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Abstract  

 Host-guest binding remains a major challenge in modern computational modelling. The newest 7th 

statistical assessment of the modeling of proteins and ligands (SAMPL) challenge contains a new series of 

host-guest systems. The TrimerTrip host binds to 16 structurally diverse guests. Previously, we have 

successfully employed the spherical coordinates as the collective variables coupled with the enhanced 

sampling technique metadynamics to enhance the sampling of the binding/unbinding event, search for 

possible binding poses and calculate the binding affinities in all three host-guest binding cases of the 6th 

SAMPL challenge. In this work, we report a retrospective study on the TrimerTrip host-guest systems by 

employing the same protocol to investigate the TrimerTrip host in the SAMPL7 challenge. As no binding 

pose is provided by the SAMPL7 host, our simulations initiate from randomly selected configurations and 

are proceeded long enough to obtain converged free energy estimates and search for possible binding poses. 

The calculated binding affinities are in good agreement with the experimental reference, and the obtained 

binding poses serve as a nice starting point for end-point or alchemical free energy calculations. Note that as 

the work is performed after the close of the SAMPL7 challenge, we do not participate in the challenge and 

the results are not formally submitted to the SAMPL7 challenge.  
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Introduction 

The predictions of the free energy differences between different states are at the center of computational 

modelling.1-13 There are various factors limiting the accuracy and precision of computer simulations.14-21 

Two main sources of error are the convergence of the simulation and the accuracy of the description. 

Molecular dynamics (MD) or Monte Carlo simulations estimate the ensemble averages via the ergodicity 

assumption, where the frame/time-averaged finite-sample estimates are used to estimate the expectation of 

observables. Thus, to get a time-invariant estimate, long simulation times are required. However, the 

integration time step limits the time scale accessible in MD simulations, and the Boltzmann weighting 

function hinders the sampling of high-energy regions and the exploration of the phase space. Smart sampling 

techniques enhance the sampling efficiency by introducing artificial biasing potentials, connecting states 

with higher flexibilities, or constructing non-physical but computationally feasible pathways.5, 22-34 For 

instance, umbrella sampling35 adds (harmonic) biasing potentials to enhance the sampling efficiency in 

specific regions of the phase space. The base flipping event, which happens at millisecond time scales, could 

be sampled extensively within several microseconds’ umbrella sampling simulations.13, 36, 37 The replica 

exchange method enhances the flexibility and mobility of the system by attempting to exchange 

configurations with higher temperatures and Hamiltonians periodically.38-43 The alchemical method 

constructs artificial and easy-to-converge pathways connecting the states of interest to avoid extensive free 

energy simulations in physically meaningful transformations.44-51 These enhanced sampling techniques 

greatly extends the applicability of MD simulations. The description of the system is often called as 

Hamiltonian. Electronic structure calculations provide accurate descriptions but are computationally 

demanding in condensed phase simulations,52-58 while all-atom force fields59-63 or coarser models provide a 

faster alternative with moderate accuracy. Multiscale models combine different descriptions in the same 

simulation box, saving computational resources and extending the applicability of molecular simulations.32, 

33, 55, 64-67 In biomolecular simulations, all-atom force fields are often employed due to efficiency 

considerations.  

Drugs are small molecules targeting specific biomolecules of unique functionalities. Understanding the 

protein-ligand interactions is now one of the key research directions in the computer-aided drug discovery. 

Current machine learning techniques enable the large-scale screening and provide a set of preliminary hits.68-

77 Further refinement of the dataset could be performed with end-point and alchemical free energy 

calculations.78-88 This workflow could be very efficient when the free energy difference is the only quantity 

of interest. However, the weakness of these free energy calculation methods is also obvious. As only 
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fluctuations around the starting configuration are sampled, the initial-configuration-induced bias may not be 

eliminated in finite-time simulations. Further, the details about the intermediates in the binding/unbinding 

pathway are absent. If more details about the binding event are pursued, direct simulations of the 

binding/unbinding event to construct physically meaningful transformation pathways are necessary.84, 89-92 

Initial-configuration-related bias could also be eliminated effectively in this way.  

The statistical assessment of the modeling (SAMPL) challenges feature the assessments of the sampling 

and Hamiltonian issues in the computational modeling of solvation free energies, pKa, host-guest systems, 

partition coefficients, and protein-ligand binding.93-98 The host-guest systems are analogues of protein-ligand 

complexes. They are smaller and simpler than proteins and ligands. The hosts are often macrocyclic and 

rigid molecules, and the guests are drug-like molecules. The binding/unbinding pathway of the host-guest 

complexes is often simple and the number of binding poses is limited. Also, their binding affinities are 

comparable to those of protein-ligand complexes. Therefore, they serve as nice candidates for calibrating 

computational approaches.96, 99-101 Due to the similarity between host-guest systems and protein-ligand 

complexes, similar free energy methods are employed to investigate the host-guest binding. For instance, 

equilibrium free energy methods such as umbrella sampling and the double decoupling method were used to 

calculate the binding free energies in the SAMPL6 host-guest cases.95, 98 Nonequilibrium free energy 

simulations in the alchemical space were performed to calculate the host-guest binding affinities.97 Although 

the free energy methods are accurate, the mean deviations from the experimental reference are often 2 

kcal/mol,96 which in principle arise from the Hamiltonian issue. 

In host-guest binding simulations, one-dimensional (1D) collective variable (CV) is often used. The 

alchemical parameter is employed in free energy simulations in the alchemical space, while the distance 

between non-hydrogen atoms of the host and those of the guest or its mass-weighted variants is chosen to 

describe the binding and unbinding events in the physical space. In our previous work employing the three-

dimensional (3D) spherical-coordinate- ( ), ,   102 CV set, the host-guest relative position was scanned.103 

Although the simulations were started from the bound configuration provided by the SAMPL6 online 

server,104 more possible binding poses were explored and the initial-configuration-induced bias vanished. 

The statistics are reweighted on the two-dimensional (2D) radius-contacts ( C − ) surface to calculate the 

binding affinities. Compared with the published reports on the SAMPL6 host-guest binding, our 

computational results of the binding free energies obtained with two widely applied charge schemes were of 

similar accuracy.103  
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In the newest 7th SAMPL challenge (SAMPL7), a new TrimerTrip host is synthesized and the 

thermodynamic parameters of the host-guest binding systems are measured.99 No binding pose is provided 

by the server of SAMPL7,105 which indicates that the binding-pose generation is also a challenge in the 

current case. Therefore, in this work, we employed the same spherical-coordinate-biased strategy to explore 

the space of binding poses and calculate the binding affinities of the TrimerTrip-guest systems. Note that as 

the work starts after the close of the SAMPL7 challenge and the experimental results are available, the 

current computational modeling is a retrospective study and the results are not formally submitted to the 

SAMPL7 challenge. 

 

Methodology and Computational Details  

System preparation. The host molecule is TrimerTrip formed by a central glycoluril trimer and two 

triptycene caps. No significant self-association is observed for this host.99 All of the 16 guest molecules for 

the host in the blinded dataset of the SAMPL7 challenge are simulated. The structures of the hosts and 

guests are obtained from the online server of the SAMPL7 challenge.105 The structures of the host and the 

guests are shown in Fig. 1a. The protonation states of the guests are adjusted to match the experimental 

reference,99 and a summary of the net charges of the host and guests and the experimental binding affinities 

are given in Table S1. As in the host-guest and protein-ligand binding cases, the corrected semi-empirical 

charges and the restrained electrostatic potential (RESP) charges often give similar results, here we only use 

the AM1-BCC106 charge scheme. The other parameters such as the bonded terms and the vdW radius are 

obtained from the general Amber force field (GAFF) force field.107 Solvation is performed with TIP3P108, 109 

water molecules and the truncated octahedron cell is replicated in whole space with periodic boundary 

conditions. As no bound conformation is provided on the online server,105 we simply put the host and the 

guest together and let the simulation run to equilibrate the system and find stable binding poses. The 

minimum distance between the box edge and the surface of the solute is set to 28 Å, considering the radius 

of the spherical restraint, the fluctuations of the box size in NPT simulations and the sizes of the solute 

molecules. Non-polarizable spherical counter ions110, 111 of Na+ or Cl- parameterized for TIP3P water are 

added for neutralization.   

Free Energy Simulations.  

In order to explore the phase space efficiently, we employ the well-tempered metadynamics method to 

enhance the sampling efficiency.90, 112, 113 Gaussian biasing potentials are added periodically and the overall 

biasing potential increases with time. The resulting biasing potential could be defined by the following 
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equation,  
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where the subscript n denotes the nth step, V  is the time-dependent overall biasing potential, s  is the CV 

matrix, ( ), nG s s  represents the Gaussian kernels of biasing potentials, and   is the bias factor. The time-

independent algorithm114 is employed for post-process reweighting to recover the unbiased statistics in the 

original ensemble. The finite-time estimate of the expectation of mechanical observable O  can be obtained 

by  
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where the canonical bracket denotes ensemble average,   represents the reciprocal temperature, c  is the 

offset of the biasing potential, and t  is the time of simulation.  

In order to explore the space of possible binding poses, we bias the spherical coordinates ( ), ,   102 

defined by the relative position of the center of masses (COM) of the host and that of the guest, as shown in 

Fig. 1b. In our previous simulations of the SAMPL6 host-guest systems, this set of CV could differentiate 

different binding poses and enhance the sampling of the binding/unbinding event.103 With this set of CVs, 

we could scan possible binding poses efficiently and get rid of the initial-configuration-induced bias. When 

the guest is sufficiently far away from the host, the host-guest interactions vanish and the unbound state is 

produced. The fully decoupled state could be defined by the zero or near-zero contact between the host and 

the guest. The contact number is given by the following switching function,  
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where A  and B  denote two groups of atoms (i.e. the host and the guest), the subscripts i  and j  

represent the ith and jth atoms in the groups, m  and n  are 12 and 6, respectively, r  refers to the 

distance and the threshold for the contact 0 6r = Å. Only heavy atoms are included in the calculation. 

Consider the case that the contact number between the the ith atom in group A and the jth in group B is 

under calculation. When the distance ijr  becomes 02r  (i.e. 12 Å), the switching function becomes 

6

1
0.015

1 2
C = 

+
. Therefore, if a configuration gives a near-zero contact, all heavy atoms in the group is far 

from the other group and the interactions between A and B groups are near-zero. Therefore, a near-zero 
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contact could be used to define the decoupled state. As the simulation box is of finite size, an upper wall is 

added on the distance/radius   to limit the volume of phase space that the guest could explore. The upper 

wall on the radius   is set at 28 Å, which is large enough to define a fully decoupled state with near-zero 

contacts between the host and the guest. An entropic correction defined in Eq. (4) is thus added to recover 

the unbiased free energy.  
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                                                     (4), 

where s  is the upper wall on the radius  , 0 1660V = Å3 is the standard state volume, and 
hostV  is the 

volume of the host.  

 For each host-guest system, the starting configuration is obtained by simply putting the host and the 

guest together, as mentioned previously. We perform minimization, 100 ps NVT equilibration and 5 ns NPT 

equilibration to equilibrate the system. After that, 1000 ns enhanced sampling simulation is performed. The 

parameters for the metadynamics simulation used in previous simulations of SAMPL6 host-guest systems 

are employed in the current work.103 Namely, the initial Gaussian height is 0.24 kcal/mol, the deposition 

interval is 0.5 ps, and the bias factor used is 20. Gaussian widths are set as 0.1 Å, 
16


, and 

8


 for the three 

polar coordinates, respectively. The simulation is performed at 298 K (the experimental condition) with 

GROMACS 2018.6 115 patched with PLUMED 2.6.0-dev116. The V-rescale algorithm117 is employed for 

temperature regulation and the Parrinello-Rahman barostat118, 119 is used for pressure regulation. A time step 

of 1 fs is used to propagate the dynamics to avoid bond-length-constraint-related systematic errors. Long-

range electrostatics are treated with the PME120, 121 method.  

 

Result and discussion 

Before analyzing the detailed results of enhanced sampling simulations, we check the convergence of 

the simulations. The height of Gaussian potentials decreases to very small values (e.g. 0.002 kcal/mol) at the 

end of simulations (data not shown), and after 400 ns the offset bias function ( )c t  in Fig. S1 displays a 

linearly increasing behavior with the logarithm of the simulation time. Therefore, the quasi-stationary state 

is reached and we analyze the statistics obtained in 400-1000 ns. We reweight the statistics in the 

metadynamics simulations with the time-independent algorithm and perform the projection on the radius-
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contacts (  -C) surface. A typical 2D free energy surface is presented in Fig. 2. The free energy difference 

between the global free energy minimum and the zero-contact large-distance unbound state is used to 

estimate the binding free energy. The time-evolution of the estimated binding affinities metadG  is presented 

in Fig. S2. The free energy difference metadG  presents the time-invariant behavior in the last part of the 

simulations, which indicates that the binding affinity has converged.  

As no binding pose is provided in the SAMPL7 host-guest challenge, the spherical-coordinates-biased 

simulation is also used to obtain the stable host-guest binding pose. In Fig. 3, we present the representative 

structures of the bound states of the host-guest complexes. The top-6 stable structures visited during 

enhanced sampling simulations are provided in the online depository at 

https://github.com/proszxppp/SAMPL7_TTP. The binding poses presented in Fig. 3 are, of course, included. 

For each host-guest system, the top-6 structures are very similar, which indicates that they are from the same 

binding pose.  

Compared with the previous cyclic hosts (e.g. CB8 in SAMPL6), the new TrimerTrip molecule is more 

flexible. It could close to form a ring-like pocket to coordinate the guest molecules. As there is no chemical 

bond restraining the ‘ring’, it could tolerate a high degree of fluctuations in the bound state. To illustrate the 

conformational fluctuations in the bound state, for the guest g2, we presented two structures extracted from 

the global free energy minimum in Fig. 3. Both of the binding poses represent the bound host-guest 

complex, and the difference mainly lies in the degree of closure of the TrimerTrip. We can also see the 

fluctuations in the 2D free energy surface. For instance, for the host-g5 complex in Fig. 2, the free energy 

basin in the bound state is quite wide, which indicates that the degree of local fluctuations is significant in 

the host-guest complex.  

The free energy difference obtained from enhanced sampling simulations requires an entropic correction 

caused by the spherical restraint to recover the unbiased binding free energy. The volume and the resulting 

entropic correction are summarized in Table S2. The corrected binding free energies for the host-guest 

systems are given in Table 1. To assess the quality of computational results, several metrics including the 

mean signed error (MSE), the mean absolute error (MAE), the root-mean-squared error (RMSE), Kendall's 

rank correlation coefficient (τ), and Pearlman's predictive index (PI) are calculated. The first three errors are 

used to estimate the errors, while the last two estimators are used to assess the consistency of the calculated 

ranks of binding affinities and the experimental reference. In the current case, RMSE is 1.5 kcal/mol, MSE 

is -0.1 kcal/mol and MAE is 1.3 kcal/mol, which indicates that these computational estimates do not deviate 

https://github.com/proszxppp/SAMPL7_TTP
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too much from the experimental results and the quality of computational results is acceptable. The sizes of 

these errors are comparable to those of the SAMPL6 host-guest systems.96 The ranking coefficients tell the 

same thing. The rank of calculated binding affinities is similar to the experimental one. The linear 

correlation between the computational estimates and the experimental references is checked in Fig. 4, which 

also shows that the agreement between the computational and experimental results is good.  

The guests could be divided into 3 groups considering their structural features. The first series include 

g1, g2, g3, g5, g15, g16 and g17, featuring the aliphatic chain between the diammonium cation H3N
+---

NH3
+. Due to the similarity between g12 and g15, this guest is also included in the first series. The second 

series are the adamantane derivatives, including g6, g9, g10 and g11. The other guests of g7, g8, g18 and 

g19 are included in the last series, which involves 6-membered ring(s). The grouping scheme is not unique. 

The members in one series could share structural similarities with the other series. We then provide detailed 

discussions about the structural features, their correlation with the binding affinities, and the consistency of 

the computed and the experimental value.  

In the first series of guests, the binding affinities of the guests show significant dependence on the 

length of the diammonium cation. As the flexible host could expand its cavity, the experimental affinity 

increases monotonically with the diammonium ion length. The magnitude of this increase is significant for 

the shortest three guests of g1, g2 and g3. The increase becomes limited for g5, g16 and g17, when the 

aliphatic chain is sufficiently long. Our computational modeling reproduces this trend except for the longest 

guest g17.  

For the second series of guests, our computational modeling successfully reveals that the host-g6 

affinity is the highest one and g10 has a higher affinity than g9. However, g11 is modelled to have a lower 

affinity than g9, which is inconsistent with the experimental finding. Only the binding affinity of g11 agrees 

with the experimental value within the statistical error, while the binding affinities of the other three guests 

are consistently overestimated. This phenomenon indicates that the AM1-BCC model may have trouble 

describing the electrostatics of adamantane derivatives.  

The two guest pairs including g3-g15 and g9-g6 enable the comparison between the primary and 

quaternary ammonium cation centers. The quaternary guests g6 and g15 shows higher binding affinities 

compared with their primary ammonium forms. Our computational modeling reproduces this effect for the 

g9-g6 pair, but fails to do so for g3-g15.  

The addition of one quaternary ammonium ion to the hydrophobic hexylene core of g12 leads to g15. 

The formation of one more ammonium-sulfonate interaction in g15 introduces further stabilization effects 
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into the host-guest complex. The case of the g9-g10 guest pair is similar and involves the addition of a 

primary ammonium. Another difference is that the addition also involves the adamantane backbone. Our 

computational modeling successfully reproduces the increase of binding affinity in these two cases.  

As for the last series of guests, the hydrophobic moiety between the ammonium cations includes two 

types, i.e. the aromatic and aliphatic ones. There is only one 6-membered ring in g7 and g8, while there are 

two in g18 and g19. The rank of binding affinities from our modeling agrees with the experiment, but the 

value of the affinities have obvious deviations. Regardless of the aromatic or aliphatic nature of the 

hydrophobic moiety between the ammonium cations, as long as the number of 6-membered rings is the 

same, the binding affinities are similar. This phenomenon indicates that the AM1-BCC model fails to 

differentiate the aromatic and aliphatic rings for host-guest systems.  

In principle, as the sampling has achieved a sufficient level of convergence, the deviation from the 

experimental value should arise from the Hamiltonian issue. Namely, the errors in the current modeling is 

triggered by the imperfect force field, which could be improved with more accurate model, e.g. polarizable 

force fields.  

 

Conclusion  

In this work, we employed the spherical coordinates ( ), ,    as the reaction coordinates to enhance 

the sampling of the binding/unbinding event and scan the space of binding poses in the SAMPL7 

TrimerTrip-guest systems. Our simulation explores stable binding poses and estimates the binding affinities. 

The binding poses serve as a nice starting point for alchemical or end-point binding free energy calculations, 

and the calculated binding affinities are in good agreement with the experimental results. Compared with 

previous cyclic host molecules, the TrimerTrip host does not have chemical bonds for ring restraints. As a 

result, it is more flexible and could tolerate a higher degree of fluctuations in the bound state. The bound-

state free energy basin is relatively wide. Detailed analyses of the binding affinities of different series of 

guests indicate the shortcoming of the fixed-charge model used in this work. More detailed and advanced 

model could be used to improve the accuracy.  
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Table 1. The TrimerTrip-guest binding affinities in kcal/mol. 
expG  is the experimental value, metadG  

denotes the free energy difference between the bound and unbound states, VCG  represents the volume 

correction, and calcG  is the predicted binding affinity. MSE, MAE, RMSE, τ, and PI serve as quality 

measurements. SD denotes the standard error of the free energy estimate, which is obtained from block 

averaging.  

Host Guest expG  
metadG  SD VCG  calcG  SD 

TTP 

g1 -6.1 -4.7  0.5  2.3 -7.0  0.5  

g2 -8.3 -5.3  0.6  2.3 -7.6  0.6  

g3 -10.1 -7.6  0.5  2.3 -10.0  0.5  

g5 -11.1 -9.4  0.6  2.3 -11.8  0.6  

g6 -9.6 -8.1  0.5  2.3 -10.5  0.5  

g7 -6.5 -4.1  0.5  2.3 -6.4  0.5  

g8 -9.5 -4.4  0.5  2.3 -6.8  0.5  

g9 -7.6 -6.7  0.5  2.3 -9.0  0.5  

g10 -8.2 -7.4  0.5  2.3 -9.7  0.5  

g11 -9.0 -6.3  0.5  2.3 -8.7  0.5  

g12 -8.3 -3.8  0.4  2.3 -6.1  0.4  

g15 -10.5 -4.9  0.5  2.3 -7.3  0.5  

g16 -11.5 -11.0  0.5  2.3 -13.3  0.5  

g17 -11.8 -7.9 0.5  2.3 -10.2  0.5  

g18 -10.6 -9.7 0.5  2.3 -12.0  0.5  

g19 -11.7 -10.0 0.5  2.3 -12.4  0.5  

RMSE           1.5   

MSE      -0.1  

MAE      1.3  

τ      0.5  

PI           0.7   

 

 

 

 

  



 18 / 26 

 

 

 

Fig. 1. a) The 3D structure of the host TrimerTrip along with the 2D chemical structures of its guests, and b) 

the definition of the spherical coordinates.  
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Fig. 2. Typical 2D C −  free energy surface in kcal/mol. Here, the host-g5 complex is used to generate the 

plot.  
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Fig. 3. The representative structures of the binding poses for all host-guest systems. For the guest g2, two 

structures from the global free energy minimum are extracted. The TrimerTrip ring could tolerate 

conformational fluctuations in the bound state.   
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Fig. 4. Correlation between the binding affinities obtained from our computational modeling and the 

experimental reference for TrimerTrip-guest systems. The exact values of the binding affinities are presented 

in Table 1.  
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Fig. S1. Time evolution of the offset bias c(t). After 400 ns (the green-yellow line), the bias offset function 

c(t) increases linearly with the logarithm of the simulation time, which indicates that the quasi-stationary 

state is reached.  
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Fig. S2. Binding affinities from metadynamics simulations as a function of simulation time. The length of 

simulation to omit is set to 400 ns, which is chosen according to the offset c(t). The binding affinity is zero 

at the beginning as no free energy surface is reweighted.  
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Table S1. The summary of the charges of the host TrimerTrip and its guests and the experimental binding 

affinities in kcal/mol.  

Molecule expG  charge 

TrimerTrip - -4 

g1 -6.1 2 

g2 -8.32 2 

g3 -10.05 2 

g5 -11.1 2 

g6 -9.6 1 

g7 -6.5 2 

g8 -9.45 2 

g9 -7.57 1 

g10 -8.17 2 

g11 -9.02 1 

g12 -8.29 1 

g15 -10.52 2 

g16 -11.5 2 

g17 -11.8 2 

g18 -10.55 2 

g19 -11.7 2 
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Table S2. The volume of the host TrimerTrip and the resulting entropic corrections. The probe radius used is 

2.0 Å, and the grid step is set to 0.5 Å. The only statistical quantity in the equation for the entropic 

correction is the volume of the host molecule Vhost. As the hosts are quite rigid and the fluctuation of their 

sizes is very small, the statistical error of Vhost is negligible. Therefore, we do not give any statistical error 

about the entropic correction.  

Terms     

 

Host 

V0 (A
3) Vhost (A

3) s  (A) Vs (A
3) entropic correction (kcal/mol) 

TrimerTrip 1660.0 5270.0 28.0 91952.3 2.334 

 

 

 

 

 


