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Abstract 

Extended (or n-ary) similarity indices have been recently proposed to extend the comparative 

analysis of binary strings. Going beyond the traditional notion of pairwise comparisons, these 

novel indices allow comparing any number of objects at the same time. This results in a 

remarkable efficiency gain with respect to other approaches, since now we can compare N 

molecules in O(N) instead of the common quadratic O(N2) timescale. This favorable scaling 

has motivated the application of these indices to diversity selection, clustering, phylogenetic 

analysis, chemical space visualization, and post-processing of molecular dynamics 

simulations. However, the current formulation of the n-ary indices is limited to vectors with 

binary or categorical inputs. Here, we present the further generalization of this formalism so 

it can be applied to numerical data, i.e. to vectors with continuous components. We discuss 

several ways to achieve this extension and present their analytical properties. As a practical 

example, we apply this formalism to the problem of feature selection in QSAR and prove 

that the extended continuous similarity indices provide a convenient way to discern between 

several sets of descriptors. 

 

1. Introduction 

Similarity and distance measures are cornerstones of a vast range of methodologies in the 

fields of molecular modeling, drug design and cheminformatics [1, 2]. In some common 

examples, their binary implementations are used to quantify the similarity of binary 

molecular fingerprints (with the Tanimoto coefficient unquestionably being the most popular 

one) [3], while their continuous implementations constitute the basics of clustering 

algorithms [4]. The applications of molecular similarity (as expressed by pairwise similarity 

calculations between binary fingerprints) in ligand-based virtual screening were thoroughly 

explored by the groups of Jürgen Bajorath [5, 6],Peter Willett [7, 8], and many others, with 

a large body of works from the latter group dedicated to data fusion practices [9, 10]. Binary 

similarity measures from many sub-fields were collected by Todeschini and colleagues [11], 

and further analyzed by our group to select ideal candidates for specific applications in 

metabolomics [12] and molecular design [13] studies. We have also shown that two similarity 

measures can be consistent with each other in a surprisingly high percentage of cases, even 

when they are poorly correlated [14]. 
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Recently, we have introduced several methodological frameworks to extend the usage of 

similarity measures beyond the common cases mentioned above. Most importantly, we have 

demonstrated that the mathematical expansion of the core concepts of similarity measures 

can provide a way to quantify the similarity of an arbitrary number of objects at the same 

time. We first showed this on binary (molecular) fingerprints: the resulting similarity 

measures were termed extended (or n-ary) similarity measures [15]. They employ the core 

concept of similarity and dissimilarity counters, which have replaced the a, b, c and d terms 

that are commonly applied in the well-known, pairwise definitions of the similarity measures 

to describe the number of bit positions where two fingerprints have co-occurring one (a) or 

zero (d) bits, or a one bit that is exclusive to either of the fingerprints (b and c). In our 

framework, the 1-similarity, 0-similarity, and dissimilarity counters express the number of 

bit positions where the number of co-occurring one (or zero) bits is above, or below, a pre-

defined coincidence threshold, respectively. For pairwise comparisons, these generalizations 

naturally revert to the well-known definitions of the classical, pairwise similarity measures. 

We have shown that the new methodology is not only computationally efficient, scaling as 

O(n) with the number of compared objects n, but it can be successfully applied for tasks such 

as  diversity selection, clustering, as well as the visualization of large sections of chemical 

space [16–19]. A further generalization involved the extension of this framework to allow 

for more than two possible characters (t = 2) in an object (vector), opening the possibility to 

apply the extended similarity measures in bioinformatics, for the comparison of nucleotide (t 

= 4) or protein sequences (t = 20) [20]. We have termed these, even further generalized 

definitions extended many-item, or (t, n) similarity measures, to distinguish them from the 

above-mentioned, extended binary, or (2, n) similarity measures. 

In this study, realizing the potential of further possible generalizations to extended similarity 

measures, we introduce extended continuous, or (ℝ, n) similarity measures, to provide a way 

to compare an arbitrary number of vectors with real values. This generalization will employ 

the same concepts as mentioned above, with novel formulas for determining the number of 

similarity and dissimilarity counters. As we will show in section 2.1, there are at least three 

ways to generalize the extended indices so they can handle continuous-valued vectors. All of 

these variants were implemented and compared in the Results section. 
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To demonstrate the utility of the new class of similarity metrics, we use them in descriptor 

selection. Quantitative Structure-Activity Relationships (QSAR) are one of the earliest and 

most important concepts in molecular design [21]. QSAR realizes a linear or non-linear 

regression between numerical descriptors of compound structure and experimentally 

determined or calculated physicochemical parameters and bioactivity. While multiple linear 

regression (MLR) has ruled the QSAR field for a long time as a classical regression 

algorithm, the last decades have seen the emergence of several new algorithms, many of them 

based on Machine Learning [22], including some interesting examples that are adapted from 

other fields [23]. In the meantime, new families of molecular descriptors were introduced: 

contemporary descriptor calculator software (such as Dragon) can generate thousands of 

continuous (and, discrete and binary) descriptors. Also, public bioactivity repositories such 

as ChEMBL [24] or PubChem Bioassay [25] allow access to large molecular datasets for the 

more thorough training of QSAR models. The increasing number of descriptors, more 

complex algorithms and larger training datasets are factors that drive up the computational 

demand of QSAR modeling: to mitigate this, it is common practice to apply one or more 

descriptor (feature) selection algorithms to reduce the input dataset of the modeling algorithm 

by pre-selecting the most meaningful descriptors to work with [26]. In turn, descriptor 

selection has its own computational cost as a limiting factor: less sophisticated (less 

demanding) algorithms will sample the descriptor space only superficially, while more 

sophisticated options, such as genetic algorithms, will be more time-consuming [27]. A 

thorough review of descriptor selection methods is given by Goodarzi et al. [28]. While we 

do not necessarily gain prediction accuracy from descriptor selection [29], a smaller number 

of descriptors will convey a significant speedup to QSAR modeling in most cases, especially 

if the descriptor selection approach is not laborious either. 

Here, we apply the new class of extended continuous similarity metrics in a simple descriptor 

selection scenario. Using a large and relevant ADME-related dataset of cytochrome P450 

(CYP) 2C9 inhibitors (actives) and inactive species, we calculate group-wise similarities 

based on several descriptor families to find the best ones at discriminating the group of 

actives from the total dataset. Therefore, we provide a novel, simple variable selection tool 

for QSAR/QSPR analyses. This idea can constitute the basis of more complex descriptor 
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selection approaches with a more thorough exploration of the descriptor space to yield the 

set of descriptors that can optimally distinguish the actives from the total set of ligands. 

2. Materials and methods 

2.1 Extended Continuous Similarity Indices 

There are several ways to extend the domain of definition of our n-ary indices such that they 

can be applied to quantify the similarity of an arbitrary number of vectors with continuous 

components. The strategies that we will consider here all start from a common point: scaling 

the input data between 0 and 1. In other words, we will work with vectors: 

 

( )

( )

( )

1 11 12 1

2 21 22 2

1 2

, ,...,

, ,...,

...

, ,...,

m

m

n n n nm

V x x x

V x x x

V x x x

=

=

=

  (1) 

where: , :0 1iji j x   . 

Variant 1 

The first way of quantifying the similarity of these vectors is to see how different the 

components are from the average of their column (e.g., how distant is a feature from its 

average value). Hence, the first step is to calculate the vector of column-wise averages: 

 ( )1 2, ,..., mA a a a=   (2) 

where: 

 
1

1
j n

i ji

j

a x
n

=

=

=    (3) 

We now have to subtract this average from the corresponding normalized elements (e.g., 

centering) and find the absolute of these differences: 

 

( )

( )

( )

11 1 12 2 1

21 1 22 2 2

1 1 2 2

, ,...,

, ,...,

...

, ,...,

m m

m m

n n nm m

x a x a x a

x a x a x a

x a x a x a

− − −

− − −

− − −

  (4) 

The next step is to sum all these differences across a given column and form a new vector 

with the results: 
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 ( )1 2, ,..., mS s s s=   (5) 

where: 

 
1

j n

i ji i

j

s x a
=

=

= −   (6) 

Now, analogously to the original binary extended similarity indices, we need to define a new 

vector of “coincidences”: 

 ( )1 2, ,..., mD   =   (7) 

where: 

 2 2i in ns = −   (8) 

This is directly related to our previous works [15, 16]. The key insight is that if the ith column 

of the normalized data has k 1’s and n k−  0’s, then ( ) 2i n k
k n =  = − , that is, the indicator 

we use in our original paper to quantify the coincidence. The main difference is that the 

simpler 2k n−  expression is only defined over strings of 1’s and 0’s, while Eq. (8) is defined 

over real numbers in the [0, 1] interval. 

Having established this connection, we can now follow a similar route as in the binary case. 

First, we defined a coincidence threshold,  , and if i   then we use ( )s if   to estimate the 

similarity, and if i   then we use ( )d if   to calculate the dissimilarity. By analogy of the 

1- and 0-similarities of the binary case, we can distinguish between “high-content 

similarities” (where the column average is higher) and “low-content similarities” (where the 

column average is lower): 

If n is odd: 

i  will be a “high-content similarity” if i   and 

( )mod2
mod2

2
i

n n
n

a
n

−
+

 ,  moreover, 

i  will be a “low-content similarity” if i   and 

( )mod2
2

i

n n

a
n

−

 . 

If n is even: 

i  will be a “high-content similarity” if i   and 0.5ia  , and i  will be a “low-content 

similarity” if i   and 0.5ia  . 
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This procedure extends many of the notions of the binary case in a natural way. However, 

while the notion of quantifying similarity by measuring the distance to the mean is a common 

one, we should be aware that a high similarity in this case implies that the components of 

vector S (Eq. (5)) can be very close to zero. This means that if we do not use a high enough 

coincidence threshold, we have the risk of identifying all the columns as corresponding to 

low-content similarities. The problem with this is that several indices will be ill-defined (e.g. 

they will involve division by zero), because their denominators only include high-content 

similarities and dissimilarity counters. For instance, taking the more common case of the 

traditional binary similarity indices (and the standard convention that a, b + c, and d represent 

the number of common “on” bits, the mismatches, and common number of “off” bits, 

respectively), this situation will be equivalent to saying that a = b + c = 0. Hence, indices 

without d in their denominator (like Jaccard-Tanimoto, Baroni-Urbani-Buser, etc., see Table 

1) could not be calculated. Once again, this would not be a problem if we select a large 

enough coincidence threshold. Nonetheless, the potential issues that could be caused by this 

prevalence of 0-similarities motivate us to explore another variant of extended continuous 

indices. 

Variant 2 

As noted above, the raison d’être for this new approach is to increase the number of high-

content (as opposed to low-content) similarities. Here we also measure similarity according 

to the distance from the mean, so we also need to calculate the column-average vector (Eq. 

(2)), and we need to form the matrix given in Eq. (4). The key difference is that now we carry 

out an additional transformation of this matrix before calculating the similarities, namely, we 

work instead with a new matrix defined by: 

 

( )

( )

( )

11 1 12 2 1

21 1 22 2 2

1 1 2 2

1 ,1 ,...,1

1 ,1 ,...,1

...

1 ,1 ,...,1

m m

m m

n n nm m

x a x a x a

x a x a x a

x a x a x a

− − − − − −

− − − − − −

− − − − − −

  (9) 

The rationale behind this is quite simple: in Eq. (4) a high similarity will correspond to a very 

small element, while in Eq. (9) a high similarity will correspond to an element that is close 

to 1. 

From here we proceed as usual, first calculating the vector of column sums: 
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 ( )1 2, ,..., mS s s s=   (10) 

with: 

 ( )
1 1

1
j n j n

i ji i ji i

j j

s x a n x a
= =

= =

= − − = − −    (11) 

In this case, we will follow a simpler recipe to determine the character of the counters: 

 

2 high - content

2 low - content

2 dissimilarity

i

i

i

s n

n s

s n







−  →

−  →

−  →

  (12) 

From purely theoretical arguments, we should expect this variant to be better than the 

previous one, if anything because it will lead to indices that can be calculated regardless of 

the coincidence threshold selected. Nonetheless, it still measures similarity taking the mean 

as a reference, so it seems desirable to explore yet another option, which measures similarity 

directly from the normalized values. 

Variant 3 

Starting from the scaled data (Eq. (1)), we only need to calculate the sums along each column: 

 
i ji

j

x =   (13) 

Then, we use these numbers to assign the type of counters, analogously to what we did in 

variant 2: 

 

2 high - content

2 low - content

2 dissimilarity

i

i

i

n

n

n

 

 

 

−  →

−  →

−  →

  (14) 

Notice that this method is essentially equivalent to the original binary case (the analogy is 

clear if we notice that if all the ijx  are either 0 or 1, then i ik =  in our original notation). 

This variant has two potential advantages: its simplicity, and the ability of looking at the data 

from a different point of view (since it does not rely on the calculation of the average). 

However, the latter can bring a potential problem: by not referring to an average and using 

the raw normalized values to directly calculate the similarity, this variant should be more 

prone to depend on the scaling (normalization) procedure. This can lead to a pathological 

behavior, since a normalization method that gives very small values for the xij will lead to an 

input that suffers from the overly abundance of low-content similarities of variant 1. This 
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will once again imply that we will not be able to calculate all indices, unless we use a very 

high coincidence threshold. 

Having reached this point in any of the previous variants, we can easily classify each column 

as contributing to the high-content, low-content similarity, or dissimilarity between the 

compared objects. Notice that, as in the binary case, the minimum possible value for   in all 

these cases is also equal to mod2n . Once we have classified all the counters, the process to 

calculate the similarity indices is exactly the same as in the binary case (see Table 1 for the 

list of all the expressions). Notice that here we can also decide whether to include or not 

weight functions in the denominator of the indices, leading to the weighted (w) or non-

weighted (nw) flavors, respectively. 

The formulae of n-ary continuous indices are enumerated in Table 1 (notice that the cJa and 

cJa0 differ in that in the latter we do not differentiate between high-content and low-content 

similarities). That is, notice how the original formulation of some of these indices (e.g., the 

asymmetric indices, like Gle, Ja, etc.) distinguished between the high- and low-content 

similarities, assigning a more important role to the latter. As we showed in our original paper, 

we can generalize these indices by replacing every occurrence of the high-content similarity 

by the sum of the high- and low-content similarities, which leads to more symmetrical 

expressions (and novel ways to quantify similarity). 

Table 1. Formulae and notations of the extended continuous similarity indices. 

Additive 

indices 

Label Typea Notationb Name Equation 

cAC cAC_hc 
cACw 

continuous 

Austin- 

Colwell 

𝑠𝑐𝐴𝐶(ℎ𝑐_𝑤𝑑) =
2

𝜋
arcsin√

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cACnw 
𝑠𝑐𝐴𝐶(ℎ𝑐_𝑑) =

2

𝜋
arcsin√

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠

∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑
  

cBUB cBUB_hc 

cBUBw 

continuous 

Baroni- 

Urbani- 

Buser 

𝑠𝑐𝐵𝑈𝐵(ℎ𝑐_𝑤𝑑) =

√[∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 ][∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠 ]+

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

{
√[∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 ][∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠 ]+

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑

}
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cBUBnw 

𝑠𝑐𝐵𝑈𝐵(ℎ𝑐_𝑑) =

√[∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 ][∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠 ]+

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

{√[∑ 𝐶𝑛(𝑘)ℎ𝑐−𝑠 ][∑ 𝐶𝑛(𝑘)𝑙𝑐−𝑠 ]+∑ 𝐶𝑛(𝑘)ℎ𝑠−𝑠 +∑ 𝐶𝑛(𝑘)𝑑 }

  

cCT1 cCT1_hc 
cCT1w 

continuous 

Consoni- 

Todeschini 

(1) 

𝑠𝑐𝐶𝑇1(ℎ𝑐_𝑤𝑑) =
ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠 )

ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑 )
  

cCT1nw 
𝑠𝑐𝐶𝑇1(ℎ𝑐_𝑑) =

ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠 )

ln(1+∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑 )
  

cCT2 cCT2_hc 
cCT2w 

continuous 

Consoni- 

Todeschini 

(2) 

𝑠𝑐𝐶𝑇2(ℎ𝑐_𝑤𝑑) =
ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑 )−ln(1+∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑 )

ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑 )
  

cCT2nw 

𝑠𝑐𝐶𝑇2(ℎ𝑐_𝑑) =
ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑 )−ln(1+∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑 )

ln(1+∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑 )
  

cFai cFai_hc 

cFaiw 

continuous 

Faith 

𝑠𝑐𝐹𝑎𝑖(ℎ𝑐_𝑤𝑑) =
∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 +0.5∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cFainw 
𝑠𝑐𝐹𝑎𝑖(ℎ𝑐_𝑑) =

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 +0.5∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠

∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑
  

cGKnw 
𝑠𝑐𝐺𝐾(ℎ𝑐_𝑑) =

2min(∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 ,∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠 )−

∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑

2min(∑ 𝐶𝑛(𝑘)ℎ𝑐−𝑠 ,∑ 𝐶𝑛(𝑘)𝑙𝑐−𝑠 )+∑ 𝐶𝑛(𝑘)𝑑
  

cHDnw 

𝑠𝑐𝐻𝐷(ℎ𝑐_𝑑) =
1

2
(

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

∑ 𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝐶𝑛(𝑘)𝑑
+

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠

∑ 𝐶𝑛(𝑘)𝑙𝑐−𝑠 +∑ 𝐶𝑛(𝑘)𝑑

)  

cRT cRT_hc 
cRTw 

continuous 

Rogers- 

Tanimoto 

𝑠𝑐𝑅𝑇(ℎ𝑐_𝑤𝑑) =
∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 + 2∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑

 

cRTnw 
𝑠𝑐𝑅𝑇(ℎ𝑐_𝑑) =

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

∑ 𝐶𝑛(𝑘)𝑠 + 2∑ 𝐶𝑛(𝑘)𝑑
 

cRG cRG_hc 
cRGw 

continuous 

Rogot- 

Goldberg 

𝑠𝑐𝑅𝐺(ℎ𝑐_𝑤𝑑) =

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

2∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
+

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠

2∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑

  

cRGnw 
𝑠𝑐𝑅𝐺(ℎ𝑐_𝑑) =

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

2∑ 𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝐶𝑛(𝑘)𝑑
+

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑙𝑐−𝑠

2∑ 𝐶𝑛(𝑘)𝑙𝑐−𝑠 +∑ 𝐶𝑛(𝑘)𝑑
  

cSM cSM_hc 
cSMw 

continuous 

Simple 

matching,  

Sokal- 

Michener 

𝑠𝑐𝑆𝑀(ℎ𝑐_𝑤𝑑) =
∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cSMnw 

𝑠𝑐𝑆𝑀(ℎ𝑐_𝑑) =
∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑
  

cSS2 cSS2_hc 
cSS2w 

continuous 

Sokal- 

Sneath (2) 

𝑠𝑐𝑆𝑆2(ℎ𝑐_𝑤𝑑) =
2∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

2∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cSS2nw 
𝑠𝑐𝑆𝑆2(ℎ𝑐_𝑤𝑑) =

2∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

2∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑
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Asymmetric 

indices 

Label Type Notation Name Equation 

cCT3 

cCT3_hc 
cCT3w 

continuous 

Consoni- 

Todeschini 

(3) 

𝑠𝑐𝐶𝑇3(ℎ𝑐_𝑤𝑑) =
ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 )

ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑 )
  

cCT3nw 
𝑠𝑐𝐶𝑇3(ℎ𝑐_𝑑) =

ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 )

ln(1+∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑 )
  

cCT3_lc 
cCT3lcw 

𝑠𝑐𝐶𝑇3(𝑙𝑐_𝑤𝑑) =
ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 )

ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑 )
  

cCT3lcnw 
𝑠𝑐𝐶𝑇3(𝑙𝑐_𝑑) =

ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 )

ln(1+∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑 )
  

cCT4 

cCT4_hc 
cCT4w 

continuous 

Consoni- 

Todeschini 

(4) 

𝑠𝑐𝐶𝑇4(ℎ𝑐_𝑤𝑑) =
ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 )

ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑 )
  

cCT4nw 
𝑠𝑐𝐶𝑇4(ℎ𝑐_𝑑) =

ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 )

ln(1+∑ 𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝐶𝑛(𝑘)𝑑 )
  

cCT4_lc 
cCT4lcw 

𝑠𝑐𝐶𝑇4(𝑙𝑐_𝑤𝑑) =
ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 )

ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑 )
  

cCT4lcnw 
𝑠𝑐𝐶𝑇4(𝑙𝑐_𝑑) =

ln(1+∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 )

ln(1+∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑 )
  

cGle 

cGle_hc 
cGlew 

continuous 

Gleason 

𝑠𝑐𝐺𝑙𝑒(ℎ𝑐_𝑤𝑑) =
2∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

2∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cGlenw 
𝑠𝑐𝐺𝑙𝑒(ℎ𝑐_𝑑) =

2∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

2∑ 𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝐶𝑛(𝑘)𝑑
  

cGle_lc 
cGlelcw 

𝑠𝑐𝐺𝑙𝑒(𝑙𝑐_𝑤𝑑) =
2∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

2∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cGlelcnw 
𝑠𝑐𝐺𝑙𝑒(𝑙𝑐_𝑑) =

2∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

2∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑
  

cJa 

cJa_hc 
cJaw 

continuous 

Jaccard 

𝑠𝑐𝐽𝑎(ℎ𝑐_𝑤𝑑) =
3∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

3∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cJanw 
𝑠𝑐𝐽𝑎(ℎ𝑐_𝑑) =

3∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

3∑ 𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝐶𝑛(𝑘)𝑑
  

cJa_lc 

cJalcw 
𝑠𝑐𝐽𝑎(𝑙𝑐_𝑤𝑑) =

3∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

3∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cJalcnw 
𝑠𝑐𝐽𝑎(𝑙𝑐_𝑑) =

3∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

3∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑
  

cRR 

cRR_hc 
cRRw 

continuous 

Russel-Rao 

𝑠𝑐𝑅𝑅(ℎ𝑐_𝑤𝑑) =
∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cRRnw 
𝑠𝑐𝑅𝑅(ℎ𝑐_𝑑) =

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑
  

cRR_lc 
cRRlcw 

𝑠𝑐𝑅𝑅(𝑙𝑐_𝑤𝑑) =
∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cRRlcnw 
𝑠𝑐𝑅𝑅(𝑙𝑐_𝑑) =

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑
  

cSS1 cSS1_hc 

cSSw 
continuous 

Sokal- 

Sneath (1) 

𝑠𝑐𝑆𝑆1(ℎ𝑐_𝑤𝑑) =
∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 + 2∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑

 

cSSnw 
𝑠𝑐𝑆𝑆1(ℎ𝑐_𝑑) =

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

∑ 𝐶𝑛(𝑘)ℎ𝑐−𝑠 +2∑ 𝐶𝑛(𝑘)𝑑
  



For the special issue in honor of Gerry Maggiora 

12 

 

cSS1_lc 

cSSlcw 𝑠𝑐𝑆𝑆1(𝑙𝑐_𝑤𝑑) =
∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +2∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cSSlcnw 
𝑠𝑐𝑆𝑆1(𝑙𝑐_𝑑) =

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

∑ 𝐶𝑛(𝑘)𝑠 +2∑ 𝐶𝑛(𝑘)𝑑
  

cJT 

cJT_hc 

cJTw 

continuous 

Jaccard- 

Tanimoto 

𝑠𝑐𝐽𝑇(ℎ𝑐_𝑤𝑑) =
∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cJTnw 
𝑠𝑐𝐽𝑇(ℎ𝑐_𝑑) =

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)ℎ𝑐−𝑠

∑ 𝐶𝑛(𝑘)ℎ𝑐−𝑠 +∑ 𝐶𝑛(𝑘)𝑑
  

cJT_lc 

cJTlcw 
𝑠𝑐𝐽𝑇(𝑙𝑐_𝑤𝑑) =

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠 +∑ 𝑓𝑑(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑑
  

cJTlcnw 
𝑠𝑐𝐽𝑇(𝑙𝑐_𝑑) =

∑ 𝑓𝑠(Δ𝑛(𝑘))𝐶𝑛(𝑘)𝑠

∑ 𝐶𝑛(𝑘)𝑠 +∑ 𝐶𝑛(𝑘)𝑑
  

a hc: high-content similarity; lc: low content similarity 

b w: weighted, nw: non-weighted 

 

2.2 Dataset and descriptors 

A large dataset of cytochrome P450 (CYP) 2C9 ligands from Pubchem Bioassay (AID 1851) 

was used as a case study to highlight the applicability of the n-ary indices for continuous 

variables [30]. Cytochrome P450 enzymes are important mediators of drug metabolism, 

therefore they are widely studied in the field of QSAR/QSPR: many compounds were 

evaluated against this enzyme family and they are recurring targets in machine learning 

classification studies as well [31]. In total, 12161 molecules were applied after the data 

curation and preparation step. The dataset contained 4016 inhibitors with a potency of 10 µM 

or better (actives) and 8145 inactive species. Dragon 7 software was used for the calculation 

of 2D descriptors [32, 33]. Table 2 shows the 19 different 2D descriptor groups, which were 

calculated in the study (the groups are predefined by the applied software). We have applied 

the same numbering system for the descriptor sets as it was used in the Dragon software. The 

excluded numbers (13-20, 26-27) are connected to 3D descriptors. Highly correlated 

variables (above 0.997) and constant variables were excluded from the sets [34]. The details 

and descriptions of the different descriptor sets can be found in the DRAGON software 

manual. 

Table 2. The applied 2D descriptor packages with the number of descriptors 

Dragon 

number 
2D Descriptor Size 

1 Constitutional 45 

2 Ring descriptors 32 
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3 Topological indices 72 

4 
Walk and path 

counts 
46 

5 Connectivity indices 37 

6 Information indices 50 

7 
2D matrix-based 

descriptors 
436 

8 2D autocorrelations 213 

9 Burden eigenvalues 96 

10 
P-VSA-like 

descriptors 
55 

11 ETA indices 21 

12 
Edge adjacency 

indices 
324 

21 
Functional groups 

count 
128 

22 
Atom-centred 

fragments 
98 

23 
Atom-type E-state 

indices 
88 

24 CATS 2D 145 

25 2D Atom Pairs 746 

28 Molecular properties 14 

29 Drug-like indices 12 

2.3 Statistical analysis 

First, we had to normalize the descriptor sets before the calculation of the continuous n-ary 

indices. Two different methods were used for this step: rank transformation and mean scaling. 

The equations are the following: 

 ( )
min

max min

i
mean i

x X
y x

X X

−
=

−
  (15) 

and 

 ( )
( )

( )

rank 1

maxrank 1

i
rank i

x
y x

X

−
=

−
  (16) 

After the normalization of the dataset, 16 different continuous n-ary indices were calculated 

for the 19 descriptor sets. We have calculated the n-ary indices for the active and inactive 

groups, as well as the total dataset, corresponding to three different levels of similarity. We 
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assume the active group to be more coherent – based on earlier examples from our research 

group, where a small number of descriptors was sufficient to define simple multicriteria 

optimization rules for kinase [35] and GPCR ligands [36], distinguishing them from a larger 

set of commercially available compounds. By comparison, the inactive set should display a 

lesser degree of similarity, while the total dataset (containing both the active and inactive 

sets) should be the most diffuse, i.e. less similar overall. A further level of comparison was 

introduced by calculating the absolute differences between the similarities of the active group 

vs. the total dataset (from here on, denoted as |active-total| values). Here, a larger difference 

corresponds to more discriminatory power of the given descriptor set and similarity metric. 

The datasets – with the 16 continuous n-ary metrics in the columns and the descriptor sets in 

the rows – were evaluated and compared with factorial ANOVA and the multi criteria 

decision making tool, sum of ranking differences (SRD) [37]. The SRD procedure is not a 

simple extension of the Spearman footrule to equal numbers (ties) in the input matrix [38], 

but contains two validation steps: i) comparison of ranks with random numbers (CRRN) [39], 

and ii) cross-validation [40]. It is a generally applicable multicriteria decision making tool 

[41], whose applications were demonstrated in a wide range of fields from food chemistry 

[42] to medical applications [43], as well as politics [44] and sports [45]. The sum of ranking 

differences (SRDs) is calculated as the city block (Manhattan) distance (dkj) between the rank 

values of the gold standard and the rank values of the original data. In the calculation process, 

always the columns of the dataset are compared to the reference column. Sum of ranking 

differences (SRD) helped to compare and rank the descriptor sets and the n-ary continuous 

indices. SRD was carried out separately for the similarities of the active and inactive sets, as 

well as the absolute differences between the actives and the total dataset (|active-total| 

values). In all cases, the maximum values were used as the reference column. When the novel 

similarity metrics were compared, the dataset contained those in the columns and the 

descriptor sets in the rows, while in the comparison of the descriptor sets, the mentioned 

dataset was transposed. It is important to note, that in every SRD calculation, the variables 

with smaller SRD values are the better ones (these are closer to the reference). The scaled 

(between 0 and 100) and cross-validated SRD values were applied for the final evaluation by 

ANOVA. 
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Factorial ANOVA analysis is dedicated to compare the group averages according to the 

different factors. For the original datasets (containing the 16 similarity metrics for the active, 

inactive and the complete dataset of molecules), we have used several factors such as the n-

ary indices (16 levels), the molecular descriptor sets (19), the different threshold limits (0.05 

– 0.95 fraction of the total size of the set, with steps of 0.05) and the applied groups of 

molecules (active, inactive, total). For the final comparison of the descriptors based on their 

SRD values, we have used i) the descriptor sets, and ii) the actives, inactives and |active-total| 

groups as factors. 

3. Results and discussion 

The calculated n-ary continuous indices were used for descriptor (variable) selection in the 

case study of a large dataset of CYP 2C9 inhibitors and inactives. Moreover, the 16 different 

continuous similarity measures (weighted and non-weighted versions) were compared and 

ranked to find the most optimal ones for the task. We have calculated the similarity measures 

for three different sets of the dataset: actives, inactives and the complete dataset (total). As 

the optimal coincidence threshold limit (γ) is case-dependent, in each variant (1, 2, 3) of the 

similarity calculation, a coincidence threshold analysis was carried out to select the best 

threshold limit. In the next step, the most important descriptor sets, and the optimal similarity 

measures have been selected based on the continuous similarity values for the “active”, 

“inactive” and “total” groups. In the optimal situation, the best similarity measures should 

return bigger similarity values for the group of active ligands, somewhat smaller similarities 

for the inactive ligands, and the lowest similarity for the most diffuse “total” group. An 

additional parameter, the absolute difference between the similarity of “active” and “total” 

groups was calculated to select and rank the examined descriptors and similarity indices with 

the SRD analysis, based on their ability to distinguish the active group within the total dataset. 

The whole process was carried out for the three different continuous n-ary similarity 

calculation variants; thus, we could compare their efficiencies for the task and finally select 

the most applicable one. Figure 1 shows the mentioned workflow of the study in an 

illustrative way. 
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Figure 1. The applied workflow of the study, emphasizing the most important aspects of the 

analysis. 

3.1 Variant 1 

As we have two different normalization procedures for the descriptors: rank and mean 

normalization; as well as weighted and non-weighted versions for the continuous similarity 

calculations, the coincidence thresholds were compared for all the four cases. Figure 2 shows 

the dependence of the similarity values on the applied threshold limits in the x axis. The 

similarity of the group of molecules: “actives”, “inactives” and “total” are compared in the 

factorial ANOVA plot. It is very clear that the weighted and non-weighted versions have the 

same shape or pattern, but the range of the similarity values are different. Naturally, we can 

say that in the optimal case, the groups are separated, especially the actives from the total. 

For the non-weighted version, this separation is slightly better based on the covered similarity 

range, while the use of rank normalization of the descriptors clearly gives us better results. 

We have selected 0.70 as the coincidence threshold limit for the further SRD analysis, based 

on the non-weighted and rank scaled version of the plots. In this case the active, inactive, and 

total groups are the farthest from each other. 
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Figure 2. Threshold dependence for similarity values in the weighted and non-weighted 

variants of the continuous indices. First row: non-weighted version; second row: weighted 

version; first column: mean normalization; second column: rank normalization. Active 

molecules: blue line; Inactive molecules: red line; total dataset: green line. Similarity values 

are plotted against the different coincidence threshold limits. 

The continuous n-ary similarity measures were also compared with factorial ANOVA. 

Molecule groups were selected as the second factor in this case as well. Figure S1 in the 

supplementary information shows the result of the factorial ANOVA, where the similarity 

values are plotted against the different similarity measures. The same pattern can be noticed 

as in the case of the threshold limit selection. Again, the rank normalized version coupled 

with the non-weighted similarity calculation provides a much better result. Since it would be 

hard to select the most proper measures based on the ANOVA plot, the rank-normalized and 

non-weighted results were used for the SRD analysis for further evaluation. Figure 3 shows 

the result of the SRD analysis, where the scaled SRD values were used for factorial ANOVA, 
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instead of the original similarity values. The SRD analyses were carried out for the active, 

inactive and the additionally calculated |active-total| similarity values separately. This latter 

parameter is relevant because the bigger the difference between the similarities of the active 

group and the total dataset, the better the final model could be. In the SRD analyses, the 

maximum values were used as the reference. It means that those similarity measures, which 

had higher values for the different groups of molecules (or the difference between the actives 

and total set), are ranked better. In other words, the best similarity indices should be the most 

sensitive in finding the similarities amongst the actives and providing bigger differences in 

similarity between the actives and the total dataset. The result of the three SRD analyses were 

merged for the final ANOVA analysis. It is justified because the SRD values are scaled to 

the same range in each case. The smaller the SRD values, the better the similarity measure. 

We must make note of a difference between the use of the original similarity values and the 

calculated SRD values in the ANOVA analysis. For the original similarity values, all of the 

results with the various coincidence thresholds were used.  For the SRD analysis, only the 

optimal threshold limit with non-weighted similarities and rank normalization was used, 

based on the conclusions from the ANOVA of the similarity values. 

 



For the special issue in honor of Gerry Maggiora 

19 

 

Figure 3. SRD values [%] to the gold standard for the active and inactive sets, and |active-

total| values. The coincidence threshold was determined by variant 1. The continuous 

extended, individual similarity measures are plotted on the X axis (for their formulae, see 

Table 1). The similarity of the active group is marked with a blue line, the similarity of the 

inactive group is marked with a green line and the absolute difference between the active and 

the total group is marked with a red line.  

The active, inactive and the |active-total| versions had different behaviors. As cCT1 has the 

best ranks in the active and inactive cases and still good SRD values for the |active-total| case, 

we can recommend that measure as the best one for variant 1. The cRR similarity measure 

can be considered the worst one based on the SRD values of the three cases. 

Similarly, the molecular descriptor sets have been compared based on the original similarity 

values and the SRD values as well. The factorial ANOVA of the original values can be found 

in the Supplementary information as Figure S2. The original similarity values showed that 

the first half of the descriptor sets have better discrimination between the similarities of the 

groups. The SRD analysis of the active, inactive and |active-total| similarity sets provided 

extra information about the best descriptor sets. Figure 4 shows the factorial ANOVA result 

of the three cases. Descriptor sets 3 and 8 have the smallest SRD values in all the three cases 

together, although the results are not consistent: where the difference between the active and 

total is bigger (thus the SRD value is smaller), the inactive group has a worse result. 

(Descriptor set 3 contains the topological indices, while descriptor set 8 contains the 2D 

autocorrelation descriptors.) Many descriptor sets cannot rank the |active-total| better than 

random, e.g., No. 1 and 21-25. Some of the descriptor sets evaluate the active and |active-

total| very similarly, e.g., No. 3, 8, 11 and 28. The actives are found to be the most similar 

according to sets No. 1, 21, 22, 23. 
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Figure 4. Factorial ANOVA of the SRD values [%] as a function of descriptor sets (Table 1) 

in the case of variant 1. The different descriptor sets are plotted in the X axis. The similarity 

of the active group is marked with a blue line, the similarity of the inactive group is marked 

with a green line and the absolute difference between the active and the total group is marked 

with a red line.  

3.2 Variant 2 

In the case of variant 2, the same process was carried out as in the case of variant 1. First, we 

have compared the coincidence thresholds with the different pretreatments (rank/mean, 

weighted/non-weighted). Figure 5 shows the factorial ANOVA of the original similarity 

values. With the mean transformation, the curve has a long plateau part, then it drops quickly, 

while in the case of rank normalization, the curve has an inflexion point. In this point, at 0.5-

0.55, the similarity of the three groups (active, inactive, total) are the farthest: large similarity 

for the active set, and small similarity for the inactive and total sets. Thus, we have selected 

0.50 as the coincidence threshold limit for the further SRD analysis.  
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Figure 5. The factorial ANOVA for the four different scenarios of the similarity calculations 

in the case of variant 2. First row: non-weighted version; second row: weighted version; first 

column: mean normalization; second column: rank normalization. Active molecules: blue 

line; inactive molecules: red line; total dataset: green line. Similarity values are plotted 

against the different coincidence threshold limits. 

The continuous n-ary similarity measures are compared in Figure S3 in the Supplementary 

information in the four pretreatment scenarios (with all the threshold limits), but we have 

also tested how the optimal threshold limit affects the result. In Figure 6A, where we use 

only the 0.50 threshold limit data, the lines of the different groups are further from each other 

compared to Figure S3. However, it would be still hard to find the most optimal similarity 

measure based on this figure, because most of them are in the same range and the lines are at 

about the same distance from each other. In the optimal case, the similarity metric should 

provide higher similarity within the group of actives and smaller similarity within the total 

dataset: this holds for all metrics. Figure 6B shows that SRD values can more easily select 



For the special issue in honor of Gerry Maggiora 

22 

 

the most prominent continuous measures. As in this case, the smaller the SRD value, the 

better the applied metric, here we can highlight the cCT1, cCT3 and cCT4 metrics, because 

they have the smallest SRD values consistently in all the three cases (active, inactive, |active-

total|). 

 

Figure 6. The factorial ANOVA of the original similarity values (A) and the scaled SRD 

values (B) with the continuous similarity measures and molecule groups as factors. (For the 

formulae of the similarity metrics, see Table 1.) The similarity of the active group is marked 

with blue line, the similarity of the inactive group is marked with green line and the absolute 

difference between the active and the total group is marked with red line. 

In the case of descriptor set selection, the same analyses have been made. Figure S4 in the 

Supplementary information shows the factorial ANOVA with the descriptor sets and 

molecule groups as factors for the four preprocessing scenarios. Figure 7 presents the results 

focusing only to the optimal threshold limit 0.50 based on the original data and the scaled 

SRD values. 
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Figure 7. The factorial ANOVA of the original similarity values (A) and the scaled SRD 

values (B) with the descriptor sets and molecule groups as factors. The similarity of the active 

group is marked with a blue line, the similarity of the inactive group is marked with a green 

line and the absolute difference between the active and the total group is marked with a red 

line. 

The line of the active group is further away from the others with the use of the optimal 

threshold limit, but we can safely say (based on Figure 7A) that descriptor sets 21-25 have 

no discriminative power between the active and the other groups, which is not advantageous 

for their use in QSAR models. In the descriptor selection phase, those descriptor sets can be 

more important, which are capable to find the active molecules that are more similar to each 

other than the whole dataset. Based on Figure 7B, descriptor sets 3 and 4 have remarkably 

good SRD values in all the three cases (active, inactive and |active-total|). These descriptor 

sets are the topological indices (3) and the walk and path counts (4), which together contain 

118 descriptors. Moreover, all the mean SRD values of the descriptor sets tend to be closer 

to zero compared to the variant 1 results, which is a favorable feature in the case of variant 

2. 

3.3 Variant 3 

In the case of variant 3, the calculation is much simpler and less robust than the other two 

variants. This resulted in different plots compared to the others, such as in the case of the 

optimal threshold limit determination. Figure 8 shows that mean normalization is not able to 

select any threshold limit, but in the case of rank normalization the group similarities are 
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separated better, but only in the beginning of the plot. The “typical” curve shape that we had 

in the other two cases, is now missing. In the case of mean, a linearly or slightly convex 

decreasing curve can be seen, while in the case of rank transformation the curve plateaus off 

at the end. Therefore, we have decided to use the “min” threshold limit, which is the 

minimum coincidence threshold possible, calculated as nmod2. In this case, based on the 

rank transformed data, the three group similarities can be separated better. The SRD analyses 

were carried out with the “min” coincidence threshold data. 

 

Figure 8. The factorial ANOVA for the four different scenarios of the similarity calculations 

in the case of variant 3. First row: non-weighted version; second row: weighted version; first 

column: mean normalization; second column: rank normalization. Active molecules: blue 

line; Inactive molecules: red line; total dataset: green line. Similarity values are plotted 

against the different coincidence threshold limits. 
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The continuous n-ary similarity measures were also compared. The Supplementary 

information contains the factorial ANOVA for the four cases together as Figure S5. Here we 

show the result of the factorial ANOVA based on the scaled SRD values in Figure 9. It is 

still true, that the original similarity values cannot be used for the selection of the most 

optimal similarity measure. SRD analysis with the selected coincidence threshold limit 

(“min”) data could extend the results and provide a more consistent picture about the 

comparison of the indices. Figure 9 clearly shows that cCT1 can be selected as the most 

optimal continuous similarity measure. On the other hand, all the cCTi measures are 

somewhat better than the others, especially in returning higher similarities for the active set. 

 

Figure 9. The result of factorial ANOVA based on the SRD values [%] in the case of variant 

3. The continuous similarity measures are plotted in the X axis (for their formulae, see Table 

1). The similarity of the active group is marked with a blue line, the similarity of the inactive 

group is marked with a green line and the absolute difference between the active and the total 

group is marked with a red line. 
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The molecular descriptor sets were compared with the same workflow as in the case of 

variant 1 and 2. The results of the factorial ANOVA based on the original similarity values 

with the four different pretreatment scenarios are shown in the Supplementary information 

as Figure S6. Finally, the results of the factorial ANOVA based on the scaled SRD values 

are shown in Figure 10. In Figure S6, the similarity values calculated with this variant have 

no discriminative power. Even the SRD analysis could not select the best sets properly, 

because it was not sensitive enough. However, the inactive molecules can be ranked worse 

for almost all descriptor sets, with two definite but diverse exceptions (No. 12 and 29) As the 

variant 3 is a simpler and less robust version of the calculation, it could not provide a definite 

selection for the task.   

 

Figure 10. Factorial ANOVA of SRD values [%] in the case of variant 3. The different 

descriptor sets are plotted in the X axis. The similarity of the active group is marked with 

blue line, the similarity of the inactive group is marked with green line and the absolute 

difference between the active and the total group is marked with red line.  
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Conclusion 

We have generalized our recently introduced n-ary similarity indices such that they can be 

now applied to vectors with continuous components. This greatly expands the domain of 

applicability of the extended similarity framework, which can now be applied to the selection 

of molecular descriptors for QSAR/QSPR modeling. We proposed three ways to calculate 

the extended (or n-ary) continuous similarity indices, depending on the way of defining the 

similarity between the different elements to be compared. We also considered how different 

factors impact the characteristics of these indices, including the way of normalizing the data, 

and the inclusion or omission of weight factors in the denominators of the similarity indices. 

A case study of a publicly available dataset of CYP 2C9 inhibitors (actives) and inactives 

was used for comparing the various possible similarity metrics and coincidence thresholds 

(cutoff values to determine whether a certain variable/descriptor contributes to the similarity 

or dissimilarity of the given dataset). 

The first variant for the calculation of extended continuous similarities is based on how 

different the elements of an array (in this case, a column vector) are from their average. This 

is an intuitive measure that can be easily related to the original n-ary formalism for binary 

fingerprints, but it has some important disadvantages. For instance, indices without low-

content similarity counters in the denominator could be ill-defined for relatively small values 

of the coincidence threshold. Overall, for the descriptor selection case study, cCT1 showed 

the best ranks in the active and inactive cases and still good SRD values for the |active-total| 

case, so we can recommend this measure as the best one.  

The second variant attempts to remedy the issues of Variant 1 by converting the low-content 

similarities to high-content similarities, but it also quantifies similarity by measuring how 

distant are the different components to the corresponding column average. Here, the cCT1, 

cCT3 and cCT4 indices have the smallest SRD values consistently in all the three cases 

(active, inactive, |active-total|). Descriptor sets 21-25 have no discriminative power between 

the active and the other groups. On the other hand, descriptor sets 3 (topological indices) 

and 4 (walk path counts) have remarkably good SRD values in all the three cases (together, 

these sets contain 118 descriptors). 
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Finally, the third variant takes a different approach to measuring the similarity between the 

elements of a set, by directly assessing how related are the components in each column of 

the normalized matrix (just like it is done to calculate the counters in the binary case). Now, 

cCT1 can once again be selected as the most optimal continuous similarity measure. More 

generally, all the cCTi measures (i=1, …4) are somewhat better than the others, especially in 

returning higher similarities for the active set. However, this variant places almost all 

descriptor sets in the same position, so it is not as clear to give a precise indication of the best 

conditions for this option. 

Overall, this work bridges the missing gap in the applicability of extended similarity indices, 

which can now handle more general types of input. While we have shown here different ways 

in which one can handle continuous inputs, Variant 2 seems to be the more robust of these 

options, mainly because the original similarity indices used in cheminformatics tend to favor 

high-content-similarities (1-similarity in the binary case). This means that using this variant 

we will have access to a more diverse toolkit of extended similarity measures. We have 

shown that the extended similarity metrics with the use of ANOVA and SRD methods can 

be successfully applied for the selection of continuous molecular descriptor sets, but this 

formalism opens the way for other applications, including the analysis of three-dimensional 

structures and conformations of biological ensembles, since we could directly represent them 

via their coordinates in real space. We are currently exploring this line of research, by 

studying the different conformations obtained via Molecular Dynamics simulations. These 

results will be presented elsewhere in due course. 
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