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Abstract
We have identified novel HIV-1 capsid inhibitors targeting the PF74 binding site. Acting as the building block of the HIV-1 
capsid core, the HIV-1 capsid protein plays an important role in the viral life cycle and is an attractive target for antiviral 
development. A structure-based virtual screening workflow for hit identification was employed, which includes docking 1.6 
million commercially-available drug-like compounds from the ZINC database to the capsid dimer, followed by applying two 
absolute binding free energy (ABFE) filters on the 500 top-ranked molecules from docking. The first employs the Binding 
Energy Distribution Analysis Method (BEDAM) in implicit solvent. The top-ranked compounds are then refined using the 
Double Decoupling method in explicit solvent. Both docking and BEDAM refinement were carried out on the IBM World 
Community Grid as part of the FightAIDS@Home project. Using this virtual screening workflow, we identified 24 molecules 
with calculated binding free energies between − 6 and − 12 kcal/mol. We performed thermal shift assays on these molecules 
to examine their potential effects on the stability of HIV-1 capsid hexamer and found that two compounds, ZINC520357473 
and ZINC4119064 increased the melting point of the latter by 14.8 °C and 33 °C, respectively. These results support the 
conclusion that the two ZINC compounds are primary hits targeting the capsid dimer interface. Our simulations also suggest 
that the two hit molecules may bind at the capsid dimer interface by occupying a new sub-pocket that has not been exploited 
by existing CA inhibitors. The possible causes for why other top-scored compounds suggested by ABFE filters failed to 
show measurable activity are discussed.

Keywords  Virtual screening · HIV-1 capsid inhibitors · Structure-based virtual screening · Docking · Binding free energy 
calculation · Thermal shift

Introduction

HIV-1 capsid protein (CA) plays an essential role in the 
HIV-1 life cycle [1]. In addition to acting as the building 
block of the HIV-1 capsid core, CA also interacts with sev-
eral host factors, including CPSF6 and NUP153 to regulate 
important molecular events such as uncoating and nuclear 
transport [2, 3]. As a result, CA has been recognized as an 
attractive drug target for antiviral development. Among 
the several small molecule binding sites on CA, medicinal 
chemistry efforts have largely focused on targeting the PF74 
binding site. X-ray structures reveal that PF74 binds to a 
pocket located at the inter-helix space between the H3 and 
H4 helices of one CA subunit (CA-NTD) and the H8 helix 
of an adjacent CA subunit (CA-CTD) (Fig. 1) [1, 2]. PF74 is 
a phenylalanine derived peptidomimetic identified by Pfizer 
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from a high throughput screen and displays antiviral activity 
at sub-micromolar potency (EC50 = 8–640 nM) [4].

Further progression of this chemical series was halted 
given its poor metabolic stability profile. The most advanced 
HIV capsid targeting small molecule inhibitor is GS-6207 
(Lenacapavir), an investigational compound in Phase III 
clinical trials. Despite the recent progress in the discov-
ery of potent and novel capsid inhibitors, the emergence 
of Lenacapavir resistant mutations (e.g., M66I and N74D/
Q67H towards GS-6207) emphasizes the need for develop-
ing newer antivirals that overcome resistance to existing 
antivirals.

In this work, we apply a virtual screening workflow 
(see Fig. 2, left) that consists of docking, which is run as 

part of the FightAIDS@Home project on the IBM World 
Community Grid, and absolute binding free energy calcula-
tions (ABFE) to identify small molecule HIV-1 inhibitors 
targeting the PF74 site of CA. Computational methods are 
increasingly being used in various stages of the drug dis-
covery process. For example, in virtual screening of large 
compound libraries, docking, and pharmacophore mapping 
are widely used in hit identification [5, 6]; in the meantime, 
the more rigorous free energy perturbation (FEP) method is 
playing an increasingly important role in hit-to-lead and lead 
optimization because of its ability to accurately estimate the 
relative binding free energy between closely related ligands 
[7–9].

While docking is a powerful tool for predicting bind-
ing modes and for rapidly filtering out molecules that are 
unlikely to bind, its accuracy is hampered by the approxi-
mate treatment of desolvation, receptor reorganization, 
and entropic effects. Furthermore, the hit rates from dock-
ing are highly dependent on the nature of the drug target 
and the chemical space of the virtual library it is screened 
against, as demonstrated by the spread of the hit rates (0.2 
to 100%) reported in Shoichet’s review [10]. As some drug 
targets are notoriously undruggable (e.g., shallow solvated 
sites), the hit rates would be poor. Conversely, established 
drug targets like kinases and proteases tend to yield bet-
ter hit rates. A target-focused library like a "kinase-targeted 
library" would yield more hits as the compounds contained 
in the library have been designed to interact with the target 
protein. In addition, structural knowledge of the target pro-
tein complexed with small molecules/endogenous substrates 

Fig. 1   A Crystal structure of PF74 (purple) bound at the dimeric 
interface of a CA hexamer (PDB ID: 4XFZ [1]). B The PF74 binding 
site is located between the inter-helices space formed between helices 
H3 and H4 of CA1 subunit (blue) and H8 of CA2 subunit (orange)

Fig. 2   A Screening cascade used for the discovery of small molecules targeting the PF74 site of HIV-1 capsid protein. B Illustration of the ther-
modynamic cycle scheme used by DDM for ABFE calculation
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could help improve hit rates, as this information could be 
leveraged for guided docking approaches (docking based on 
pharmacophoric/interaction constraints).

To improve the treatment of desolvation, receptor reor-
ganization, and entropic effects in docking, the popular 
MM-GBSA method is widely used to improve the ranking 
of the docked complexes [11, 12].. To further capture all 
these physical effects including the receptor reorganization 
and entropic effects, absolute binding free energy methods 
(ABFE) such as the double decoupling method (DDM, see 
Fig. 2 right panel) [13, 14] and BEDAM [15], which are 
based on molecular dynamics simulations, can be used fol-
lowing docking to improve the accuracy of virtual screen-
ing. We note that the scoring functions used in MM-GBSA 
and BEDAM are closely related. BEDAM implements more 
accurate estimators for the GB and non-polar solvation terms 
[16–18].

In recent years advances in the methodology and energy 
functions and the increased computing power have enabled 
the use of ABFE calculations for the study of biomolecu-
lar recognition [19–27]. While ABFE has yet to be widely 
applied to screen libraries containing millions of compounds 
due to the high computational cost relative to docking, we 
and others have demonstrated a few years ago that such 
methods can be successfully employed as an additional fil-
ter on hundreds of top docked compounds to obtain sig-
nificantly improved enrichment in virtual screening appli-
cations [28]. In our previous virtual screening studies for 
the SAMPL4 [26] and D3R Grand Challenge [22], we have 
used an implicit solvent-based ABFE method BEDAM [15]. 
To our knowledge, those two studies are among the first 
large-scale applications of ABFE in a virtual screening cam-
paign. In recent years automated high-throughput explicit 
solvent ABFE protocols are being rapidly developed for 
docking refinement in virtual screening on GPU and cloud 
computing platforms [29–31]. We also note that similar vir-
tual screening workflows have been successfully applied in 
recent drug discovery studies against SARS-CoV-2 [32, 33], 
and Hepatitis B Virus (HBV) capsid [34]. Acharya et al. [32] 
have combined enhanced sampling molecular simulation and 
ensemble docking to predict a set of compounds binding to 
SARS-CoV-2 targets for experimental validation. Li et al. [9] 
recently reported the discovery of 16 inhibitors targeting the 
SARS-CoV-2 main protease (Mpro), using a computational 
virtual screening approach that includes molecular docking 
studies followed by accelerated free energy perturbation-
based absolute binding free energy (FEP-ABFE) simula-
tions. Senaweera et al. [34] identified novel HBV capsid 
assembly modulators hits by employing a structure-based 
virtual screening against a small molecule protein–protein 
interaction (PPI) library and pharmacophore-guided com-
pound design, which are subsequently validated by synthesis 
and biological evaluation.

In the present study, we apply two ABFE filters (implicit 
solvent BEDAM, explicit solvent DDM) to improve the 
discriminative power of the virtual screening pipeline. As 
described below, out of the 24 compounds suggested by this 
virtual screening pipeline to be the most promising com-
pounds, we identified two primary hit molecules using ther-
mal shift assays. Our simulation results suggest that these 
two hit molecules may interact with CA by occupying a new 
sub-pocket. We also analyze the reason why many top com-
pounds suggested by ABFE filters failed to show measur-
able activity in assays. Among these, the poor solubility of 
several compounds and overestimation of the nitro group’s 
hydrogen bonding propensity by the current force field are 
identified as the most likely causes that have reduced the 
enrichment in virtual screening.

Results and discussion

Docking and implicit solvent‑based ABFE 
refinement using BEDAM

To identify novel hits targeting HIV-1 Capsid (CA), about 
1.6 million drug-like commercially-available compounds 
from the ZINC library were screened using AutoDock Vina 
[35, 36]. The top 500 compounds from docking, includ-
ing four top poses for each compound, were refined using 
the implicit solvent binding free energy method BEDAM 
(Binding Energy Distribution Analysis Method) [15, 37]. 
This corresponds to a total of 2000 absolute binding free 
energy simulations. Used with docking, the main strength 
of BEDAM, as demonstrated in previous studies [21, 22, 
24, 26, 38] is its ability in distinguishing binders from non-
binders to improve enrichment.

Before running BEDAM on the docked complexes, the 
method was validated with both negative and positive con-
trols for screening against CA targets. As a negative control, 
we have run BEDAM to compute the absolute binding free 
energy for a set of compounds that are known to be non-
binders according to previous experimental assays (unpub-
lished). As shown in Fig. 3 the BEDAM-calculated binding 
free energies, which are all unfavorable, are consistent with 
the fact that these compounds do not bind CA in the thermal 
shift assays. We have also validated BEDAM using known 
binders PF74 and GS-6207 and obtained favorable absolute 
binding free energies i.e., − 1.9, − 7.8 kcal/mol respectively. 
While the predicted ABFE values are too weak, the free 
energy difference between these two binders binding to CA 
correlates well with the ratio of experimentally determined 
EC50 values [39, 40]. These negative and positive control 
results help validate BEDAM for use as a screening tool 
targeting CA and establish the cutoff absolute binding free 
energy ∆ G0

bind
 from BEDAM as 0 kcal/mol.
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While in a typical docking simulation, the receptor is kept 
fixed, AutoDock provides an option to allow limited receptor 
flexibility. Using BEDAM to refine two sets of docked struc-
tures from top-ranked flexible and rigid receptor docking, 
we find that the docked structures from the flexible dock-
ing yield consistently more favorable BEDAM ∆ G0

bind
 : see 

Fig. 4. Allowing receptor flexibility in docking leads to the 
sampling of more low energy structures as the ligands and 
the receptor atoms can adapt to each other to achieve more 
optimal interactions.

The results from the BEDAM rescoring show that only 
a small number of top docked ligands, i.e., ~ 50 out of 500, 
showed negative (favorable) binding free energies for bind-
ing to the PF74 site of CA (Fig. 5). Thus, including the 
physics-based BEDAM ABFE filter substantially reduces 

the number of ligands whose binding is further examined 
with more accurate explicit solvent ABFE simulations.

Explicit solvent‑based ABFE simulations using DDM

Before carrying out absolute binding free energy simula-
tions with explicit solvent (DDM) to refine the 50 top-ranked 
ligands from BEDAM, we first used DDM (Fig. 2, right) to 
estimate the binding affinities for three known binders to the 
PF74 site of CA: PF74 [2], GS-6207 [40, 41], and ZW-1261 
[42]. Figure 6 shows that the DDM calculated absolute bind-
ing free energies agree reasonably well with the experimen-
tal measurements (KD and/or EC50), with error bars less than 
1.5 kcal/mol. These results suggest that DDM can be used to 
provide reasonable estimates of absolute binding free ener-
gies of ligands targeting the PF74 binding site of CA.

The absolute binding free energies for the 50 top com-
pounds from BEDAM are calculated using DDM ( Fig. 7). 
Using ∆ G0

bind
 of − 6.0 kcal/mol (which translates into KD 

of 40 μM) as the threshold for binders, 11 compounds with 
∆ G0

bind
 more favorable than -6.0 kcal/mol are identified as 

the most promising compounds to be tested experimentally 
for activity. In addition, these 11 ligands are used as the seed 
compounds to identify additional congeneric molecules in 
the ZINC library based on chemical similarity. Using the 
FEP program (FEP+ [7]) from Schrodinger Inc., ~ 40 of the 
relative binding free energies of the congeneric compounds 
with respect to the seed molecules are calculated. The con-
generic compounds with more favorable binding free ener-
gies than the original seed compounds are retained. This pro-
cedure led to a total of 24 compounds that were purchased 
and experimentally tested (Table S1).

Fig. 3   The BEDAM-calculated absolute binding free energy ∆ G0

bind
 

for the set of 25 compounds that are known to be non-binders by ther-
mal shift assays

Fig. 4   The BEDAM ∆ G0

bind
 of all 500 ligands with 2000 poses, half 

are from flexible AutoDock (black), half are from rigid AutoDock 
(red)

Fig. 5   The compounds with negative BEDAM ∆ G0

bind
 and favorable 

AutoDock scores
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Protein thermal shift measurements

Biophysical screening consisting of fluorescence-based 
thermal shift assays (TSA) was carried out on the 24 top-
ranked compounds suggested by the virtual screening 
pipeline. The TSA provides an estimate for the effects of 
compound binding on the thermal stability of covalently 
crosslinked CA hexamers, by measuring the melting tem-
perature shift, ΔTm, of the crosslinked CA hexamer in the 
presence and absence of a small molecule. Table S1 (Sup-
porting Information) shows the measured ΔTm at the small 

molecule concentration of 40 μM for the 24 suggested ZINC 
compounds and PF74. Among the ZINC compounds, two 
show ΔTm greater than 1 °C, i.e., ZINC520357473 and 
ZINC4119064 exhibiting ΔTm of 14.8 °C and 33 °C, respec-
tively. These values are comparable to the ΔTm of ~ 9 °C 
and ~ 11 °C caused by the addition of the known CA bind-
ers PF74 (shown in Table S1) and GS-6207 [41]. Interest-
ingly, these two molecules shared similar binding modes 
which are largely preserved throughout the docking and MD 
free energy simulation stages (Fig. S1 and Table S2). These 
results show that the two molecules ZINC520357473 and 
ZINC4119064 are primary hits targeting HIV-1 CA.

Computational modeling suggests novel protein–
ligand interaction motifs involving the hit 
molecules

We examine the protein–ligand interactions based on the 
representative molecular dynamics (MD)-simulated struc-
tures of the two hits ZINC520357473 and ZINC4119064 
in complexes with CA by superimposing the MD struc-
tures containing these molecules onto that containing the 
known inhibitor PF74 (Fig. 8B, C). As seen from Fig. 8A 
ZINC520357473 and ZINC4119064 have different chemi-
cal functionality and possibly improved metabolic stabil-
ity compared with PF74, which suffers from low meta-
bolic stability [43]. Based on the MD simulated structures 
shown in Fig. 8, while these two hit molecules and PF74 all 
appear to interact with the sub-pocket 1 (residues Asn53, 
Lys70, and Tyr130), the more extended ZINC520357473 
and ZINC4119064 also potentially occupy a new nonpolar 
sub-pocket 2 (residues Pro34, Ile37, Pro38, Arg173, and 
Ala174). We note that although the two ZINC molecules 
potentially occupy both sub-pocket 1 and sub-pocket 2, their 
absolute binding free energies are weaker compared with 
PF74 (Table 1). The weaker binding affinities for the two 
ZINC molecules could be attributable to two factors: (1) 
As seen from Fig. 8., the interactions between the ZINC 
molecules and the sub-pocket 1 are less optimal compared 
with those in the PF74-CA complex; (2) for the two hit mol-
ecules to occupy the new sub-pocket 2, the protein intramo-
lecular hydrogen bonds Arg173-Asn57 and Arg173-Val59 
that are present in the CA-PF74 structure need to be broken 
to accommodate the more extended ZINC compounds; this 
can be seen from the RMSD of sidechains of the pocket 2 
residues in the ZINC4119064-CA complex (using apo CA 
as the reference), which is larger than that in the PF74-CA 
complex (Table S3).

However, despite exhibiting weaker interactions com-
pared with PF74, the new potential protein–ligand interac-
tion motifs featured by the two ZINC molecules suggest pos-
sible ways to design new and more potent inhibitors (Fig. 8). 

Fig. 6   Comparison of ∆ G0

bind
 predicted by DDM (black) with experi-

mental values for RTln(EC
50
∕C0)(red) and RTln(K

D
∕C0) (blue) for 

known binders for the PF74 site of CA. ( C0 = 1 M)

Fig. 7   The distribution of DDM ∆ G0

bind
 for the top 50 compounds 

with the most favorable BEDAM ∆ G0

bind



198	 Journal of Computer-Aided Molecular Design (2022) 36:193–203

1 3

For example, ZINC520357473 and ZINC4119064 could be 
modified to optimize their interactions with the sub-pocket 
1 residues. It is also possible to “hybridize” the PF74 with 
ZINC4119064 to occupy the sub-pocket 2 without sacrific-
ing the intermolecular hydrogen bonds involving the Arg173 
side chain. Thus, the new chemotypes and possible novel 
interaction motifs found in these two hit molecules could 
present opportunities for new lead design towards com-
pounds with better potency and metabolic stability.

Analysis of false positives in DDM

We now examine why many compounds predicted by DDM 
to bind CA with low nanomolar affinity fail to show measur-
able activities in assays. One possible reason for the lack of 
measurable thermal shift signals could be due to the poor 
compound solubility in solution, which leads to low concen-
trations of soluble compounds in solutions to bind CA. In 

fact, from visual inspection we found that eight compounds 
show poor solubility in either DMSO or aqueous buffer 
solutions (highlighted in Table S1). As seen from Table S1, 
half of the ZINC molecules screened showed logP values 
greater than 6. Furthermore, Table S4 shows that while 
the average logP in the ZINC database is ~ 3.1 the average 
logP values of the top ~ 500 docking and top ~ 50 BEDAM 
ranked compounds are shifted up to 5.3 and 5.7, respec-
tively. These values are also higher than the average logP 
of ~ 4.5 for the known inhibitor PF74, and the two primary 
hits ZINC520357473 and ZINC4119064 (logP 3.5 and 4.5 
respectively). This may suggest that the scoring functions 
overly reward the burial of nonpolar surface area. More bal-
anced treatments of desolvation contribution in the scoring 
function could lead to improvement in the accuracy of vir-
tual screening [44].

Another possible reason for the false positives from the 
DDM could be the overestimation of the hydrogen bonding 
propensity of the nitro group in several top-ranked com-
pounds (Table S1). For example, in the MD structures, 
ZINC58660738 which carries a nitro group predicted to 
form pi–cation interactions with Lys70 of CA, is predicted to 
bind CA with nanomolar affinity by DDM (Fig. 9). However, 
experimental studies suggest that the nitro group is a weak 
hydrogen bond acceptor [45]. In such molecules, the force 
field may likely overestimate the intermolecular hydrogen 
bond involving the nitro group, which leads to false positive 
predictions by the DDM calculations.

Fig. 8   A Chemical structures of two hit molecules (ZINC520357473 
and ZINC4119064) and PF-74. B A representative MD structure of 
the CA-ZINC4119064 (green) complex superimposed onto the crys-
tal structure of CA-PF74 (purple) (PDB: 4XFZ), C A representative 
MD structure of the CA-ZINC520357473 (gray) complex superim-

posed onto the crystal structure of CA-PF74 (purple) (PDB: 4XFZ). 
One CA monomer is shown as blue cartoon, while the neighboring 
CA monomer is shown as orange cartoon. Pocket-1 is shown in blue 
circle and pocket-2 is shown in red circle

Table 1   The calculated ∆ G0

bind
 for the two hits identified in this work, 

compared with the known CA inhibitor PF74

Compound Calculated 
∆ G0

bind
 (kcal/

mol)

ZINC520357473  − 8.9
ZINC4119064  − 6.9

PF74  − 13.8
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Conclusion

In this work, a computational workflow was applied to 
identify hits targeting the PF74 binding site of HIV-1 cap-
sid. The virtual screening workflow includes docking ~ 1.6 
million drug-like molecules from the ZINC database, fol-
lowed by absolute binding free energy simulations in both 
implicit (BEDAM) and explicit solvent (DDM). The com-
putational screening identified 11 compounds with bind-
ing affinities between − 6 and − 11.7 kcal/mol. Additional 
small modifications were made based on chemical similar-
ity to identify another 13 compounds with binding affini-
ties estimated by FEP to be between − 6 and − 12.3 kcal/
mol. Among the 24 compounds predicted to be most 
promising, two have shown strong signals in thermal shift 
assays that demonstrate their ability of stabilizing the 
HIV-1 capsid hexamer. The workflow used in this study 
is similar in spirit to an industrial drug discovery setting, 
where a virtual screening campaign is run against a vendor 
or "make-on-demand" library to shortlist around 250–350 
compounds for sourcing/purchase.

Lastly, our modeling suggests that the two hit molecules 
may interact with HIV-1 CA by occupying a new sub-pocket 
that has not been exploited by existing CA inhibitors. While 
the comparison of this possible novel interaction motif 
obtained from modeling with those exhibited by the known 

inhibitor PF74 provides insights for the design of improved 
CA-targeting HIV-1 inhibitors, the new interaction motif 
revealed by the MD simulations needs to be structurally 
validated by X-ray crystallography.

Materials and methods

The binding free energy calculations have been performed 
on a set of ligands that dock favorably to the PF74 bind-
ing site of HIV CA. The structures of the protein–ligand 
complexes from AutoDock Vina [35, 36] were used as the 
starting point for the free energy calculation. Two kinds of 
free energy methods, the binding energy distribution analy-
sis method (BEDAM) [15], the double decoupling method 
(DDM) [19, 46], and free energy perturbation (FEP) [7, 
47] were employed. While DDM [13, 14, 48] is the stand-
ard method for computing absolute binding free energy in 
explicit solvent, FEP [7] is the standard method for com-
puting relative binding free energy in explicit solvent, the 
recently developed BEDAM [15] method employs Ham-
iltonian replica exchange in an implicit solvent model to 
accelerate the sampling of the phase space.

AutoDock Vina and BEDAM were run on the IBM World 
Community Grid (WCG), a volunteer-supported comput-
ing platform devoted to running projects that will benefit 

Fig. 9   The predicted interaction diagram between ZINC58660738 
and CA based on the molecular model of the CA-ZINC58660738 
complex, which features an intermolecular H-bond involving a nitro 

group. According to DDM calculations, this molecule which show no 
measureable activity in experimental assays, is predicted to bind with 
nanomolar affinity
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human health. As one of the 31 research projects supported 
by WCG, the FightAIDS@Home project (FAAH; http://​fight​
aidsa​thome.​scrip​ps.​edu/, https://​fight​aidsa​thome2.​cst.​tem-
ple.​edu/) utilizes the WCG distributed computing network 
to conduct virtual screens for discovering new inhibitors 
against HIV capsid using AutoDock Vina (FAAH phase I) 
and BEDAM (FAAH phase II). DDM and FEP were carried 
out on high performance computing (HPC) resources from 
XSEDE and local computing resources CB2RR at Temple 
University.

Docking

The docking computational experiments were performed 
using the docking software AutoDock Vina [35, 36]. During 
docking, a total of 10 different CA structures were selected 
from the crystal structure of PF74 in complex with the 
native CA hexamer (PDB 4XFZ) [1] and structures from two 
models of the whole CA core (PDB 3J3Q and 3J3Y) [49]. 
Among these 10 structures, 6 represent the conformations 
found in CA hexamers and 4 in CA pentamers. Each of these 
target conformations was used in the docking computation 
either as a full rigid structure or with a specific combination 
of flexible side chains that are involved in the PF74’s binding 
pocket. The flexible parts of the target were included in the 
docked poses of the ligands in the structure files. The ZINC 
sub-database libraries that have been screened in this work 
include Maybridge, Chembridge, FDA approved drugs, and 
human metabolite database. A total of 1,677,767 commer-
cially available compounds from these libraries were docked 
against the target structures.

A set of 500 top-ranked ligand-CA complexes were 
obtained from the docking screening, of which 250 bind-
ing to rigid CA receptors, and 250 to flexible CA receptors. 
For each ligand, the top 4 predicted poses from AutoDock 
Vina [35, 36] were retained for further processing by ABFE 
screening.

BEDAM

In the BEDAM (Binding Energy Distribution Analy-
sis Method) approach [15], the protein–ligand system is 
described by the OPLS2005 force field [50, 51] and an 
implicit solvation model AGBNP2 [17, 52]. The stand-
ard binding free energy ΔG0

b
 is computed using a hybrid 

effective potential connecting the unbound state (λ = 0) 
and the bound state (λ  = 1), without going through the gas 
phase ligand state as in the case of explicit solvent dou-
ble decoupling method. The methodology of BEDAM has 
been described in previous papers [15, 17]. The setup of the 
BEDAM simulations has been described previously [53]. 
The software implemented on the WCG to run BEDAM is 
the academic version of IMPACT [54].

DDM

For the explicit solvent double decoupling calculations 
(DDM) [13, 14, 19, 27, 55–58] of absolute binding free 
energy performed in this study, the protein receptor is mod-
eled with the Amber ff14sb-ILDN force field [59], and the 
ligands are described by the Amber GAFF2 parameters 
set [60] and the AM1-BCC charge model [61]. The start-
ing structure of GS-6207 in complex with a CA dimer is 
extracted from the crystal structure coordinates of the com-
plex of GS-6207 with a cross-linked CA hexamer (PDB 
6V2F) [40]; the starting structure of PF74 in complex with 
a CA dimer is extracted from the crystal structure coordi-
nates of the complex of PF74 with native CA hexamer (PDB 
4XFZ) [1], and the starting structure of ZW-1261 in com-
plex with a CA dimer is extracted from the crystal structure 
coordinates of the complex of ZW-1261 with native CA 
hexamer (PDB 7M9F) [42].

A DDM calculation involves two legs of simulation, in 
which a restrained ligand is gradually decoupled from the 
receptor binding pocket or from the aqueous solution. In 
each leg of the decoupling simulations, the Coulomb inter-
action is turned off first using 11 λ-windows, and the Len-
nard–Jones interactions are then turned off in 17 λ-windows. 
(Coulomb decoupling: λ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 1.0; Lennard–Jones decoupling: λ  = 0.0, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 
0.94, 0.985, 1.0). The DDM simulations were performed 
using the GROMACS-2018 package for 10 ns in each of the 
alchemical λ windows.

FEP+ 

FEP + program [7] of Schrödinger Suite 2020–1 was used 
to calculate the relative binding free energies of ligands 
binding to Capsid dimer. The complexes were prepared 
with Protein Preparation Wizard and the simulations were 
performed by FEP + Panel. For every pair of ligands, the 
FEP + GUI in Maestro Suite is applied to build the perturba-
tion map. OPLS3e force field was used for modeling proteins 
and ligands. Torsion parameters were checked for all ligand 
fragments using Force Field Builder. A 10 Å cubic box filled 
with ~ 31,300 SPC water was used for complex and solvent 
perturbation leg. The number of alchemical λ windows per-
turbations are set to 12 by default and intermediate windows 
spanned wild-type and mutant states. For each λ window, the 
production run was 15 ns in the NPT ensemble. The Bennett 
acceptance ratio method (BAR) was used to calculate the 
free energies between two λ windows.

http://fightaidsathome.scripps.edu/
http://fightaidsathome.scripps.edu/
https://fightaidsathome2.cst.temple.edu/
https://fightaidsathome2.cst.temple.edu/
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Experimental thermal shift assays (TSAs)

TSAs used purified covalently crosslinked hexameric 
CAA14C/E45C/W184A/M185A (CA121). CA121 cloned in a 
pET11a expression plasmid was kindly provided by Dr. 
Owen Pornillos (University of Virginia, Charlottesville, 
VA, USA). CA121 was expressed in E. coli BL21(DE3)
RIL cells and purified according to reported protocols 
[62]. The TSAs were conducted as previously described 
[63–65], with each reaction containing 7.5 µM crosslinked 
CA hexamer in 50 mM sodium phosphate buffer (pH 8.0), 
1 × Sypro Orange Protein Gel Stain (Life Technologies, 
Carlsbad, CA, USA), and either 1% DMSO (control) or 
40 µM compound (1% DMSO final). The plate was heated 
from 25 to 95  °C with a heating rate of 0.2  °C every 
10 s in the QuantStudio 3 realtime PCR system (Thermo 
Fisher Scientific). The fluorescence intensity was meas-
ured with an Ex range of 475–500 nm and Em range of 
520–590 nm. The difference in the melting temperature 
(ΔTm) of crosslinked CA hexamer in the presence of com-
pound (Tm) versus DMSO control (T0) was calculated for 
each compound tested using the following Eq. (1):

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10822-​022-​00446-5.
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