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Abstract 
Protein-ligand docking is of great importance to drug design, since it can predict the binding affinity between ligand and protein, and 

guide the synthesis direction of the lead compounds. Over the past few decades, various docking programs have been developed, some 
of them employing novel optimization algorithms. However, most of those methods cannot simultaneously achieve both good efficiency 
and accuracy. Therefore, it is worthwhile to pour the efforts into the development of a docking program with fast speed and high quality
of the solutions obtained. 

The research presented in this paper, based on the docking scheme of Vina, developed a novel docking program called RDPSOVina. 
The RDPSOVina employed a novel search algorithm but the same scoring function of Vina. It utilizes the random drift particle swarm 
optimization (RDPSO) algorithm as the global search algorithm, implements the local search with small probability, and applies Markov 
chain mutation to the particles’ personal best positions in order to harvest more potential-candidates. To prove the outstanding docking 
performance in RDPSOVina, we performed the re-docking and cross-docking experiments on two PDBbind datasets and the Sutherland-
crossdock-set, respectively. The RDPSOVina exhibited superior protein-ligand docking accuracy and better cross-docking prediction 
with higher operation efficiency than most of the compared methods. The developed RDPSOVina is available at https://github.com/li-
jin-xing/RDPSOVina. 
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Introduction 

The protein-ligand docking plays a crucial role in the structure-
based drug molecule design [1]. Depending on the docking 
results, the designed ligand compounds can be rationally 
predicted whether to exert their pharmacological effects in the 
biological body or not. Therefore, by means of the docking 
programs, researchers can screen libraries of compounds to find 
a potential drug candidate (lead compound). However, a 
discovery of a new lead compound generally requires the 
screening of thousands of compounds, which is very time-
consuming. Moreover, if the docking simulations are 
significantly different from the real binding situations, valuable 
candidates might be neglected. Hence, it is indispensable for drug 
development to develop a docking program that is both accurate 
and efficient. 

Based on the given three-dimensional structure of the ligand 
and protein in the specified box space, protein-ligand docking can 
predict the binding-conformation and scoring-energy of 
compound ligands to the appropriate protein-target binding site. 
In this process, the search algorithm tunes the parameter 

combination of position, orientation and torsion angle in order to 
search for the most suitable ligand conformation binding to the 
protein. The scoring function serves as objective search function 
whose value is used to evaluate the strength of intermolecular 
interaction between a protein and a ligand [2]. During the past 
few decades, various docking software packages have been 
developed using novel scoring functions or search algorithms, 
such as Autodock4 [3], AutoDock Vina (Vina) [4], 
PSO@AutoDock [5], SODock [6] and FIPSDock [7]. Among 
these docking methods, Vina has outstanding docking 
performance, which organically combined the global Markov 
Chain Monte Carlo (MCMC) method and local Broyden-
Fletcher-Goldfard-Shanno (BFGS) optimization [4].  

Generally, the search algorithm will significantly affect the 
performance of the docking tool. Furthermore, a global search 
method can considerably improve the performance of a docking 
algorithm, since the global search method quickly locates the 
potential regions of full search space, and provides promising 
solutions for the local optimizer to further seek more optimal 
solutions. In this paper, we mainly concentrate on the 
improvement for the global search method of Vina. In the Vina 



global search method, Monte Carlo method was adopted for the 
large-scale sampling of molecule conformations, and Markov 
Chain (MC) mutation updates searched solutions to generate new 
molecular conformations. 

Up to now, most development strategies for the Vina global 
search algorithm are based on the swarm-intelligence methods 
inspired by nature, such as particle swarm optimization (PSO) 
and grey wolf optimization (GWO). The PSO stems from the 
behavioral simulation of a bird flock searching for food [8]. In 
2015, Tai et al. substituted the MC update method of Vina with 
the particles’ update scheme in PSO. This improved version of 
Vina is called PSOVina [9]. And then, in 2016 and 2018 
respectively, he induced two novel strategies into PSOVina, 
namely two-stage local search [10] and a chaos-embedded 
parameterization [11], which significantly enhanced the 
performance of PSOVina. The GWO simulates the hunting 
process of grey wolves and their social hierarchy, and it can 
generate a competitive optimization performance against 
PSO [12]. In 2020, Wong et al. applied the GWO to the global 
search algorithm of Vina and presented the GWOVina [13]. As a 
result, the GWOVina has comparable docking behavior with Vina, 
but 2 to 7 times faster than it. Although these two docking 
programs have improved the docking performance of Vina, they 
still have limitations regarding the docking efficiency or accuracy. 

In this paper, for obtaining a superior docking performance 
than Vina, we utilized a novel swarm-intelligence optimization 
method, the random drift particle swarm optimization (RDPSO), 
as the global search method to adjust the molecular 
conformations. Furthermore, the MC mutation of Vina is also 
implemented in RDPSOVina to further improve the search 
performance and yield more potential-candidates. The newly 
developed program still employed the scoring function of Vina, 
called RDPSOVina. Evaluated on two datasets of re-docking and 
a cross-docking dataset, the experimental results indicate that the 
RDPSOVina exhibits an outstanding docking accuracy with 
remarkable running efficiency compared to other methods. 

 

Methods  

Particle Swarm Optimization 

Particle swarm optimization (PSO) simulates the social 
behavior of bird flocks during searching for food in an area [14]. 

In a swarm with M  particles, every particle has N  dimensions, 

a certain velocity Vi,n  (Vi,n
1 ,Vi,n

2 ,...,Vi,n
N )   and a current position 

Xi,n  (Xi,n
1 , Xi,n

2 ,..., Xi,n
N )   that represents a potential solution of 

search problem ( i   and j   subject to 1 i  M   and 1 j  N  , 

respectively). The best solution located by the ith  particle so far, 

named the personal best (pbest) position Pi,n  (Pi,n
1 ,Pi,n

2 ,...,Pi,n
N )  , 

and the best of all the pbest positions is called as the global best 

(gbest) position Gi,n  (Gi,n
1 ,Gi,n

2 ,...,Gi,n
N ) . Guided by the pbest and 

gbest positions,   particles are constantly updated the current 
positions to find better solutions, expressed as 

Vi,n1
j  �Vi,n

j  c1�r1i,n
j �(Pi,n

j  Xi,n
j )

            c2 �r2i,n
j �(Gn

j  Xi,n
j )

 (1)

Xi,n1
j  Xi,n

j Vi,n1
j (2)

where   is an inertia weight proposed by Shi and Eberhart [8]. 

r1i,n
j   and r2i,n

j   are random numbers from 0 to 1. c1   and c2   are 

acceleration factors and used to adjust the particle’s moving 

distance to Pi,n  and Gn , respectively. In the canonical PSO, there 

are some drawbacks. When Pi,n  and Gn  are very close, particles 

might be trapped in a local optimum. What’s more, if Pi,n  and 

Gn  locate the opposite directions of a particle’s current position, 

the particle may oscillate between Pi,n  and Gn , and cause hard 

convergence to the whole swarm. In order to deal with these 

problems, researchers combined Pi,n  and Gn  as a novel attractor 

pi,n and developed the update equation of particle’s velocity [15]. 

The developed PSO is illustrated as: 

pi,n
j 

c1�r1i,n
j �Pi,n

j  c2 �r2i,n
j Gn

j

c1�r1i,n
j  c2 �r2i,n

j (3) 

Vi,n1
j  �Vi,n

j  (c1  c2)�Ri,n
j �( pi,n

j  Xi,n
j ) (4) 

Xi,n1
j  Xi,n

j Vi,n1
j (5)

 

Random Drift Particle Swarm Optimization 

The random drift particle swarm optimization (RDPSO) 
assumed that the particle’s behavior is similar to an electron 
moving in a metal conductor within an external electric field [16]. 
The electrons in this condition are deemed to have random 
thermal motion influenced by entropy and drift motion driven by 
external electric field force. Thus, the update of particle velocity 
become the superposition of the thermal motions and the drift 



motions corresponding to the random velocity (VRi,n1
j ) and the 

drift velocity (VDi,n1
j ), respectively. 

Vi,n1
j VRi,n1

j VDi,n1
j  (6) 

It is assumed that random thermal velocity obeys the Maxwell 

velocity distribution law, the VRi,n1
j  can be expressed as 

VRi,n1
j  Cn

j  Xi,n
j i,n1

j  (7) 

where   0 is the thermal coefficient and Cn
j  is the component 

in the jth   dimension of the mean best (mbest) position 

Cn  (Cn
1,Cn

2,...,Cn
N )  , defined as the mean of all the pbest 

positions.  i,n1
j   is a random number that is subject to the 

standardized normal distribution. The drift movement is the 
directional movement towards an attractor 

pi,n  ( pi,n
1 , pi,n

2 ,..., pi,n
N ), described as 

VDi,n1
j   pi,n

j  Xi,n
j   (8) 

where   0   is the drift coefficient. Eventually, the update 

equation of particles is expressed as 

Vi,n1
j  Cn

j  Xi,n
j i,n1

j   pi,n
j  Xi,n

j  (9) 

It is recommended that   linearly decreases from 0.9 to 0.3 

and   is specified as 1.45 [16]. The main difference of the update 

equation between RDPSO and the developed PSO is that RDPSO 
substitutes the inertia part of PSO with the random thermal 
motivation [17]. It will make the RDPSO have better search 
performance than PSO, and the main reason is that the thermal 
motivation has greater randomness, providing more opportunity 
for particles to escape the local optima in the later stage of the 
search process. 

 

The Search Algorithm Used in RDPSOVina 

The most time-consuming component in Vina is the local 
search, namely, Broyden-Fletcher-Goldfard-Shanno (BFGS) [18], 
which iteratively calculates an approximation to the Hessian 
matrix to determine the descent direction. In order to save the 
computational time, in RDPSOVina, we adopted a strategy of 
applying the BFGS with a small probability to each particle. To 
be specific, in each iteration, each particle has 6% probability of 
using both RDPSO and BFGS to update the current positions, 

while for the remaining 94% probability, it merely utilizes the 
RDPSO to update its position. The small probability is set as 6%, 
which is built upon the same setting of the genetic algorithm in 
Autodock4. In our previous experiments, the 6% is the most 
appropriate value, and a bigger or smaller value makes a poor 
docking performance. Moreover, comparing with the two-stage 
strategy used in the PSOVina [10], this small probability strategy 
can more effectively decrease the time consumption of the local 
search. In PSOVina, a rough local search is utilized to determine 
the feasibility of solutions as the first stage, and then BFGS as the 
second stage is implemented on the potential ones. In fact, the 
rough local search is a partial execution of BFGS that decreases 
the total iteration of BFGS by 10 times. Another noteworthy 
difference of algorithmic implementations between the 
RDPSOVina and the PSOVina is that the results of the local 
search, in RDPSOVina, are updated to the current positions and 
pbest positions, while in the PSOVina, are only able to be 
substituted for the pbest positions. The utilized strategy in our 
RDPSOVina will not lead to a large fitness gap between current 
positions and pbest’s like PSOVina does, so that particles can 
search for the better solutions in suitable areas. 

During the search process of RDPSOVina, if the gbest position 
is not updated for a long time, it will be difficult for the algorithm 
to converge to a remarkable docking solution. To solve this 
problem, when the successive steps without updating gbest are 
more than 100 steps, we employ the MC mutation for updating 
the best three pbest positions as a substitute for the RPDSO 
execution. Additionally, to obtain as good a final output as 
possible, the best three pbest positions are forced to further apply 
MC mutation at the later stage of search process (over 90% of the 
total iterations). 

At the end of each algorithmic iteration [4,11,13], a specific 
searched solution is selected according to the Metropolis 
principle to put into an output container (Metropolis-sampling 
step) for further processing. In RDPSOVina, the specific 
candidate is a random pbest position chosen for further 
employing the MC mutation before the Metropolis-sampling step. 
This sampling process is different from that applied in PSOVina, 
in which only the gbest position in each iteration is used as the 
input for the Metropolis-sampling step. Obviously, our proposed 
sampling process can generally generate more diverse solutions 
in the output container than that used in PSOVina, and can thus 
output more conformations when the program is terminated. 

The termination condition of the proposed search algorithm is 
when it reaches the maximum number of iterations. In 
RDPSOVina, the maximum number of iterations is specified as 
6% of total step number in Vina. Using the 6% is the result of 



comprehensive consideration of algorithmic convergence 
property and docking time efficiency. Moreover, the 6% can be 
changed with a newly added parameter called ratio_steps. 

Table 1 The search algorithm of RDPSOVina 
Algorithmic procedure 
Begin 

Initialize current position Xi,0 of swarm particles, pbest position Pi,0 
and gbest position G0. Evaluate the fitness Yi,0 of current position Xi,0. C 
counts the steps for no updating gbest position; 

n=0 
while n<max_step do 

if (phrase=1) 
for i=1 to M do 

if (rand (0,1) < 0.06) // 6% particles to use BFGS 
full BFGS (Xi,n); 
update Xi,n, Yi,n; 

else 
Yi,n=score(Xi,n); // score(.) is scoring function 

end if 
update Pi,n+1 and Gn+1; 
update Xi,n+1 by RDPSO; 

end for 
end if 
if (phrase=2) 

pick-top-three (Pj,n); // use the top three Pj,n 
markov mutation (Pj,n); 
two-stage BFGS (Pj,n); 
update Pj,n+1, Gn+1; 

end if 
m=rand-int (1, m); // m is random integer from 1 to M 
if (Pm,n+1 satisfied metropolis principle) 

further improve Pm,n+1 and output it; 
end if 
if (C<3 and phrase=2) 

phrase=1; 
end if 
if ((C>100 and phrase=1) or n>0.9*max_steps) 

phrase=2; 
end if 
if (score(Gn+1)–score(Gn)<0.0001) 

C=C+1; 
else 

C=0 
end if 
n=n+1; 

end while 
End 

 

Scoring Function 

The scoring function in Vina is also employed in our proposed 
program. Vina employs a semi-empirical scoring function 
inspired by the X-score function [19], used to score the binding 
affinity between a protein and a ligand. The semi-empirical 
scoring function can be regarded as the combination of 
intermolecular ( cinter  ) and intramolecular ( cintra  ) contributions. 

In Vina, it is calculated as the summation of distance-dependent 

interactions ftit j
(rij ) , shown as: 

c=cinter  cintra  ftit j
(rij )

i j
� (10) 

where c  is the object function of search algorithm and rij  is the 

interatomic distance. Moreover, the value of cinter   is the final 

energy output in Vina, namely binding energy, and it is calculated 
by the following: 

cinter  htit j
(dij )

i j
�  (11) 

where dij  is the surface distance defined as dij  rij  Ri  Rj . Ri  

is the van der Waal radius of the ith   atom. htit j
(dij )   is the 

interatomic interaction and involves polar interaction, nonpolar-
nonpolar contacts, repulsion forces, hydrogen bonds, solvation 
interactions and so on [2], calculated as: 

htit j
(dij ) 

w1 Gauss1(dij )

w2 Gauss2(dij )

w3 Repulsion(dij )

w4 Hydrophobic(dij )

w5 HBond(dij )

(12) 

As in equation (12), the outcome of htit j
(dij )   in Vina is the 

accumulation of five component items, and each item is 
significantly weighted according to its contributions for the 
protein-ligand binding interaction. The first three given items 
compose the steric interactions, and the existence of the fourth 
hydrophobic and the fifth hydrogen interactions depend on the 
atom types [20]. 

 

Datasets and Experimental Setups 

To effectively estimate the docking performance, two basic 
docking patterns are commonly used: re-docking and cross-
docking. Re-docking represents the ability to reproduce the 
position, orientation and geometry of the associated ligand 
binding to a receptor, and the ligand and receptor are separated 
from the same given complex. Cross-docking refers to the 
prediction capability for crossed docking cases between ligands 
and proteins isolated from multiple co-crystallized complexes of 
the same protein. 

To evaluate the performance for re-docking, we used two 
datasets of PDBbind and they can be downloaded from 



http://www.PDBbind-cn.org. The first one is PDBbind core set 
v.2016, which is included in CASF-2016 [21]. The core set 
provides 285 groups of structural information of protein-ligand 
complexes, which are the crystal structures with the resolution of 
less than 0.25nm measured by the real experiments. The second 
one is PDBbind refined set v.2020. The refined set consists of 
5316 protein-ligand complexes. But, one complex called 4bps 
cannot generate its protein structural file, so 5315 test cases were 
used in our experiments. 

Our re-docking experiments were developed in the following 
three steps: prepare the proteins and ligands, generate the 
configuration files, and execute docking simulations. The 
PDBQT files of protein and ligand were attained through the 
prepare_protein4.py and prepare_ligand4.py in AutoDock Tools. 
The involved parameters for docking were specified as follows: 
the box shape was a cubic with the size of 22.5Å×22.5Å×22.5Å; 
the box center was set as the geometric center of the crystal 
ligand; the exhaustiveness parameter was set to 8; the number of 
particles for each exhaustiveness was 12 and thus the size of 
particle population was 96; CPU number was 10. The other 
parameters were all default. Our docking experiments were 
carried out on a multiple-nodes cluster server with 240 Intel(R) 
Xeon(R) E5–2620 CPU core 2.40 GHz processors based on a 
Centos 7.6.1810 Linux platform. 

In the cross-docking experiments, we utilized the 8 protein-
target families of CDK2, ESR1, F2, MAPK14, MMP8, MMP13, 
PDE4B and PDE5A in Sutherland-crossdock-set [22]. All the 
testing items of them are listed in the appendix reported by Dr. 
Jeff Sutherland [22]. Considering the relatively limited power of 
computation, we picked 30 items each for CDK2 (82 structures) 
and F2 (72 structures) and employed all the items available in the 
Protein Data Bank [23] for the rest of the families (<30 structures). 

In the preparatory phase of cross-docking materials, we used 
the PyMOL to align all the complexes and separate the ligand and 
receptor from each complex, added the hydrogens to the ligands 
and receptors due to their lack of most hydrogens, retained the 
metal ions belonging to the binding pocket (in MMP8, MMP13, 
PDE4B and PDE5A) and removed other components not 
belonging to the pocket, such as water and other irrelevant solvent.  

 

Evaluation Criteria 

The common indicator for docking accuracy is the standard 
root-mean-square deviation (RMSD), which calculates the 
difference between predicted and co-crystallized structure. 
Generally, when the difference is less than 2Å, the obtained 

conformation is considered as a success. In the re-docking 
comparison, for each test case of PDBbind core set, we 
implemented 10 groups of repetitive docking experiments and 
calculated their average RMSD. The PDBbind refined set has too 
many test cases, so the docking test was only implemented once 
to save time. Besides, the calculated errors of RMSDs was 
estimated by 2000 rounds of bootstrapping computations [24]. To 
demonstrate whether there is a significant difference between two 
docking methods, the Wilcoxon signed-rank test [25] was utilized, 
and it was undertaken at a 5% level of significance in this paper. 

For the cross-docking target families, cross-docking results are 
categorized as three clusters: docking success, scoring failure and 
sampling failure [7]. If the corresponding best-scored 
conformation is successfully docked, the docking program gets a 
docking success. A scoring failure signifies that all the successful 
docking structures found by a docking method are not the best-
scored ones. When the RMSDs of ligand conformations obtained 
by a docking method are all more than 2Å, this docking result is 
considered as a sampling failure. 

 

Results and Discussion 

Re-Docking Results of PDBbind Core Set in Terms of Binding 
Energy, Accuracy, Efficiency and Stability. 

As mentioned above, five individual items compose the 
scoring function of Vina, and the total result of their contributions 
is the binding energy. Table 2 shows each component contribution 
(for binding energy) and the binding energy, in terms of docking 
prediction conformations and the crystalline ligand. Vina had the 
best binding energy, followed by GWOVina and RDPSOVina, 
and then PSOVina. When it comes to the component 
contributions, except for the contribution of the repulsion item, 
the compared docking programs yielded the same order as the 
binding energy, that is, RDPSOVina surpassed PSOVina but 
followed behand Vina and GWOVina. 

It is noteworthy that using the docking tools is aimed at 
obtaining the real simulations for crystalline ligand structure, so 
the docking energy should be as close as possible to the crystal 
energy. However, the total energy of ligand crystallization was far 
behind the energies of docking results, since most component 
energies of the crystal ligand were all worse than those of the 
docking results. It is mainly caused by two aspects. On the one 
hand, the scoring function in Vina was significantly empirically 
weighted, which most likely makes the crystal structure without 
a minimum energy score. On the other hand, no matter whether 
the scoring function is appropriate or not, the search algorithm 



always struggles for a minimum result of the objective function 
and generates as low energy scores as possible. 

According to the listed energies in Table 2, the search 
capability ranking of the global methods was MCMC > GWO > 
RDPSO > PSO. Although the RDPSO found worse binding 
energy than GWO and MCMC, it does not mean that RDPSOVina 
will generate worse docking accuracy than Vina and PSOVina, 
since the crystalline ligand has the worst binding energy among 
the compared results. 
 

Table 2 The component and binding energies of docking predictions and 
crystalline ligand for 285 test cases. (kcal/mol) 

 Vina PSO 
Vina 

GWO 
Vina 

RDPSO
Vina 

Crystalli
zation 

Gauss1 -2.497 -2.361 -2.496 -2.480 -2.414 
Gauss2 -5.045 -4.942 -5.044 -5.042 -4.936 
Repulsion 1.548 1.430 1.550 1.529 2.267 
Hydrophobic -1.072 -1.040 -1.069 -1.065 -0.977 

Hydrogen -1.614 -1.471 -1.607 -1.600 -1.685 
Energy -8.679 -8.384 -8.667 -8.657 -7.745 

 
Table 3 Statistical results of the best-Scored RMSD obtained by all 

compared docking programs for 285 test cases. 
 Mean 

RMSD (Å) 
Mean 
Succ [a] 

P-value 

[b] 
Mean 
Time (s) 

Vina 2.52 0.32 64.35% 9.7e-7 39.77 
PSOVina 2.57 0.34 63.30% 0.0016 4.33 

GWOVina 2.41 0.32 65.71% 0.0036 8.25 

RDPSOVina 2.27 0.31 68.24% -- 6.35 
[a] The mean success rate is the ratio of the number of successful 
dockings divided by the total number of docking executions. 
[b] P-value is calculated by comparing two sets of mean RMSD results 
obtained by the RDPSOVina and another docking method, 
respectively. 

 

Table 3 illustrates the overall accuracy obtained by all 
compared docking programs. The Mean RMSD and the mean 
success rate of docking indicate that the RDPSOVina was able to 
achieve the most accurate docking prediction, followed by 
GWOVina and Vina, and finally PSOVina. The P-values show 
that the small difference in precision between RDPSOVina and 
other docking programs (an increase of 3.89%, 4.94% or 2.52%) 
is statistically significant. To further analyze the docking 
accuracy of the predicted conformations obtained by all 
compared methods, we divided the best-scored conformations of 
285 test cases into six RMSD regions of 0.0Å - 0.5Å, 0.5Å - 1.0Å, 
1.0Å - 1.5Å, 1.5Å - 2.0Å, 2.0Å - 3.0Å and > 3.0Å, and counted 
the number of test cases in each classified region, as displayed in 
Fig. 1. According to Fig. 1, RDPSOVina, Vina, GWOVina and 
PSOVina had the largest number of test cases on the RMSD 
intervals of 0Å-0.5Å, 0.5Å-1.0Å, 1.0Å-1.5Å and >2.0Å, 
respectively. Among all the compared docking programs, the 

RDPSOVina concentrated on the smallest RMSD region of 0Å-
0.5Å and had the least docking failures of more than 2Å. 
Therefore, it can be summarized that the RDPSOVina can obtain 
the closest conformation prediction to crystallization. 
 

 
Fig. 1 Cumulative histograms of the best-scored RMSD obtained 
by Vina, PSOVina, GWOVina and RDPSOVina 

 

As for the docking efficiency, take the popular Vina as the 
reference. RDPSOVina spent 6.35s at six-folds acceleration than 
Vina, while PSOVina and GWOVina were around 9 times and 5 
times faster than Vina, respectively, according to the mean 
running time listed in the last column of Table 3. As mentioned 
above, the total number of iterations in RDPSOVina is 6% of that 
in Vina. Unlike the RDPSOVina, the search procedure of 
PSOVina is terminated only when it shows convergence (the 
gbest position has stopped updating for 350 iterations) or reaches 
the total steps of Vina [9]. In most cases, PSOVina stops early, 
and thus the number of running iterations in PSOVina is generally 
smaller than the total iterative number of RDPSOVina. Therefore, 
compared to the PSOVina, although the RDPSOVina consumes 
less time on the local search stage, the larger number of running 
iterations in RDPSOVina still leads to the slightly longer docking 
time, as shown by the time results in Table 3. 

Subsequently, we focused on the performance of each docking 
method for the test cases with different number of torsions (i.e., 
different search dimensions), as shown in Fig. 2. The histograms 
in Fig. 2 illustrate the average RMSD of best-scored structures 
for different number of torsions. Except the classes with 1, 2, 5 
and 6 torsions, RDPSOVina had the best docking accuracy when 
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the number of torsions is less than 14. When the number of 
torsions is larger than 14, there only are 22 test cases for the 
docking evaluation. Owing that the randomness of search 
algorithm can make the docking results uncertain, the relatively 
small number of test cases might lead to lose the statistical 
significance for the docking evaluation. Nevertheless, with 
respect to most cases of larger than 14 torsions, the RDPSOVina 
obtained the best or second best result among all the compared 
docking methods. Overall, RDPSOVina has obtained stably 
better docking performance for the test cases with different 
number of torsions than the other compared approaches. 

Docking Performance with Different Sizes of Optimization 
Population and Search Boxes. 

In swarm intelligence optimization, the population size can 
considerably affect the search accuracy and efficiency. To 
evaluate the docking performance with different size of 
population, we conducted one group of docking experiment on 
PDBbind core set using PSOVina, GWOVina and RDPSOVina. 
According to Fig. 3, the RDPSOVina obviously performed better 
than PSOVina when the population size was less than 256, but 
showed comparable docking accuracy to PSOVina when the 
number of particles was larger than 192. GWOVina obtained 
worse docking accuracy than RDPSOVina, irrespective of the 
number of particles used. Overall, the RDPSOVina is more robust 
than PSOVina and GWOVina under the different population size 
conditions. 
 

 
Fig. 3 The accuracy comparison of docking programs with different 

population size. 
 

The size of search space is also an important factor of 
influencing the algorithmic search accuracy. To detect the 
algorithmic performance with different sized search space, the 
docking programs were implemented in three cubic boxes with 
sides of 22.5 Å, 27 Å and 36 Å. The setting of 22.5 Å is default. 
When the side length exceeds 27 Å, the Vina and Vina-based 
programs will throw a warning that the box setting is too large. 
The 36 Å refers to the biggest cubic setting in the Feinstein’s 
experiments that were conducted to find an optimal box size [26]. 
Fig. 4 shows the docking accuracy of all the compared programs 
with three sizes of cubic boxes. In each box with a certain size, 
the RDPSOVina can obtain the better RMSD results than the 
other compared docking programs. It indicates that the 
RDPSOVina can obtain the best docking accuracy among the 
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Fig. 2 Mean RMSD and mean energy comparison based on different number of torsions. Left axis illustrates the y-coordinate of the histograms, and the 
y-axis of the polylines corresponds to the right axis. 
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compared docking programs. Observing the RMSD fluctuations 
of the same docking method in different cubic boxes, we can 
conclude the docking stability of a program with enlarging the 
box size. The PSOVina had the worst stability of docking 
accuracy among all the compared programs when the box size 
was increased. The RDPSOVina and GWOVina has the similar 
docking stability, and a little better than Vina’s. To sum up, the 
RDPSO can obtain stable and excellent docking results than other 
compared methods, when expanding the seach space. 
 

  
Fig. 4 The accuracy comparison of docking programs with different sizes of 

search boxes. 
 

Re-Docking Results of PDBbind Refined Set v.2020 in Terms 
of Accuracy, Energy, Efficiency and Stability. 

Table 4 Statistical results of all the compared docking programs for 
PDBbind Refined set v.2020. 

 Mean 
RMSD (Å) 

Mean 
Succ 

Mean 
Energy[a] 

Mean 
Time (s) 

Throughp
ut [b] 

Vina 2.95 56.52% -8.326 28.4 304 
PSOVina 2.92 55.88% -7.965 5.7 1516 

GWOVina 2.85 57.38% -8.296 11.1 778 

RDPSOVina 2.63 60.55% -8.299 6.5 1330 

RDPSOVina1 2.66 59.76% -8.293 5.7 1516 

[a] the mean value of best-scored energy for 5315 test cases. 
[b] the expected throughput of structures/day on a single cpu. 

 

The re-docking performances of different programs were also 
tested on another PDBbind dataset, i.e., refined set v.2020, in 
which there are 5315 test cases used. All the tested experiments 
were employed on 10 CPUs and the compared results are 
illustrated in Table 4. With regards to mean RMSD and mean 
success rate, the RDPSOVina performed the best, followed by 
GWOVina, and finally PSOVina and Vina. In term of mean 
energy, the RDPSOVina performed only inferior to Vina, and 
better than the GWOVina and PSOVina. According to the mean 
running time, the RDPSOVina run was only slower to PSOVina, 
but faster than GWOVina and Vina. These compared 
performances accord with the results tested on PDBbind core set. 

According to the mean time of running a test case, we can 
calculate the expected quantity (throughput) of molecular 
structures output by each docking program in one day on a single 
cpu. The last column of Table 4 gives the expected throughput of 
docking programs, when 10 CPUs were in parallel. The 
throughput of PSOVina and RDPSOVina are significantly better 
than the other docking programs. The RDPSVina can output 1330 
structures on a single CPU in one day, and using our settings of 
10 CPUs, so it can give about 13300 structures in one day . 

In the results Table 3 and Table 4, the PSOVina used less  
docking time and obtained worse accuracy than the RDPSOVina. 
Thus, it’s hard to elucidate that the RDPSO has better global 
search capability than PSO in the docking task. In order to explain 
the problem, the comparison of the docking performance need to 
be employed with the same computation time. Therefore, we 
decreased the total number of iterations of the RDPSO, and 
ensured that the RDPSOVina have the same computation time as 
PSOVina. The experimental results are illustrated as the last row 
of Table 5. The RDPSOVina with decreased iterations 
(RDPSOVina1) achieved lower RMSD, higher success rate and 
better energy than the PSOVina, GWOVina and Vina. Thus, a 
conclusion can be drawn that the RDPSO had better global search 
ability than the PSO in terms of protein-ligand docking in Vina.  
 

 

Fig. 5 The box-and-whisker and violin plots for the average RMSD 
of 5315 test cases. 

 

The Fig. 5 illustrates the RMSD distribution of tested results 
on PDBbind refined set, which indicates the docking stability of 
program. The more concentrated the RMSD distribution of the 
docking results is, the more stably the corresponding docking 
method performs. In Fig. 5, the boxes and the whiskers illustrate 
the overall RMSD distribution of docking results. From the violin 
plots of Fig.5, the distribution detail of 5315 best-scored RMSD 
can be observed. In the RDPSOVina, the docking effectiveness 
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of using full iterations were slightly better than, but almost the 
same as that using decreased iterations, illustrated as the results 
of Table 4. The above docking expression of RDPSOVina also 
reflected in the plots of RDPSOVina and RDPSOVina1 in Fig. 5. 
Compared with other docking programs, the RDPSOVina 
obtained more concentrated distribution of RMSD results, 
demonstrated by the shorter box height and whisker length. 
GWOVina exhibited the comparable distribution to Vina, which 
can be reflected from their similar boxes’ and violins’ shapes. The 
box plot of PSOVina had the longest height among all the docking 
programs, which means that the docking stability of PSOVina is 
worse than that of the other methods. Moreover, through the Fig. 
5, the docking accuracy of program can also be expressed. In Fig. 
5, a horizontal line of 2 Å is used to divide the violins into two 
parts. The width on a certain RMSD for a violin plot represents 
the occurrence frequency of the corresponding RMSD values in 
all RMSD results. Below this 2 Å line, the largest violin area of 
RDPSOVina means that it obtained the largest number of docking 
success among all the compared approaches. On the other hand, 
the violin area above  the 2 Å line of PSOVina was larger than 
those of the others, which means the PSOVina obtained the most 
docking failure cases.  

Overall, the RDPSOVina had the outstanding docking accuracy, 
excellent search ability for an optimal energy, high running 
efficiency and remarkable docking stability. From the algorithmic 
perspective, there are some reasons why the RDPSOVina can 
generate these superior docking performances. First of all, the 
RDPSO has better convergence than the PSO and MCMC, which 
will give RDPSOVina high efficiency. Compared with the 

RDPSOVina, the faster speed in PSOVina attributes to its setting 
of algorithmic early termination. Secondly, in the RDPSOVina, 
we also use markov mutation to improve the search ability of 
algorithm and ensure the gbest position to be updated as soon as 
possible. Thirdly, in each iteration, the particles of using BFGS 
typically stay at better positions than the rest partcles, this will 
benefit for the diversity development of particle population. 

 

Comparison Results of Cross-Docking Accuracy. 

The statistical results of cross-docking are displayed in Table 
5. Obviously, PSOVina and RDPSOVina were better than Vina 
and GWOVina in terms of the cross-docking performance, which 
indicates that PSO-based search methods are more suitable for 
handling cross-docking tasks than MCMC and GWO. The 
PSOVina exhibited the remarkable accuracy of cross-docking on 
the relatively easy cross-docking targets, namely ESR1, PDE4B 
and PDE5A. For the remaining relatively complicated cross-
docking tasks, the RDPSOVina was able to obtain better cross-
docking performance than the PSOVina. Overall, the 
RDPSOVina has more advantages than the other docking 
methods in dealing with the cross-docking problems, which can 
be concluded from the average values of success rate for all test 
case in Table5. 

It should be point out that cross-docking can be utilized to find 
the best holo structure of a target protein. As illustrated by 
Shamsara [27], the protein structure with larger number of 
docking success has a higher probability to obtain the better 

 
(a) cross-docking of 1ke6 protein and 1ke9 ligand 

(b) cross-docking of 1i76 protein and 1a85 ligand 
 

Fig. 6 Docking pose comparison based on different docking programs. The red-colored structure is the co-crystallized structure of the ligand. 



performance for pose prediction and virtual screening when it is 
used as the docking receptor. In the Figure 1 of Support 
Information, according to the comparison of four rightmost 
numbers for the same receptor obtained by four docking methods, 
it can be demonstrated that the best holo protein structures for 
CDK2, ESR1, F2, MAPK14, MMP8, MMP13, PDE4B and 
PDE5A are the receptors from the crystalized complexes 1ke6, 
1qkt, 1ype, 1ouy, 1i76, 1xud, 1xm4 and 1udt, respectively. 
 

Table 5. The docking success rate obtained by Vina and Vina-based 
programs for each protein family. 

Protein 
Family 

Vina PSOVina GWOVina RDPSOVina 

CDK2 12.22% 13.44% 12.22% 13.78% 
ESR1 40.70% 45.45% 41.25% 42.15% 
F2 31.89% 27.78% 32.89% 34.78% 
MAPK14 18.56% 20.64% 19.04% 20.80% 
MMP8 23.98% 27.04% 26.53% 30.10% 
MMP13 22.45% 26.53% 22.45% 30.61% 
PDE4B 25.44% 31.95% 25.44% 27.22% 
PDE5A 31.25% 46.88% 37.50% 37.50% 
Average [a] 24.53% 25.68% 25.36% 27.02% 

[a] The mean success rate averaged over all the test cases of 8 protein 
families. 

 

To further compare the effectiveness of different cross-docking 
methods, we chose the best holo proteins of both CDK2 and 
MMP8 (i.e., 1ke6 and 1i76) and visualized their cross-docking 
results with another ligand (1ke9 and 1a85), as illustrated in Fig. 
6. With respect to Fig. 6(a), RDPSOVina yielded the best docking 
of 2.78 Å; Vina and GWOVina obtained the similar binding pose 
of 7.37 Å and 7.29 Å; PSOVina reversed the geometry of 
crystallized ligand and generated the worst RMSD of 9.05 Å. 
With regards to the example on MMP8, the docked results of Vina, 
PSOVina and GWOVina were very different from the 
crystallization structure. The RDPSOVina obtained the most 
similar conformation to the crystallization. The afore-mentioned 
analysis indicates that the RDPSOVina can obtain better 
performance for the cross-docking tasks than other docking 
methods. 

 

Conclusions 

Protein-ligand docking plays an essential role in modern drug 
development. To further enhance the docking performance, in this 
study, we developed a docking program with a novel search 
algorithm, named RDPSOVina. The RDPSOVina utilizes the 
RDPSO as the global search algorithm, it implements the BFGS 
with a 6% probability to save docking time, and it applies MC 
mutation to harvest more potential-candidates. Our experimental 
results revealed that the RDPSOVina obtains the best accuracy 
and stability among all the compared docking programs, and it 
can run with higher efficiency than Vina and GWOVina. 
Furthermore, it can achieve the best cross-docking accuracy, 
especially for the relatively hard protein families. In the future, 
some studies will be provoked by our success of RDPSO in 
protein-ligand docking to investigate the RDPSO properties on 
more complicated docking problem, such as protein structure 
prediction and blind docking. 
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