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Abstract

We describe a new template-based method for docking flexible ligands such as macrocycles to 

proteins. It combines Monte-Carlo energy minimization on the manifold (MCMM), a fast 

manifold search method, with BRIKARD for complex flexible ligand searching, and with the 

MELD accelerator of Replica-Exchange Molecular Dynamics (MD) simulations for atomistic 

degrees of freedom. Here we test the method in the Drug Design Data Resource (D3R) blind 

Grand Challenge competition. This method was among the best performers in the competition, 

giving sub-angstrom prediction quality for the majority of the targets.
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2. Introduction

Over the last few years, our team has successfully participated [1, 2] in several rounds of the 

Drug Design Data Resource (D3R) community-wide blinded prediction challenge. Each 

round had a variety of prediction tasks — prediction of poses, binding affinity, and free 
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energy of binding for the interactions of small molecular compounds with proteins. In the 

last round, D3R 2018 Grand Challenge 4 (GC4), the participants were asked to predict poses 

and affinities for ligands of beta-secretase 1 (BACE1), a protease implicated in the 

production of beta-amyloid peptides in patients with Alzheimer’s disease [3]. We took part 

in stages 1a and 1b of GC4. Stage 1a included prediction of the binding poses of 20 ligands, 

in which the participants were provided with nothing but the protein sequence and the ligand 

SMILES strings. Stage 1b included a pose prediction task for the same 20 ligands, but this 

time the participants were given the corresponding receptor cocrystal structures, including 

water molecules and, in some cases, sulfate ions and glycerol molecules, but without the 

target ligand. Previous rounds of D3R had motivated us to develop new tools and to modify 

existing protocols to satisfy the needs of the proposed tasks; GC4 was no exception. In this 

round, we used a combination of template modeling, inverse kinematics sampling, restrained 

local minimization (RM), Monte-Carlo energy minimization on the manifold (MCMM), 

conventional molecular dynamics (MD), and Modeling Employing Limited Data accelerated 

molecular dynamics (MELD × MD) simulation.

BACE1 is a well-studied system, which, together with its sequence homologs, has had 

several hundred crystallized structures deposited in PDB, many of which contain a bound 

small-molecule ligand. We collected and integrated the existing information on the bound 

compounds and used it throughout the whole pipeline: generation of initial poses, their 

refinement, and the final scoring.

Nineteen of the 20 proposed compounds were cyclic molecules, which made sampling 

difficult because the loop closure conditions of the cycles must be satisfied. To overcome 

this issue, we used an inverse kinematics approach designed to exhaustively sample the 

conformations of the compounds and to satisfy the multiple closure conditions at the same 

time [4].

We sampled multiple structures for each target and then subjected them to preliminary 

filtering. The remaining structures were refined with several algorithms: full-atomic 

relaxation, MCMM [2, 5, 6], and conventional and accelerated MD [7, 8]. This pipeline 

resulted in very successful predictions, with 0.76 Å average pose-1 RMSD poses, and sub-

angstrom accuracy for 15 out of 20 compounds, according to the official evaluation by the 

D3R organizers.

3. Methods

3.1. Workflow overview

For Stage 1a, the input data consisted of the receptor sequence (as a FASTA string) and 

ligand structures (as SMILES strings). In total, 20 receptor-ligand pairs, or targets, were 

given, named BACE_1 to BACE_20. The BRIKARD algorithm [4] (for cyclic molecules 

BACE_1 to BACE_19) and the ETKDG [9] algorithm (for the only non-cyclic target, 

BACE_20) were used to generate multiple initial conformations for the ligands. The 

similarity search was performed in the PDB database to find templates – highly-homologous 

proteins with similar ligands. Out of all generated conformations, only those closest to the 

templates were retained. This way, for each target, we created an ensemble of starting poses 
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containing between 4 and 402 structures. These structures were subjected to restrained full-

atomic energy minimization (RM) to remove possible clashes and to “relax” the ligand. Out 

of the resulting minimized poses, four to five were manually chosen for submission.

For Stage 1b, the D3R organizers provided X-Ray structures of the receptor cocrystallized 

with each of the ligands. We aligned the submitted results from Stage 1a to these receptor 

molecules and applied various refinement protocols: restrained full-atomic minimization 

(RM), Monte Carlo on manifold minimization (MCMM), molecular dynamics (MD), and 

Modeling Employing Limited Data accelerated molecular dynamics (MELD × MD). For 

each target, five structures were manually selected for submission. The high-level overview 

of the workflow is presented in Fig. 1.

3.2. Template search

The first step of the protocol in Stage 1a was finding known structures of closely related 

complexes. We did a BLAST search for sequence-similar (e-value = 10−20, sequence 

identity ≥ 95%, resolution ≤ 3 Å) chain structures in the Protein Data Bank (PDB). Then, the 

following procedure was conducted independently for each of the 20 target ligands. For each 

sequence-similar structure, only the ligand with the best Tanimoto score located within 8 Å 

of the sequence-similar chain structure was retained, with the two thus forming a protein-

ligand template. The Tanimoto score was calculated using Daylight molecular fingerprint 

with RDKit [10]. All templates with Tanimoto scores less than two-thirds of the maximal 

Tanimoto score for the current target were discarded. The Maximum Common Substructure 

(MCS) was calculated between the target ligand and each of the remaining template ligands. 

For each target, two MCS were calculated using RDKit with different tolerance criteria: 

“weak” MCS (atoms and valences should be the same; allow chiral centers to be different; 

single and aromatic bonds should match each other) and “strict” MCS (allowances 

mentioned before are prohibited). Several templates with the highest MCS coverage for the 

given target were taken as final. A special case was BACE_20, for which we additionally 

constructed a “chimera” built from two templates. Each of these two templates covers a 

different part of the BACE_20 ligand, with some intersection between them forming a 

common “core.”

3.3. Starting poses preparation

Despite the advancements in refinement protocols, having a good starting pose is still a 

prerequisite for achieving a low-RMSD result. For the initial stage of the competition (Stage 

1a), the starting poses were prepared using the following multi-stage approach. First, we 

generated 104 conformers for each target ligand.

For BACE_1 through BACE_19 (macrocyclic molecules), conformer generation was carried 

out using the robotics-inspired BRIKARD [4] loop closure algorithm. Using inverse 

kinematics, BRIKARD rigorously samples “driver” torsions according to prescribed 

intervals and frequencies, while “driven” or “pivot” torsions [4] are computed by recursive 

ring closure consistently for all interconnected rings. This allows for uniform sampling of all 

dihedral angle values. BRIKARD allows the manual specification of the order of solving the 
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rings. However, for this study, we used a ring perception algorithm [11] to carry out the 

recursive ring generation and to find solutions automatically.

For BACE_20 (a non-macrocyclic molecule), we used the ETKDG method [9] from RDKit 

for the conformer generation. All conformers were minimized in vacuum using Merck 

Molecular Force Field (MMFF) [12, 13]. Then, for each template (a protein-ligand pair from 

the template, only one chain from each PDB structure was taken), for both “weak” and 

“strict” MCS, all possible MCS mappings were generated, taking into account 1) all possible 

impositions of the MCS on the template and target ligands and 2) internal symmetry of the 

MCS itself. For each mapping generated this way, we aligned all conformers of the target 

ligand to the template ligand and retained only the conformer with the best MCS-mapping 

RMSD. The resulting structures were used as starting poses for the refinement.

In Stage 1b of the competition, we used our Stage 1a submissions as starting poses.

3.4. Refinement

In Stage 1a, the starting poses were subjected to a simplistic restrained energy minimization 

(RM), in which harmonic restraints were pulling the ligand closer to the template. The RM 

results were scored and used for the Stage 1a submission.

In Stage 1b, we started from the ligand structures (4 or 5 per target) that we had submitted in 

Stage 1a. We aligned them to the X-Ray structures of the receptor provided by the 

organizers. In this stage, we employed four different refinement protocols – restrained 

minimization (RM, same as in Stage 1a), Monte Carlo on manifold minimization (MCMM), 

conventional Molecular Dynamics (MD), and MELD-accelerated molecular dynamics 

(MELD × MD). The resulting structures from all refinement approaches were pooled 

together and scored for the Stage 1b submission. Details of the refinement protocols follow.

3.4.1. Restrained Minimization—In both Stages 1a and 1b, we employed a 

straightforward restrained minimization protocol to refine the starting poses. The protocol 

was based on full-atom energy minimization using a CHARMM-based energy function with 

a GBSA (ACE) solvation term, described in Ref. [14] and implemented in the libmol2 

library (https://bitbucket.org/bu-structure/libmol2/). In Stage 1b, an explicit hydrogen 

bonding term [15, 16] was added to the energy function. During the minimization procedure, 

all receptor atoms except hydrogens were fixed, while ligand atoms matching the template 

were restrained with a harmonic potential to the positions of the corresponding template 

atoms. Applying the restraints allowed us to overcome the limitations of the general 

forcefield, and to implicitly harness the details of known BACE1-ligand interactions. 

Minimization was carried out using the L-BFGS algorithm [17]. Two variations of the 

minimization protocol, which we term RM_1 and RM_2, were used for each target.

RM_1 had three stages: (1) 500 steps without restraints to remove possible clashes; (2) 500 

steps with harmonic restraints (10 kcal/mol/Å2); (3) 500 steps without restraints to allow the 

structure to settle in the pocket.
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RM_2 had five stages: (1) 500 steps of minimization with harmonic restraint (10 kcal/mol/

Å2), but without van der Waals, electrostatic, or dihedral potentials to pull the target close to 

the template structure; (2) same as (1), but the dihedral potential was enabled; (3) same as 

(2), but all the receptor atoms in the interface were movable; (4) same as (3), but 

electrostatics and van der Waals potential were enabled; (5) same as (4), but without 

restraints. RM_2 tends to allow more drastic changes to the ligand structure, making it closer 

to the template, but sometimes it results in unnaturally twisted dihedrals.

3.4.2. Monte Carlo on Manifold Minimization—The Monte Carlo on manifold 

minimization algorithm was based on the protocol described previously [1, 2, 6, 14, 18]. 

MCMM relies on the assumption that covalent bonds and angles can be considered fixed, 

and thus the molecular flexibility is achieved through the rotation of dihedral angles alone. 

The molecule in this framework is described as a set of rigid molecular clusters connected 

by rotatable bonds. While full-atom minimization takes place in a 3N-dimensional space, 

where N is the number of atoms, the manifold representation reduces this dimensionality to 

D+6, where D is the number of rotatable dihedrals, and 6 degrees of freedom are responsible 

for the rigid body movements of the molecule as a whole. Drastic reduction in the 

dimensionality of the problem allows significant speed-up [5].

In the current version of the protocol, we did not implement the rotations of the internal 

dihedrals of the cyclic part of the ligand, treating it as a single rigid cluster. However, 

because the cyclic part was sampled during the generation of the conformers, its flexibility 

was partially accounted for during the selection of starting poses and the following full-atom 

RM refinement. During the minimization procedure, we used the same energy function as 

for the RM refinement, including harmonic restraints [15, 16]. For each starting 

conformation, we performed 10,000 Monte Carlo steps (kT = 2.0 kcal/mol), from which the 

pose with the lowest energy was selected and additionally minimized without restraints. The 

MMCM approach was used only in Stage 1b.

3.4.3. Molecular Dynamics—This refinement procedure, used only in Stage 1b, was 

reserved for targets for which templates were similar to each other, suggesting a high degree 

of certainty in the starting model. The starting configuration for the refinement MD 

simulations was the top-1 pose from our Stage 1a submission, according to our ranking. We 

used the Amber ff14SB force field [19] to model the protein, and the GAFF force field [20] 

to model the ligand. The protonation state of the ligand was determined based on the 

experimental conditions provided by the organizers. Ligand atom partial charges were 

assigned using the AM1-BCC method [21] implemented in the antechamber module of 

Amber [20]. Each structure (this includes protein, ligand, crystallographic water molecules, 

and, in some cases, sulfate ions and glycerol molecules) was solvated using Leap [22] with a 

TIP3P [23] octahedral water box and at least a 10 Å buffer region between any atom of the 

system and the edge of the box. Na+ or Cl− ions were added as needed to neutralize the total 

charge of the system [24].

The MD refinement procedure was similar to the one described in Ref. [2]. For each system, 

first, a multistage minimization and equilibration protocol was carried for 2.05 ns [25]. 

Then, an MD production run was carried out for 200 ns with 4.0 fs timesteps, at 300 K and 1 
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atm. Hard restraints (50 kcal/mol/Å2) were applied to protein heavy atoms, sulfate ions, and 

glycerol molecules; crystallographic waters were restrained with stronger springs (100 

kcal/mol/Å2). Soft restraints (2.5 kcal/mol/Å2) were used for the ligand. This kept the 

protein close to the crystallographic structure while allowing some degree of relaxation for 

the side-chains and the ligand.

3.4.4. MELD-accelerated Molecular Dynamics—This refinement procedure was 

used only in those Stage 1b cases where the chosen templates were significantly different 

from each other. MELD-accelerated MD (MELD × MD) uses external information to reduce 

the phase space of physics-based simulations [7, 8]. This is achieved by energetically 

penalizing the regions of the phase space that do not agree with the information. Since no 

energetic bias is applied to areas of the phase space that agree with external information, the 

relative population of these basins is consistent with the relative population of unbiased 

simulations and can, therefore, be used as a proxy for free energy. To jump between the 

different basins created by the introduction of the information, energy-bias replica exchange 

simulations are necessary. For each MELD × MD refinement target, structural information 

for each of the five starting poses was incorporated into the simulation in two ways:

1. Ligand heavy atoms positions shared by all the poses were restrained using 

MELD cartesian restraints (delta = 1 Å, k = 5 kcal/mol/Å2). Other ligand atoms 

were left unrestrained. Visual inspection was used to identify which ligand heavy 

atoms are shared between all the poses (and therefore were restrained during the 

MELD × MD simulation).

2. Protein and crystallographic water heavy atoms were restrained using hard 

MELD cartesian restraints (delta = 0.5 Å, k = 5 kcal/mol/Å2).

To reduce the convergence time of the simulations, the five starting poses were seeded along 

the replica ladder. To further reduce the simulation time, only part of the receptor was 

simulated in MELD. This part was selected by searching for receptor residues, cofactors, or 

crystal waters having a heavy atom within 10 Å from the ligand. The system was subjected 

to the same minimization and equilibration protocol as in the MD protocol before refining 

with MELD. The MELD simulation was run in a TIP3P explicit solvent environment with a 

REST2 solute-tempering technique [26]. The effective temperature was scaled from 300 K 

to 400 K with the MELD Geometric Temperature Scaler. Hydrogen mass repartition was 

applied. The simulation time step was 4.5 fs. An 8 Å cut-off was used for all interactions.

3.4.5. Clustering Protocol—The following procedure was used to analyze the MD and 

MELD trajectories. The trajectories were clustered without using any information about 

starting poses, and the cluster centroids were chosen as final predictions. In the case of MD 

refinements, the trajectories (one per target) were clustered using the whole 200 ns of 

trajectory. In the case of MELD simulations, trajectories of only the three lowest replicas 

were clustered. We used the DBSCAN clustering algorithm [27] implemented in scikit-learn 

[28]. The distance cut-off was 5.0 Å, and the population cut-off for identifying the core point 

was 20. The distance metric was the ligand RMSD (LRMSD) computed on all ligand heavy 

atoms after aligning the receptor Cα’s.
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3.5. Scoring and ranking

For each target, the results of all refinement methods (RM for Stage 1a; RM, MCMM, MD, 

and MELD for Stage 1b) were combined in a single pool and scored together. The results 

were clustered using the Butina algorithm [29] from RDKit. For each obtained cluster 

centroid, the AutoDock Vina-based score [30], the CHARMM-based energy score, and the 

cluster size were calculated. The final model selection was made manually based on these 

scores and on the fit of the model to known crystallographic ligands binding to the same 

pocket.

4. Results and discussion

In the analysis of the results below, we used native crystallographic poses provided by the 

organizers as a reference for RMSD calculation. A custom comparison tool was used, which 

caused minor discrepancies between the RMSD values reported here and in the official D3R 

GC4 rankings.

4.1. Macrocycle sampling

One of the main challenges of the current D3R round was a conformational sampling of 19 

macrocyclic target ligands (BACE_1 to BACE_19). Their main ring contained 14 to 16 

atoms, one (BACE_8, 9, 10, 12–19) or two (BACE_1–7, 11) peptide bonds, up to two fused 

planar aromatic benzene rings, and up to three flexible sidechains. Besides that, in two 

ligands (BACE_2 and BACE_13) one of the sidechains additionally included an independent 

flexible six-atom ring.

Although it is important to have an overall good conformer as a refinement starting point, we 

wanted to focus our efforts on the conformational sampling of the main rings. The main 

reason to do so is the relative complexity of the conformational space and energy landscape 

of the macrocyclic parts compared to those of the sidechains, caused by the loop-closure 

condition. Unlike the macrocyclic parts, sidechains can be efficiently sampled by the 

refinement protocols, thus increasing the value of the conformational sampling success for 

macrocyclic parts. We compared two conformer generators, ETKDG from RDKit [10] and 

BRIKARD [4], to determine their effectiveness for sampling macrocycles. For each of the 

macrocyclic targets, we generated 105 conformers with each generator and minimized them 

in vacuum using Merck Molecular Force Field (MMFF).

Several generated conformers for target BACE_2, which contains two peptide bonds in the 

man ring, are shown in Fig. 2a. For the peptide bonds highlighted in Fig. 2a, we found that 

the structures produced by ETKDG highly over-represented cis conformations. The 

distribution of the dihedral angle is shown in Fig. 3b, with most of the samples being in a 

near-cis state. We attribute this bias to the relaxation associated with loop closure via 

fragment assembly, employed by ETKDG; thus, the sampling exhaustiveness is 

compromised in favor of a loop-closure condition satisfaction. After MMFF minimization, 

almost all generated conformers were in a cis state with the trans state being undersampled. 

In Fig. 2c, we can see that the inverse-kinematic approach of BRIKARD allows broad 
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uniform sampling of all dihedral rotations. After performing MMFF minimization, both cis 

and trans states are populated.

After the competition ended and the crystallographic structures of the complexes were 

released, we calculated RMSDs of all the generated conformers to the native structures, 

using only macrocyclic parts – all atoms rigidly attached to the main ring – of the molecules 

(macrocyclic RMSD). The result of the comparison is presented in Fig. 3, where we plot the 

lowest generated macrocyclic RMSD from the BRIKARD against corresponding value from 

ETKDG. We divided target ligands into three subgroups based on the number and type of 

peptide bonds within the macrocycle, indicated by the color of the point. Peptide bonds 

represent a significant challenge for the sampling of macrocycles by introducing energetic 

barriers, further complicating the already nontrivial energy landscape of macrocycles. The 

“blue” macrocycles have only one plain peptide bond with trans native conformation. The 

“orange” group has an additional peptide bond in cis native conformation, with massive and 

flexible nitrogen-sidechain. This sidechain prevents the second peptide bond from being in 

trans conformation because of possible steric clashes with the macrocycle itself, thus 

simplifying sampling. In terms of best macrocyclic RMSD for “blue” and “orange” 

subgroups of targets, the performance of both ETKDG MMFF and BRIKARD MMFF is 

comparable (Fig. 3, left).

A significantly different situation is for the “green” subgroup, where macrocycles contain an 

additional peptide bond, but with a small sidechain and in trans native conformation (Fig. 3, 

right). For these peptide bonds (which include the one presented in Fig. 2), we found that the 

structures produced by ETKDG over-represented cis conformation, while BRIKARD 

uniformly sampled both cis and trans states. This allowed BRIKARD MMFF to out-perform 

ETKDG MMFF in terms of best macrocyclic RMSD on all targets in the “green” group (Fig. 

3, left).

We believe that for even more complex macrocyclic systems with multiple dihedral barriers 

and multiple fused rings the ability of BRIKARD to uniformly sample all flexible 

macrocyclic dihedrals intrinsically taking into account multiple loop closure conditions is of 

high significance and helps to improve results as, for example, was demonstrated in [4].

We are planning to make BRIKARD publicly available as an automated server. Users will be 

able to upload the starting cyclic structure or amino acid sequence (in case of a peptidic 

macrocycle) and specify the desired number of conformers (up to 105). Users will also be 

able to minimize the energy of each generated conformation, optionally including distance 

restraints derived from the NMR spectrum or using direct optimization of the 2D NMR 

spectrum (NOESY). The user will be able to download all the sampled minimized/non-

minimized conformers or only the cluster representatives.

4.2. Restrained Minimization

Despite its simplicity, the restrained minimization protocol did significantly improve starting 

poses in Stage 1a. The results can be seen in Fig. 4, where we show the RMSD values for 

the best-refined pose (with the lowest RMSD to the reported native structure) and the 

corresponding starting pose. While in all cases except BACE_12 the starting pose had an 

Kotelnikov et al. Page 8

J Comput Aided Mol Des. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RMSD over 1 Å, in most cases energy-based RM succeeded in lowering the RMSD into the 

sub-angstrom range.

As expected for a template-based method, the accuracy of the refined structure tends to 

improve with higher template similarity. This effect can be seen in Fig. 5, where we compare 

the RMSD for the best (lowest RMSD) Stage 1a predictions versus the corresponding MCS 

coverages. Filled points correspond to the refined structures, while empty points with the 

same MCS coverages correspond to the starting structures. We also visually separated 

“weak” MCS (shown as circles) and “strict” MCS (shown as squares). We see that finding a 

good template, with high MCS coverage, is an important step for obtaining high-quality 

models with the protocol used.

Insets (a) and (b) in Fig. 5 showcase examples of the refinements achieved by the RM 

approach for targets BACE_6 and BACE_11. In the case of BACE_6 (inset a), significant 

changes in both “tail” and macrocycle are observed, leading to the RMSD reduction from 

2.10 Å to 0.83 Å. In the case of BACE_11 (inset b), the tail is relatively constant, but a ring 

flip happens in the macrocyclic part, reducing the RMSD from 1.61 Å to 0.49 Å.

Because the starting poses were built by aligning conformers to the template without taking 

into account the pocket environment, clashes between the small molecule and protein could 

occur. One of the structures for BACE_18 might serve as an example of such a situation, as 

shown in Fig. 6. The clash between a protein loop and the starting macrocycle pose was 

resolved by RM, reducing the RMSD from 4.10 Å to 1.80 Å.

4.3. Monte Carlo on Manifold Minimization

While RM refinement could produce a significant conformational change, it was limited to 

exploring only local minima. Although perturbations on a manifold did not affect the 

macrocycles, they did extensively sample side-chains, and subsequent full-atom relaxation 

led to adjustments of the macrocycle structure as well. For example, Fig. 7 shows the 

comparison of MCMM and RM refinement for ligand BACE_1 in Stage 1b of the 

competition. While RM reduced the RMSD from 1.20 Å (starting pose, shown in gray 

licorice) to 0.94 Å (green licorice), it failed to establish hydrogen bonds with nearby water 

molecules, despite hydrogen-bonding terms being included in the forcefield. MCMM, on the 

other hand, sampled ligand side-chains well enough to find the conformation (teal licorice) 

with these hydrogen bonds, reducing the RMSD to 0.64 Å.

However, extensive conformational sampling combined with the general forcefield often led 

to suboptimal results, and MCMM outperformed RM, in terms of closest RMSD, on only six 

targets.

4.4. Molecular Dynamics

During the competition, conventional MD refinement was not used for systems BACE_8, 9, 

17, 18, 19, and 20. However, to make the discussion of the results more complete, the MD 

refinement protocol was run afterward for the MELD-refined systems as well. We find that 

MD can slightly refine (most) poses.
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Fig. 8 shows the quality of the initial structures (i.e., the top-1 structure from the Stage 1a 

submission), and how restrained MD can improve the structure of 14 systems. Of these, 

BACE_2, 6, 7, 10, 17, and 20 have improvements of 0.2 Å or more. In only two (BACE_14 

and BACE_17) of the seven remaining systems was the quality of the refined structure 

slightly worse than the starting structures. This shows that, in most cases, restrained MD 

simulations can slightly improve the quality of good starting structures. Because the 

positions of the heavy atoms of the ligand are restrained, the final structures of our 

simulations cannot deviate significantly from the initial ones. Improvements using this 

approach are therefore limited to fractions of angstroms. This is still a helpful step for 

systems where there is a consensus between starting poses because it allows the physics of 

the system to “relax.”

4.5. MELD-accelerated Molecular Dynamics

During Stage 1b of the competition, MELD was run only for targets with starting poses that 

had relatively different structures, namely BACE_8, 9, 12, 17, 18, 19, and 20. In these cases, 

MELD × MD is able to recognize the best structure and refine it. Fig. 9 shows that, for the 

seven systems for which alternative poses are available, MELD × MD simulations 

consistently identified and refined the best pose. For two of the systems, BACE_8 and 

BACE_9, the top-1 starting pose was already pretty close to native. MELD correctly 

identified it and refined it. That is, both MD refinement and MELD refinement yielded poses 

that are similar to each other and to the top-1 starting structure. For BACE_17, the top-1 

pose (gray licorice in the structural representation) is not the correct one. MELD × MD 

correctly identified and refined the correct pose (orange licorice). In this case, MD was also 

able to relax the incorrect top-1 pose to one closer (blue licorice) to the native one (red 

licorice), because we left that portion of the ligand unrestrained. For the BACE_19 system, 

the ring in the top-1 pose was flipped (gray licorice) compared to the native pose (red 

licorice). MD was not able to relax its orientation (blue licorice). MELD was able to identify 

the pose with the correct ring orientation and refine it (orange licorice). For BACE_18, 

MELD gave a slightly worse pose compared to MD. Visualizing the whole trajectory shows 

that MELD does sample better poses, but the clustering protocol failed to extract them 

(Supplementary Fig. S1). Clustering with a stricter cut-off might yield better poses.

5. Summary

Template search and restrained minimization were enough to achieve low-RMSD scores in 

Stage 1a of D3R GC4. As evaluated by the organizers, our mean closest RMSD (best of five 

for each target) value was 0.65 Å, with 18 targets having a sub-angstrom accuracy. Our 

mean pose-1 RMSD was 0.77±0.34 Å, with 15 targets in the sub-angstrom range (Fig. 10a). 

This placed our group first in the official Stage 1a rankings by both mean closest and mean 

pose-1 RMSDs (Fig. 11a).

In Stage 1b, with crystallographic receptor structures and a higher number of refinement 

protocols, the accuracy was further improved. MCMM, MD, and MELD refinement 

protocols were used to refine the ligand starting conformation, which often resulted in 

drastic RMSD improvements. Unfortunately, due to technical issues, we were unable to 
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analyze and submit all refinement results in the time allotted. Therefore, not all the results 

discussed above were included in the official submission, and the overall improvement was 

marginal compared to Stage 1a. Still, for some targets, we did improve RMSD drastically. 

For example, the closest RMSD for BACE_20 was 0.97 Å in Stage 1a, and 0.65 Å in the 

Stage 1b submission. According to the official evaluation, we achieved the mean closest 

RMSD 0.63 Å, and mean pose-1 RMSD 0.76±0.32 Å (Fig. 10b). Among all participants, we 

were ranked second in terms of mean closest RMSD, and third in terms of mean pose-1 

RMSD (Fig. 11b).

6. Conclusion

A template-based approach has been used in previous rounds of D3R Grand Challenge for 

protein-ligand docking [31–33], as well as in community-wide protein-protein docking 

competitions [34–37], and in protein-RNA docking [38, 39]. Our team has developed a 

novel approach for template-based small molecular docking to proteins and has 

demonstrated its efficiency in D3R GC4, where we predicted the poses of 20 compounds 

with 0.76 Å mean pose-1 RMSD and 0.66 Å mean closest (best of five) RMSD. In terms of 

pose-1, 15 out of 20 compounds were predicted with sub-angstrom accuracy. This has 

placed us among the best performers in the pose prediction challenge. In our approach, we 

incorporated ample existing information on the bound ligands for the system of interest with 

tools we had previously developed. Armed with this data, we were able to produce low-

RMSD poses even with a simplistic local refinement method. More advanced structure 

refinement protocols were able to reduce RMSD even further in Stage 1b, although no single 

refinement method is clearly superior to others. In particular, a better scoring function would 

be crucial for ranking the obtained poses. While, for example, the Vina scores did not exhibit 

a high correlation with RMSD even within multiple poses of the same ligand (see 

Supplementary Fig. S2), we believe that an automated scoring method can be devised 

instead of relying on human experts as we did in this competition. Of particular interest are 

the knowledge-based scoring functions due to their good performance in D3R ranking stages 

in this and previous years [40–43]. Another possible direction for scoring function 

optimization is the inclusion of a density-based score, which measures the similarity of the 

structure to known crystallographic complexes of related compounds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The general outline of the protocol used by our team in D3R GC4. Yellow elements indicate 

the stages of the pipeline; green elements indicate the data provided by the organizers; blue 

indicates publicly-available databases; and purple indicates the final submitted results. The 

MCMM, MD, and MD × MELD refinement stages were only used for refining with a 

cocrystallized receptor in Stage 1b and were skipped in Stage 1a
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Fig. 2. 
(a) Left: Structure of one of the submitted BACE_2 ligand poses. One of the peptide bond 

dihedrals is highlighted. Right: Three of the alternative structures for BACE_2 sampled by 

BRIKARD. (b) The distribution of the peptide bond dihedral in structures generated by 

ETKDG, before (white bars) and after (blue bars) MMFF energy minimization. (c) The 

distribution of the peptide bond dihedral in structures generated by BRIKARD in broad 

sampling mode, before (white bars) and after (blue bars) MMFF energy minimization
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Fig. 3. 
Left: Best macrocyclic RMSD achieved by ETKDG and BRIKARD for each macrocyclic 

target ligand (BACE_1 to BACE_19). The color of the points reflects the “group” of the 

macrocycles. Right: Native structures of the macrocyclic target ligands, grouped by the 

properties of their main ring. “Green” ligands (BACE_2– 5, 11) have two peptide bonds 

(one of them near a small nitrogen-sidechain); “orange” ligands (BACE_1, 6, and 7) have 

two peptide bonds (one of them near a large nitrogen-sidechain); “blue” ligands (BACE_8, 

9, 10, 12–19) have one peptide bond

Kotelnikov et al. Page 17

J Comput Aided Mol Des. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Comparison of RM refinement results and starting conformations. The RMSD of the best 

RM refined pose (green bar) and the corresponding starting pose (white boxes) against the 

native pose
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Fig. 5. 
The dependency between the lowest obtained RMSD and the corresponding MCS coverage. 

For each of the 20 target ligands, two points are shown: a filled one for the best (lowest 

RMSD) RM-refined pose, and an empty one for the corresponding starting pose. The shape 

of a point indicates used MCS “flavor”: square for “strict” and circle for “weak.” Inset (a) 

shows an example of RM refinement for BACE_6, while inset (b) shows RM refinement for 

BACE_11. In both cases, the native structure is shown in red, the starting structure in gray, 

and the RM-refined structure in green
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Fig. 6. 
Example of macrocycle refinement with the RM protocol for target BACE_18. The starting 

pose, obtained by rigid alignment of the sampled structure to the template, is shown in gray. 

The native pose and RM refined pose are shown in red and green, respectively. The receptor 

backbone in the native structure is shown in red and is very similar to the backbone in the 

refined and starting structures
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Fig. 7. 
Comparison of the MCMM refinement result (teal) and the RM refinement result (green) for 

BACE_1 in the presence of crystallographic water. The starting pose is shown in gray; the 

native pose, including receptor and water oxygens, is shown in red. Two hydrogen bonds, 

formed by native and MCMM-refined poses, and not formed by starting and RM-refined 

poses, are shown as black dashed lines
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Fig. 8. 
Comparison of MD refinement results and starting conformations. The RMSD of the best 

MD refined pose (blue bars) and the starting pose (white boxes) against the native pose
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Fig. 9. 
Comparison of MELD refinement results, MD refinement results, and top-1 starting 

conformations. The best MELD refined pose, best MD refined pose, and top-1 starting pose 

are shown in orange bars, blue bars, and white boxes, respectively. The corresponding 

structures for BACE_17 and BACE_19 are shown above the bars in the same colors; the 

native structure is shown in red
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Fig. 10. 
The closest RMSD (bars) and pose-1 RMSD (diamonds) of submitted structures in Stages 1a 

(a, left) and 1b (b, right), as calculated by the D3R GC4 organizers
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Fig. 11. 
The top-20 predictors by mean closest RMSD (bars) in official D3R GC4 rankings. 

Corresponding mean pose-1 RMSD’s with standard deviations are shown in diamonds above 

the bars. Results for Stage 1a are shown in (a, left); results for Stage 1b are shown in (b, 

right). The scores of our submissions are shown as hatched red bars
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