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Abstract
We here present a streamlined, explainable graph convolutional neural network (gCNN) architecture for small molecule activ-
ity prediction. We first conduct a hyperparameter optimization across nearly 800 protein targets that produces a simplified 
gCNN QSAR architecture, and we observe that such a model can yield performance improvements over both standard gCNN 
and RF methods on difficult-to-classify test sets. Additionally, we discuss how reductions in convolutional layer dimensions 
potentially speak to the “anatomical” needs of gCNNs with respect to radial coarse graining of molecular substructure. We 
augment this simplified architecture with saliency map technology that highlights molecular substructures relevant to activity, 
and we perform saliency analysis on nearly 100 data-rich protein targets. We show that resultant substructural clusters are 
useful visualization tools for understanding substructure-activity relationships. We go on to highlight connections between 
our models’ saliency predictions and observations made in the medicinal chemistry literature, focusing on four case studies 
of past lead finding and lead optimization campaigns.
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Introduction

Machine-learning models of quantitative structure–activity 
relationships (QSAR models) are staples of drug discovery 
research and represent some of the longest established appli-
cations of artificial intelligence in any industrial field [1–6]. 
Generally speaking, QSAR models apply some parametric 
function to relate a representation of a small molecule’s 
structure to an experimental measurement of a physical 
property, activity against a particular biomolecular target, 
or other observable [7].

The form of this function, which has free parameters fit 
to minimize deviations from experimental activity labels/
values, can range from the simple straight lines to logistic 
curves to “random forests” of decision trees [8] to complex 
arrangements of neurons distributed across several or even 
dozens of hidden functional layers [9] Molecular repre-
sentations can be simple predefined atom and substructure 

count-based fingerprints (e.g., PubChem fingerprints) [10] 
or more general hashed radial fingerprints (e.g., ECFP4/
ECFP6 fingerprints) [11] or even vector-based molecular 
representations that are fully learned through some artificial 
intelligence approach [12]. Over the past several decades, 
multitudes of QSAR function and molecular representation 
combinations have been tested in the context of small mol-
ecule activity prediction, often with good results [13–16].

Graph convolutional neural networks (gCNNs) have 
emerged in the last ten years as attractive QSAR archi-
tectures, particularly because gCNNs combine automated 
molecular representation learning with molecular classifica-
tion in one integrated framework [12, 17–20]. A graph con-
volutional encoder, for example, first converts a molecular 
topology into a graph (with atoms as nodes and bonds as 
edges) and then generates hierarchical representations of that 
molecule based on increasing bond separation radii around 
atomic centers. The “neural fingerprints” that result from 
encoding provide rich, multiscale vectorial representations 
of molecules that can, in turn, be fed into additional neural 
network layers that facilitate activity classification.

Given the long-established success of methods like ran-
dom forest (RF) and logistic regression, activity prediction 
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improvements from gCNNs are not ubiquitous, especially 
in systems for which experimental data are sparse or struc-
ture–activity relationships are evident from relatively sim-
ple features. However, the flexibility that graph-based neural 
architectures afford in adding additional features (e.g., pro-
tein–ligand contact maps [21]) and the broad adoption of 
deep neural networks (DNNs) across most scientific fields 
perhaps justify their use in QSAR applications [4]. An 
understanding of the performance of gCNNs in simpler tasks 
like ligand-only classification (QSAR) provides a foundation 
for applying them in more complex tasks like 3D target-
ligand molecular classification (docking or virtual screening) 
or ligand-only or 3D target-ligand molecular generation.

Another possible advantage of gCNNs concerns how 
activity predictions can be interpreted: in theory, richer 
molecular representations allow for more complex or non-
obvious correlations to be inferred between molecular 
properties/substructures and activities. While one can map 
certain components of fixed fingerprints to specific activity 
trends with methods like RF [22], the representation weights 
obtained through training a DNN further help highlight the 
features that contribute most to activity predictions.

The addition of attention weights to deep neural net-
works likely represents the most popular mode of adding 
interpretability to complicated classifiers. Indeed, numerous 
examples of using attention mechanisms for interpretability 
exist within the small molecule property prediction space 

and more broadly in physical modeling [23–25]. Attentive 
frameworks provide mechanistic insight by adding auxiliary 
“attention” layers to a given DNN architecture that connect 
input, output, and hidden layers, highlighting features that 
contribute to a model’s predictions. However, situations 
might exist in which methods other than attentive explain-
ability are beneficial. In particular, the addition of an atten-
tion mechanism, by definition, forces the modification of 
the DNN architecture itself; by attaching trainable weights 
to every hidden layer of interest to input and output neurons, 
one potentially risks bypassing the development of more 
complex molecular features that might appear in a neural 
fingerprint during training.

Saliency maps offer a less intrusive mechanism for add-
ing explainablility to QSAR models. First developed in the 
image recognition field [26, 27], saliency maps simply draw 
connections between trained weights or dependent ampli-
tudes and the input features that give rise to them. In the 
context of QSAR, one might use saliency maps to establish 
direct relationships between components of a neural finger-
print and specific substructures within an input molecule 
that might relate to activity (Fig. 1). Saliency maps have 
already been successfully applied to identifying various pro-
tein conformations and to QSAR substructural analysis of 
early gCNNs [27–29].

In this work, we first simplify our past gCNN architecture 
[21] based on classification results averaged over a QSAR 

Fig. 1   Illustration of simple saliency procedure for interpreting activity predictions taken from graph convolutional neural network QSAR mod-
els
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meta-dataset comprised of 788 protein targets. We then add 
means by which saliency maps can be calculated between 
input test molecules and their neural fingerprints, and we 
apply substructural clustering techniques to expose molec-
ular components that might consistently result in activity 
against protein targets. Overall, we show that our interpret-
able gCNN technology yields results consistent with those of 
medicinal chemistry experts with respect to inferring struc-
ture–activity relationships for drug-like small molecules.

Methods

Curation of QSAR data for ~ 800 protein targets

To exhaustively optimize our graph convolutional neural net-
work architecture and test our saliency procedure at scale, 
we needed a large and diverse set of experimental small mol-
ecule activity labels spanning a wide range of protein targets. 
We here leveraged a previous curation effort that extracted 
assay data from the ChEMBL database and converted con-
tinuous activity measures (e.g., pIC50, pKi, etc.) into binary 
activity labels [30]. After applying filters for redundancy 
and minimum dataset size, we were left with a varied set 
of small molecule labels distributed across 788 targets, of 
which approximately 500 were human. A complete target list 
is included in the Supplementary Information.

The mean number of activity labels in our QSAR dataset 
was 661 per target, with a standard [31] deviation of 834 and 
a range of 71 to 7839. This broad range of target-specific 
dataset sizes allowed us to mutually optimize our networks 
over data-poor and data-rich scenarios and across a half mil-
lion data labels in total. Since the largest individual dataset 
still contained fewer than 10,000 examples, we do not here 
examine the high-data regime wherein graph convolutional 
deep learning models might be particularly expected to out-
pace simpler approaches.

GCNN training and hyperparameter optimization

Our default graph convolutional neural network architecture 
was taken directly from our previous work comparing activ-
ity prediction and binding mode prediction use cases; that 
past architecture was in turn adapted from the well-studied 
DeepChem GraphConv network [18]. Our code is written 
in python using TensorFlow [32] and converts SMILES 
representations of ligands to graph form using the RDKit 
cheminformatics library [33]. In cases in which this standard 
architecture was trained, default hyperparameters from our 
previous work were used [21].

In order to minimize dataset bias and trivial correlations 
between our training and test sets, we applied “chronologi-
cal” train/test splits [31] based on the data deposition dates 

made available by the ChEMBL database. Specifically, the 
earliest 80% of datapoints for each target were allocated to 
that target’s training set, while the latest 20% of datapoints 
for each target were assigned to that target’s test set. This 
chronological procedure allows one to simulate a situation 
of training on all past (or even present) data on a given target 
with the intent of predicting activities for future molecules 
generated as a lead series evolves or new lead series are 
adopted.

Default gCNNs were trained over the course of 50 epochs 
to generate baseline results for hyperparameter optimization. 
Hyperparameter optimization was then conducted using a 
simple, greedy Gaussian process in four dimensions: one 
corresponding to the L2 regularization parameter and three 
more corresponding to each convolutional layer size. Fur-
thermore, the final 20% of data representing the test set 
was excluded from the hyperparameter optimization pro-
cess. Validation sets were instead drawn from the earlier 
80% data, specifically from the 70%-80% time slice for each 
target. During hyperparameter optimization, models were 
thus trained on the first 70% of chronological data and vali-
dated on the 10% range between 70%-80%, allowing for final 
results to be truly and fairly tested on the latest 20% of data. 
Models were retrained on the full 80% training set prior to 
testing on the reserved test set.

In this case, 80 Gaussian-distributed samples of this four-
vector were tested in each iteration, and the top perform-
ing result after 50 epochs (measured by mean test AUROC, 
hereafter simply referred to as “AUC,” across all 788 targets) 
was selected in greedy fashion and reinserted as the seed for 
the next iteration. Results were finalized after a total of ten 
iterations of the Gaussian process, yielding an “optimized” 
gCNN QSAR architecture.

For all 788 targets, standard RF models with 100 trees 
were also trained on the ECFP4 fingerprint for use as a 
baseline.

Saliency map procedure

As noted above, saliency maps connect internal neural net-
work weights (or dependent amplitudes) to input features 
to facilitate interpretations of model predictions. In clas-
sification applications based on molecular graphs, the input 
features are the graph nodes and edges corresponding to the 
molecule being investigated. The hidden weights/amplitudes 
subjected to saliency analysis can be chosen arbitrarily. Our 
graph convolutional encoder consists of three convolutional 
units (each combining a graph convolutional operation and 
an edge-based pooling operation), a single fully-connected 
layer, and a gather operation that yields a 1 × 128 neural 
fingerprint vector. In this case, we chose the “endpoint” for 
our saliency analysis to be the n_atom × 128 tensor (hereaf-
ter referred to as the “saliency tensor”) output by the fully 
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connected layer just prior to the gather operation that yields 
a decimated neural fingerprint. Roughly speaking, values 
within the saliency tensor represent convolutional ampli-
tudes that arise for radius-3 bonded neighborhoods around 
each atom in the molecule. Values in the saliency tensor thus 
approximate the relative “importance” of various atomic 
neighborhoods (defined 3 bonds out from the central atom) 
for the network’s activity prediction.

More than one convolutional component corresponding 
to a given atom can contribute to the model’s output. The 
saliency tensor was thus sorted column-wise, with atomic 
indices added to and conserved for each tensor component; 
individual atomic neighborhoods (defined by common 
atomic indices) within the saliency tensor were then ranked 
according to a frequency-weighted amplitude modulated by 
a standard softmax function. The top five atomic neighbor-
hoods were designated as salient neighborhoods for each 
molecule, if at least five were available upon sorting the 
saliency tensor (otherwise, the top k < 5 neighborhoods were 
chosen). A sample of pseudocode describing the TensorFlow 
operations that produce to our salient maps is included in 
the Supplementary Information alongside a detailed network 
diagram (Fig. S1).

For visualization purposes, these salient neighborhoods 
were drawn together on each molecule, with the intensity 
of the (orange) color decaying linearly (with a factor of 
0.8/bond) as one moves away from the atomic center of 
a particular neighborhood. When atomic neighborhoods 
overlapped on given atoms, these decaying color ampli-
tudes were simply summed to yield more intense atomic 
highlights.

Substructural clustering and analysis

Once activity-salient substructures (i.e., the highest-ranked 
3-bond neighborhoods) for individual molecules were 
defined, those groups were clustered to provide insight into 
substructures’ relevance across a target’s entire labeled small 
molecule dataset. Salient neighborhoods were first trans-
lated into SMILES strings and next converted to ECFP4 
fingerprints.

At this point, molecules within a given target’s test set 
were subdivided into four confusion matrix categories based 
on both reference labels (l) and QSAR model softmax out-
puts (o): true positives (l = 1; o > 0.5), false positives (l = 0; 
o > 0.5), true negatives (l = 0; o < 0.5), and false negatives 
(l = 1; o < 0.5). The substructural fingerprints within each 
category were then subjected to a clustering procedure 
involving one of two clustering algorithms: density peak 
clustering (DPC) or k-means clustering. DPC results were 
given priority and used in most cases. However, if data were 
too sparse for a density to be computed under default DPC 
settings, the clustering procedure reverted to a minimal 

k-means clustering algorithm (k = 2). All saliency results 
presented in the main text of this paper were clustered with 
the DPC approach.

Substructural clusters across the four confusion matrix 
categories were next ranked according to population, from 
high to low, and the molecules from each cluster were plot-
ted for visual inspection. Since the true positive quadrant 
is perhaps the simplest to interpret (considering all mol-
ecules are both predicted and experimentally determined to 
be active against the target), we here focused our qualitative 
analysis and comparisons with the literature on true posi-
tives only.

Results

Simplified graph convolutional architecture

We first provide basic analysis of our chronological data set 
splitting procedure for the 788 QSAR targets studied in this 
work (Fig. 2). Similarity between test set and training set 
molecules is one the key drivers of performance in QSAR 
models [34], and reducing this similarity yields a more 
robust and realistic evaluation of a given model. Chrono-
logical splits between training and test sets have been used 
in the past to minimize trivial classification outcomes often 
observed with random splits. With random splits, highly 
similar molecules are likely be placed on both sides of the 
train-test divide. By invoking a chronological split, one 
assumes that molecules separated in time are, on average, 
less similar than molecules synthesized/characterized/depos-
ited around the same date.

Analysis of our data confirms this relationship between 
time and similarity. The plots in Fig. 2 show mean nearest-
neighbor Tanimoto similarities computed from ECFP4 fin-
gerprints averaged over each individual target’s activity data 
set and distributed over the full set of targets. With a random 
train-test split, one would expect these distributions to be 
approximately equivalent when comparing training mole-
cules to training molecules, test molecules to test molecules, 
and training molecules to test molecules.

With a chronological split (here a 70%/30% division), 
the “self” comparisons—train-train and test-test—produce 
nearly identical distributions, as one would still expect 
(Fig. 2a); however, the mean nearest neighbor similarities 
between the test and training molecules are far lower, on 
average. Splitting the test set into three time slices based 
on deposition date—70–80% (validation), 80–90% (“early” 
test), and 90–100% (“late” test)—one sees that molecules get 
progressively more dissimilar from the training set as depo-
sition dates become later (Fig. 2b). These data indicate that 
our chronological splits are performing exactly as intended: 
time-based splits produce a gulf in molecular similarity 
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between the training and test sets, reducing trivial correla-
tions that machine learning models could readily identify.

The anatomical changes to our default gCNN architecture 
that occurred over the course of hyperparameter optimiza-
tion are shown in Fig. 3a. All three convolutional layers were 
reduced in size compared to the default architecture. While 
the middle convolutional layer was reduced by 21% in num-
ber of neurons, the first and third layers were reduced by 
more than twice (44%) and three times (75%) that percent-
age, respectively. The L2 regularization parameter increased 
only slightly from 0.0005 to 0.0006 during optimization.

The performance of our gCNN architecture “optimized” 
across the 788 targets compared with default gCNN and RF 
benchmarks is shown in Fig. 3b. Since our primary strategy 
was to optimize performance across a heterogeneous set of 
protein targets (thereby avoiding overfitting to individual tar-
gets), we chose to apply a confidence measure analogous to 
1.96 times the standard error, but with means and “standard” 

deviations computed over validation/test AUC values for all 
788 targets. While this metric does not yield a true 95% con-
fidence interval (since statistics across heterogeneous sys-
tems don’t provide true standard errors), we feel this calcula-
tion does reasonably represent the range of fluctuations in 
AUC across the large set of targets considered in this work. 
For each of the three featured methods, our heterogeneous 
AUC confidence measure happens to converge to ± 0.005.

While the mean AUC over the 70%-80% validation time 
slice did improve by approximately two points (from ~ 0.76 
to ~ 0.78) over the course of 10 iterations of the Gaussian 
process, that improvement did not translate to the independ-
ent (final 20%) test set. The optimized results only bested 
the default by two-tenths of a point in mean AUC (0.702 vs. 
0.700), which is insignificant at 95% confidence (Fig. 3b). 
The RF model produces the highest mean AUC in this case 
(0.716), though even then only at the border of significance 
using our heterogeneous confidence measure. A scatter plot 
comparing RF and optimized gCNN results distributed 

Fig. 2   Analysis of chronological split molecular similarity statis-
tics across 788 protein targets. Mean values over each distribution 
are written in parentheses. (a) Comparison between mean test-test 
(0.73), train-train (0.74), and test-train (0.53) molecular similarities. 
(b) Comparison between training set and test set time slice (valida-
tion—0.60, test-early—0.53, and test-late—0.47) molecular similari-
ties

Fig. 3   Optimization and analysis of graph convolutional neural net-
works employed in this work across 788 protein targets. a Network 
contraction observed as a function of hyperparameter optimization. b 
Mean AUC scores for default and optimized gCNN methods and a 
random forest (RF) benchmark for chronological test sets comprised 
of the latest 20% of data labels for each target (“full test”) and fur-
ther divided into “early” (80–90%) and “late” (90–100%) test subsets. 
Average deviations (analogous to 95% confidence intervals) for all 
nine table values are ± 0.005 when assessed across the 788 protein 
targets
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across individual targets is included in the Supplementary 
Information (Fig. S2).

These results show that standard RF models, historically 
favored by pharmaceutical modeling teams, measure up 
quite well against DNNs over this large and diverse QSAR 
set. However, as we previously noted, the added flexibility 
and interpretability of gCNN architectures likely justify their 
use in cases where RF and DNN results are approximately 
equivalent, as they are here.

With respect to gCNN performance across the full test 
sets, one should note that the original DeepChem architec-
ture had already been subjected to some manner of hyper-
parameter optimization. Still, our results suggest that one 
can significantly reduce the size of convolutional layers 
(particularly layers 1 and 3) and maintain or even slightly 
improve model performance. Based on an “Occam’s Razor” 
philosophy, we would argue our optimized, simpler network 
that contains significantly fewer parameters is the preferred 
model for QSAR applications like those presented in this 
work.

Breaking down the test set into early and late subsets 
(80%-90% and 90%-100% time slices) illustrates possible 
situations in which gCNNs might be advantageous over 
RFs and in which our optimized gCNN architecture might 
significantly improve on the default. As one can see from 
Fig. 3b, RF models excel on the early time slice, which has 
more overlap with the training set in terms of molecular 
structure. However, the RF models’ performance plummets 
by nearly 10 full points in average AUC on the late time 
slice. The gCNN results also decline on the late time slice, 
but not to the same extent. While the default gCNN results 
are on the border of significance in terms of improvement 
over RF, our optimized gCNN clearly performs better than 
both RF and the default gCNN at 95% confidence on that 
late subset. These results suggest that, even for relatively 
small labeled QSAR datasets, gCNNs should perhaps be 
favored over more classical QSAR methods like RF when 
training and test sets are distinctly separated in time and/or 
molecular similarity.

Our hyperparameter optimization of the gCNN architec-
ture also provides some insight into the “anatomical” needs 
of networks of this type. In analogy to circular fingerprints 
like ECFP4 (which captures two-bond radii around atomic 
centers) and ECFP6 (three-bond radii), the second and third 
graph convolutional layers in our gCNN roughly capture 
substructures with two-bond and three-bond radii, respec-
tively. Our optimization procedure showed that the second 
layer needs to be largely preserved to maintain performance, 
whereas the third layer can be significantly reduced in size 
without hurting results. However, completely decimating the 
third layer did harm overall performance across the valida-
tion sets, suggesting a small third convolutional is helpful. 
Invoking the ECFP analogy, our results suggest that our 

gCNN primarily leverages information like that captured 
by ECFP4, but still benefits from a “perturbative” or small, 
relatively inflexible layer at the ECFP6 level. Notably, the 
third convolutional layer yields the coarsest representation of 
molecular structure available in network, so the notion that a 
smaller/less flexible layer performs best with larger atomic 
neighborhoods perhaps makes intuitive sense.

Qualitative saliency analysis across ~ 100 targets

We now move on to interpreting the activity predictions 
produced by gCNN QSAR models trained in this study. The 
usefulness of saliency analysis for understanding relation-
ships between chemical substructures and molecular activ-
ity depends on the quality of the underlying QSAR model: 
if a model incorrectly classifies the activity of a molecule, 
the substructural contributors to that prediction will likely 
also be flawed. Furthermore, the richness of salient substruc-
tural clusters is also likely to be correlated with the amount 
of data available for training the underlying QSAR model, 
as smaller training sets will naturally be less diverse, on 
average.

We therefore identified our top candidate protein tar-
gets for saliency analysis based on two selection criteria: 
the gCNN AUC on the chronological test set (latest 20% of 
data) and the total number of labeled molecules available 
for training and testing. Approximately 100 targets fit had 
AUCs greater than 0.80 and total dataset sizes greater than 
500 molecules. The identities of these targets are shown in 
Fig. 4; saliency maps for true positive clusters across each of 
these targets are included in the Supplementary Information. 
We present saliency results for test sets of models trained 
using the optimized gCNN architecture below.

An example of an activity saliency map visualized on 
a small molecule (active against the β2-adrenergic recep-
tor) is shown in Fig. 5. As described in our methods sec-
tion, orange highlights correspond to saliency weights on 
individual atoms; since these weights are derived from 
neighborhoods extracted from three successive graph con-
volutions, highlighted atoms are generally connected into 
substructures with bond radii of three or more. The intensity 
of an atom’s orange highlight is positively correlated with 
the importance the saliency map assigns to that atom across 
one or more neighborhoods. For example, the saliency map 
in Fig. 5 assigns the highest weight to the carbonyl oxygen 
and amide bond in the center of the molecule, and lower 
but still significant weights to the tertiary amine at bottom. 
The potential significance of this highlighted substructure in 
chemical/lead optimization terms is discussed below.

The saliency map plots shown in Fig. 6 provide a qualita-
tive sense of how well our substructural clustering algorithm 
performs in generating unified pictures of substructure-
activity relationships. Here, we chose to highlight results 
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on three protein targets of varying size and function: the 
smaller matrix metalloproteinase-3 (MMP-3), the midsized, 
membrane-bound β2-adrenergic receptor (β2-AR), and the 
larger human mTOR kinase (mTOR). In each case, the 
underlying QSAR model performed exceptionally well (with 
an AUC > 0.90 on the test set) on relatively large, labeled 
datasets (> 1000 labeled molecules in total for each target).

Generally speaking, one can observe common trends in 
the substructures highlighted in most of the clusters. For 

example, highlighted sulfonyl groups dominate all three 
clusters for MMP-3, the same bicyclic motif is highlighted 
across all four molecules in cluster #1 for β2-AR, and simi-
lar ring systems are highlighted in clusters #2 and #3 for 
mTOR. While our clustering scheme is certainly imperfect 
(the highlighted substructures in cluster #2 for β2-AR, for 
example, are quite disperse), these clusters do seem to serve 
their intended purpose of grouping activity-salient substruc-
tures in most cases. It is important to note that the quality 

Fig. 4   List of high-performing and relatively high population targets subjected to saliency analysis in this work

Fig. 5   Example of an activ-
ity saliency map (visualized 
through orange highlights of 
varying intensity) projected 
onto a drug-like small molecule
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of clusters (which serve as simple visualization tools) does 
not reflect on the quality of the underlying saliency analysis.

Saliency case studies: comparisons 
with the medicinal chemistry literature

While our qualitative saliency results seem to be consistent 
with expectations (e.g., our saliency map highlights local-
ized substructures, and those substructures are generally 

clustered together for a given target), a true test of an inter-
pretable model needs to involve comparisons with prac-
tical data and analysis generated by domain experts. In 
this case, the most relevant domain experts are medicinal 
chemists carrying out small molecule lead finding and lead 
optimization studies for specific protein targets. Accord-
ingly, we now present several case studies that relate our 
saliency map results to specific medicinal chemistry cam-
paigns published in the literature.

Fig. 6   Representative molecules and highlighted activity-salienct substructures for three true positive clusters across three protein targets
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Case study #1: β2 adrenergic receptor

Three saliency map clusters corresponding to our gCNN 
QSAR model for the β2 adrenergic receptor are presented 
in Fig. 6. For the most part, these three clusters favor two 
different substructural motifs with respect to saliency predic-
tions: a benzothiazolone head group in the top two clusters 
and a”linker” between the benzothiazolone group and a gen-
erally lipophilic group on the opposite end of the molecule 
(Fig. 7a). Do these substructural classes make intuitive sense 
from the perspective of medicinal chemistry?

The source publication for the molecules featured in our 
saliency maps represents an effort to identify long-acting 
dibasic agonists of the β2 adrenergic receptor [35]. In par-
ticular, the authors generate a focused compound library sur-
rounding the nearly approved β2-agonist sibenadet (Viozan), 
with the aim of identifying molecules with further improved 
potency, specificity, and other properties.

As illustrated in Fig. 7b, sibenadet follows the benzo-
thiazolone head group/lipophilic tail group motif observed 
in most molecules shown in the central column of Fig. 6. 
Within the focused library, the authors make several modi-
fications to the overall sibenadet scaffold: replacement of the 
benzothiazolone with alternative headgroups, replacement 
of the here-dubbed “linker” portion of the molecule, and the 
modification of the terminal lipophilic group. The authors 
show that, in agreement with a past research program, the 
benzothiazolone warhead is essential for maintaining potent 
activity, with Compounds 48–50 losing much of their activ-
ity upon headgroup replacement. Our saliency procedure 
was thus likely correct in highlighting that headgroup as an 

activity-relevant substructure. Lead finding efforts focused 
first on modifying the scaffold of the central (“linker”) por-
tion of the molecule; the mono-phenyl lead series evident 
in the top two β2 clusters in Fig. 6 was selected based on β2 
binding properties. Accordingly, we would argue that our 
saliency procedure identified both the warhead that needed 
to be retained and (albeit less clearly) the linker that needed 
to be modified to improve the potency and properties of 
sibenadet. The compound series that progressed to further 
optimization in the paper held this warhead and a chosen 
linker motif constant.

Admittedly, the activity-relevant substuctural predictions 
presented here relate to motifs that would likely be some-
what obvious to the medicinal chemists involved in the pub-
lished work. One should note that our gCNN-based saliency 
observations were made with no knowledge or input from 
that work and were based purely on publicly available activ-
ity data. The more subtle lead optimization that occurred 
at the R3 position in the paper and not captured in our fea-
tured saliency clusters was partially focused on compound 
specificity (with the particular avoidance of related GPCR 
targets). One could certainly build off-target gCNN QSAR 
models to incorporate more specificity-relevant information 
into our saliency predictions.

Case study #2: Matrix metalloproteinase‑3 (MMP‑3 
or Stromelysin)

MMP-3 (Stromelysin), featured on the left in Fig. 6, is a 
member of the broader MMP family. In general, MMPs 
are characterized by a catalytic Zn (which most inhibitors 

Fig. 7   Case study for lead finding and optimization based on known 
β2-AR agonists. a High-level summary of substructural classes high-
lighted by saliency maps in this work. b Previously published optimi-

zation of targeted library of molecules related to past candidate β2-AR 
agonist sibenadet
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target), an adjacent beta-strand (which binds the substrate 
backbone), and an S1’ pocket (where the substrate P1’ 
sidechain binds and which is used to tune for selectivity). 
Hydroxamic acids, carboxylic acids, and thiols are com-
monly employed as Zn-binding groups. The landmark Ciba-
Geigy compound CGS27023 [36] introduced a sulfonamide 
group to interact with the beta-strand amide group in the 
binding pocket and many subsequent series possessed either 
a sulfonyl or sulfonamide group.

Turning to our saliency maps for MMP-3, we see the 
sulfonamide/sulfone and hydroxamic acid groups were the 
most common groups identified. The saliency maps for an 
(ethynylthiophene) sulfonamido-based hydroxamic acid 
series consistently recognized the sulfonamide group but 
not the hydroxamic acid (Fig. 8a). The maps corresponding 
to a hydroxamic acid series 4-(benzenesulfonyl)-N-hydrox-
yoxane-4-carboxamide represented in the Pfizer publication 
“MMP-13 selective a-sulfone hydroxamates: A survey of P1’ 
heterocyclic amide isosteres” always identified the sulfonyl 
as key to activity and sometimes recognized the hydroxamic 
group as well (Fig. 8b) [37].

Together, these results suggest that sulfonamide/sulfone 
and hydroxamic acid signals are both present and relatively 
strong in our gCNN QSAR model for MMP-3. The sulfur-
containing group is the dominant structure identified by the 
network, but hydroxamic acid groups do appear in the top 
five atomic neighborhoods on occasion.

Case study #3: Hepatitis C virus (HCV) NS5B 
RNA‑dependent RNA polymerase (RdRp)

Within the ~ 150 compounds in our HCV NS5B RdRp test 
set, true positive saliency maps tended to highlight either an 
aromatic carboxylic acid group and/or a benzothiadiazine 
group (Fig. 9a, b). Intriguingly, two independent research 
groups have conducted lead optimization studies on deriva-
tives of the structure shown in Fig. 9a. Both teams concluded 
that replacing the highlighted carboxylic acid group would 
significantly decrease the activity of the molecule [39]. 
Beaulieu et al. [40] further noted that such aromatic car-
boxylic acids could be used as a minimal core for bioactivity 
against HCV NS5B RdRp [39].

The benzothiadiazine motif identified in our saliency map 
was first proposed by GlaxoSmithKline [41] and was exten-
sively explored by Das et al. [42] with respect to various 

Fig. 8   Saliency maps corresponding to MMP-3 case study. a Lead series from Nuti, et al. [38]. b Lead series from Barta, et al. [37]

Fig. 9   a Aromatic acid group and b benzothiadiazine group high-
lighted by our saliency maps in molecules that targeted HCV NS5B 
RdRp (Hepatitis C virus NS5B RNA-dependent RNA polymerase)
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derivatives targeting HCV NS5B RdRp. The sulfonamide 
subgroup, specifically highlighted by saliency map, was 
shown by Tedesco et al. [43] to be essential, as evidenced by 
a loss of activity when the sulfonamide group was replaced 
by a carboxamide group. It is worth mentioning that nei-
ther of these two submolecular motifs target the enzyme 
active site of HCV NS5B RdRp (which is typically targeted 
by a nucleoside analogue). Instead, these motifs inhibit the 
broader activity of HCV NS5B RdRp by interacting with the 
allosteric binding sites NNI I (targeted by aromatic acids) 
and NNI IV (targeted by benzothiadiazine), respectively 
[44]. Overall, our saliency maps were able to identify two 
types of molecular substructures that were deemed critical 
to activity against this RdRp in past experiments.

Case study #4: Dopamine D2 and D3 receptors

We last focus on a use case that allows us to take small mol-
ecule selectivity into account: we compare the salient fea-
tures for activity against the dopamine D3 receptor (D3R) to 
the features associated with its close homolog, the dopamine 
D2 receptor. In particular, we aim to understand attempts to 
enhance selectivity for D3R over D2R.

Figure 10a–c illustrate representative structural motifs 
identified from saliency analysis on D2R and D3R. The fea-
tures highlighted in our saliency clusters are further divided 
into two groups depending on their relative role in molecu-
lar composition, i.e., whether a substructure belongs to the 
core drug scaffold/skeleton (e.g., as part of a piperazine and 
amide (or triazole) backbone) or is a functional side-group 
(e.g., aryl1 and aryl2). In the course of D3R/D2R antago-
nist development, several skeletal elements were proposed 
in the construction of a consensus pharmacophore model 
[45], which was ultimately comprised of (1) an arylamide or 
aryltriazole interacting with the orthosteric binding pocket 
(OBP), (2) an arylpiperazine interacting with a second 
allosteric binding pocket (ABP), and (3) an alkyl linker (see 
Fig. 10a). Intriguingly, these common elements were suc-
cessfully isolated by our saliency maps in many D3R and 
D2R ligands. Apart from these shared motifs (i.e., amide and 
triazole) that facilitate the OBP interaction, D2R-focused 
antagonists were sometimes further decorated with a sul-
fonamide moiety (as published in [46]), while D3R-focused 
antagonists were modified with a variety of motifs including 
triazole derivatives, carbamates, and diazenecarboxamides 
[47–49].

In contrast to a skeletal divergence at the orthosteric phar-
macophore, the ABP appears to strongly favor an aryl-pip-
erazine group (frequently accompanied by a butyl linker) in 
both D3R and D2R antagonists. Interestingly, linker length 
is a factor often used to control inhibitory potency. For 
instance, two molecules in Fig. 10d are identical apart from 
linker length (see 1 & 1’, with butyl and propyl linkers). 

Fig. 10   Case study on ligand selectivity with dopamine D2 and 
D3 receptors. a Representative pharmacophore models for D2R 
and D3R. b, c Representative substructures obtained for D2R and 
D3R via saliency analysis, sorted by pharmacophore identity. d Rep-
resentative molecules showing saliency prediction  differences with 
respect to the dopamine receptor types
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In our saliency maps, the 4-carbon linker was highlighted 
alongside a piperazine moiety, but the 3-carbon linker was 
not identified as a salient feature. This result suggests the 
importance of linker-length for optimizing potency (experi-
ments confirmed that the former molecule was indeed more 
potent than the latter: K

i
= 2.1 ± 0.3nM vs. 9.6 ± 2.3nM 

[48].
The importance of the piperazine-based allosteric phar-

macophore is implied by the range of aryl moieties that 
appear in our saliency clusters, especially for D3R-specific 
antagonists. In practice, our D2R/D3R saliency maps high-
lighted different substructures for identical molecules as a 
function of receptor type. For example, the orthosteric phar-
macophore centered on the triazole moiety appeared to be 
important D2R antagonism (see 1 and 2 in Fig. 10d), but 
the allosteric end centered on a phenyl hydroxyl group was 
highlighted in our D3R saliency model. In this case, both 
molecules were more potent inhibitors of D3R than D2R: 
1, K

i
= 2.1 ± 0.3nM for D3R vs. 37.7 ± 4.2nM for D2R and 

2, K
i
= 26.5 ± 1.1nM for D3R vs. 73.5 ± 9.0nM for D2R 

[48]. This saliency distinction is interesting considering that 
the orthosteric binding pocket, to which dopamine binds, 
remains conserved for both receptors, thus making it dif-
ficult to modulate ligand selectivity. However, the allosteric 
pockets are found to be distinct enough to allow for selec-
tive ligand design. Though additional analysis on common 
antogonists is warranted, the relatively high saliency weights 
on aryl derivatives of the allosteric pharmacophore for D3R 
seem to give insights into both ligand activity and specificity 
in this system.

Conclusion

We have shown that our simplified, interpretable gCNN 
architecture improves average activity prediction on test sets 
most separated from our training data and provides insights 
into substructure-activity relationships that might assist in 
small molecular design for specific protein targets. When 
classifying “less difficult” test sets (i.e., test sets with higher 
mean similarity to the training set), our architecture achieves 
results roughly equivalent to standard RF and gCNN bench-
marks. We integrate this simplified model with a saliency 
map technique that highlights molecular substructures rel-
evant to activity. While our current cluster-based visualiza-
tion scheme for saliency maps is imperfect, we do see that, in 
general, our method groups similar highlighted substructures 
to an extent that should help end users see qualitative activ-
ity trends across a target’s labeled molecules.

A limitation of the present analysis concerns a restriction 
we made for the conciseness of this paper: we focus our 
saliency discussion exclusively on test molecules that were 
true positives within their respective QSAR models. Similar 

substructural clusters can be trivially generated for true neg-
atives, false negatives, and false positives. The subsequent 
analysis of those subclasses would be more complex, as one 
would likely want to cross-reference substructures between 
categories to determine which subgroups contribute to activ-
ity, detract from activity, need to be added to impart activ-
ity, or even confound our gCNN architecture as it currently 
stands. Interesting work has recently been published on iden-
tifying specific features whose absence is associated with 
molecular activity [50], and similar ideas certainly apply to 
the explainability of our gCNN architecture. A richer analy-
sis of our gCNN confusion matrix categories that allows one 
to access negative and confounding information will likely 
be the subject of future work on a less expansive target set.

The saliency analysis presented in this work has potential 
utility for in silico molecular modeling teams. The useful-
ness of adding substructure-based interpretability to virtual 
screening applications is perhaps self-evident, as highlighted 
substructures could help identify connections between spe-
cific functional groups and activity and guide further design. 
One could also consider integrating a saliency map into a 
generative small molecule workflow, either through curating 
training data according to desired highlighted subgroups or 
even conditioning the training process on a particular set of 
molecular substructures.

Combining saliency maps with other modern machine 
learning interpretability tools (e.g. attention mechanisms 
[23–25], attribution mechanisms [51], Monte Carlo tree 
search [52, 53], etc.) could be advantageous in a number 
of ways. As previously discussed, implementation of atten-
tion mechanisms [23–25] requires specific modifications 
to a gCNN architecture of interest; particularly if one can 
demonstrate a predictive performance improvement via the 
addition of attention weights, one might benefit from com-
paring results from saliency maps and attention mechanisms. 
Secondly, while we have shown saliency maps can identify 
molecular substructures that are correlated with activity 
prediction, the ultimate interpretation of “why” those sub-
structures are selected still falls to human experts. Though 
some substructures identified via saliency indeed correspond 
to important intermolecular interactions within the protein 
binding site, others undoubtedly relate to general small mol-
ecule properties like solubility or even correlate with spuri-
ous connections between data points. One could potentially 
leverage mechanisms for substructural attribution, which 
attempt to identify the specific sources of correlations [51], 
to help automate more quantitative interpretations of sali-
ency maps. Furthermore, details of substructural properties 
obtained through saliency analysis can again possibly aid 
molecule generation techniques, including those based on 
gCNN or Monte Carlo tree search methodologies [52, 53].

As previously noted, saliency predictions focused on sub-
groups responsible for activity within a given lead series 
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might tend to be obvious to medicinal chemists working 
closely on that lead series. However, we would expect our 
method to be more useful to end users when applied to 
understanding less familiar lead series, broader lead find-
ing applications with diverse screening data, or off-target 
activity trends. Furthermore, saliency maps are certainly 
not restricted to activity labels, and instead could be trained 
on selectivity data, generic toxicity data, metabolism data, 
downstream biological activity data, etc. One could imag-
ine working closely with medicinal chemists to identify 
which properties and predictions would be most helpful in 
the development of lead series. Regardless, capturing the 
substructural motifs most relevant to activity represents an 
important first step for automated, deep learning-driven sali-
ency analysis, and we feel we have reached that milestone 
in this work.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10822-​021-​00421-6.

Data availability  The saliency map clusters generated in the current 
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positive molecules are printed four per page for each cluster in each 
numbered directory.
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