (16) are for the element interactive Gaussian curvature (EIGC), are applied to 

protein-ligand complexes in the current work. Thus, the atomic centers in Eqs. (15) and (16) 

can be either from ligand atoms or protein atoms. In a same manner, one can define 

Hkk′
EI (ηkk′), κkk′, min

EI (ηkk′) and κkk′, max
EI (ηkk′) for the element interactive mean curvature, 

element interactive minimum curvature, and element interactive maximum curvature, 

respectively.

It is worth noting that, the expressions of the curvatures defined in (11), (12), (13), and (14) 

are in the analytical forms. Thus, the EIC formulations are free from numerical error and 

totally preserve the reference geometric information of the molecules.

2.2 Multiscale weighted colored geometric subgraphs

For a given molecular datasets, we denote C a set consisting of the most frequently 

appearing element types. For a molecule of interest, we define a graph with the following 

vertices

V = (rj, αj) rj ∈ ℝ3; αj ∈ C; j = 1, 2, …, N , (17)

where N is the number of atoms, rj and αj are, respectively, coordinates and element type of 

the jth atom. Similarly to the discussion in the differential geometry representation section, 

we only consider non-covalent interactions represented by correlation kernels

ℰkk′ = Φ( ri − rj ; ηkk′) αi = Ck, αj = Ck′; i, j = 1, 2, …N; ri − rj > ri + rj
+ σ , (18)

all the notations in Eq. (18) are adopted from Sec. 2.1. In which, Φ refers to the edge weight 

which represents the potential interaction between two nodes forming that edge. We now 
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form weighted colored subgraphs G V, ℰkk′  to describe pairwise interactions in a given 

molecule. To unify the geometric graph-based descriptors for a diversity dataset, we 

construct multiscale weighted colored subgraph rigidity between kth element type Ck and k
′th element type Ckʹ via a graph centrality type of scheme

RIG(ηkk′) = ∑
i

μiG(ηkk′) = ∑
i

αi = Ck

∑
j

αj = Ck′
ri − rj > ri + rj + σ

Φ( ri − rj ; ηkk′) .
(19)

The proposed subgraph rigidity index RIG(ηkk′) in Eq. (19) is the aggregation of the 

collective subgraph centrality μiG(ηkk′) which used in our previous B-factor prediction model.
87 That formulation represents a coarse-grained description at the element-level capturing 

important physical and biology information in a molecule or biomolecule such as van der 

Waals interactions, hydrogen bonds, electrostatics, etc. This description is scalable, i.e., 

independent of the size of an individual protein-ligand complex. In fact, when describing 

protein-ligand interactions, the labeled subgraph G V, ℰkk′  gives rise to a bipartite graph 

with its edges connecting protein atoms to ligand atoms. The positive and negative 

eigenvalues of the adjacency matrix of a bipartite graph are reflective, which enables us to 

select only positive or negative eigenvalues in machine learning. Moreover, Eq. (19) 

generalized our previous binding affinity prediction model21 and was utilized for the D3R 

Grand Challenge 3.27

2.3 Multiscale weighted colored algebraic subgraphs

Still based on multiscale weighted colored subgraphs as defined in Section 2.2, we have 

recently developed a novel algebraic graph approach or spectral graph formulation to 

describe molecules, biomolecules and their interactions at atomic levels.25 We here utilize 

the Laplacian matrix and adjacency matrix to represent the interactions between nodes in a 

given subgraph.

Based on a weighted colored subgraph G V, ℰkk′ , we define the weighted colored Laplacian 

matrix Lij(ηkk′) as the following

Lij(ηkk′) =
−Φ( ri − rj ; ηkk′)

−∑j Lij

if i ≠ j, αi = Ck, αj = Ck′
and ri − rj > ri + rj + σ;
if i = j .

(20)

Due to the symmetric, diagonally dominant and positive-semidefinite, all eigenvalues of the 

Laplacian matrix Lij(ηkk′) are nonnegative. Moreover, the smallest eigenvalues are zero. It is 

worth noting that the number of zero eigenvalues can equally referred to the zero-

dimensional topological invariant which implies the number of the connected components in 

the graph. If a graph is connected, there exists one non-zero eigenvalue. Moreover, the 

smallest non-zero ones is called as Fiedler value representing algebraic connectivity. It is 

interesting to see that one can reconstruct the geometric graph rigidity via the following 

formulation
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RIG(ηkk′) = TrL(ηkk′),

In addition, we can form the adjacency matrix Aij for the aforementioned subgraph 

G V, ℰkk′  by

Aij(ηkk′) =
Φ( ri − rj ; ηkk′)
0

if i ≠ j, αi = Ck, αj = Ck′
and ri − rj > ri + rj + σ;
if i = j .

(21)

Clearly, adjacency matrix A(ηkk′) is a symmetric non-negative matrix. As a result, its 

spectrum is real. The Laplacian and adjacency matrices for subgraph including only oxygen 

and nitrogen atoms in molecule C5H6N2O2 are depicted in Fig. 2. Note that for different 

molecules, one can expect to have different graph structures. We only utilized one unique 3D 

representation for each ligand; thus there was only one single graph structure to represent 

one corresponding compound.

In general, the element-level information decoded from the Laplacian matrix and the 

adjacency matrix is quite similar despite of the different behaviors among their eigenvalues 

and eigenvectors. Specifically, the correlation between the adjacency matrix and the 

Laplacian matrix can be found in the Perron-Frobenius theorem via the following 

inequalities

min
i

∑
j

Aij ≤ ρ(A) ≤ max
i

∑
j

Aij . (22)

In other words, one can state that the spectral radius ρ(A) of the adjacency matrix A is 

bounded by diagonal element interval of the corresponding Laplacian matrix L.

In the algebraic approach, we are interested in describing the interactions between elements 

in the subgraph by the eigenvalues of its matrix. Thus, we design the weighted colored 

Laplacian matrix based descriptor at the element-level by

RIL(ηkk′) = ∑
i

μiL(ηkk′), (23)

and the weighted colored adjacency matrix based descriptor is proposed in a similar manner. 

Note that GNM60 is a special case of the proposed Laplacian matrix μiL(ηkk′). Thus, one can 

utilize its spectrum μiL(ηkk′) for the protein B-factor prediction. To enrich the algebraic 

graph-based description information, we consider the statistics of the eigenvalues such as 

sum, mean, maximum, minimum and standard deviation.

2.4 Algebraic topology-based molecular signature

By employing powerful topological analysis, one can construct sophisticated topological 

spaces to capture the key interactions at the element level of an interested molecule or 
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biomolecule. These physical and chemical information are encoded in different dimensional 

space under the topological invariant features, so-called Betti numbers. Upon the topological 

information, the rich and systematic descriptions are formulated and integrated with 

advanced machine learning framework.

2.4.1 Persistent homology—In the geometric point of view, the collection of points, 

edges, triangles, and higher-dimension representations form topological spaces. The general 

form of a triangle or a tetrahedron is called a simplex. Mathematically, a set of (k + 1) 

affinely independent points in ℝn with n ≥ k gives rise to a simplex. To further characterize 

the topological spaces, face is introduced as a convex hull of a subset of points defining a 

simplex. In addition, a finite collection of simplices defines a simplicial complex X provided 

that two requirements are met. First, the faces of any simplex in X are also in X. Second, the 

intersection of two simplices σ1 and σ2 in X are either empty or a face of both σ1 and σ2. In 

a given simplicial complex X, a k-chain c is a formal sum of all the k-simplices in X which 

is defined as c = ∑iaiσi. Here, ai is an integer coefficient chosen in a finite field ℤp with a 

prime p. With the additional operator on the coefficients of in the k-chain, one can form a 

group of k-chain denoted Ck(X). The boundary operator on simplices is defined as

∂k(σ) = ∑
i = 0

k
( − 1)i[υ0, ⋯, υi, ⋯, υk], (24)

where υ0, ⋯, υk are vertices of the k-simplex σ and [υ0, ⋯, υi, ⋯, υk] means the codim-1 face 

of σ be omitting the vertex υi. The boundary operator ∂k(σ) is homeomorphisms going from 

Ck(X) to Ck−1(X) with an important property ∂k ∘ ∂k+1 = 0. Therefore, one can form the 

following chain complex

⋯
∂i + 1 Ci(X)

∂i Ci − 1(X)
∂i − 1 ⋯

∂2 C1(X)
∂1 C0(X)

∂0 0. (25)

In algebraic topology, homology is used to distinguish two shapes by detecting their holes. 

To define kth homology group, we consider the image of the boundary operator ∂k+1 

denoted ℬk(X) = Im(∂k+1) and the kernel of ∂k denoted Zk(X) = Ker(∂k) which are all 

illustrated in Fig. 3. Then, the quotient group between the aforementioned kernel and image 

gives rise to the kth homology group

ℋk(X) = Zk(X)/ℬk(X) . (26)

The described above homology group is applied for a fixed topological space. To 

accommodate the objects related to multiscale, we can construct a sequence of subspaces of 

topological space. Such sequence is called a filtration ∅ = X0 ⊆ X1 ⊆ ⋯ ⊆ Xm − 1 ⊆ Xm = X
which naturally induces a series of homology groups of different dimensions connected by 

homomorphisms
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Ik
t, s:ℋk(Xt) ℋk(Xs), with 0 ≤ t ≤ s ≤ m . (27)

The images of these homomorphisms are called kth persistent homology groups, and ranks 

of these groups define kth persistent Betti numbers which are used to recognize topological 

spaces via nuber of k-dimensional holes. In the physical interpretation, Betti-0 counts the 

number of independent components, Betti-1 illustrates number of rings, and Betti-2 encodes 

the cavities.

2.4.2 Topological description of molecular systems—We carry out persistent 

homology on labels subgraph G V, ℰkk′  defined in the previous sections to describe 

molecular properties. The resulting topological formulation is called element specific 

persistent homology.22, 52

There are two common types of filtration, namely Vietoris-Rips complex and alpha 

complex.94 The Vietoris-Rips complex, a distance-based filtration, is used to directly address 

the protein-ligand interactions. For a set of atoms in subgraph G V, ℰkk′ , the subcomplex 

associated to s is defined as

XRips(ε) = σ ∈ X σ = [υ0, ⋯, υk], d(υi, υj) ≤ 2ε for 0 ≤ i, j ≤ k , (28)

where X is the collection of all possible simplices, d is the distance between two atoms. To 

capture a complex protein geometry, one can utilize alpha complex. The alpha filtration is 

built upon the non-empty intersection between a k-simplex and a (k + 1) Voronoi cells. In 

general, in the alpha filtration, the subcomplex associated to ε is defined as

Xalpha(ϵ) = σ ∈ X σ = [υ0, ⋯, υk], ∩i (V (υi) ∩ Bϵ(υi)) ≠ ∅ , (29)

where V(υi) is the Voronoi cell of υi and Bϵ(υi) is an ε ball centered at υi. For the details of 

building an alpha filtration, we refer the interested readers to our published work.46

Similarly to multiscale weight colored subgraphs in algebraic graph theory approaches, the 

element specific persistent homology has been shown to capture crucial physical interactions 

by tweaking the distance functions used in the filtration.22, 52 Indeed, the hydrophobic 

effects can be described by considering the persistent homology computation on the 

collection of all carbon atoms. To describe the hydrophilic behavior of the molecular system, 

the element specific persistent homology is carried out only for nitrogen and oxygen atoms. 

In addition, an appropriate distance function selection can characterize the covalent bonds 

and non-covalent interactions in small molecules.24

There are several ways to incorporate barcodes generated by persistent homology into 

machine learning models. One can use the Wasserstein metric to measure the similarities 

between two molecules’ barcodes. As a result, the distance-based machine learning 

approaches such as nearest neighbors and kernel methods can be exploited.24 To make use 

advanced machine learning algorithms such as the ensemble of trees and deep neural 

networks, we vectorize persistent homology barcodes by discretizing them into bins and 
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taking into account of the persistence, birth and death incidents in each bin. Furthermore, the 

statistics of element-specific persistent homology barcodes are included in fixed length 

features.24 In the convolutional neural networks, such featurization of barcodes is 

represented in 1-dimensional and 2-dimensional like images.23,24

2.5 MathDL energy prediction models

We integrate the mathematical features with deep learning networks to form a powerful 

predictive model. The convolutional neural network (CNN) is a well-known algorithm with 

much success in image recognition and computer vision analysis. Essentially, CNN is a 

regularized version of the artificial neural network consisting of many convolutional layers, 

followed by several fully connected layers. To enhance the learning process, dropout 

techniques have been exploited in network layers.95 The neural networks we use are 

classified as the feed-forward network where all the information in the current layer is 

linearly combined and then nonlinearized via an activation function before sending out to the 

next layer. The predictive power of the CNN models relies on the characterization of the 

local interactions in the spatial dimension under the discrete convolution operator. The 

choice of features inputs in the CNN networks gives rise to variants of binding energy 

predictive models. Fig. 4 depicts MathDL energy prediction models and their network 

architectures are described in Fig. S1 in the Supporting Information. In the D3R GC4, we 

utilized two different models. In the first approach, the combination of algebraic topology 

and differential geometry features were employed in the network, we named this model BP1. 

In the second approach, algebraic topology, differential geometry, and algebraic graph 

representations were mixed to lead to another binding energy prediction model named BP2. 

The details of feature generation procedure of the algebraic topology, differential geometry, 

and algebraic graph models can be found in our earlier work24–26.

2.6 MathDeep docking models

We here present an innovative pose generation scheme, denoted MGAN, using advanced 

mathematical representation pre-conditioned generative adversarial networks (GAN). GAN 

is a kind of deep learning model consisting of a generator G to learn the data distribution, 

and a discriminator D to discriminate training set structural information from that of the 

generator G.88 The G model is iteratively improved from the D feedback until the D cannot 

tell the difference between training set structural information and D set one. To improve the 

GAN performance and avoid vanishing gradient and mode collapse, we employ Wasserstein 

GAN (WGAN)96 in our model. To further enhance the quality of the generated structures, 

we take advantage of the conditional GAN technique.97 The deep learning (DL) models G 
and D are partially adapted from our binding energy prediction networks which are fed with 

data encoded in intrinsically low-dimensional manifolds with differential geometry, 

algebraic topology and graph theory. Fig. 5 depicts the MGAN’s framework. Network 

architectures of autodecoder and autoencoder are illustrated in Figs. S2 and S3, respectively. 

By varying combinations of different mathematics, we end up with several docking models. 

Specifically, If DL networks G and D only exploit algebraic topology, we name this docking 

model DM1. Similarly, we attain DM2 and DM3 when GAN model includes only algebraic 

graph and differential geometry based representations, respectively. Finally, DM4 is 

constructed with the assistance of algebraic topology, algebraic graph, and differential 
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geometry. We employed the PDBbind v2018 dataset to train MathDL and MGAN models. 

The optimal hyperparameters of the MathDL model were selected by experience and 

finalized by hyperopt python package (http://github.com/hyperopt/hyperopt). The MGAN 

model was trained based on the setting of Wasserstein GAN network discussed in this work.
96 Furthermore, to enhance the pose generation quality, we carry out the transfer learning to 

further optimize the MGAN model with the protein family-specific structures.

3 Results and discussion

In this section, we present MathDL results and discuss our performances in the latest Grand 

Challenge named GC4.

3.1 Pose prediction results and discussion

We have participated in the docking challenge task since D3R GC2. Before the current 

challenge, i.e., GC4, our docking results in term of RMSE were not competitive in 

comparison to those of other participants. Specifically, our mean RMSD values are 6.03 Å 

and 3.78 Å for GC2 and GC3, respectively. These results reflect an improvement in our 

docking approaches but their accuracy is still behind the top submissions in GC3. Instead of 

depending on the docking programs such as Autodock Vina4 and GLIDE6 as we did in the 

previous challenges, our GC4 docking schemes were driven by advanced mathematical 

representations and sophisticated deep learning architectures. Consequently, we achieved 

remarkable performances on the pose prediction tasks. The rest of this section is devoted to 

result discussions.

Despite having two protein receptors in GC4, all the pose predictions were only for BACE 

ligands and were organized in two stages, Stage 1a and Stage 1b. In Stage 1a, participants 

were provided SMILES strings of 20 ligands to be docked, the FASTA sequence of the 

BACE protein, and the reference protein structure (PDBID: 5ygx, chain A) for the 

superimposition process. Stage 1b took place right after the end of Stage 1a. Stage 1b 

provided the experimental protein structures in the complexes with 20 ligands requested for 

pose predictions, in which the structures of these ligands were removed. Participants were 

still asked to predict their poses. Therefore, Stage 1b is often referred to a self-docking 

challenge. There are two evaluation metrics for the pose prediction tasks, namely median 

and mean calculated over all RMSD values between the predicted poses and crystal 

structures.

In Stage 1a, we submitted two results. Fig. 6 illustrates the performances of 70 submissions 

having median RMSD less than 10 Å. Our best submission having receipt ID 5t302 with 

median RMSD = 0.53 Å and being highlighted in the red color. This docking model was 

DM1. In Stage 1b, we delivered 4 submissions; unfortunately, none of them was ranked the 

first place in either the median or mean metric. However, our results were very promising. 

Particularly, our submission based on docking model DM3 with receipt ID itzv6 achieved 

mean RMSD of 0.73 Å which is at the second place and is a bit less accurate than the top 

submission with mean RMSD being 0.61 Å (receipt ID 5od5g). It may be noted that the best 

result in Stage 1b is not as good as that in Stage 1a. Fig. 7 compares the poses predicted by 
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our submission ID 0invp to the corresponding experimental structures at different levels of 

accuracy.

It is interesting to find out that, the additional information of the co-crystal structures did not 

help our docking models. For example, our docking approach DM4 with submission ID 

Oinvp attained median RMSD of 0.53 Å and mean RMSD of 0.8 Å, respectively in Stage 1a. 

However, in Stage 1b, the same model labeled by receipt ID 2ieqo produced median RMSD 

and mean RMSD as high as 0.55 Å and 0.84 Å, respectively. These observations can 

confirm the robustness of our models and predictive value for the realistic situations in 

CADD when little or no co-crystal information is provided.

3.2 Affinity prediction results and discussion

There were two subchallenges for affinity prediction tasks. Subchallenge 1 regarded BACE 

ligands while Subchallenge 2 concerned CatS ligands. Both subchallenges were interested in 

affinity ranking of a diversity datasets and relative binding affinity predictions on the 

designated free energy set. There were two stages on BACE affinity prediction task, namely 

Stage 1 and Stage 2, whereas there was only one stage on CatS ligands. Unfortunately, we 

did not participate in Stage 1 of the BACE target since the announcement email made us 

overlook this contest.

Statistically, there were 154 compounds in the BACE dataset for affinity ranking contest, 

while there were 34 compounds for the calculation of relative or absolute binding affinities 

of the same receptor target. In CatS dataset, participants were asked to rank affinities of 459 

ligands and predicted the binding energies of a smaller subset with 39 molecules. Moreover, 

Kendall’s τ and Spearman’s ρ were the evaluation metrics for affinity ranking challenges. In 

the binding free energy predictions, besides the aforementioned metrics, Pearson’s r and 

centered root mean square error (RMSEc) were utilized.

Overall, the official results from the D3R organizer have placed us among the top performers 

on these energy prediction contests. By considering specific evaluation metrics, we were 

ranked first place in combined ligand and structure based scoring*, structure based scoring, 

and free energy set subcategories all belonging to the CatS dataset. For illustration, Fig. 8 

presents the Spearman’s ρ performance of different submissions on the CatS affinity ranking 

contest combining ligand and structure based scoring models. Our best submission are 

highlighted in the red color with receipt IDs 3c8nw and 0xvrb. Both of them achieved the 

same Spearman’s ρ as high as 0.73 and shared the first place with another group’s 

submission having ID x4svd. In submission ID 3c8nw, we employed docking model DM4 

for pose generation and model BP2 for the affinity prediction. While in submission ID 

0xvrb, docking approach was DM3 and binding prediction protocol was BP2. In addition, 

our best result with ID ar5p6 achieved the lowest RMSEc for the free energy prediction of 

39 designated CatS molecules. This successful submission utilized docking model DM4 and 

affinity prediction model BP2 for the calculations. Fig. 9 presents RMSEc performance of 

various groups for the free energy prediction of CatS dataset. Table 1 summarizes the 

performances of our group at all categories in D3R GC4. We only counted the number of 

*This subcategory is the common list of ligand based and structure based scoring subcategories
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our submissions in the top three including ties. “No participation” at the results column 

implies that we did not participate in the corresponding contest. The blank results indicate 

that our predictions were not ranked within the top three.

It is noted that in the BACE affinity prediction, our results were not in the top three. In fact, 

our team was behind only to two teams that collected all the top three places in BACE 

affinity ranking, which indicates the consistence of our MathDL models in GC4 

competitions.

Overall, the model BP2 was our best model for binding affinity prediction for both CatS and 

BACE datasets (see Table S1). The great performance of BP2 was expected since it 

combines algebraic topology, differential geometry, and graph theory features which help to 

enrich feature space and cover the most important aspects of physical and biological 

properties. However, there was a mixed conclusion when finding the best solution for pose 

prediction. Indeed, models DM3 and DM4 worked well for the CatS dataset, while DM1 

was an only good solution for producing high quality poses for the BACE dataset (see Table 

S1). They helped the predictor BP2 achieved the best rankings among our submitted models. 

One can argue that DM1 achieved the best pose prediction for BACE ligands in Stage 1A; 

therefore it was foretasted to help BACE energy prediction tasks. The same behavior was 

observed for CatS dataset. According to our pre-validation results, DM4 which was our best 

model for the CatS pose prediction, achieved mean RMSD of 1.8 Å for the CatS pose 

prediction Stage 1B challenge in GC3. Note that the best submission in that subchallenge 

accomplished mean RMSD as low as 2.13 Å. It seems that the pose quality of our pose 

generation models correlates well to the accuracy of our binding affinity predictors.

4 Conclusion

The performances of our mathematical deep learning (MathDL) models on D3R GC4 are 

presented and discussed in this paper. We participated in a variety of D3R GC4 contests 

including pose predictions, affinity ranking, and absolute free energy predictions. Overall, 

our submissions were ranked the first in pose prediction in Stage 1a, affinity ranking and 

free energy predictions for Cathepsin ligands. Unfortunately, we did not get the first place on 

BACE datasets. Our best submission was only at the second place in free energy set for 

BACE in Stage 2 contest. In comparison to our previous D3R challenges, i.e., D3R GC2 and 

D3R GC3, we had two improvements in D3R GC4. The first improvement was the pose 

prediction. This was the first time we won this contest thanks to our newly developed 

docking model which integrates scalable low-dimensional rotational and translational 

invariant mathematical representations, such as differential geometry, algebraic graph, and 

algebraic topology, with well-designed generative adversarial networks. The second 

improvement was the affinity ranking for a dataset with diverse chemical properties. In 

previous challenges, our approaches performed well on free energy predictions but not on 

affinity ranking. In GC4, we successfully unified our newly established models, i.e., 

differential geometry and algebraic graph, and our well-known algebraic topology into 

powerful and robustness convolutional neural network models for binding affinity 

predictions.
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In terms of efficiency, at this point, our MathDL models are quite automated. With sufficient 

computer resources, our MathDL models can finish all the GC4 competition tasks in a week 

or so.

It is worth noting that our models for GC4 was the less competitive performance in BACE 

affinity ranking and free energy predictions. Additionally, it seems that our docking model 

did not upgrade when the co-crystal structures became available. These issues are under our 

investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
IIlustration of some element-specific selections and corresponding element interactive 

manifolds obtained at a given level set of the element interactive density. Each sphere 

illustrates the atomic positions. Cyan, red, and blue colors represent carbon, oxygen, and 

nitrogen, respectively. The transparent surfaces are the isosurface extracted from volume 

data represented in Eq. (8).
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Figure 2: 
IIlustration of weight colored subgraphs GNO including its Laplacian matrix (Left), and 

adjacency matrix (Right) deduced from molecule graph (C5H6N2O2) (Middle). Atoms 1 and 

4 are oxygen, while atoms 2 and 3 are nitrogen. Graph edges, Φij, are in the green-dashed 

lines representing the noncovalent bonds. In addition, one can get 9 other nontrivial 

subgraph for this molecule, namely GCC, GCN, GCO, GCH, GNN, GNH, GOO, GOH, and GHH.
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Figure 3: 

Illustration of boundary operators, chain, cycle, and boundary groups in ℝ3. Yellow circles 

are empty sets.
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Figure 4: 
A framework of MathDL energy prediction model which integrates advanced mathematical 

representations with sophisticated CNN architectures
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Figure 5: 
Illustration of our docking approach using mathematical representations integrated with 

GAN architectures. The generator contains an autodecoder, a latent space (LS), and a noise 

source. The discriminator consists of an autoencoder and latent space. The Math center 

encodes 3D structures into low-dimensional mathematical representations using algebraic 

topology, differential geometry, and/or graph theory.
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Figure 6: 
Performance comparison of different submissions on pose prediction challenge of Stage 1a 

for the BACE dataset in term of median RMSD. Our submissions are highlighted in the red 

color, in which the best one is 5t302 with median RMSD = 0.55 Å.
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Figure 7: 
Illustration of pose predictions by our MathGAN docking model with receipt ID 0invp. The 

top-left corner is original binding pocket of the BACE receptor. The top-right corner is our 

best pose prediction accuracy obtained when predicting BACE03’s pose with RMSD = 0.23 

Å. The bottom-left corner is our middle performance when predicting BACE05’s pose with 

RMSD = 0.53 Å. The bottom-right is our worst performance when predicting BACE07’s 

pose with RMSD = 2.63 Å. The experiment structures are in yellow while the predicted 

structures are in purple.
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Figure 8: 
Performance comparison of different submissions on the combined ligand and structure 

based scoring of CatS dataset in term of Spearman’s ρ. Our submissions are highlighted in 

the red color, in which our top-ranked submissions are 3c8nw and 0xvrb with ρ=0.73.
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Figure 9: 
Performance comparison of D3R GC4 participants on free energy set for CatS contest in 

term of centered RMSE RMSEc. Our submissions are highlighted in the red color, in which 

our top-ranked prediction is ar5p6 with RMSEc = 0.47 kcal/mol.
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Table 1:

Overview of MathDL’s performance in D3R GC4. The numbers in “(a/b)” indicates that a number of our 

predictions had the ranking and there was a total of b submissions sharing the ranking.

Dataset Contest Results

Pose Prediction

BACE Stage 1A Pose Prediction Ranked 1st (1/2)i; Ranked 2nd (3/3)ii

BACE Stage 1B Pose Prediction Ranked 2nd (2/2)iii; Ranked 3rd (1/2)iv

Affinity Predictions

Cathepsin Stage 2 Combined Ligand and Structure Based Scoring Ranked 1st (2/5)v; Ranked 2nd (2/3)vi; Ranked 3rd (2/4)vii

Cathepsin Stage 2 Ligand Based Scoring No participation

Cathepsin Stage 2 Structure Based Scoring Ranked 1st (2/4)viii; Ranked 2nd (3/3)ix; Ranked 3rd(3/3)x

Cathepsin Stage 2 Free Energy Set Ranked 1st (1/7)xi; Ranked 2nd (1/7)xii; Ranked 3rd(3/5)xiii

BACE Stage 1 Combined Ligand and Structure No participation

BACE Stage 1 Ligand Based Scoring No participation

BACE Stage 1 Structure Based Scoring No participation

BACE Stage 1 Free Energy Set No participation

BACE Stage 2 Combined Ligand and Structure

BACE Stage 2 Ligand Based Scoring No participation

BACE Stage 2 Structure Based Scoring

BACE Stage 2 Free Energy Set Ranked 2nd (3/4)xiv; Ranked 3rd (1/4)xv

Superscript Submission ID Evaluation Metric Docking Protocol Scoring Protocol

i 5t302 Median RMSD DM1

ii 5t302 Mean RMSD DM1

0invp Median RMSD DM4

0invp Mean RMSD DM4

iii 2ieqo Median RMSD DM4

itzv6 Mean RMSD DM3

iv 4myne Mean RMSD DM1

v 0xvrb Spearman’s ρ DM3 BP2

3c8nw Spearman’s ρ DM4 BP2

vi 0xvrb Kendall’s τ DM3 BP2

3c8nw Kendall’s τ DM4 BP2

vii qb2s2 Kendall’s τ DM1 BP2

qb2s2 Spearman’s ρ DM1 BP2

viii 0xvrb Spearman’s ρ DM3 BP2

3c8nw Spearman’s ρ DM4 BP2

ix 0xvrb Kendall’s τ DM3 BP2

3c8nw Kendall’s τ DM4 BP2

qb2s2 Spearman’s ρ DM1 BP2

x qb2s2 Kendall’s τ DM1 BP2

qi5ev Spearman’s ρ DM3 BP1
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Superscript Submission ID Evaluation Metric Docking Protocol Scoring Protocol

kohoc Spearman’s ρ DM2 BP2

xi ar5p6 RMSEc DM4 BP2

xii 24b03 RMSEc DM3 BP2

xiii 24b03 Kendall’s τ DM3 BP2

24b03 Spearman’s ρ DM3 BP2

24b03 Pearson’s r DM3 BP2

xiv 8frur Kendall’s τ DM1 BP2

8frur Spearman’s ρ DM1 BP2

8frur RMSEc DM1 BP2

xv 8frur Pearson’s r DM1 BP2
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