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Abstract
The SAMPL series of challenges aim to focus the community on specific modeling challenges, while testing and hopefully 
driving progress of computational methods to help guide pharmaceutical drug discovery. In this study, we report on the results 
of the SAMPL8 host–guest blind challenge for predicting absolute binding affinities. SAMPL8 focused on two host–guest 
datasets, one involving the cucurbituril CB8 (with a series of common drugs of abuse) and another involving two different 
Gibb deep-cavity cavitands. The latter dataset involved a previously featured deep cavity cavitand (TEMOA) as well as a 
new variant (TEETOA), both binding to a series of relatively rigid fragment-like guests. Challenge participants employed 
a reasonably wide variety of methods, though many of these were based on molecular simulations, and predictive accuracy 
was mixed. As in some previous SAMPL iterations (SAMPL6 and SAMPL7), we found that one approach to achieve greater 
accuracy was to apply empirical corrections to the binding free energy predictions, taking advantage of prior data on binding 
to these hosts. Another approach which performed well was a hybrid MD-based approach with reweighting to a force matched 
QM potential. In the cavitand challenge, an alchemical method using the AMOEBA-polarizable force field achieved the best 
success with RMSE less than 1 kcal/mol, while another alchemical approach (ATM/GAFF2-AM1BCC/TIP3P/HREM) had 
RMSE less than 1.75 kcal/mol. The work discussed here also highlights several important lessons; for example, retrospective 
studies of reference calculations demonstrate the sensitivity of predicted binding free energies to ethyl group sampling and/
or guest starting pose, providing guidance to help improve future studies on these systems.
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QM	� Quantum Mechanics
MM	� Molecular Mechanics
APR	� Attach–Pull–Release
US	� Umbrella Sampling
TI	� Thermodynamic Integration
MBAR	� Multistate Bennett Acceptance Ratio
FM	� Force-Matching

Introduction

Quantitative modeling done with molecular simulations can 
be used to estimate thermodynamic and/or physical proper-
ties, with the goal of aiding and directing small molecule 
drug design for therapeutic development [4–8]. Simulation-
based binding free energy calculations have gained much 
attention for their potential to help accelerate early-stage 
drug discovery [9]. The accuracy of free energy calculations 
depends on and is commonly limited by the degree of accu-
racy of the force field [10–12], sampling [13–17], and how 
the system is set up (i.e., protonation state, chosen tautomer 
state, buffer concentration, etc.) [18, 19].

For well-behaved protein–ligand systems, free energy 
methods can achieve agreement with experiments within 
about 1–2 kcal/mol [20–22]. However, protein–ligand sys-
tems are not always well-behaved because of the highly 
dynamic nature of proteins, where conformational dynamics 
can frequently be in the microsecond to millisecond time-
scale or slower, thwarting computation of true equilibrium 
binding free energies [20, 23]. In such cases, it is difficult 
to assess how much of the inaccuracy is due to limitations 
in a chosen force field versus sampling limitations [20, 24], 
and sometimes other factors. However, even when using 
well-behaved protein–ligand systems that are free of slow 
motions, other factors such as ionizable residues that change 
protonation state upon ligand binding can complicate assess-
ment of computational methods.

Host–guest systems: What are they? Why use them?

Supramolecular host–guest complexes have been used as 
simpler surrogate binding systems, instead of protein–ligand 
systems, to assess modeling errors and test computational 
methods and force fields. Host–guest systems feature hosts, 
or ”mini-receptors”, which are smaller and often more rigid, 
hence eliminating some challenges associated with the mod-
eling of proteins. Since hosts are smaller (typically less than 
100 non-hydrogen atoms) simulations can be run quicker 
and longer. These hosts can bind guest molecules (in some 
cases, small drug-like compounds) with protein–ligand-like 
affinities [20, 25, 26]. In addition, hosts may undergo con-
formational changes upon binding, have hydrophilic and 
hydrophobic interactions, and protonation states are often 

predictable with high confidence [27]. However, host–guest 
systems still involve some complexities in molecular rec-
ognition. These properties and characteristics have made 
host–guest systems a popular model to help identify limita-
tions and deficiencies in force fields and/or methods [10, 
18, 28–30].

SAMPL challenges: history, purpose, and direction

SAMPL (Statistical Assessment of the Modeling of Pro-
teins and Ligands) is an NIH-funded project consisting of 
a series of blind crowdsourcing challenges which serve to 
test and improve computational methods as reliable predic-
tive tools for rational drug design [11, 18, 20, 28, 30, 31]. 
Since its inception in 2008, SAMPL has featured predictions 
of physical properties of drug-like small molecules as well 
as binding free energies for host–guest systems, as well as 
occasional protein–ligand challenges.

Over the course of SAMPL, by focusing the community 
on specific modeling difficulties with well designed systems, 
host–guest challenges have driven progress in many areas 
and advanced our understanding of sources of error [11, 
18–20, 28–30, 32–46]. SAMPL has helped focus attention 
on the effects of co-solvents and ions in modulating binding 
(these effects, when neglected, result in errors of up to 5 
kcal/mol [20]), and the importance of adequately sampling 
water rearrangements [18, 20, 24].

Although host–guest systems are ”simpler”, they still 
pose several modeling difficulties. For example, guests 
bearing a formal charge can be especially difficult to treat. 
Indeed, charged guests were shown to affect the accuracy 
of many methods in SAMPL7 [11]. Polarization potentially 
plays a big role in predictive accuracy when modeling sys-
tems with charged molecules and in the presence of explicit 
water. A polarizable model used in the last two SAMPL 
iterations has outperformed all other methods in the datasets 
for which predictions were made. In SAMPL7 we observed 
that across all host–guest systems, methods using this polar-
izable force field approach provided additional accuracy [11, 
44] but with an increase in computational cost due to the 
added complexity of the physical model to describe the sys-
tems. On the other hand, we have seen several methods using 
fixed charge force fields with performances comparable to 
the more expensive polarizable models. But these methods 
contain empirical corrections that rely on adjusting predic-
tions for the particular target based on prior studies of that 
target [11, 20, 45]. This would not be ideal for new datasets 
and in real world applications where there is little or no data 
available on a target.

Several SAMPL iterations have helped identify obsta-
cles that need to be addressed and further studied, and 
are described in the literature [11, 18–20, 24, 30]. While 
work continues to seek to address these difficulties, new 
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innovations have not always led to clear conclusions. In 
some cases, performance of a given method remains vari-
able across several challenges. Particularly, performance has 
been highly variable by method and target, and until recently 
no method had emerged as universally reliable across all sys-
tems or most systems. In SAMPL7, several methods showed 
reasonable accuracy (RMSE under 3 kcal/mol) across mul-
tiple hosts, and one method had RMSE under 2 kcal/mol. In 
SAMPL8, we hope to see methods which perform reliably 
across multiple hosts, and determine whether any method(s) 
improve relative to prior challenges.

SAMPL8 host–guest Systems

SAMPL host–guest datasets involve hosts such as cyclo-
dextrins [47, 48], cucurbiturils and cucurbituril-like [49, 
50], and Gibb deep cavity cavitands, GDCCs [51–54], with 
drug-like small molecules or fragments. Various hosts in 
these families have been studied or benchmarked in SAMPL 
[11, 18, 20, 30] and elsewhere [24], and provide insights 
on particular difficulties within each system. One common 
theme we observe after several iterations of SAMPL is that 
predictions for cavitands are typically more accurate, while 
cucurbiturils and cucurbituril-like hosts (including clips) are 
more challenging.

Key modeling difficulties for the hosts studied in 
SAMPL8 have been highlighted previously as noted above, 
and are discussed here briefly. Host binding sites with tight 
entry portals can have barriers preventing entry or exit of 
guests with bulky cores. This can limit and hinder sampling 
of guests and lead to convergence problems. Ensuring ade-
quate host conformational sampling and guest sampling is 
needed for accurate binding free energy calculations. Slow 
motion of waters into and out of the cavity, with the number 
of water fluctuations occurring at timescales of over tens of 
nanoseconds has been shown to affect binding free energy 
predictions [55]. The slow fluctuation of waters is thought 
to occur in the absence of strong binders. In addition, salt 
concentration and the buffer conditions may modulate bind-
ing, the hosts may bind ions which can compete with other 
ligands for the binding site, and affect the accuracy of the 
binding affinity predictions. Charged guests can pose meth-
odological challenges and may introduce finite-size artifacts 
that need to be accounted for [12]. The protonation states of 
the host and/or guest may be modified upon binding, and if 
there is a significant pKashift of titratable groups, treating 
the wrong protonation state (or even only a single protona-
tion state) may lead to large errors in binding free energy 
estimates [56].

Three hosts in the GDCC and cucurbit[n]uril (CB[n]) 
families were chosen for the SAMPL8 host–guest challenge. 
We aimed to study modeling implication(s) of tetra-endo-
methyl Octa-acid (TEMOA) and a variant tetra-endo-ethyl 

Octa-acid (TEETOA), with flexible ethyl side-chains in 
the presence of mostly rigid guests. In addition, SAMPL8 
also revisits the cucurbit[8]uril (CB8) host, with a series of 
guests which are addictive and commonly abused drugs [57].

CB8: drugs of abuse challenge

The first dataset developed was for the CB8 host (Fig. 1). 
The host was previously featured in SAMPL3 [28] and 
SAMPL6 [20], and is similar to other cucurbituril analogs 
such as CB7, CB-Clip [58], and TrimerTrip [11, 49]. The 
CB8 “drugs of abuse” challenge focuses on binding of CB8 
to nine guests which are drugs of abuse, including morphine, 
hydromorphone, methamphetamine, cocaine, and others 
(Fig. 1). The list of guests on GitHub also includes cyclo-
heptanamine and cyclooctanamine (G8 and G9); however, 
these were not part of the challenge since their experimen-
tal values were previously reported. Experimental binding 
affinities were measured by competition with these guests.

CB[n]–guest complexes are well known to have very high 
affinity, especially for cationic ammonium and diammonium 
guests like those featured in SAMPL8. The high affinity 
measurements from these systems have been attributed to an 
enthalpic driving force provided by the lack of host hydrogen 
bonds with intracavity waters [59]. Upon binding, protons 
of the guest’s nitrogen interact with the oxygen of the CB8 
carbonyl portal, which limits the number of poses that need 
to be considered computationally [41].

Previous studies on cucurbiturils have provided some 
highlights and important factors to consider [20, 30, 60]. 
First, we note that since CB8 is fairly rigid, sampling of 
the host may be straightforward. However, cucurbiturils 
and other SAMPL hosts have been observed to collapse in 
on themselves with certain force fields [18, 61], which is 
thought to limit guest sampling, affect convergence, and 
result in overestimated free energies. Second, guest bind-
ing modes have been shown to be more challenging to ade-
quately sample [20, 62, 63], especially when the guest is 
more flexible. Perhaps more relevant to this dataset is that 
cucurbiturils are known to modulate protonation states of 
guests upon binding [64, 65].

For this challenge we hoped participants would sub-
mit multiple methods which varied by only changing a 
single simulation parameter, such as a force field or an 
aspect of the simulation protocol, since such variations 
would allow us to directly probe the sensitivity of results 
to particular choices. Thus for our reference calculations 
the goal was to compare and test different force fields. 
At the same time, several protonation states needed to be 
considered for one guest. In particular, ketamine (G5), 
since its pKavalue was near the experimental pH of 7.4. 
However, it was possible that alternative protonation 
states were accessible for other guests, thus necessitating 
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their consideration. In such cases, close attention to the 
geometry of certain trivalent nitrogen centers would be 
required because if protonated, computationally they can 
act as a chiral center and all guest geometries might need 
to be sampled. If geometric sampling is inadequate, the 
selected geometry may impact the binding estimates for 
some methods.

GDCCs (Gibb deep cavity cavitands): sterics and flexibility 
challenge

The second dataset featured two hosts in the GDCC fam-
ily, TEMOA and TEETOA, commonly referred to as Octa-
Acids. GDCCs are low-symmetry hosts, fairly rigid, and 
have a basket-shaped binding site with eight carboxylate 

Fig. 1   Structures of the CB8 host and drugs of abuse as guests mol-
ecules for SAMPL8. The barrel shaped macrocycle, CB8, host is 
shown on the top. It is composed of eight glycoluril units, and its 
carbonyl portal interacts and binds with cationic ammonium based 

guests inside the cavity. The guests for the SAMPL8 challenge are 
drugs of abuse (methamphetamine, fentanyl, morphine, hydromor-
phine, ketamine, PCP, and cocaine) which have the characteristics of 
typical CB[n] binders. The guests are named G1 through G7
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groups appended to the host to enhance solubility [24, 66]. 
Four carboxylates are located near the cavity protruding 
out to solvent, and four others are at the bottom of the host 
at the propionate tails. TEMOA has been used in previous 
SAMPL host–guest challenges [18, 20, 30] with different 
sets of guests, and appeared with the name OAMe. TEETOA 
is a new variant synthesized by the Gibb lab, and differs 
from TEMOA by four ethyl groups which reduce the size 
of the cavity entry, may elongate the cavity entry, and intro-
duce flexibility at the entrance (Fig. 2). The guests selected 
for both TEMOA and TEETOA are mostly rigid with a 
hydrophobic moiety and a polar region at opposite ends 
of the molecules. The hydrophilic region of the guests are 
composed of carboxylate and/or hydroxyl groups (Fig. 2), 
and when the guests are in complex with the host, the polar 
group is typically exposed to the solvent while the hydro-
phobic region is buried in the deep hydrophobic binding site.

In this study we employ the attach–pull–release (APR) 
methodology, using the pAPRika toolkit [67], for the 
SAMPL8 host–guest blind challenge to predict absolute 
binding free energies as a reference (described in detail in 
Sect. 2.4). We selected this approach because it has been 
used with considerable success to study host–guest binding 
in several host–guest systems previously, and provides rela-
tively high throughput binding free energy calculations in 
our hands. We also evaluate the performance of other meth-
odologies submitted by participants from various academic 
institutions and/or industry. The remainder of the paper is 

organized as follows: we provide a general description of the 
types of methods submitted for this challenge, give detail on 
the method(s) used for reference calculations, and finally go 
through the results, lessons learned, and conclusions.

Methods

In this section we give challenge organization details, a 
general overview of methods used by participants’ for their 
submissions, describe the details of reference calculations, 
summarize experimental details and methodologies (experi-
mental studies are published separately [57]), and describe 
the statistical analysis and evaluate approaches.

Challenge organization

The SAMPL8 host–guest challenge was organized similar to 
SAMPL7, allowing participants to submit their “top” predic-
tions as a ranked submission for any or all of the datasets 
(CB8 and GDCC), but a submission for either dataset was 
required to include all guests. Only ranked submissions were 
considered for the main analysis of the challenge. Additional 
submissions were allowed, but needed to be denoted as 
non-ranked. Non-ranked submissions gave us an opportu-
nity for benchmarking and provided additional methods for 
cross comparison, while still allowing each participant only 
one opportunity to formally compete in the challenge. All 

Fig. 2   Structures of the GDCC hosts and guest molecules for the 
SAMPL8. (Top) TEMOA and TEETOA hosts in 2D and 3D rep-
resentation. The 3D ball and stick figures are of TEMOA on the 
left and TEETOA on the right, (bottom) guests G1–5. The differ-
ence between the hosts is the functionality near the cavity open-

ing, TEMOA has four methyl groups while TEETOA has four 
ethyl groups. The guests for SAMPL8 are named G1–5. Guests are 
fairly rigid molecules with carboxylate and/or hydroxyl groups. For 
TEMOA–G3, binding free energies were previously reported, thus 
was made optional for participants
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participants formally submitted blind predictions prior to the 
challenge deadline. In addition, two members of our team 
(MA and JS) conducted blind reference calculations which 
were submitted informally in the non-ranked category.

Pre-prepared host and guest structure files (as MOL2, 
PDB, and SDF) and SMILES strings were provided to par-
ticipants. Where applicable, host and/or guest structures 
were provided with reasonable protonation states. However, 
we advised participants to exercise caution in the choice of 
protonation state, particularly for CB8–G5, TEMOA–G2, 
and TEETOA-G2. All files described above, data, and 
instructions are available on the SAMPL8 GitHub reposi-
tory (https://​github.​com/​sampl​chall​enges/​SAMPL8/​tree/​
master/​host_​guest).

A prescribed submission template was provided for par-
ticipants to follow and included an example submission 
with all needed information. Participants were required to 
follow the template, since we would use automated scripts 
to parse and run the statistical analysis. Each submission 
required: predictions, participant name, participant organi-
zation, name of their method, list of used software, detailed 
method description, method category, and a ranked or non-
ranked classification. In the predictions section, we required 
a predicted free-energy, free-energy SEM, and free energy 
model uncertainty. Predicted binding enthalpy values were 
optional. Participant and reference calculation submission 
files are available in relevant host submission directory in 
the SAMPL8 GitHub repository (https://​github.​com/​sampl​
chall​enges/​SAMPL8/​tree/​master/​host_​guest/​Analy​sis/​Submi​
ssions).

Data collection was finalized around June 9, 2020 for the 
CB8 drugs of abuse challenge and October 14, 2020 for the 
GDCC sterics and flexibility challenge. Submission dead-
lines were set for September 15, 2020 and February 21, 2021 
(updated from February 4, 2021), respectively. Submissions 
for CB8–G8, CB8–G9, and TEMOA–G3 were optional since 
these binding values have been reported in literature.

Statistical analysis of challenge submissions

The statistical analysis of the challenge was performed 
using Python scripts adopted from SAMPL6 and SAMPL7, 
and deposited in the SAMPL8 GitHub repository. Thus, 
for SAMPL8 we use statistical metrics as used in previous 
SAMPL iterations [11, 18, 20] which include RMSE (root 
mean-squared error), R2 (coefficient of determination), � 
(Kendall Tau correlation coefficient), m (linear regression 
slope), ME (mean error) and MAE (mean absolute error). 
Bootstrapping with replacement was used to determine 
uncertainty in the error metrics as described in the litera-
ture [18, 20]. In addition, the RMSE, MAE, and ME of each 
individual host–guest system (considering all methods) were 

used to identify and compare the most accurate and least 
accurate predicted systems.

The statistical analysis was separated into ranked and 
non-ranked categories. For the non-ranked category, all sub-
missions (ranked and non-ranked) were considered, while 
in ranked category (for formal competition) only ranked 
submissions were considered. For datasets with optional 
systems, analysis was done with and without those guests, 
where the latter was denoted as “no optional” in the respec-
tive directories. All data, plots, and tables for ranked and 
non-ranked analysis subsets are available in the SAMPL8 
GitHub repository (https://​github.​com/​sampl​chall​enges/​
SAMPL8/​tree/​master/​host_​guest/​Analy​sis).

Participant methodologies

For SAMPL8, many methods used alchemical free energy 
calculations with classical fixed charge force fields (GAFF 
[68] or GAFF2, CGenFF [69, 70]), explicit water models 
(TIP3P [71], TIP4PEw [72, 73]), and with a AM1-BCC [74, 
75] or RESP [76] charging scheme. One method utilized 
the polarizable force field AMOEBA [3, 77], while other 
approaches used force matching [78] starting from CGenFF 
parameters. Apart from simulation-based free energy meth-
ods, other approaches included quantum mechanics (QM) 
and QM/MM (molecular mechanics) and machine learning. 
A summary of the groups methodologies are described in 
Table 1 and in more detail in the relevant literature.

Reference calculations

In the SAMPL7 host–guest challenge, we ran our reference 
calculations using an alchemical approach with the YANK 
[83] automated toolkit. With this approach we used the Ham-
iltonian replica-exchange sampling method [83, 84], and in 
some cases we could not achieve convergence in the free 
energy estimate even with 50 ns of simulation. For SAMPL8 
we decided to take an alternative approach employing the 
APR method via the pAPRika toolkit. The APR method is a 
physical path-based method using umbrella sampling (US) 
and has been used in previous SAMPL challenges [18, 20]. 
We decided to use this approach for several reasons: (a) the 
use of US in APR allows for each individual and independ-
ent umbrella or state to be simulated separately. Thus, the 
individual umbrellas can all be simulated in parallel, allow-
ing for fast simulations, and expedited reference calculations 
with modest accuracy. (b) The APR method has been used in 
benchmarking studies, and default setting/parameters used 
in the method have been established for calculating ther-
modynamic measurements of host–guest systems similar to 
those present in SAMPL8 [18, 61, 85, 86]. (c) Given that the 
hosts and guests in this study are relatively rigid, the bind-
ing modes are well known, we thought the use of enhanced 

https://github.com/samplchallenges/SAMPL8/tree/master/host_guest
https://github.com/samplchallenges/SAMPL8/tree/master/host_guest
https://github.com/samplchallenges/SAMPL8/tree/master/host_guest/Analysis/Submissions
https://github.com/samplchallenges/SAMPL8/tree/master/host_guest/Analysis/Submissions
https://github.com/samplchallenges/SAMPL8/tree/master/host_guest/Analysis/Submissions
https://github.com/samplchallenges/SAMPL8/tree/master/host_guest/Analysis
https://github.com/samplchallenges/SAMPL8/tree/master/host_guest/Analysis
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Table 1   Summary of methods (ranked and non-ranked) used in the SAMPL8 host–guest challenge for binding free energy calculations

ID Sid Energy model Solvent model Sampling Ranked SAMPL8 
Refer-
ences

CB8
 SILCS/LGFE/TIP3P/GCMC-MD/rew 

(C)
5 CGenFF TIP3P (E) GCMC-MD No

 DDM/FEP/MBAR/FM/RW/[pm6s6] 28 FM FM (E) MD Yes [79]
 ML/NNET/CORINA-descriptors2 10 xtb-GFN2B –* –* No
 SILCS/LGFE/TIP3P/GCMC-MD 3 CGenFF TIP3P (E) GCMC-MD Yes
 SILCS/LGFE/TIP3P/GCMC-MD/G5 4 CGenFF TIP3P (E) GCMC-MD No
 DDM/FEP/MBAR/Paramchem/FM/
[gfn2gfn2]

19 FM-XTB TIP3P (E) MD No [79]

 ML/NNET/CORINA-descriptors1 9 xtb-GFN2B –* –* No
 DDM/FEP/MBAR/FM/[pm6s6] 22 FM-PM6-D3H4 TIP3P (E) MD No [79]
 DDM/FEP/MBAR/FM/RW/
[wb97xd,s6]

29 FM-B3LYP(H), FM-WB97X-D(G) TIP3P (E) MD No [79]

 DDM/FEP/MBAR/Paramchem/FM/
[C36S6]

18 FM-B3LYP (H), Paramchem-C36 (G) TIP3P (E) MD No [79]

 DDM/FEP/MBAR/FM/[mp2,b3lyp] 15 FM-B3LYP(H), FM-MP2 (G) TIP3P (E) MD Yes
 DDM-SAMS/GAFF-DMBIS/TIP3P/
MCMC-SAMS/

2 GAFF-DMBIS(B3LYP) TIP3P (E) MCMC-SAMS Yes

 APR/GAFF2-AM1BCC/TIP3P/US/
TI**

33 GAFF2 TIP3P (E) MD-US No

 APR/GAFF2-AM1BCC/TIP3P/US/
MBAR**

34 GAFF2 TIP3P (E) MD-US No

 DDM/FEP/MBAR/Paramchem/FM/
RW/[wb97xd]

26 FM-B3LYP(H), FM-WB97X-D(G) TIP3P (E) MD No [79]

 GFN2-xTB/MetaMD/GBSA/ensemble/
Nobuffer

1 xtb-GFN2 GBSA (I) MTD Yes

 APR/OPENFF1.2.0-AM1BCC/TIP3P/
US/TI**

31 Parsley-AM1BCC TIP3P (E) MD-US No

 APR/OPENFF1.2.0-AM1BCC/TIP3P/
US/MBAR**

32 Parsley-AM1BCC TIP3P (E) MD-US No

 US/GAFF-AM1BCC/TIP3P/HRE-MD/
emp_corr (C)

11 GAFF TIP3P (E) HRE-MD Yes [80]

 LiGaMD/q4MD/TIP4P/enhanced-
sampling

16 q4MD-RESP TIP4P (E) Ga-MD No

 DDM/FEP/MBAR/C36 17 Paramchem-C36 TIP3P (E) MD No [79]
 GAFF-RESP/TIP3P/MD/xtb-GFN2B/
Bolts-Avg

8 GAFF-RESP TIP3P (E) MD No

 GAFF-RESP/TIP3P/MD-Classical/
xtb-GFN2B

7 GAFF-RESP TIP3P (E) MD No

 DDM/FEP/MBAR/FM/[mp2s6] 21 FM-B3LYP(H), FM-MP2(G) TIP3P (E) MD No [79]
 MD/fmB3LYP(H)-fmMP2(G)/TIP3P/
REUS/

13 FM-B3LYP (H), FM-MP2 (G) TIP3P (E) REUS Yes [79]

 DDM/FEP/MBAR/FM/[gfn2,s6] 23 FM-B3LYP(H), xtb-GFN2(G) FM (E) MD No [79]
 DDM/FEP/MBAR/FM/RW/[blyp,s6] 24 FM-B3LYP(H), FM-WB97X-D(G) TIP3P (E) MD No [79]
 DDM/FEP/MBAR/FM/[pm6pm6] 20 FM-PM6-D3H4 TIP3P (E) MD No [79]
 DDM/FEP/MBAR/FM/RW/
[blyp,s6BLUR]

25 FM-B3LYP-BLUR(H), FM-WB97X-
D(G)

TIP3P (E) MD No [79]

 ABFE/Parsley-GAFF-BCC/TIP3P/MD/
NoBuffer2

14 Parsley-AM1BCC TIP3P (E) MD No

 ABFE/Parsley-GAFF-BCC/TIP3P/MD/
NoBuffer1

30 Parsley-AM1BCC TIP3P (E) MD Yes
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sampling may not be necessary in the majority of cases. At 
the same time, perhaps using this approach would also bring 
insight on where enhanced sampling provides the greatest 
benefits.

Our in-house reference calculations were performed 
using the APR method [67, 87] with pAPRika 1.0.4 (https://​
github.​com/​sloch​ower/​pAPRi​ka/​tree/​v1.0.4), and OpenMM 
7.4.2 as the simulation engine. In total, 15 windows were 
used for the attach and release phases, and up to 46 umbrella 
sampling windows (depending on the size of the guest) dur-
ing the pull phase.

The starting structures were obtained by docking using 
OEDock (with the Chemgauss4 scoring function) from 
OpenEye Toolkits (release 2019.4.2). AM1-BCC partial 

atomic charges were generated with oequacpac function 
oequacpac.OEAssignCharges(mol, oequac-
pac.OEAM1BCCCharges()) as implemented with 
OpenEye Toolkits (release 2019.4.2). Each host–guest 
system was solvated with 2500 TIP3P water molecules in 
a rectangular box whose dimensions were approximately 
40 × 40 × 63 cubic Å. Sodium and/or chloride counter ions 
(with parameters from Joung and Cheatham [88]) were 
added as needed to neutralize each host–guest system, and 
additional NaCl ions were added to obtain an ionic strength 
matching experimental conditions. To compare the perfor-
mance of two general Force Fields (Parsley and GAFF2), 
the bonded and Lennard-Jones parameters for hosts and 
guests were assigned based on OpenFF v1.2.0 using the 

Table 1   (continued)

ID Sid Energy model Solvent model Sampling Ranked SAMPL8 
Refer-
ences

 DDM/FEP/MBAR/FM/RW/[wb97xd-
BLUR]

27 FM-B3LYP(H), FM-WB97X-D/DEF2-
SVP-BLUR(g)

TIP3P (E) MD No [79]

 EE-MCC/GAFF2-AM1BCC/TIP3P/
MD/

6 GAFF2-AM1BCC TIP3P (E) MD Yes [81]

 US/GAFF-AM1BCC/TIP3P/HRE-MD 12 GAFF-AM1BCC TIP3P (E) HRE-MD No [80]
GDCC–TEMOA and TEETOA
 DDM/AMOEBA/BAR 44 AMOEBA AMOEBA (E) MD Yes
 ATM/GAFF2-AM1BCC/TIP3P/HREM 37 GAFF2-AM1BCC TIP3P (E) HRE Yes [82]
 PMF/GAFF2-AM1BCC/TIP3P/MD-US 38 GAFF2-AM1BCC TIP3P (E) MD-US Yes [82]
 AM1BCC/MMPBSA/TIP4PEW/
MD_NR3

42 GAFF2-AM1BCC TIP4PEW (E) MD No

 AM1BCC/MMPBSA/TIP4PEW/MD 43 GAFF2-AM1BCC TIP4PEW (E) MD Yes
 AM1BCC/MMPBSA/TIP4PEW/
MD_NR2

41 GAFF2-AM1BCC TIP4PEW (E) MD No

 ML/NNET/CORINA-descriptors-8 39 xtb-GFN2B –* –* Yes
 SILCS/LGFE/TIP3P/GCMC-MD 36 GAFF TIP3P (E) GCMC-MD Yes
 SILCS/LGFE/TIP3P/GCMC-MD_NR 35 GAFF TIP3P (E) GCMC-MD No
 APR/OPENFF1.2.0-AM1BCC/TIP3P/
US/TI**

48 Parsley-AM1BCC TIP3P (E) US No

 APR/OPENFF1.2.0-AM1BCC/TIP3P/
US/MBAR**

49 Parsley-AM1BCC TIP3P (E) US No

 APR/GAFF2-AM1BCC/TIP3P/US/
MBAR**

51 GAFF2-AM1BCC TIP3P (E) US No

 APR/GAFF2-AM1BCC/TIP3P/US/
TI**

50 GAFF2-AM1BCC TIP3P (E) US No

 DDM/C36/TIP3P/MD/MBAR 45 Paramchem-C36 TIP3P (E) MD Yes
 LiGaMD/GAFF2/RESP/TIP4P/Sam-
pling

47 q4MD-RESP TIP4P(E) GaMD No

 MD/ParamChem/TIP3P/REUS/ 46 Paramchem-C36 TIP3P (E) REUS Yes
  AM1BCC/MMPBSA/TIP4PEW/

MD_NR1
40 GAFF2-AM1BCC TIP4PEW (E) MD No

The use of explicit and/or implicit solvents is flagged by an (E) or (I) respectively, and a correction approach was taken on methods flagged with 
a (C). If the host (H) and guest (G) are parametrized with a different energy model they will be flagged respectively. Where a machine learning 
approach was taken, certain categories are not relevant and flagged with an asterisk (*). Reference calculations are flagged with a double asterisk 
(**)

https://github.com/slochower/pAPRika/tree/v1.0.4
https://github.com/slochower/pAPRika/tree/v1.0.4
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Open Force Field toolkit, or from GAFF2 as implemented 
in Antechamber [89].

The attach–pull–release windows were prepared using 
pAPRika 1.0.4, which consists of: adding three non-interact-
ing anchor particles, defining host and guest anchor atoms, 
configuring Boresch-style restraints [90], the addition of sol-
vent and ions, and preparation of OpenMM XML files. First, 
three heavy atoms for each host were defined as host anchor 
atoms (H1, H2, and H3), and two heavy atoms for each guest 
were defined as guest anchor atoms (L1, and L2). Guest 
anchor atom L1 was shifted to the origin, and the host–guest 
complex was oriented by aligning the vector formed by L1 
and L2 to the z-axis. Three non-interacting particles, called 
dummy atoms (D1, D2, and D3), were added to the system 
along the z-axis below the guest molecule at distances of 6, 
9, and 11.2 Å, respectively. The third dummy atom (D3) was 
also offset by 2.2 Å, in the y-axis.

As described elsewhere [67, 91], six Boresch-style 
restraints (one distance restraint, two angle restraints, and 
three torsional restraints) were used to restrain the translation 
and orientation of the host molecule to impose a lab frame 
of reference. The translation was defined by restraints on 
anchor atoms D1–L1, D2–D1–L1, and D3–D2–D1–L1 while 
the orientation was defined by D1–H1–H2, D2–D1–H1–H2, 
and D1–H1–H2–H3. Collectively, these six restraints were 
referred to as “static” restraints because they are constant 
throughout entire simulations. The restraint free energy 
of the static restraints was not included in the calculation 
because the restraints do not alter the internal coordinates of 
the host molecule and thus do not contribute to the binding 
free energy and serve solely to define the frame of reference.

During the attach phase, three restraints were applied to 
the guest molecule; two for the translation (r and � ) and one 
for the orientation ( � ). We only restrain the polar angle of 
the guest orientation because the host molecules of interest 
are cylindrically symmetrical. The restraint free energy was 
obtained by scaling the force constants from 0 to 1 in 15 
windows. The free energy of releasing the guest restraints 
in the unbound state was calculated semi-analytically, which 
includes the standard-state correction at 1 M. The force con-
stants used for the host static restraints and the guest orienta-
tional restraints were: (a) distance restraints = 10.0 kcal/mol/
Å2; (b) angle and torsional restraints = 100 kcal∕mol∕rad2.

In the pull phase, the guest molecule was pulled from 
the host along a reaction coordinate defined as the dis-
tance between D1–L1. The two angles, D2–D1–L1 and 
D1–L1–L2, were restrained at 180◦ throughout the pull 
phase. The guest was pulled up to a distance of 18  Å   
from the first window in intervals of 0.4 Å  totaling to 46 
windows.

Conformational restraints were applied on the host. These 
are optional in APR calculations to facilitate sampling dur-
ing the pulling phase [67, 85]. For CB8, eight distance “jack” 

restraints were used on the carbonyls to enlarge the cavity. 
Jack restraints with a distance of 13.5 Å  were used in previ-
ous calculations of CB7 [67] and we applied a slightly larger 
distance for CB8. From our initial calculations, we found 
that a distance of 14 Å  was enough to achieve good overlap 
between neighboring windows. For TEMOA, four distance 
jack restraints were used on the upper phenyl groups of the 
cavity. The same four distance jack restraints were used for 
TEETOA on the upper phenyl groups, with an additional two 
diagonal restraints on the ethyl groups to keep the groups as 
far apart as possible. The free energy contribution of apply-
ing conformational restraints on the host molecule was cal-
culated in the same manner as the guest restraints and was 
simultaneously scaled in the attach phase (the restraint free 
energy was obtained by scaling the force constants using 
scaling coefficients from 0 to 1, thus turning on the restraints 
in 15 windows), as were the guest restraints. However, the 
free energy cost of releasing the conformational restraints 
in the unbound state was calculated explicitly by scaling the 
force constants to zero in 15 windows. The parameters used 
for the conformational restraints were: (a) jack distance = 
14.0 Å; (b) force constant = 13.0 kcal/mol/Å2.

A set of flat-bottom potential restraints were placed to 
prevent the guest molecule from leaving the binding pocket 
during the attach phase. Here, we refer to these as “wall” 
restraints. We used them to improve convergence, especially 
for weak binders. We stress that these restraints do not con-
tribute to the final, binding free energy and are only applied 
if the guest molecule leaves the binding site beyond a thresh-
old in the attach phase [67]. For CB8, eight wall restraints 
were set on the guest relative to a carbon in each glycoluril 
unit. Referred to by atom name from the files provided, these 
were carbons C 2, C 6, C 10, C 14, C 18, C 22, C 26, and C 31. For 
the TEMOA and TEETOA hosts, four wall restraints were 
set on the guests relative to carbons (C47, C 53, C 35, and C 41 ) 
surrounding the center of the cavity. The parameters used for 
the wall restraints were: (a) wall distance = 14 Å; (b) force 
constant = 50 kcal/mol/Å2.

From a unbiased 200 ns MD simulation for the TEE-
TOA–G1 system, TEETOAs ethyl groups were observed to 
be mostly in the inward orientation. However, based on the 
size of the guest we believed the ethyl groups would ori-
ent outwards perhaps more frequently upon complexation. 
To test the sensitivity of the orientation of TEETOAs ethyl 
groups on the predicted affinity, two separate simulations 
were run for this system. In the first case, the TEETOA ethyl 
groups were restrained toward the cavity, called “inward”, 
using additional dihedral restraints as “jack” host-restraints. 
The force constant used was 100 kcal/mol/rad2 and the 
dihedral angle was restrained at 100◦ . In a second case, the 
TEETOA ethyl groups were restrained away from the cav-
ity, called “outward”, using the same force constant but the 
dihedral angle restrained at −100◦.
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All simulations were run at a constant temperature of 
298.15 K using a Langevin thermostat [67, 92] with col-
lision frequency 1.0 ps−1 and the pressure is maintained at 
1 atm using the Monte Carlo barostat [67, 93]. All systems 
were minimized up to a maximum of 5000 steps and equili-
brated in the NPT ensemble for 1 ns. Production simulations 
(in the NPT ensemble) were run up to 30 ns per window. The 
non-bonded interactions were truncated with a 9.0 Å  cutoff. 
Long-range electrostatic interactions were handled with the 
particle mesh Ewald (PME) method [94, 95] while an iso-
tropic dispersion correction [96–98] was used for the long-
range van der Waals interactions. The simulation time step 
was set to 4 fs with Hydrogen Mass Repartitioning (HMR). 
Free energy quantities were estimated with thermodynamic 
integration (TI) and/or the Multistate Bennett Acceptance 
Ratio (MBAR) [99] method. The uncertainties for TI calcu-
lations were obtained using block analysis [67].

Considering multiple protonation states 
of the guest

CB8 guests G1 through G7 have a titratable nitrogen (Fig. 3 
and Figs. S1 through S7) with predicted pKavalues of 10.21, 
8.77, 9.12, 9.08, 7,16, 10.56, and 8.85, respectively (deter-
mined via ChemAxon). In addition, guests G3 (morphine) 
and G4 (Hydromorphone) have at least one additional 
hydroxyl group for which the deprotonated form could pos-
sibly be relevant (Figs. S3, S4). Only three protonation states 
are likely populated for G3 and G4 at pH 7.4 (Fig. 3). Guest 
G5 has protonated (positively charged) and non-protonated 
(neutral) state populations of approximately 36% and 63% , 
respectively, as determined via Chemicalize from Che-
mAxon. The favored neutral Ketamine state was confirmed 
with the OpenEye Toolkit, thus two simulations for CB8 
with Ketamine (G5) were initially done. For guests G1–G4, 
and G6–G7, we initially did our calculations only on states 

Fig. 3   Protonation states considered for the CB8 guests. The fig-
ure shows protonation states considered at pH 7.4 for each guest in 
the CB8 dataset. All guests have at least two accessible protonation 

states, and guests G3 and G4 have three accessible states as predicted 
by Chemicalize from ChemAxon
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with a protonated nitrogen, as these had populations of over 
90% (Figs. S1 through S7).

The additional states of G1 (2 states) and G6 (2 states) 
are predicted to be populated near 0.15% or less, while for 
guests G2 (2 states), G3 (3 states), G4 (3 states), and G7 (2 
states) are populated at ≈5% or less (Figs. S1 through S7). 
Thus additional states for these guests were considered only 
after the challenge deadline.

In the GDCC dataset, guests G1 and G2 had at least 2 
accessible/populated protonation states at the experimental 
pH of 11.5. (Figs. S8 through S12) The guests protonation 
states were generated using an in-house script with OpenEye 
toolkits. The script also ordered the generated protonation 
states from the most likely state to least. The most likely 
state was then cross referenced with ChemAxon Chemical-
ize and used as the protonation state of the guest to model 
for free energy calculations.

Experimental binding measurements

The experimental labs of Lyle Isaacs and Bruce Gibb 
conducted Isothermal Titration Calorimetry (ITC) and/
or Nuclear Magnetic Resonance (NMR) spectroscopy to 
obtain binding measurements for SAMPL8 host–guest 
challenge. All experimental binding data for host–guest 
systems are listed in Table 2, shown in Fig. 4, and in the 

SAMPL8 GitHub Repository (see https://​github.​com/​sampl​
chall​enges/​SAMPL8/​tree/​main/​host_​guest/​Analy​sis/​Exper​
iment​alMea​surem​ents). If there are any updates or changes 
to experimental data, the GitHub repository will provide the 
authoritative source.

Briefly, ITC and/or NMR experiments were performed 
at 298 K. The CB8–G2 host–guest 1:2 binding value is also 
available in Table 2. Experimental binding measurements 
for CB8 were done in 20 mM sodium phosphate buffer at 
pH 7.4. Guest concentrations were in the 0.5 mM to 1.5 mM 
range and CB8 concentrations are 0.025 mM to 0.1 mM. 
All CB8 binding stoichiometries were validated by repeated 
ITC experiments and by NMR spectroscopy binding studies. 
For more details, please refer to the associated experimental 
paper [57].

Binding constants for the GDCC dataset were measured 
in 10 mM sodium phosphate buffer at pH 11.5 ± 0.1. Binding 
measurements were done by ITC or NMR. In general, bind-
ing determination was carried out in triplicate using ITC, 
and the affinity constants ( K

a
 ) and binding enthalpies ( ΔH ) 

were extracted and used to derive ΔG and −TΔS . NMR was 
used for very weak binders and ΔG was extracted from K

a
 . 

Binding of one guest (G3) to TEETOA was undetectable 
by ITC and NMR. To eliminate any neutralization contri-
butions to ΔH , attempts were made to ensure all solution 
concentrations for each experiment were within ±0.05 of 
tolerance. For each experiment, fresh solutions of host and 
guest were used to gather the data. In addition, waters of 
hydration are determined by qNMR using sodium ethane-
sulfonate as the water soluble internal standard of a known 
precise concentration. This standard will ensure the high-
est accuracy of host solution concentration and avoid mis-
fits from concentration errors. For more details on GDCC 
experimental measurements, readers are advised to refer to 
the experimental literature.

Results and discussion

For the SAMPL8 host–guest challenge, we find that bind-
ing free energy predictions are more accurate for GDCC 
hosts compared to CB8. This was also the case in previous 
SAMPL iterations despite CB8 and TEMOA being featured 
in those iterations. Then, we discuss the results for ranked 
methods and identify the top performing methods, compare 
ranked methods with each other, and discuss success and/or 
failures of methods. Separately, we also compare all methods 
(including non-ranked submissions and reference calcula-
tions) to probe the sensitivity of results to changes in proto-
col and/or method.

First, we break down participation and submission sta-
tistics for SAMPL8. We received a total of 51 submis-
sions from 11 different groups, with 34 for CB8 and 17 

Fig. 4   SAMPL8 host–guest experimental binding affinities. Experi-
mental binding free energies for host–guest complexes in SAMPL8. 
All binding free energies ( ΔG ) were measured via ITC and/or NMR, 
and are represented as colored circles [CB8 (blue), TEMOA (yel-
low), and TEETOA (red)]. Experimental uncertainties representing 
the standard error of the mean are shown as black error bars in each 
circle

https://github.com/samplchallenges/SAMPL8/tree/main/host_guest/Analysis/ExperimentalMeasurements
https://github.com/samplchallenges/SAMPL8/tree/main/host_guest/Analysis/ExperimentalMeasurements
https://github.com/samplchallenges/SAMPL8/tree/main/host_guest/Analysis/ExperimentalMeasurements
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for GDCC. The challenge involved 18 ranked submis-
sions total, 10 of which were for CB8 and 8 for GDCC, 
and which constitute our primary focus in analysis (see 
Sect. 3.1). Five groups submitted predictions for both the 
CB8 and GDCC datasets, providing the opportunity to 
compare the reliability of these approaches across mul-
tiple hosts.

Only two groups in total submitted binding enthalpy 
predictions, and both were for CB8. One of the approaches 
had excellent predictive accuracy and correlation with 
experimental binding enthalpies (see Fig. S13). However, 
both methods performed particularly poorly at predicting 
binding free energies.

Most of the participants generated the initial host–guest 
complex for their calculations by docking, using various 
docking software. Methods also differed in how they 

modeled the buffer conditions, with some using an experi-
mental ionic strength with sodium and chloride ions, while 
others using only neutralizing counter ions.

Ranked submissions

Performance statistics for most ranked methods in CB8 and 
GDCC were relatively similar. The similarity in the results 
is likely due to these methods using the same energy model 
(GAFF and TIP3P). There were a few methods with slight 
differences in the chosen energy model (such as using GAFF 
and TIP4P rather than GAFF and TIP3P) or use QM/DFT 
based approaches, yet have similar results to those with 
GAFF/TIP3P. However, a couple methods stand out as clear 
top performers or perform particularly poorly (Figs. 5, 7).

Table 2   Experimental binding details for all host–guest systems

All quantities are reported as point estimate ± statistical error from the ITC data fitting procedure. The upper bound ( 1% ) was used for errors 
reported to be < 1% . For the CB8 dataset, concentration error had not been factored in to the original error estimates, so we included a 3% 
relative uncertainty in the titrant concentration and we assumed the stoichiometry coefficient to be fitted to the ITC data [20]. For the TEMOA/
TEETOA sets, provided uncertainties already include concentration error. ΔG was obtained from K

a
 via the standard thermodynamic equation. 

The average ΔH and ΔG values were then used to calculate an average −TΔS , and the corresponding standard deviations calculated using the 
standard equation for the propagation of uncertainties for subtraction. The deviations in logK

a
 and ΔG were obtained by using the standard equa-

tion for the propagation of uncertainties for logarithms. Binding measurements not detected or not measured are labeled with ND.
aStatistical errors were propagated from the K

a
 measurements

bAll experiments were performed at 298 K
cDirect ITC titration
dCompetitive ITC titration with C1
eCompetitive ITC titration with C2
fBinding is too weak to be observed by 1 H NMR or ITC
gDetermined by 1 H NMR spectroscopy

 ID  Name  K
a
 (M−1)  ΔG (kcal/mol)  ΔH (kcal/mol)  TΔS (kcal/mol)b  n

CB8–G1 Methamphetaminea c 1.5 × 105 ± 0.1 × 105 −7.05 ± 0.04 −7.8 ± 0.3 −0.8 ± 0.3 1.00
CB8–G2 Fentanyla c 1.9 × 107 ± 0.1 × 107 −9.93 ± 0.03 −10.8 ± 0.3 −0.9 ± 0.3 1.00
CB8–G3 Morphinea d 3.4 × 108 ± 0.2 × 108 −11.63 ± 0.03 −13.6 ± 0.4 −2.0 ± 0.4 1.00
CB8–G4 Hydromorphonea d 1.7 × 108 ± 0.1 × 108 −11.22 ± 0.04 −15.8 ± 0.5 −4.6 ± 0.5 1.00
CB8–G5 Ketaminea e 10.9 × 108 ± 0.8 × 108 −12.32 ± 0.04 −17.3 ± 0.5 −5.0 ± 0.5 1.00
CB8–G6 Phenylcyclohexylpiperidine(

PCP)a e
2.1 × 1010 ± 0.2 × 1010 −14.07 ± 0.06 −14.9 ± 0.4 −0.8 ± 0.5 1.00

CB8–G7 Cocainea c 6.4 × 105 ± 0.5 × 105 −7.92 ± 0.04 −8.3 ± 0.3 −0.3 ± 0.3 1.00
TEMOA–G1 3-Hydroxy-2-naphthoic acid 1.3 × 105 ± 0.1 × 105 −6.96 ± 0.05 −17.0 ± 1.0 10.0 ± 1.0 1.00
TEMOA–G2 p-Bromophenol 14.8 × 105 ± 0.6 × 105 −8.41 ± 0.02 −15.7 ± 0.2 7.2 ± 0.2 1.00
TEMOA–G3 Cyclopentylacetic acid 17.4 × 103 ± 0.7 × 103 −5.78 ± 0.02 −7.9 ± 0.2 2.2 ± 0.2 1.00
TEMOA–G4 Piperonylic acid 4.6 × 105 ± 0.2 × 105 −7.72 ± 0.02 −17.7 ± 0.3 10.0 ± 0.3 1.00
TEMOA–G5 p-Toluic acid 7.8 × 104 ± 0.3 × 104 −6.67 ± 0.02 −14.2 ± 0.8 7.6 ± 0.7 1.00
TEETOA–G1 3-Hydroxy-2-napththoic acid 2.0 × 103 ± 0.2 × 103 −4.49 ± 0.05 −13.6 ± 0.2 9.2 ± 0.1 1.00
TEETOA–G2 p-Bromophenol 6.1 × 103 ± 0.2 × 103 −5.16 ± 0.02 −11.6 ± 0.3 6.5 ± 0.3 1.00
TEETOA–G3 Cyclopentylacetic acidf ND ± ND ND ± ND ND ± ND ND ± ND 1.00
TEETOA–G4 Piperonylic acid 1.9 × 103 ± 0.2 × 103 −4.47 ± 0.05 −13.0 ± 0.9 8.5 ± 0.8 1.00
TEETOA–G5 p-Toluic acidg 2.7 × 102 ± 0.1 × 102 −3.32 ± 0.02 ND ± ND ND ± ND 1.00
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CB8: “Drugs of Abuse Challenge”

In the CB8 drugs of abuse challenge, the top performing 
method was a force matching (FM) method, DDM/FEP/
MBAR/FM/RW[pm6s6], with RMSE, MAE, and R 2 values 
of 2.43 kcal/mol, 2.03 kcal/mol, and 0.59, respectively. 

The error and correlation metrics for the FM method 
were in general the best, while in few exceptions it was at 
least top 2. Behind the FM method was the SILCS/LGFE/
TIP3P/GCMC-MD method with RMSE, MAE, and R 2 val-
ues of 3.06 kcal/mol, 2.59 kcal/mol, and 0.40 respectively. 
Both DDM/FEP/MBAR/FM/RW[pm6s6] and SILCS/
LGFE/TIP3P/GCMC-MD methods achieved the best error 

Fig. 5   CB8 error and correla-
tion metrics for ranked methods. 
Shown here are violin plots of 
the distribution of performance 
for CB8. The error and cor-
relation metrics (from top to 
bottom) include RMSE, MAE, 
R 2 , and � . The plots describe 
the shape of the distribution for 
each prediction in the data-
set. For each error metric the 
median is indicated by a white 
circle in the violin plot. The 
black horizontal bars represent 
the first and third quartiles. The 
metrics and the relevant plots 
were generated by bootstrap-
ping samples with replace-
ment (including experimental 
uncertainties)
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Table 3   Error metrics for all (ranked and non-ranked) SAMPL8 methods for all host–guest systems

ID Sid RMSE (kcal/mol) MAE (kcal/mol) ME (kcal/mol) R2 m �

CB8
 SILCS/LGFE/
TIP3P/GCMC-
MD/rew

5 1.96 [1.09, 4.61] 1.71 [0.87, 4.09] − 0.23 [− 2.76, 
2.29]

0.38 [0.00, 0.96] 0.58 [− 0.71, 
1.80]

0.52 [− 0.58, 1.00]

 DDM/FEP/
MBAR/FM/
RW[pm6s6]*

28 2.46 [1.26, 3.94] 2.03 [1.03, 3.50] 0.68 [− 1.37, 
2.71]

0.59 [0.03, 0.98] 1.22 [− 0.05, 
2.32]

0.52 [− 0.33, 1.00]

 ML/NNET/
CORINA-
descriptors2

10 2.73 [1.58, 4.18] 2.41 [1.29, 3.85] − 1.43 [− 3.42, 
0.66]

0.01 [0.00, 0.95] 0.04 [− 0.71, 
0.63]

0.14 [− 1.00, 1.00]

 SILCS/LGFE/
TIP3P/GCMC-
MD*

3 3.06 [1.65, 5.07] 2.59 [1.31, 4.64] − 2.46 [− 4.50, − 
0.44]

0.40 [0.00, 0.96] 0.29 [− 0.49, 
1.19]

0.43 [− 0.65, 1.00]

 SILCS/LGFE/
TIP3P/GCMC-
MD/G5

4 3.16 [1.69, 5.19] 2.67 [1.35, 4.73] − 2.53 [− 4.61, − 
0.46]

0.33 [0.00, 0.96] 0.27 [− 0.54, 
1.12]

0.43 [− 0.71, 1.00]

 DDM/FEP/
MBAR/Para-
mchem/FM/
[gfn2gfn2]

19 3.47 [2.19, 4.94] 3.23 [1.89, 4.67] − 1.48 [− 3.93, 
1.12]

0.43 [0.00, 0.97] − 0.32 [− 0.94, 
0.39]

− 0.33 [− 1.00, 
0.56]

 ML/NNET/
CORINA-
descriptors1

9 3.50 [2.11, 4.96] 3.02 [1.58, 4.66] − 2.78 [− 4.59, − 
0.87]

0.14 [0.00, 0.95] 0.15 [− 0.47, 
0.71]

0.33 [− 0.71, 1.00]

 DDM/FEP/
MBAR/FM/
[pm6s6]

22 3.60 [2.36, 4.99] 3.23 [1.91, 4.74] 3.23 [1.66, 4.73] 0.64 [0.04, 0.99] 0.92 [0.08, 1.69] 0.62 [− 0.20, 1.00]

 DDM/FEP/
MBAR/FM/RW/
[wb97xd,s6]

29 3.67 [2.37, 5.12] 3.29 [1.93, 4.85] 2.89 [0.83, 4.79] 0.38 [0.00, 0.98] 0.75 [− 0.29, 
1.83]

0.33 [− 0.53, 1.00]

 DDM/FEP/
MBAR/Para-
mchem/FM/
[C36S6]

18 3.73 [2.21, 5.28] 3.17 [1.65, 4.94] 3.08 [1.17, 4.89] 0.41 [0.01, 0.96] 0.74 [− 0.31, 
1.82]

0.33 [− 0.33, 1.00]

 DDM/FEP/
MBAR/FM/
[mp2,b3lyp]*

15 3.77 [2.48, 5.26] 3.39 [2.05, 4.94] 2.50 [0.09, 4.66] 0.20 [0.00, 0.96] 0.57 [− 0.34, 
2.40]

0.52 [− 0.33, 1.00]

 DDM-SAMS/
GAFF-DMBIS/
TIP3P/MCMC-
SAMS/*

2 3.82 [2.33, 5.43] 3.25 [1.77, 5.08] 1.74 [− 1.08, 
4.29]

0.11 [0.00, 0.95] 0.49 [− 1.29, 
2.47]

0.05 [− 0.67, 0.88]

 APR/GAFF2-
AM1BCC/
TIP3P/US/TI**

33 3.85 [2.35, 5.46] 3.38 [1.90, 5.15] 2.87 [0.65, 5.01] 0.53 [0.08, 0.97] 1.18 [0.29, 2.75] 0.52 [− 0.20, 1.00]

 APR/GAFF2-
AM1BCC/
TIP3P/US/
MBAR**

34 3.89 [2.32, 5.60] 3.41 [1.89, 5.19] 2.86 [0.59, 5.03] 0.63 [0.21, 0.96] 1.40 [0.54, 2.91] 0.52 [− 0.20, 1.00]

 DDM/FEP/
MBAR/Param-
chem/FM/RW/
[wb97xd]

26 3.90 [2.08, 5.96] 3.41 [1.81, 5.33] 0.19 [− 3.01, 
3.07]

0.53 [0.05, 0.97] 1.68 [0.12, 3.21] 0.62 [− 0.18, 1.00]

 GFN2-xTB/Met-
aMD/GBSA/
ensemble/
Nobuffer*

1 4.06 [2.54, 5.68] 3.60 [2.00, 5.31] 2.89 [0.46, 5.15] 0.01 [0.00, 0.92] 0.08 [− 0.89, 
1.12]

− 0.05 [− 0.87, 
0.79]
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Table 3   (continued)

ID Sid RMSE (kcal/mol) MAE (kcal/mol) ME (kcal/mol) R2 m �

 APR/
OPENFF1.2.0-
AM1BCC/
TIP3P/US/TI**

31 4.07 [2.20, 5.89] 3.18 [1.53, 5.38] 2.89 [0.53, 5.22] 0.11 [0.00, 0.89] 0.38 [− 0.50, 
1.58]

0.24 [− 0.58, 0.88]

 APR/
OPENFF1.2.0-
AM1BCC/
TIP3P/US/
MBAR**

32 4.14 [2.47, 5.88] 3.45 [1.81, 5.47] 3.21 [0.97, 5.40] 0.14 [0.00, 0.92] 0.40 [− 0.48, 
1.55]

0.24 [− 0.65, 0.88]

 US/GAFF-
AM1BCC/
TIP3P/HRE-
MD/emp_corr*

11 4.15 [1.96, 6.42] 3.37 [1.60, 5.65] 2.20 [− 0.70, 
5.08]

0.74 [0.28, 0.99] 2.00 [0.86, 3.85] 0.43 [− 0.20, 1.00]

 LiGaMD/
q4MD/TIP4P/
enhanced-
sampling

16 4.28 [2.43, 6.39] 3.60 [1.90, 5.80] − 2.35 [− 5.22, 
0.57]

0.03 [0.00, 0.95] − 0.17 [− 1.82, 
0.97]

− 0.24 [− 1.00, 
0.76]

 DDM/FEP/
MBAR/C36

17 4.44 [2.51, 6.23] 3.76 [1.91, 5.78] 3.58 [1.33, 5.74] 0.24 [0.00, 0.93] 0.60 [− 0.42, 
1.85]

0.24 [− 0.41, 1.00]

 GAFF-RESP/
TIP3P/MD/
xtb-GFN2B/
Boltz-Avg

8 4.55 [2.64, 6.42] 3.98 [2.15, 5.93] − 0.92 [− 4.14, 
2.81]

0.00 [0.00, 0.95] 0.04 [− 1.70, 
1.68]

0.14 [− 1.00, 1.00]

 GAFF-RESP/
TIP3P/MD-
Classical/xtb-
GFN2B*

7 4.60 [2.50, 6.87] 3.87 [2.08, 6.13] 1.50 [− 1.90, 
4.90]

0.01 [0.00, 0.94] − 0.18 [− 1.62, 
1.48]

− 0.24 [− 1.00, 
0.60]

 DDM/FEP/
MBAR/FM/
[mp2s6]

21 4.68 [3.08, 6.22] 4.09 [2.36, 5.96] 4.09 [2.00, 5.93] 0.37 [0.00, 0.96] 0.74 [− 0.30, 
2.02]

0.43 [− 0.47, 1.00]

 MD/
fmB3LYP(H)-
fmMP2(G)/
TIP3P/REUS/*

13 4.68 [3.19, 6.20] 4.27 [2.64, 5.95] 2.52 [− 0.86, 
5.26]

0.16 [0.00, 0.94] 0.74 [− 0.37, 
3.25]

0.33 [− 0.37, 1.00]

 DDM/FEP/
MBAR/FM/
[gfn2,s6]

23 5.13 [3.64, 6.68] 4.79 [3.09, 6.47] 4.50 [2.23, 6.45] 0.23 [0.00, 0.98] 0.52 [− 0.72, 
1.52]

0.43 [− 0.60, 1.00]

 DDM/FEP/
MBAR/FM/
RW/[blyp,s6]

24 5.13 [2.52, 8.00] 4.28 [2.32, 6.87] 0.08 [− 4.29, 
3.49]

0.42 [0.01, 0.98] 1.80 [− 0.14, 
4.06]

0.52 [− 0.26, 1.00]

 DDM/FEP/
MBAR/FM/
[pm6pm6]

20 5.29 [2.87, 7.44] 4.22 [1.99, 6.80] − 3.94 [− 6.68, − 
1.10]

0.13 [0.00, 0.94] − 0.31 [− 1.63, 
0.35]

− 0.52 [− 1.00, 
0.53]

 DDM/FEP/
MBAR/FM/RW/
[blyp,s6BLUR]

25 5.53 [3.44, 7.69] 5.01 [3.11, 7.11] 3.90 [0.65, 6.83] 0.56 [0.06, 0.95] 1.73 [0.34, 3.63] 0.52 [− 0.29, 1.00]

 ABFE/Parsley-
GAFF-BCC/
TIP3P/MD/
NoBuffer2

14 5.72 [3.24, 13.27] 5.16 [2.57, 11.84] 5.16 [− 1.01, 
11.36]

0.22 [0.00, 0.95] 0.51 [− 2.41, 
3.74]

0.33 [− 0.79, 1.00]

 ABFE/Parsley-
GAFF-BCC/
TIP3P/MD/
NoBuffer1*

30 5.72 [3.22, 13.09] 5.16 [2.53, 11.73] 5.16 [− 1.01, 
11.30]

0.22 [0.00, 0.95] 0.51 [− 2.41, 
3.72]

0.33 [− 0.79, 1.00]

 DDM/FEP/
MBAR/FM/
RW/[wb97xd-
BLUR]

27 5.98 [4.03, 7.91] 5.54 [3.65, 7.52] 4.40 [0.97, 7.30] 0.62 [0.06, 0.97] 1.92 [0.34, 3.70] 0.43 [− 0.29, 1.00]
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Table 3   (continued)

ID Sid RMSE (kcal/mol) MAE (kcal/mol) ME (kcal/mol) R2 m �

 EE-MCC/
GAFF2-AM1-
BCC/TIP3P/
MD/*

6 6.64 [4.39, 8.82] 5.97 [3.63, 8.42] 5.97 [3.39, 8.42] 0.48 [0.04, 0.95] 1.21 [0.11, 2.65] 0.39 [− 0.29, 1.00]

 US/GAFF-
AM1BCC/
TIP3P/HRE-
MD

12 9.36 [5.05, 18.19] 8.80 [4.07, 16.52] 8.80 [1.24, 16.37] 0.70 [0.00, 0.97] 1.77 [− 1.76, 
5.59]

0.52 [− 0.60, 1.00]

GDCC–TEMOA and TEETOA
 DDM/AMOEBA/
BAR*

44 0.88 [0.46, 1.56] 0.72 [0.36, 1.36] 0.10 [− 0.72, 
0.84]

0.78 [0.20, 0.98] 0.97 [0.43, 1.38] 0.79 [0.24, 1.00]

 ATM/GAFF2-
AM1BCC/
TIP3P/HREM*

37 1.59 [1.10, 3.96] 1.25 [0.87, 3.43] − 0.39 [− 2.33, 
1.83]

0.88 [0.14, 0.98] 1.67 [0.46, 3.03] 0.71 [0.00, 1.00]

 PMF/GAFF2-
AM1BCC/
TIP3P/
MD-US*

38 1.59 [1.13, 4.02] 1.31 [0.88, 3.53] − 0.16 [2.17, 
2.03]

0.79 [0.06, 0.97] 1.51 [0.30, 2.97] 0.71 [− 0.08, 1.00]

 AM1BCC/
MMPBSA/
TIP4PEW/
MD_NR3

42 1.98 [1.15, 3.28] 1.69 [0.91, 2.96] 0.77 [− 0.82, 
2.35]

0.00 [0.00, 0.83] 0.02 [− 0.75, 
0.70]

0.18 [− 0.76, 0.82]

 AM1BCC/
MMPBSA/TIP-
4PEW/MD*

43 2.05 [1.20, 3.30] 1.65 [0.91, 2.97] 1.05 [− 0.52, 
2.57]

0.02 [0.00, 0.85] 0.06 [− 0.66, 
0.75]

0.18 [− 0.71, 0.83]

 AM1BCC/
MMPBSA/
TIP4PEW/
MD_NR2

41 2.10 [1.20, 3.43] 1.69 [0.93, 3.10] 1.04 [− 0.57, 
2.67]

0.00 [0.00, 0.84] 0.02 [− 0.75, 
0.69]

0.18 [− 0.77, 0.82]

 ML/NNET/
CORINA-
descriptors-8*

39 2.39 [1.44, 3.85] 2.16 [1.16, 3.51] 0.58 [− 1.44, 
2.58]

0.60 [0.00, 0.94] − 0.35 [− 1.13, 
0.38]

− 0.64 [− 1.00, 
0.57]

 SILCS/LGFE/
TIP3P/GCMC-
MD*

36 2.40 [1.38, 3.75] 2.10 [1.12, 3.38] − 0.24 [− 2.17, 
1.70]

0.26 [0.00, 0.89] − 0.32 [− 1.05, 
0.47]

− 0.29 [− 1.00, 
0.57]

 SILCS/LGFE/
TIP3P/GCMC-
MD_NR

35 2.51 [1.34, 4.50] 1.81 [1.02, 3.90] − 1.69 [− 3.66, 
0.26]

0.00 [0.00, 0.88] − 0.01 [− 1.07, 
0.92]

0.07 [− 0.83, 0.83]

 APR/
OPENFF1.2.0-
AM1BCC/
TIP3P/US/TI**

48 2.97 [1.27, 4.80] 2.24 [0.99, 4.07] − 0.76 [− 3.09, 
1.36]

0.48 [0.09, 0.94] 1.55 [0.43, 3.44] 0.50 [− 0.09, 0.92]

 APR/
OPENFF1.2.0-
AM1BCC/
TIP3P/US/
MBAR**

49 2.98 [1.31, 4.86] 2.24 [1.02, 4.07] − 0.83 [− 3.14, 
1.24]

0.48 [0.09, 0.92] 1.54 [0.39, 3.48] 0.50 [− 0.08, 0.92]

 APR/GAFF2-
AM1BCC/
TIP3P/US/
MBAR**

51 3.24 [1.27, 5.29] 2.30 [0.97, 4.37] − 1.49 [− 3.82, 
0.62]

0.35 [0.02, 0.90] 1.24 [0.07, 3.24] 0.43 [− 0.28, 0.84]

 APR/GAFF2-
AM1BCC/
TIP3P/US/TI**

50 3.31 [1.41, 5.30] 2.47 [1.11, 4.45] − 1.29 [− 3.68, 
0.96]

0.26 [0.00, 0.87] 1.08 [− 0.11, 
3.24]

0.29 [− 0.36, 0.83]

 LiGaMD/
GAFF2/RESP/
TIP4P/Sam-
pling

47 4.48 [1.46, 6.77] 3.07 [1.10, 5.66] 1.72 [− 1.10, 
4.79]

0.00 [0.00, 0.76] − 0.02 [− 1.78, 
1.92]

0.07 [− 0.67, 0.75]
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metrics, however, they did not have the best correlation, 
which will be discussed shortly. Ordered by the RMSE 
error metric, the next six methods had values ranging from 
3.77 kcal/mol to 4.68 kcal/mol while the lowest two meth-
ods ranged from 5.72 to 6.64 kcal/mol (Table 3; Fig. 5). 
The results showcase the diverse and variable performance 
of methods for this challenge.

Different metrics can be used to rank methods, and the 
ranking can be different depending on the metric chosen. For 
example, the MAE can be used to rank the submissions for 
SAMPL8, since this error metric is not as sensitive (com-
pared to RMSE or R 2 ) to outliers and it directly measures a 
method’s accuracy. Using MAE we see a similar ranking of 
methods as with RMSE (Fig. 5).

The correlation metrics for all methods were relatively 
poor (Fig. 6) for this dataset. Only two methods achieved 
an R 2 or a � value over 0.50 (Table 3). The statistics sug-
gest there may be some systematic error for a few methods. 
For example, some methods achieve high correlations along 
with low accuracy, indicating systematic errors (i.e. the US/
GAFF-AM1BCC/TIP3P/HRE-MD/emp_corr method had 
high correlation with R 2 of 0.74, but RMSE and MAE val-
ues that were poor at 4.15 and 3.37 kcal/mol, respectively).

It is worth noting that two sets of binding enthalpy predic-
tions were submitted for CB8, but this was too few to allow 
statistical analysis. The methods were the ABFE/Parsley-
GAFF-BCC/TIP3P/MD/NoBuffer1 and the more accurate 
(for predicting binding enthalpy) entropy-enthalpy based 
method EE-MCC/GAFF2-AM1-BCC/TIP3P/MD/. Although 
the EE-MCC/GAFF2-AM1BCC/TIP3P/MD method yielded 
poor binding free energy predictions, binding enthalpy pre-
dictions were within 2 kcal/mol for 4/7 systems. On the other 
hand, the ABFE/Parsley-GAFF-BCC/TIP3P/MD/NoBuffer1 

predicts 1/7 systems within 2 kcal/mol. The correlation was 
modest with a few outliers for the entropy-enthalpy method, 
while there was a larger error and there appeared to be some 
systematic errors for the ABFE/Parsley-GAFF-BCC/TIP3P/
MD/NoBuffer1 method (Fig. S13). The EE-MCC/GAFF2-
AM1-BCC/TIP3P/MD/ and ABFE/Parsley-GAFF-BCC/
TIP3P/MD/NoBuffer1 methods used the same energy model, 
but the ABFE/Parsley-GAFF-BCC/TIP3P/MD/NoBuffer1 
method did not model the buffer concentration. These mod-
eling differences indeed seem to affect results substantially, 
with the RMSE differing by about 1 kcal/mol. The effect 
of buffer conditions on the binding enthalpy appears to be 
more significant for specific systems, and these observations 
warrant further studies.

GDCCs: sterics and flexibility challenge

Overall the predictive accuracy of methods for the GDCC 
dataset was relatively good. Several methods achieved 
RMSE and MAE values below 2 kcal/mol, while the major-
ity were below 3 kcal/mol. Half of the methods had R 2 and 
� values over 0.5. Overall, the top performing method for 
the GDCC dataset was DDM/AMOEBA/BAR, which had the 
best RMSE and MAE values of 0.88 and 0.72 kcal/mol, as 
well as � values of 0.79 (Table 3; Fig. 7). The ATM/GAFF2-
AM1BCC/TIP3P/HREM method came in second overall for 
the GDCC dataset. Although we observe that computational 
predictive power is higher overall for the GDCC dataset, 
there are still methods which have very poor predictive 
power with RMSE and MAE values as high as 4.91 and 
3.95 kcal/mol and coefficients of determination as low as 
0.01 (Fig. 7; Table 3).

Table 3   (continued)

ID Sid RMSE (kcal/mol) MAE (kcal/mol) ME (kcal/mol) R2 m �

 DDM/C36/
TIP3P/MD/
MBAR*

45 4.52 [2.01, 6.71] 3.45 [1.62, 5.84] − 3.45 [− 5.79, − 
1.34]

0.04 [0.00, 0.78] 0.35 [− 0.98, 
2.00]

0.29 [− 0.57, 0.92]

 MD/Param-
Chem/TIP3P/
REUS/*

46 4.91 [2.50, 7.18] 3.95 [2.02, 6.33] − 3.90 [− 6.29, − 
1.69]

0.01 [0.00, 0.68] 0.18 [− 1.18, 
1.63]

0.04 [− 0.58, 0.76]

 AM1BCC/
MMPBSA/
TIP4PEW/
MD_NR1

40 9.26 [7.30, 11.28] 8.93 [7.00, 10.95] 8.93 [7.00, 10.95] 0.00 [0.00, 0.73] 0.06 [− 1.18, 
0.98]

0.18 [− 0.67, 0.74]

The root mean square error (RMSE), mean absolute error (MAE), signed mean error (ME), coefficient of correlation (R2 ), slope (m), and Kend-
all’s rank correlation coefficient (Tau) were computed via bootstrapping with replacement. Shown are results for individual host categories, with 
upper and lower bounds of 95% confidence intervals shown in brackets. Statistics do not include optional host–guest systems CB8–G8, CB8–G9, 
and TEMOA–G3. Each method has an assigned unique submission ID (sid). An asterisk next to the method’s name denotes a ranked submission, 
and a double asterisk denotes a reference calculation
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Fig. 6   CB8 correlation plots for ranked methods. Shown here are 
correlation plots comparing calculated versus experimental values 
for the DDM/FEP/MBAR/FM/RW[pm6s6], SILCS/LGFE/TIP3P/
GCMC-MD, DDM/FEP/MBAR/FM/[mp2,b3lyp], DDM-SAMS/
GAFF-DMBIS/TIP3P/MCMC-SAMS/, GFN2-xTB/MetaMD/GBSA/

ensemble/Nobuffer, US/GAFF-AM1BCC/TIP3P/HRE-MD/emp_corr, 
GAFF-RESP/TIP3P/MD-Classical/xtb-GFN2B, MD/fmB3LYP(H)-
fmMP2(G)/TIP3P/REUS/, ABFE/Parsley-GAFF-BCC/TIP3P/MD/
NoBuffer1, and EE-MCC/GAFF2-AM1-BCC/TIP3P/MD ranked pre-
dictions for the CB8 dataset
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Fig. 7   GDCC (TEMOA and TEETOA) error and correlation metrics 
for ranked methods. Shown here are violin plots of the distribution 
of performance for GDCC hosts. The error and correlation metrics 
(from top to bottom) include RMSE, MAE, R 2 , and � . The plots 
describe the shape of the distribution for each prediction in the data-

set. For each error metric the median is indicated by a white circle in 
the violin plot. The black horizontal bars represent the first and third 
quartiles. The metrics and the relevant plots were generated by boot-
strapping samples with replacement (including experimental uncer-
tainties)
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Binding free energy of some host–guest systems were 
more difficult to predict accurately

Some host–guest complexes of the CB8 dataset proved to be 
more difficult to predict accurately compared to other such 
complexes in SAMPL8. This may not come as a surprise 
since CB8 guests were drug-like molecules with more rota-
tional degrees of freedom compared to GDCC guests, thus 
more complex to model accurately. GDCC guests were more 
fragment-like and relatively rigid.

As shown in Fig. 8, there were 7 host–guest systems in 
SAMPL8 which had RMSE of about 4 kcal/mol or greater. 
Of these, indeed the majority of the molecules with the low-
est accuracy (CB8–G4, CB8–G7, CB8–G3, CB8–G6, and 
CB8–G1) were in the CB8 dataset. The majority of methods 
tended to predict binding free energies for these systems to 
be less favorable, and the largest ΔΔG errors were more than 
8 kcal/mol too favorable (Fig. S14). Guests G3 (morphine), 
G4 (hydromorphone), and G7 (cocaine) were the more com-
plex guests in the SAMPL8 host–guest challenge, with the 
presence of multi-ring heterocycles at their core (Fig. 1), 

and had the largest errors for any host–guest complex in 
this challenge.

At the cores of guests G3, G4, and G7 are nitrogen cent-
ers which may function as chiral centers if protonated. In 
addition, there are some uncertainties on the protonation 
states for these guests when bound to CB8. It has been 
shown that protonation state of guests upon binding to 
cucurbiturils are modulated due to pKashifts. Specifically, 
previous work found exceptions to the common assump-
tion that cucurbiturils selectively bind protonated/cationic 
ammonium-based guests [64], and perhaps some SAMPL8 
guests fit this exception. The majority of participants mod-
eled the protonation states of the guests based on the pKain 
solution, however, assuming a substantial pKashift occurs 
upon binding, CB8 perhaps binds a different protomer of 
the guests, perhaps even in all cases.

For the GDCC dataset, binding free energy calculations 
had greater errors for guests G2 and G4 in the presence of 
the TEMOA host (Fig. 8). The guests differ modestly in 
their amphiphilic character compared to other GDCC guests, 
where guests G2 and G4 contain two polar edges with a 
hydrophobic center (Fig. 2). Thus, their interactions with the 
host and hydrating cavity waters and/or bulk solvent would 
differ. These characteristics for G2 and G4 would have 
greater modeling and simulation implications in the pres-
ence of TEMOA, where the binding mechanism is believed 
to involve the guest displacing cavity waters. Perhaps this 
water displacement poses particular modeling challenges, in 
terms of sampling or other issues, warranting further investi-
gation. The higher predictive power of the AMOEBA/DDM/
BAR method suggests polarization effects and change(s) in 
dipole moment of molecules in the cavity environment are 
a source of error(s).

On the other hand, binding free energy predictions for 
G1 and G5 with TEMOA were more accurate. G1 and G5 
are more amphipathic, with a single polar end, a carbox-
ylic acid, and the other end being strictly hydrophobic. The 
hydrophobic end is buried in the cavity interacting with the 
host. The carboxylic acid points away from the cavity and 
interacts with the bulk solvent and not with waters in the 
TEMOA cavity upon binding. Compared to G2 and G4, the 
amphiphilic character of G1 and G5 could explain the higher 
predictive accuracy for these systems even without explicitly 
modeling polarizing effects.

In contrast, binding free energy calculations had greater 
errors for guests G1 and G5 in the presence of the TEE-
TOA host (Fig. 8). Meanwhile, between the two guests, 
errors were larger for G1 compared to G5. We speculate 
this may be due to the rearrangement of the ethyl groups at 
the cavity entrance. Particularly, we could expect the ethyl 
group rearrangement to be of greater importance for TEE-
TOA–G1, since G1 is larger and would likely require (more 
of) the ethyl substituents to point away from the cavity for 

Fig. 8   RMSE and ME statistics by host–guest system for ranked 
methods. Shown here are the binding free energy error metrics by 
host–guest system (CB8, TEMOA, and TEETOA) across ranked 
methods. The root mean square error (RMSE) and mean signed error 
(ME) for ΔG were computed via bootstrapping with replacement, 
which included experimental uncertainties, for all host–guest sys-
tems. This analysis includes all ranked methods submitted, but does 
not include predictions which were considered optional (CB8–G8, 
CB8–G9, and TEMOA–G3) in the analysis. The black error bars in 
the plots correspond to the 95-percentile bootstrap confidence inter-
vals. Host–guest systems are color coded by host, where CB8 is rep-
resented by blue, TEMOA in yellow, and TEETOA in red
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binding. However, this would be difficult to know without 
follow up studies of this particular system for methods used 
in SAMPL8.

Accuracy of predicting the tightest and weakest binders

In SAMPL8, methods were surveyed for their ability to 
correctly predict the tightest and weakest binders in each 
dataset. The tightest binders across host–guest datasets were 
CB8–G6, TEMOA–G2, and TEETOA–G2. As expected, 
methods that predict the tightest binders correctly are typi-
cally the top performing methods in each host–guest data-
set (such as DDM/FEP/MBAR/FM/RW[pm6s6], DDM/FEP/
MBAR/FM/[mp2,b3lyp], DDM/AMOEBA/BAR, and ATM/
GAFF2-AM1BCC/TIP3P/HREM).

The weakest binders of SAMPL8 were CB8–G1, 
TEMOA–G3, and TEETOA–G5. For TEETOA, here we 
default to TEETOA–G5 as the weakest binder since TEE-
TOA–G3 was not detected and it’s uncertain if this is a 
binder at all. No method predicted CB8–G1 or TEMOA–G3 
correctly as the weakest binders for their respective datasets, 
while only two methods (DDM/AMOEBA/BAR and ATM/
GAFF2-AM1BCC/TIP3P/HREM) predicted TEETOA–G5 
correctly as the weakest binder. Overall, most methods do 
a better job predicting binding of tight binders but perform 
poorly for particularly weak binders.

Another example where methods have difficulties in rec-
ognizing weak binders is with TEETOA–G3. As discussed 
previously, there was no clear evidence of binding observed 
experimentally for TEETOA–G3 at the detection threshold 
via ITC or H NMR, indicating that the ΔG would be more 
positive than −0.95 kcal/mol. None of the ranked submis-
sions predicted this correctly. In fact, the computed binding 
free energies for TEETOA–G3 were all too favorable. The 
computed ΔG ranged from −1.42 to −7.17 kcal/mol.

All submission analysis: ranked and non‑ranked 
including reference calculations

In general, participants submit predictions generated by 
methods from one of various categories. The options 
given for the method category are “alchemical”, “physi-
cal”, “mixed”, or “other”, with the last of these including 
a variety of other approaches including machine learning 
for example. Many methods used to generate free energy 
predictions were free energy methods based on statistical 
mechanics, and these could be divided into pathway-based 
and alchemical methods. These two categories of method 
should give equivalent answers, but that may not always be 
the case. It is important to ensure consistency of ΔG esti-
mates between independent methods, to increase confidence 
in their implementation and drive progress in the field. Here, 
we survey and compare ranked methods, particularly on 

similar methods based on the same energy model for con-
sistency in the computed ΔG.

In the GDCC dataset, we cross compared the predictions 
of similar approaches. The ATM/GAFF2-AM1BCC/TIP3P/
HREM and PMF/GAFF2-AM1BCC/TIP3P/MD-US meth-
ods used the same energy model and were intended (by the 
participants) for comparison to one another and for cross 
validation of the newer ATM method. The methods differ in 
that the ATM method is alchemical while the PMF method is 
path-based, and each utilizes a different sampling approach 
(see the literature [82] for more details). Both methods have 
similar accuracy in binding free energy predictions, with an 
RMS difference between these methods of 0.40 and 0.73 
kcal/mol for TEMOA and TEETOA, respectively.

The top two methods, DDM/AMOEA/BAR and ATM/
GAFF2-AM1BCC/TIP3P/HREM, made different predic-
tions despite similar overall accuracy. The RMS difference 
between these methods was 1.79 kcal/mol for TEMOA and 
2.30 kcal/mol for TEETOA. These methods used similar 
approaches but differ in the choice of force field (AMOEBA 
vs. GAFF2), and outliers between the methods highlight the 
current limitations and advantages of these models.

Comparing predictions of APR/GAFF2-AM1BCC/TIP3P/
US/TI (reference calculations) with the top performing 
PMF/GAFF2-AM1BCC/TIP3P/MD-US method also using 
GAFF2, we observe an RMS difference of 2.97 and kcal/
mol for TEMOA and 3.32 kcal/mol for TEETOA. As indi-
cated by these RMS differences, the predictions of the two 
methods indeed vary more for TEETOA systems (for 4 of 
5 guests, predictions differ by at least 2 kcal/mol). One way 
in which the methods differ is that in reference calculations 
conformational restraints were applied on the TEETOA 
host cavity, so the fact that these methods yield different 
results suggests a binding mechanism involving TEETOA 
conformational change(s), likely of the ethyl side chains. In 
addition, the methods differed in their computed binding 
free energies for TEMOA–G2 and TEMOA–G3 by more 
than 4 kcal/mol in each case, while the remaining systems 
(TEMOA–G1, TEMOA–G4, and TEMOA–G5) were all 
within 0.13 kcal/mol of one another. The discrepancy for 
TEMOA–G2 is likely due to modeling differences of G2, 
where the reference had a deprotonated (charged) hydroxyl 
while in the PMF approach both protonation states of the 
hydroxyl form were considered. The use of conformational 
restraints of TEMOA may play a role rendering G3 particu-
larly sensitive to this, though the reason for the discrepancy 
between TEMOA–G3 predictions with these two methods 
is not obvious.

Many participants included additional binding free 
energy predictions as “non-ranked” submissions. For the 
most part, the difference between additional submissions is 
a single change such as using a different force field, a dif-
ferent sampling technique, or a different charging scheme. 
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The submissions have also been analyzed and included 
in Table 3. Here we survey the sensitivity and impact of 
such changes on binding free energy predictions for the 
SAMPL8 host–guest challenge (for ranked and non-ranked 
methods).

One group provided a total of 13 different CB8 predic-
tion sets based on MD free energy calculations with param-
eters from a FM protocol as previously applied in SAMPL6; 
some of their prediction sets, including their best ranked 
set of predictions, then used reweighting to re-evaluate 
free energies with a quantum mechanical energy function. 
The best approach (which was also the ranked approach) 
in this case used force-matched PM6-D3H4 parameters for 
the CB8 guests (DDM/FEP/MBAR/FM/[pm6pm6]), and 
yielded an RMS error of 2.46 kcal/mol. This suggests that 
hybrid approaches involving MD-based simulations with 
QM reweighting may now be able to achieve some measure 
of success.

Three different SILCS methods were applied to CB8 and 
achieved reasonable success; the top-performing method 
was a non-ranked submission which included empirical 
weighting factors applied to the computed grid free energies 
in order to improve agreement with experimental results for 
CB8 in SAMPL6. This empirical tuning resulted in better 
performance here than for the other two SILCS-based meth-
ods (with an overall RMS error of 1.96 kcal/mol), though 
this submission (SILCS/LGFE/TIP3P/GCMC-MD/rew) was 
not ranked. This seems to further illustrate that empirical 
corrections to computed binding free energies can improve 
accuracy, at least in some cases.

Aside from these cases, it has been difficult to trace dif-
ferences in outcomes to single factors such as the choice of 
method or force field. In general, we encourage participants 
in future challenges to attempt to isolate the contributions of 
individual choices to their overall accuracy, either by coor-
dinating with other participants or by the use of non-ranked 
submissions like these.

It’s worth briefly speculating as to why GDCC binding 
affinity predictions may be more accurate than those for 
CB8. We speculate that methods achieve greater predictive 
power for GDCC systems because the guests are typically 
more rigid and “simpler” as opposed to guests in the cucur-
bituril datasets in this challenge, though also the availability 
of empirical data from prior CB8 studies may be helpful to 
tune methods (as indeed several methods using empirical 
corrections saw improved performance here). Sampling of 
water displacement and rearrangement has been reported to 
be a separate issue as well, or possibly the origin of problems 
in CB8. The binding of guests to CB8 also involves water 
displacement, but it is possible that additional complications 
not explicitly accounted for (i.e. pKashifts, protonation state 
modulation) contribute to the larger error in predictions.

Reference calculations and retrospective tests

In this section we compare the two sets of reference calcula-
tions, consider additional retrospective tests with reference 
calculations, and analyze the results. Overall, reference cal-
culations performed at about the 50th percentile (Table 3), 
and gave similar performance as top methods by a few error 
metrics. The retrospective studies included modeling differ-
ent protonation states of guests and examining their effect 
on binding free energy predictions for CB8. For the GDCC 
dataset, we ran tests to study the effects of side chain orien-
tation and/or its sampling and guest position/sampling on 
predictions.

CB8 has been featured in several SAMPL iterations 
(SAMPL5, SAMPL6, and SAMPL8), and in each of these 
challenges, CB8 binding affinities have been more difficult to 
predict accurately compared to those for other host families. 
As discussed above, previous experimental work reported 
protonation state modulation of guests upon binding to CB8, 
thus we thought that this could play a role here for guests 
with multiple protonation states potentially accessible at pH 
7.4. Indeed, when we modeled the guests in different proto-
nation states compared to our initial predictions, the bind-
ing ΔG estimate changed significantly and in some cases by 
more than 2 kcal/mol (Table S1). In addition, for each of the 
guests [G1–G5, and G7 (see Table S1)], predicted binding 
free energies using one of the protonation states (neutral or 
protonated) were in agreement with experimental values, 
though the protonation state yielding best agreement varied 
by guest. These findings are in-line with previous literature 
results, and may warrant further attention from participants, 
since most participants did not account for possible protona-
tion state changes for any guest other than G5.

Our reference calculations encountered particularly 
severe problems for some host–guest complexes. For exam-
ple, the TEETOA–G1 prediction for reference calculations 
was unfavorable at 2.79 kcal/mol, whereas experimentally 
binding was favorable. In the analysis of the initial simula-
tion the guest leaves the TEETOA pocket, due to the ethyl 
groups remaining oriented towards the cavity. We tested how 
the host conformation affected binding by restraining the 
host ethyl groups to keep them oriented towards the cavity, 
and found that in this conformation the predicted free energy 
was 14.87 ± 0.39 kcal/mol. Upon analysis of the new simula-
tion, we observed the guest also leaving the TEETOA cavity, 
and a poor overlap profile for the attach phase was observed, 
similar to that of the initial simulation without restraining 
ethyl groups. In a separate simulation, we restrained all ethyl 
groups to point away from the cavity resulting in a predicted 
binding affinity of −1.04 ± 0.54 kcal/mol. Restraining the 
ethyl groups in the outward orientation improved our overlap 
profile, guest G1 remained in the TEETOA cavity, improved 
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agreement with experiment, and was in agreement with the 
similar PMF approach.

We also examined two different small-molecule force 
fields and observed similar performance. Particularly, we 
compared our two sets of reference calculations which dif-
fer only in the force field used (GAFF2 or OpenFF Parsley 
v1.2.0), and found that the force fields have similar perfor-
mance (where on average predictions were within 0.5 kcal/
mol of one another by comparing their predicted binding 
affinities). However, for certain systems (CB8–G5, CB8–G6, 
CB8–G7, TEMOA–G2, TEMOA–G4, TEETOA–G4, and 
TEETOA–G5) there is disagreement in the calculated values 
between GAFF2 and Parsley. The RMS difference between 
the two force fields were 3.00, 1.14, and 1.17 kcal/mol for 
CB8, TEMOA, and TEETOA, respectively.

Sensitivity of TEETOA host conformation to the guest 
orientation in the cavity

The GDCC TEETOA host has some degree of conforma-
tional flexibility which can be modulated by binding and by 
the guest orientation and identity. Thus, we performed addi-
tional calculations in which we applied the BLUES approach 
[100] to better understand the preferred orientations of the 
host’s four ethyl groups near the cavity opening. BLUES 
uses a hybrid of nonequilibrium candidate Monte Carlo 
(NCMC) and MD moves to enhance sampling of ligand 
binding modes for fragment-like small molecules in binding 
sites [100–102], rearrangements of receptor sidechains on 
ligand binding [103], rotation of internal torsions in ligands 
[104], and rearrangement of buried water molecules on 
ligand binding [105, 106]. More details of the approach can 
be found in prior work [100]. The BLUES package is freely 
available on GitHub at https://​github.​com/​Moble​yLab/​blues. 
Here, we used BLUES moves to enhance sampling of the 
host ethyl groups in particular.

In our BLUES simulation, for each iteration, we randomly 
selected one of the four ethyl groups and applied a NCMC 
move. Instead of random angles, we biased our move pro-
posals between predefined states of the ethyl group on the 
host. Specifically, a NCMC move was only proposed to 
either a state where the ethyl group pointed outward ( −150◦ 
to −50◦ ) or inward (50◦ to 150◦ ), and only beginning from 
these states. This was the strategy we used in previous work 
[103] for more efficient sampling. In BLUES, each iteration 
was composed of a NCMC move and m MD steps (e.g., 
NCMC → MD → NCMC → MD). Since we focused NCMC 
moves on those two favorable states of the ethyl group, an 
NCMC move was only proposed if the current state fell 
within one of the two states. Otherwise, an additional m 
MD steps were performed. To ensure detailed balance, the 
ethyl group angle was evaluated after a NCMC move was 

executed so that the move was rejected if the resulting state 
fell outside of the two favorable states.

We started our simulations from a bound state TEE-
TOA–G1 structure. We first minimized the system until 
forces were below a tolerance of 2.39 kcal/mol (10 kJ/mol 
by default via OpenMM) using the L-BFGS optimization 
algorithm [107]. Then 1 ns of NVT equilibration was per-
formed at 298.15 K with all heavy atoms on the host and 
guest restrained (50 kcal/mol/Å2 ). Long-range electrostat-
ics were calculated using PME [108, 109] with nonbonded 
cutoffs of 10 Å. After that a series of NPT equilibration (2 ns 
for each) with decreasing restraints (a decrement of 5 kcal/
mol/Å2 in each run) were performed until the restraints were 
fully turned off. Then another 2 ns NPT run was performed 
without any restraints. The resulting conformation was con-
firmed as a bound state before the production phase.

We initialized BLUES simulations with five replicates. 
For each iteration, 1 NCMC move and 1000 MD steps 
were executed with hydrogen mass repartitioning scheme 
with 4 fs integration time step [110]. Each NCMC move 
was executed for 4400 steps (400 steps between lambda 
0.0 and 0.2, 3600 steps between lambda 0.2 and 0.8, and 
400 steps between lambda 0.8 to 1.0). This approach 
increased move acceptance in previous work [103].

3900 Iterations BLUES simulations were performed for 
each replicate. After checking collected data, we found 
(1) the ethyl groups orientations changed with the guest 
orientation in the pocket and (2) the guest unbound in 
in all 5 replicates. These results indicated the difficulty 
of adequate sampling of these ethyl groups and restraints 
were needed for both efficient sampling and keeping the 
host–guest in the bound state.

To seed more simulations, we clustered the trajectory 
where the host–guest was maintained in the bound state 
during the simulation using a distance based k-centers 
clustering method. The distance was computed between 
two carbon atoms (guest: C2, host: C9, Fig. S15A) that 
can represent different orientations of the guest and the 
distance between the guest and host sampled in the simu-
lation. We picked four states of which three (States 1–3, 
Fig. S16) were the most populated and represent different 
orientations of the guest in the cavity. The remaining one 
(State 4, Fig. S16) was a conformation where the guest is 
right at the entrance of the host pocket. Position restraints 
with a spring constant of 20 kcal/mol/Å2 were applied 
on the heavy atoms of the guest and two carbon atoms 
(C33 and C34, Fig. S15B) on the host. Three replicates of 
additional BLUES simulations were performed for each 
starting point and each replicate included 5000 iterations 
NCMC moves.

The additional BLUES simulations show that these 
four ethyl groups are very sensitive to the orientation of 
the guest in the cavity. Figure S17 shows the distribution 

https://github.com/MobleyLab/blues
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of dihedral angles of the four ethyl groups sampled in 
BLUES simulations started from different conformations 
shown in Fig. S16. The position restraints on the guest 
and host ensure the orientation of the guest maintained the 
same in the context of simulations. Our results show that 
the ethyl groups’ preferred orientations are dependent on 
the orientation of the guest (Fig. 9; Fig. S17). For example, 
in Fig. 9, one ethyl group (EG4) prefers the inward orienta-
tion whereas the outward orientation is dominated in the 
other three ethyl groups (EG1–3). This guest orientation 
is also the most populated one from clustering of initial 
BLUES simulations. In Fig. 9B, we can see two ethyl 
groups (EG1–2) mainly point inward whereas the other 
two groups (EG3–4) always point outward in simulations. 
When the guest is at the entrance of the pocket (not bound 

yet), the four ethyl groups share a similar preference of 
orientation because of the symmetry of the host (Fig. 9D). 
Since the guest is not bound, more space is available in the 
pocket and all four ethyl groups can turn either inward or 
outward. The distribution of the four ethyl group orienta-
tions from simulations can be found in Fig. S17.

Conclusions and lessons learned

The SAMPL8 host–guest challenge provided a platform to 
test the reliability and accuracy of current computational 
methods and tools to predict absolute binding free energies. 
As part of this challenge, hosts CB8 and TEMOA were 
revisited with new guest libraries, including a new host in 
the Gibb deep cavity cavitand family (of which the “octa-
acid” host, common to several previous SAMPLs, is a mem-
ber), TEETOA.

Similar to previous iterations of SAMPL, judging by the 
performance of submissions the CB8 systems posed a big-
ger challenge for participants. Five CB8 systems (CB8–G4, 
CB8–G7, CB8–G3, CB8–G6, and CB8–G1) all had an 
RMSE greater than 4 kcal/mol (Fig. 8; Fig. S14), com-
pared to two in GDCC (TEMOA–G4 and TEETOA–G4). 
CB8 guests contained more complex fused ring systems at 
their nitrogen centers, and had additional protonation states 
that perhaps needed to be considered, likely complicating 
predictions.

The best ranked methods for CB8 were a free energy 
method based on force-matching (FM; DDM/FEP/MBAR/
FM/RW[pm6s6]) followed by SILCS/LGFE/TIP3P/GCMC-
MD. For this challenge, performance was variable with 
RMSE metric range from 2.43 to 6.64 kcal/mol, while cor-
relation metrics for all methods were relatively poor. Only 
two methods achieved a coefficient of determination over 
0.50. The few methods that achieved high correlation still 
had low binding free energy accuracy, which was a strong 
indicator of systematic errors. The FM method had a meas-
ure of success with its hybrid approach (MD-based with 
QM reweighting) method using force-matched PM6-D3H4 
parameters for the CB8 guests.

When we consider all submissions (including non-ranked 
methods), a SILCS based approach (SILCS/LGFE/TIP3P/
GCMC-MD/rew) had slightly better performance for the 
CB8 dataset. The SILCS based approach utilized an empiri-
cal approach, and illustrated that such corrections to bind-
ing free energy predictions did improve accuracy in many 
cases. (Several other SILCS-based methods did not perform 
as well.)

Experimental binding enthalpy values were also available 
in some cases, and the (EE-MCC/GAFF2-AM1-BCC/TIP3P/
MD/) submission included predictions for these for the 
CB8 dataset, which were within 2 kcal/mol of experimental 

Fig. 9   TEETOA ethyl group preferred orientations are dependent on 
the orientation of the guest. A A simplified cartoon of the host–guest 
system (TEETOA–G1), highlighting the guest and orientation of four 
ethyl groups (EG1–4). The host is represented by a square which has 
symmetry of four. B Shows the actual conformation of the host–guest 
system cartoon shown in A. C–F Cartoons show preferred orienta-
tions of the four ethyl groups with different guest orientations in the 
host pocket. The host orientation is the same as A. A Represents the 
orientations of the four ethyl groups in panel B. Arrows in C–F show 
preferred orientations of the four ethyl groups (up: outward, down: 
inward)
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values for four of seven cases. Historically, accurate binding 
enthalpy/entropy predictions have been seldom seen, so this 
is exciting. However, since the challenge was based on pre-
dicting binding free energy, we must comment that binding 
free energy accuracy for this approach was low.

The DDM/AMOEBA/BAR method was the top performing 
method for the GDCC dataset (like in SAMPL7), followed 
by the ATM/GAFF2-AM1BCC/TIP3P/HREM. Although 
methods were generally more accurate on this dataset, there 
were some methods with limited predictive accuracy with 
RMSE values over 5 kcal/mol and coefficient of determina-
tions as low as 0.01.

TEETOA is symmetrical and has four chemically 
equivalent ethyl groups. Based on our retrospective stud-
ies of TEETOA–G1, we conclude this symmetry is broken 
when G1 is bound because the guest (G1) has a particular 
orientation. So instead of all ethyl groups being oriented 
symmetrically, we find the preference is highly sensitive 
to the orientation of the guest. Our data suggests a spe-
cific orientation of the guest in the bound state (State 1 in 
Fig. S16) predominates. With this binding mode, the host 
has one ethyl group pointing inward whereas the other 
three point outward. Our results show details of the ethyl 
groups’ orientations and enhance our understanding of the 
likely bound conformation of TEETOA host–guest com-
plexes. In addition, submissions for methods that used 
enhanced sampling techniques [Replica Exchange (RE) 
or REUS, GCMC] performed with greater accuracy than 
methods using classic MD or US techniques, showcasing 
the success and perhaps the necessity of enhanced sam-
pling methods for adequately sampling host–guest bound 
conformations.
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