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Abstract

The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided 

drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on 

the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin 

S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict 

the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all 

BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal 

structures. We provide an analysis of the results and discuss insights into determined best practice 

methods.
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2 INTRODUCTION

Drug discovery remains a time consuming and costly venture. Among the central goals of 

computer aided drug design (CADD) technologies are amelioration of these issues through 

more rapid and cost effective in silico experiments. Given availability of three-dimensional 

(3D) atomic coordinates of a protein target of interest, two primary activities of CADD 

programs are to both predict (1) the bound conformation (pose) of candidate ligands, and (2) 

the binding affinity, or affinity ranking, of those ligands to the target macromolecule [1–3]. 

The CADD community has witnessed an explosion in methodologies and software, which 

seek to accomplish (1) and (2) [4–39]. However, these new technologies are rarely if ever 

compared on an equal footing, instead relying mainly on retrospective benchmark datasets 

that are subject to bias [40], and this remains a challenge for prospective application of these 

tools.

To address these challenges, the Drug Design Data Resource (D3R; 

www.drugdesigndata.org) was established. D3R, built upon the prior work of Community 

Structure Activity Resource (CSAR) [41–44], provides opportunities for blinded prospective 

methods benchmarking and comparison on hitherto privately-held data sets kindly provided 

by (primarily) industrial partners. To date, the D3R has conducted four major challenges [6, 

30, 45]. The results of Grand Challenge 4 (GC4) reported herein. In total, GC4 saw our 

broadest participation levels to date, with 51 unique participants responsible for a total of 

407 submissions. Herein, we outline the datasets employed, challenge assessment 

procedures, and prediction results, while seeking best practices methods for the field. A 

complementary set of articles from individual challenge participant laboratories 

accompanies this overview in the present special issue of the Journal of Computer-Aided 
Molecular Design.

3 METHODS

3.1 DATASETS AND SUBCHALLENGES

Grand Challenge 4 (GC4) is a blinded prediction challenge with components addressing 

pose prediction, affinity ranking, and free energy calculations. GC4 is based on two different 

protein targets, beta secretase 1 (BACE1) and Cathepsin S (CatS). These data sets were 

generously contributed by Novartis Institutes for Biomedical Research and Janssen 

Pharmaceuticals, Inc., respectively.

The BACE1 dataset encompasses 154 small molecule inhibitors with previously undisclosed 

crystallographic structures. Specifically, the BACE1 challenge included all three challenge 

components, and was based on 154 BACE1 inhibitors for affinity ranking, 20 for pose 

prediction, and 34 for free energy computation. Many of the ligands are large and flexible 

macrocycles. For pose prediction, the 20 ligands constituted a diverse set with many 

macrocycles. All the ligands bind the same region of the protein, with Figure 1 providing 

illustrative views of the binding modes for two of the BACE1 ligands. In total, 19 distinct 

Bemis-Murcko scaffolds are present in this set. Four of the BACE1 docking ligands are 

Lipinski rule-of-5 (Ro5) compliant [46], and 19 are Veber rule compliant [47]. We find that 

the physiochemical properties of BACE1 docking ligands span a diverse range of values: 
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1.5–7.5 ClogP, 350–670 Da, 3–16 rotatable bonds, for example. Supplementary Figure 1 

presents histograms of the number of heavy atoms, ClogP, molecular weight, number of 

hydrogen bond acceptors/donors, number of rotatable bonds, number of rings, and 

topological surface area (TPSA). We next sought to identify how similar the BACE1 

docking ligands were to ligands in publicly available BACE1 co-crystal structures. This was 

done by calculating Tanimoto coefficients to the nearest neighbor ligand (1nn) in the PDB. 

All Tanimoto coefficients were calculated using ECFP6 Morgan fingerprints (radius=3, 

nBits=1024) with RDKit [48]. Here, the nearest neighbor ligand is defined to be the ligand 

with the maximum similarity to the query ligand, and these maximum similarities span a 

broad range, with a maximum of 0.79, and a minimum of 0.28. Thus, the BACE1 docking 

ligands spanned a range of similarity to publicly known ligands in co-crystal structures.

For affinity prediction, the ligand affinities span a three order of magnitude (nM to μM) 

range of IC50s (Supplementary Figure 2), and the BACE1 free energy set involves a scaffold 

hopping challenge of cyclic (macrocycles) and non-cyclic (linear) compounds, making for a 

challenging free energy prediction component [49]. This is illustrated in Figure 1A and 1B. 

Detailed descriptions of the crystallization conditions for all 20 BACE1 co-crystal structures 

used in the challenge can be found in the supplementary material of the following literature 

[50]; and those of the assay conditions employed for GC4 BACE1 affinity data generation 

can be found in reference [51].

The CatS dataset constitutes a follow-on challenge to GC3, composed of non-peptidic, non-

covalent, small molecule inhibitors with measured binding affinities ranging over three 

orders of magnitude range (nM to μM) of IC50s for CatS. A histogram of the pIC50 values 

is provided in Supplementary Figure 2. In all, the D3R data set provides 459 CatS inhibitors 

for affinity ranking, and 39 molecules for free energy prediction. Unlike BACE1, the CatS 

free energy data set focuses on a single chemical scaffold. A detailed description of the 

binding assay conditions was published in our previous GC3 publication and a Janssen 

publication [6, 30, 45, 52].

3.2 POSING THE CHALLENGE

GC4 constitutes the fourth D3R Grand Challenge to date. It followed a similar format to 

previous challenges [6, 30, 45], including pose prediction, affinity ranking, and free energy 

prediction components. GC4 followed a two-stage format. Since BACE1 is associated with 

new co-crystal structures, it included pose prediction component in Stage 1 and an affinity 

ranking and free energy prediction components in both Stages 1 and 2. CatS has no 

previously undisclosed co-crystal structures and was hence presented in only one stage that 

only included affinity ranking and free energy prediction. As in GC3, the pose prediction 

component in Stage 1 was further divided into two sub-stages, wherein structural 

information was released incrementally to evaluate different aspects of docking. Stage 1a 

constituted the crossdocking component, in which participants were asked to dock 20 

BACE1 ligands whose co-crystal structures were withheld. Participants thus needed to select 

their own receptors for docking from the Protein Data Bank (PDB) archive (rcsb.org). 

Following Stage 1a, all 20 BACE1 co-crystal structures were unblinded, and participants 

were asked to redock each ligand to its associated crystal structure as part of a self-docking 
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challenge in Stage 1b. In both Stage 1a and 1b, participants were allowed to submit up to 5 

poses per ligand, with their “best guess” being designated as “Pose 1.” Participants were 

asked to align their poses to a designated structure to facilitate evaluation.

3.3 EVALUATION OF POSE AND AFFINITY PREDICTIONS

Prediction evaluations followed the same procedure as previous Grand Challenges, with all 

evaluation scripts available on Github (drugdesigndata.org/about/workflows-and-scripts). 

Pose predictions were evaluated in terms of the symmetry-corrected RMSD between 

predicted and crystallographic poses. These were calculated with the binding site alignment 

tool in the Maestro Prime Suite (align-binding-sites), where a secondary structure alignment 

of the full proteins is performed, followed by an alignment of the binding site Cα atoms 

within 5 Å of the ligand atoms [53]. The pose prediction evaluation results discussed herein 

are restricted to Pose 1 RMSDs, unless otherwise noted. Additional statistics, including 

lowest RMSD (“Closest Pose”) and mean pose (“All Poses”), are provided on the D3R 

website. Affinity predictions were evaluated in terms of the ranking statistics Kendall’s τ 
[54, 55], Spearman’s ρ [56], and the centered root-mean-square error (RMSEc) for the free 

energy sets, recomputed in 10,000 rounds of resampling with replacement to generate error 

bars based in experimental uncertainty following the same procedure seen in all previous 

challenges [6, 30, 45]. Experimental uncertainties were added to the free energy, ΔG, as a 

random offset δG drawn from a Gaussian distribution of mean zero and standard deviation 

RTln(Ierr). In this evaluation, the value of Ierr was set to 2.5, based on the estimated 

experimental uncertainty. As also noted in previous challenges, two null models were used 

as performance baselines for ranking ligand potencies [6, 30, 45]. The null models are 

“Mwt”, in which the affinities were ranked by decreasing molecular weight; and “clogP,” in 

which affinities were ranked based on increasing octanol–water partition coefficient 

estimated computationally by RDKit [48, 57].

Machine learning methods were also compared to another null model, a standard random 

forest regression model, to establish a baseline of performance for machine learning in the 

context of publicly available data. Using scikit-learn-0.14.1 [58–60], models were built for 

each target (CatS and BACE1) using publicly available IC50 data from ChEMBL25 [61] and 

a concatenated feature vector of Morgan fingerprints (radius=3, 4096 bits) and other 

molecular descriptors (molecular weight, the topological polar surface area, number of 

hydrogen donors, number of hydrogen acceptors, clogP, number of heavy atoms, number of 

rotatable bonds, and number of rings) built using RDKit [48].

4 Results

Grand Challenge 4 (GC4) garnered excellent community participation, with 51 unique 

participants contributing a total of 407 submissions. Details of the methods employed and of 

the performance statistics can be found in the supplementary materials. All information, 

including raw protocol files, identities of participants (for those who are not anonymous), 

and additional analysis statistics can be found on the D3R website (drugdesigndata.org). 

Finally, many of the submissions and methods are discussed by those responsible in this 

special issue.
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4.1 POSE PREDICTIONS

4.1.1 Overview of pose prediction accuracy—The RMSD statistics of the 20 

BACE1 ligands demonstrated excellent pose prediction capabilities, despite the apparent 

complexity of the ligands (Figure 2). In total, 60% of all Stage 1a submissions achieved a 

median Pose 1 RMSD < 2.5 Å. Few submissions in Grand Challenge 3 (GC3)[30], achieved 

this level of cross docking accuracy. For self-docking, Stage 1b saw 59 out of 71 

submissions (83%) obtain a median Pose 1 RMSD<2.5 Å. Interestingly, the top performing 

submission in Stage 1a performed as well as the top performing submission in Stage 1b, 

with a 0.5 median Pose 1 RMSD. Furthermore, the top 10 performing submissions in Stage 

1a performed as well as those in Stage 1b.

When viewed by ligand pose prediction performance as opposed to method performance, we 

observed no statistically significant variation in the ligand pose prediction performance 

RMSD metric. Instead, all ligands performed statistically equally well. Per ligand 

performance statistics are shown in figure 3.

BACE1 is an extensively studied target, due to its potential role in Alzheimer’s disease [62]. 

Indeed, over 300 BACE1 crystal structures were present in the PDB at the time of this 

challenge. In principal then, one possible explanation for excellent performance metrics 

could be that co-crystal structures were available for highly similar ligands, which could be 

used to guide the D3R docking exercise. However, we find a wide range of 1nn Tanimoto 

coefficients between the present ligands and the ligands available in the PDB; thus, if the 

availability of similar ligand structures were central to success, we should not have seen 

such similar performance across ligands. In fact, we find that the 1nn distribution is unable 

to distinguish difficult from easy docking challenges, such as CatS in GC3[30], as all ligands 

have essentially equivalent RMSD statistics (see above). We note that CatS, the target in 

GC3 [30], had a similar 1nn distribution, yet exhibited considerably poorer docking 

predictive accuracy. All 1nn distributions are shown in supplementary figure 3.

In summary, pose prediction results were of high accuracy across nearly all submissions. 

Performance was similar across all ligands, despite the wide range of maximum-similarity 

ligands available in BACE co-crystal structures in the PDB. Thus, the performance metrics 

discussed herein suggest that the docking methods themselves performed well.

4.1.2 Analysis by docking methodology—Our experience shows that multiple 

docking/cheminformatics software tools produced submissions of comparable accuracy. 

These software packages include docking software such as AutoDock Vina [63], Glide [64, 

65], ICM [66], Corina [67], Gold [68], Cactvs[69], Rosetta [70], and EFindSite [71], and 

ligand preparation software such as Brikard [72], RDKit [48], Open Babel [73] and Maestro 

[74]. In addition, almost all submissions in Table 1 used more than one type of software 

package in their workflow, preferring rather to combine multiple docking software packages. 

New to the list of top performing methods is the application of deep learning from Guowei 

Wei’s group. However, insufficient detail regarding the deep learning methodology was 

provided in the submitted protocol file to permit elaboration on the method. When viewed 

by median Pose 1 RMSD, and accounting for the standard deviations in Table 1, it is 

apparent that all of the methods appear to be statistically similar.
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We note that the docking of cyclic molecules presents a conformational sampling problem 

for docking [75]. Participants adopted diverse strategies to address this. For example, both 

Brikard [72] and Gold [68] were used to sample macrocyclic molecules during docking. 

Elsewhere, AutoDock4 [76] was used in a workflow that docked ligands in an open 

conformation and used a linear potential to restore broken bonds. Also, RDKit [48] and 

Open Babel [73] were each used for macrocycle conformer generation.

A limitation of many docking methods is their inability to account for the fact that different 

ligands lead to different binding-site conformations [77–79]. As noted for “Lessons 

Learned” in previous D3R GCs, as well as by others [80], one strategy to reduce this 

problem is ligand-guided similarity docking, where receptors co-crystallized with similar 

ligands to the one under question are selected as the docking receptor. Examination of the 

protocols provided by participants revealed that all of top-performing methods in Stage 1a 

used ligand-guided similarity docking, and 8/10 top-performing methods used this approach 

in Stage 1b. In total, 56/78 submissions in Stage 1a, and 48/71 submissions in Stage 1b, 

employed ligand-guided similarity docking. To determine impact on performance, we first 

omitted submissions with a median Pose 1 RMSD > 5 Å to exclude submissions that simply 

docked to the wrong pocket. We then recorded the mean of the median pose 1 RMSDs for 

submissions that used ligand-guided similarity docking, and those that did not use ligand-

guided similarity docking. Submissions that employed ligand-guided similarity docking had 

a mean median Pose 1 RMSD of 2.1 +/− 1.2 Å. Submissions that did not employ ligand 

guided similarity docking had a mean median Pose 1 RMSD of 2.0 +/− 1.0 Å. The Mann-

Whitney U statistic and p-value of these two submission subsets are 311.0 and 0.25 

respectively, not allowing us to reject the null hypothesis that these statistics come from the 

same distribution. Moreover, although 10/10 of the top performing methods in Stage 1a used 

ligand guided similarity docking, so did 7/10 of the bottom performing methods. In 

aggregate, these results are inconclusive regarding whether or not ligand-guided similarity 

docking aided performance in GC4.

Visual inspection is frequently used to select final poses, with the impact of this having 

mixed results across previous Grand Challenges [6, 30, 45]. Six of the top 10 submissions 

employed visual inspection to select their final pose versus only two of the bottom ten 

performing submissions. This finding suggests that visual inspection augmented docking 

accuracy, albeit dependent on the quality of the scientist’s intuition and experience, as noted 

in GC3[30] and GC2[6].

In summary, multiple software packages achieve similar accuracy. The results herein are 

inconclusive as to whether ligand-guided similarity docking improved performance for the 

BACE1 ligands. Finally, visual inspection appeared to provide a slight performance benefit.

4.2 AFFINITY PREDICTIONS

In this section, we evaluate the accuracy of the predicted ligand-potency rankings and 

binding free energies for protein targets BACE1 and CatS. Because detailed binding free 

energy calculations are computationally demanding, these were limited to focused subsets of 

the ligands, termed Free Energy Sets. BACE1 was presented as a two-stage challenge, where 

new co-crystal structures involving 16 of the challenge ligands were not disclosed to 
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participants until the opening of Stage 2. This allowed us to probe the performance of 

structure-based methods in ranking the ligands in the presence and absence of added 

structural data. For CatS, only one stage was presented, as no previously undisclosed co-

crystal structures were available to D3R. However, the CatS data used for GC4 were drawn 

from a large dataset, provided by Janssen, which was also used in GC3. Thus, it was of 

interest to see whether the availability of more data and structures, as well as possible 

improved computational methodology, would lead to improved performance in GC4.

4.2.1 Overview of Potency Ranking—As in all previous D3R challenges, the 

majority of submissions give positive correlations with experimental data across all targets 

(Figures 4 and 5). Here, Kendall’s τ reaches values of 0.38 ± 0.05, 0.39 ± 0.05, and 0.54 ± 

0.02 for BACE1 Stage 1, BACE1 Stage 2, and CatS, respectively (Table 2). The top methods 

clearly outperform the molecular weight and clogP null models, which achieve Kendall’s τ 
values of 0.26 ± 0.03 and −0.15 ± 0.03, respectively, for CatS; and 0.31 ± 0.06 and −0.18 ± 

0.06, respectively, for BACE1. However, the molecular weight null model does outperform 

the mean Kendall’s τ values across all submissions, for all targets and Stages. The mean 

Kendall’s τs are 0.11, −0.14, and 0.20 for BACE1 Stage1, BACE1 Stage 2, and CatS, 

respectively. Thus, many methods still underperform the null model, where ligands were 

simply ranked based on molecular weight. However, we observed a difference in the number 

of methods outperforming the null models between the two targets. For BACE1, only two or 

three methods had greater Kendall’s τ values than the molecular weight null model, in 

Stages 1 and 2 respectively, while for CatS, 18 methods outperformed this null model. In 

this sense, the computational methods performed better for CatS than for BACE1.

As CatS was previously provided as a target for Grand Challenge 3 (GC3), we compared the 

accuracy of predictions herein to those in GC3. The best performing methods in GC4 have a 

Kendall’s τ of 0.54 ± 0.02, compared to 0.45 ± 0.05 in GC3, and the mean Kendall’s τ for 

the top 20% of methods in GC4 is 0.50, compared to 0.38 in GC3 (Figure 4). This 

improvement might result from prior participant experience with GC3, and the availability 

of the GC3 data to help guide the GC4 calculations. (N.B.: Few participants explicitly 

mentioned any use of the GC3 data.)

4.2.2 Analysis by affinity prediction methodology—We now review the top-

performing method for each challenge target and Stage (Figures 4 and 5, Table 2). In 

BACE1 Stage 1, the top performing method clearly outperforms all other methods with a 

Kendall’s τ of 0.38 ± 0.05 (Figure 4, Table 2). This submission from the Iorga lab (D3R 

Receipt ID: h7uaj) used the Gold docking software and Goldscore scoring function [81]. For 

BACE1 Stage 2, the top submissions include two methods that perform similarly, with 

Kendall’s τ of 0.39 ± 0.05 (D3R Receipt ID: z3uni) and 0.38 ± 0.05 (D3R Receipt ID: 

urt76). One, from the Iorga lab, again uses the Gold docking software and Goldscore scoring 

function; the other, from Accelera, uses docking and affinity tools called SkeleDock and 

Kdeep, respectively [82]. For CatS, we received 10 submissions with similar performance 

around a mean Kendall’s τ of 0.51 ± 0.02 (Figure 5, Table 2). These methods were 

submitted from three different groups that presented slight variations of their methods. One 

submission uses a custom ICM-docking procedure and iterative 3D atomic property field 
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quantitative structure–activity relationships (QSAR) model from Molsoft LLC (D3R Receipt 

ID: x4svd) [19, 32, 83–85]. Three submissions from the Evangelidis lab (D3R Receipt IDs: 

tdcvf, 2v4fk, be0m5) used variations of their DeepScaffOpt method, where an ensemble of 

deep neural networks was trained on CatS data from ChEMBL. Lastly, six of these 

submissions are from the Wei lab (D3R Receipt IDs: 0xvrb, 3c8nw, qb2s2, qi5ev, i0rbd, 

kohoc) and used variations of their topology-based deep learning methods where features 

were generated by algebraic graphs, differential geometry, and algebraic topology scores 

[35, 86–90].

Although fewer than ten submissions used machine learning in GC2, D3R has seen a surge 

in the development and application of such methods in subsequent challenges. As in GC3, a 

number of submissions used machine learning in GC4, with 56% of all submissions 

mentioning use of such methods. Figure 6 shows violin plots of Kendall’s τ values for 

methods that do and do not use machine learning in each of challenge component. Although 

it is not clear that there is much difference between the two sets of submissions for BACE1, 

submissions that used machine learning tended to perform better for CatS, with the top 

performing methods in the “Yes” category outperforming those in the “No” category. It is 

also important to note that the Kendall’s τ values of the machine learning methods (marked 

Yes in Figure 6) have a broader range than those of the other methods (marked No in Figure 

6). Interestingly, our own random forest regression null model, constructed with ChEMBL 

data to establish a baseline of performance for machine learning methods, is outperformed 

by many of the machine learning methods for BACE1 and even for CatS, where one might 

have expected the large quantity of available data to support a relatively accurate regression 

model.

4.2.3 Relationship between affinity ranking accuracy and pose prediction—A 

recurring question in our GCs has been whether knowledge of crystallographic poses would 

improve affinity rankings. We compared the ranking evaluations using only the 16 BACE1 

ligands for which crystallographic poses were released between the two stages (BACE 1 and 

BACE 4 to 20, excluding BACE 17 and 18) (Figure 7). We observe an increase in Kendall’s 

τs for the top methods from 0.42 ± 0.18 in Stage 1 to 0.57 ±0.18 in Stage 2; and a significant 

increase in the number of methods with Kendall’s τ greater than or equal to the molecular 

weight null model of 0.37 ± 0.15 Kendall’s τ totaling 2 methods in Stage 1 versus 8 methods 

in Stage 2. This indicates a general improvement of the accuracy of affinity rankings 

coinciding with the knowledge of the crystallographic poses of the ligands released in Stage 

2. It should be noted that the methods outperforming the molecular weight null model in the 

whole set for Stage 2 (z3uni, urt76, x0qtn) did not outperform that null model in this subset 

of 16 ligands, indicating that the benefit of knowing the crystallographic poses is method 

dependent.

Another assessment of the importance of structural data can be done by looking at the 

differences in performance between structure-based and ligand-based approaches for 

BACE1 and CatS affinity rankings. In BACE1, the only methods outperforming the 

molecular weight null-model in Stages 1 and 2 are structure-based methods (Figure 4). In 

BACE1 Stage 2, the top-performing methods result in Kendall’s τ of 0.39 ± 0.05 and 0.22 ± 

0.06 for structure-based and ligand-based methods, respectively. In CatS, both structure-
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based and ligand-based approaches perform similarly with top-performing Kendall’s τs of 

~0.54 ± 0.02 (Figure 5). Thus, the impact of knowing the crystallographic pose on affinity 

ranking accuracy could be positive for certain targets and with certain methods.

4.2.4 Binding free energy predictions—In GC4, we evaluated computationally 

demanding alchemical methods of predicting relative binding free energy [91–96] within 

sets of chemically similar ligands binding two targets: BACE1 (34 ligands) and CatS (39 

ligands), respectively. The BACE1 free energy set involves scaffold hopping, while the CatS 

free energy set includes only one chemical scaffold. Although the challenge was designed to 

test explicit solvent alchemical free energy methods, as in prior GCs, only one and five 

methods were of this type, for BACE1 Stage 2 and CatS, respectively, while the rest of the 

submissions were structure-based and ligand-based scoring methods that provided relative 

binding free energies between pairs of ligands. When compared with experiment, most of 

the predictions yield RMSEc values of less than 2 kcal/mol and positive Kendall’s tau values 

(Figures 8 and 9, and Tables 3 and 4). The methods with RMSEc< 2 kcal/mol have values of 

Kendall’s τ from −0.07 to 0.62, but it is not clear how much this variation reflects random 

noise versus meaningful differences among the methods, given the small numerical range. 

For CatS, the top-performing methods include four submissions from two participants in the 

Simmerling lab using explicit solvent alchemical free energy methods (D3R Receipt IDs: 

3gjm2, tkkqh, 53cvi, szgth), where all four methods have a Kendall’s τ of ~0.62 ± 0.09. 

Indeed, when assessed with Kendall’s τ, these predictions outperformed all other methods, 

as the next highest value of Kendall’s τ is 0.48 ± 0.1. These four predictions also performed 

well in terms of RMSEc, yielding an average error of 0.5 kcal/mol, which is within statistical 

error of the top performing method based on this metric (D3R Receipt ID: ar5p6; RMSEc = 

0.47 ± 0.08). Unfortunately, the Simmerling lab did not compete in BACE1. For BACE1, the 

one alchemical free energy method submitted resulted in a less impressive Kendall’s τ of 

−0.1 ± 0.12 and RMSEc of 1.6 ± 0.16.

5 DISCUSSION

D3R aims to provide community-wide prospective studies for rigorous analysis of pose and 

affinity prediction protocols. To this end, D3R provided GC4 as a venue for participants to 

evaluate computational methods of their choosing. GC4 attracted robust community 

participation, with 55 participants submitting over 380 prediction sets. Novel to GC4 was the 

inclusion of CatS data drawn from a large dataset, provided by Janssen, which was also used 

in GC3. Thus, it was of interest to see whether the availability of more data and structures, 

as well as possible improved computational methodology, would lead to improved 

performance in GC4.

The pose prediction portion of GC4 consisted of 20 BACE1 ligands of high molecular 

weight and rotatable bond count. Notwithstanding the complexity of these ligands, docking 

performance in GC4 was particularly good. Notably, all top ten performing methods 

achieved a median pose 1 RMSD<1 Å in both Stages 1a and 1b. Despite having various 1nn 

Tanimoto coefficients, all BACE1 ligand poses were predicted nearly equally well across 

both stages. In this case, we observe no link between the predicted pose accuracy and the 

1nn Tanimoto coefficient: even with low values for 1nn, one can get good predictive 
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accuracy. Assessing the 1nn distribution at the start of a new project should therefore be 

considered informative (only) and should not deter from taking on the docking challenge. As 

seen in prior challenges, submission protocols for top-performing methods used a variety of 

software. Conversely, we did not find a statistically significant impact of using ligand guided 

similarity docking as for previous GCs [6, 30]. Finally, we do note a small performance 

benefit from computational docking followed by visual inspection of docked poses, with the 

result being heavily dependent on the individual operator. With respect to the matter of best 

practices, the docking statistics reported herein indicate that various approaches and 

software tools can yield high pose RMSD accuracy.

Unlike much of what we have seen in prior GCs, the availability of new structural data used 

in affinity rankings does appear to improve the potency ranking accuracy for BACE1. Many 

of the submissions evaluated in terms of affinity rank ordering of ligands for which 

crystallographic poses were provided in Stage 2 show higher Kendall’s τs compared to 

submissions in Stage 1. As CatS was presented as a target in two consecutive challenges, we 

have also observed an improvement in participant performance for CatS between GC3 and 

GC4. However, this improvement could not be attributed to either the use of GC3 data, or 

improvements in methodology for ranking ligand affinity. It is also important to note the 

continued impact of machine learning methods. Although similar performance was observed 

for methods utilizing machine learning or not for the BACE1 target, CatS methods that use 

machine learning tended to perform better than those that did not. The accuracy of affinity 

ranking methodology appears to be very target-dependent and dependent on specific 

practitioner and methodology. We cannot at this time propose a general best practices 

approach for this type of work with respect to incorporation of machinelearning or choosing 

between structure-based or ligand-based strong methods and alchemical free energy 

methods. Both machine-learning and alchemical free energy methods show performance in 

CatS, but not in BACE1.

6 CONCLUSIONS

1. BACE1 macrocycle inhibitor ligand docking accuracy was of high quality, with 

all top ten performing methods in both Stages 1a and 1b obtaining median pose 1 

RMSD<2.0 Å.

2. Multiple methods and software packages (mostly open source) achieved high 

docking accuracy.

3. Computational methods in affinity ranking prediction performed better for CatS 

than for BACE1.

4. We see a performance improvement in CatS potency ranking for GC4 versus 
GC3.

5. Methods that use machine learning tended to perform better for CatS than 

alternative approaches.
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6. Unlike much of what we have seen in prior GCs, the availability of structural 

data used in structure-based affinity rankings can improve the potency ranking 

accuracy for BACE1.

7. For CatS, alchemical free energy methods produced greater ranking accuracy 

than faster, less detailed scoring methods.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Binding pose from the BACE_10 (A) and BACE_20 (B) co-crystal structures used in GC4
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Figure 2. 
A. Box plots of Pose 1 RMSD statistics for all Stage 1a pose prediction submissions. B. Box 

plots of pose 1 RMSD statistics for all Stage 1b pose prediction submissions. X-axis labels 

are Receipt IDs, anonymized identifiers for the various submissions. All data are for 

BACE1.
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Figure 3. 
A. Box plots of RMSD statistics for each ligand in Stage 1a. B. Box plots of RMSD 

statistics for each ligand in Stage 1b.

Parks et al. Page 19

J Comput Aided Mol Des. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Kendall’s τ ranking correlation coefficients between predicted IC50 rankings and 

experimental IC50 rankings for the BACE1 dataset in Stages 1 and 2. Purple columns are for 

structure-based scoring methods, red bars are for ligand-based scoring, and green bars are 

for the null models where ligands are ranked based on molecular weight (MW) and the 

computed logarithm of the partition coefficient between n-octanol and water (CLOGP), as 

indicated in the axis labels. Receipt IDs labeled by an asterisk did not use the full set of 

challenge ligands. The error bars are 1σ confidence intervals based on 10,000 bootstrap 

samples
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Figure 5. 
Kendall’s τ ranking correlation coefficients between predicted IC50 rankings and 

experimental IC50 rankings for the CatS dataset. See Figure 4 for details.
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Figure 6. 
Violin plots of Kendall’s τ between predicted and experimental IC50 rankings for 

submissions that use machine learning and those that do not in each target dataset: BACE1 

Stages 1 and 2, and CATS. Mean, minimum, and maximum Kendall’s τ for each dataset are 

shown by whiskers. Null models based on clogP, molecular weight, and a random forest 

regression model are shown in green, purple, and orange, respectively. Note that the 

molecular weight and regression model data points are overlapping for CatS.
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Figure 7. 
Kendall’s τ ranking correlation coefficients between predicted IC50 rankings and 

experimental IC50 rankings for BACE1 ligands with co-crystal structures released at the end 

of Stage 1: ligands 1 and 4 to 20, excluding ligands 17 and 18. See Figure 4 for details.
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Figure 8. 
RMSEc values for the compounds in the free energy prediction sets. Purple bars are for 

structurebased scoring with free energy estimates, red bars are for ligand-based scoring with 

free energy estimates, and cyan bars are for methods using explicit solvent alchemical free 

energy simulations. Receipt IDs that resulted in an RMSEc greater than 5 Å have been 

omitted for clarity. 12, 8, and 5 submissions were omitted in BACE1 Stage 1, BACE1 

Stage2, and CatS, respectively. Receipt IDs labeled with an asterisk did not use the full set of 

FE ligands. The error bars are 1σ confidence intervals based on 10,000 bootstrap samples
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Figure 9. 
Kendall’s τ ranking correlation coefficients between predicted IC50 rankings and 

experimental IC50 rankings for the free energy prediction set ligands. See Figure 8 for 

details.
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