
Vol.:(0123456789)1 3

Journal of Computer-Aided Molecular Design (2022) 36:825–835 
https://doi.org/10.1007/s10822-022-00482-1

Protocol for iterative optimization of modified peptides bound 
to protein targets

Rodrigo Ochoa1,2 · Pilar Cossio1,3,4 · Thomas Fox2

Received: 20 July 2022 / Accepted: 3 October 2022 / Published online: 19 October 2022 
© The Author(s) 2022

Abstract
Peptides are commonly used as therapeutic agents. However, they suffer from easy degradation and instability. Replacing 
natural by non-natural amino acids can avoid these problems, and potentially improve the affinity towards the target protein. 
Here, we present a computational pipeline to optimize peptides based on adding non-natural amino acids while improving 
their binding affinity. The workflow is an iterative computational evolution algorithm, inspired by the PARCE protocol, that 
performs single-point mutations on the peptide sequence using modules from the Rosetta framework. The modifications 
can be guided based on the structural properties or previous knowledge of the biological system. At each mutation step, the 
affinity to the protein is estimated by sampling the complex conformations and applying a consensus metric using various 
open protein-ligand scoring functions. The mutations are accepted based on the score differences, allowing for an iterative 
optimization of the initial peptide. The sampling/scoring scheme was benchmarked with a set of protein-peptide complexes 
where experimental affinity values have been reported. In addition, a basic application using a known protein-peptide com-
plex is also provided. The structure- and dynamic-based approach allows users to optimize bound peptides, with the option 
to personalize the code for further applications. The protocol, called mPARCE, is available at: https://​github.​com/​rocho​a85/​
mPARCE/.
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Introduction

The use of peptides for biomedical and biotechnological 
purposes has several advantages, including potential lower 
adverse effects due to their extremely high affinity and 
specificity during the binding events [1]. However, they are 
associated with poor chemical and physical stability, short 
circulating plasma half-life, and proteolysis [2, 3]. Moreover, 
they can be easily cleaved by proteases. This has motivated 

the design of modified peptides, which contain at least one 
non-natural amino acid (NNAA) [4]. These changes can pro-
tect the molecule of being cleaved due to chemical modifica-
tions on their side or main chains [5, 6]. In general, natural 
and modified peptides can be designed by computational 
protocols able to improve observables such as affinity scores 
towards a protein target, or certain physico-chemical proper-
ties like hydrophobicity profiles [7, 8].

Among the computational design strategies, there are 
methodologies relying on molecular simulations for studying 
potential binding, and subsequently suggesting mutations 
on the peptide that can potentially improve their affinity [9]. 
This is the case of PARCE, a method to optimize natural 
peptide-binders, where it has been shown that conforma-
tional sampling and an efficient exploration of the sequence 
space are necessary [10]. Another example was the design 
of peptides that bind small organic molecules by taking 
into account different solvents in the simulations [11]. The 
approach was based on a Monte Carlo search in the space of 
possible peptides, simulated with finite temperature molecu-
lar dynamics (MD) [12, 13]. These hybrid computational 
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strategies have been applied in the past for the design of 
MHC II peptide binders [14–16], and the engineering of 
nanobodies [17–19] by combining explicit solvent MD con-
figurations, or Monte Carlo generated trajectories, with con-
sensus scoring approaches, which can efficiently assess the 
impact on binding given a mutation on the peptide binder. 
There are other reported methodologies to design peptides 
by extracting information from protein-protein interfaces 
[20, 21], or by using hyperstable backbone conformations 
to fit designed peptide sequences [22].

In the case of peptides modified with NNAAs, there are 
methodologies able to model and parameterize the mono-
mers [23, 24] to include them for the computational binding 
estimations [25, 26]. The conformational sampling can be 
explored by MD simulations or more computationally effi-
cient e.g., Monte Carlo movers. Some of these methods are 
found in the Rosetta Commons project [27], which include 
efficient flexible-backbone sampling to investigate the inter-
actions in the complex [24, 28], like the Backrub approach 
[29]. These methods can incorporate biological restraints to 
optimize the exploration based on previous knowledge of 
the system [30]. However, a limitation is the prediction of 
affinity scores between the peptide and the target that is still 
challenging given the high flexibility of the peptides and the 
lack of specific force-fields for NNAAs.

In our method, we implement a consensus approach sup-
ported by the Rosetta framework able to overcome some 
of the aforementioned challenges. We developed a protocol 
based on PARCE to design modified peptides with improved 
binding affinity to a target. The protocol, called mPARCE, 
generates single-point mutations on the peptide sequence 
based on a list of parameterized α- L- and D-NNAAs. Then, 
it estimates their binding affinity in complex with the protein 
by combining sampling methods from Rosetta with a con-
sensus metric using multiple protein-ligand scoring func-
tions. We benchmarked the sampling/scoring approach and 
applied mPARCE using a known protease structure bound 
to a peptide substrate [31]. The main design protocol and 
auxiliary method to parameterize the NNAAs are available 
in the repository: https://​github.​com/​rocho​a85/​mPARCE.

Methods

Parameterization of non‑natural amino acids

A set of α- L- and D-NNAAs were chosen based on those 
detected in bound peptide structures available in the PDB. 
The BIOLIP database was used to download the most 
recent dataset of protein-peptide complexes from the PDB 
(accessed in November 2021), and only those peptides with 
NNAAs in their structures were further taken into account. 
The SMILES for each NNAA were obtained from the 

Chemical Component Dictionary (CCD) and the RDKit 
package [32] was used to calculate their molecular weights, 
filtering the amino acids with a molecular weight below 300 
Daltons. The SMILES were used as input for the rdkit-to-
params package (https://​github.​com/​matte​oferla/​rdkit_​to_​
params) to assign correct atom names to the NNAAs, and 
generate tripeptides with the motif G-X-G where X is the 
corresponding NNAA. Then each tripeptide was subjected 
to a customized script to generate the Rosetta parameters 
using Rosetta internal modules.

The parameterization script automatizes the generation 
of the input file (i.e. the structure of the NNAA surrounded 
by glycines) with correct atom names and in MDL MOL 
format. Additional flags to assign the backbone atoms and 
connection points are added into the input file, in order to 
be read by the molfile_to_params_polymer.py. This script 
is available in the demo folder of the Rosetta distribution 
[33]. A total of 90 parameterized NNAAs plus the 20 natural 
amino acids were included into the design protocol, and the 
parameters files are available in the mPARCE code reposi-
tory to be located in the Rosetta installation path.

The selected NNAAs were clustered based on their phys-
ico-chemical properties, which were split into three catego-
ries: charge, hydrophobicity, and size. The RDKit package 
was used to calculate logP, charges and the isoelectric point 
for each NNAA capped with acetyl group and methylamine. 
Then, a set of thresholds were defined to assign a group 
category for each NNAA. Details of the thresholds are avail-
able in the Supplementary Note 1. For each category, three 
groups are available: hydrophobic, polar, and charged for 
hydrophobicity; neutral, positive and negative for charge; 
and small, medium and large for the size category. Based on 
these groups, the user can decide to include NNAAs hav-
ing similar physico-chemical properties based on previous 
knowledge of the protein binding site, the chemical nature 
of specific peptide residues, or structure-activity relationship 
(SAR) information.

Benchmark analysis

In order to validate the sampling/scoring approach proposed 
in mPARCE, a controlled benchmark study was conducted 
using two datasets of protein-peptide complexes. The first 
consisted of six PDB files with proteins bound to pairs of 
peptides reporting affinity differences of at least 100-fold, 
and with values at nanomolar range (nM). The second, and 
more challenging dataset, contains nine pairs of protein-pep-
tide complexes with affinity differences lower than 100-fold 
at nanomolar range. The range of mutations in the peptides 
goes from one single mutation to multiple residues that 
modify a maximum of 70% of the total sequence. This large 
range allows for the evaluation of how the scoring can dis-
criminate between very similar peptides to dissimilar cases, 
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which is crucial to assess the impact of large modifications 
of the initial peptide sequence in the protocol. Details of the 
modified peptide sequences for the first dataset are reported 
in the Supplementary Tables 1, and for the second dataset 
in the Supplementary Table 2. The goal is to rank the best 
binding peptide (towards its protein target) per system.

For all pairs, we evaluated how many of six selected pro-
tein-ligand scoring functions agree with the experimental 
rank-ordering differences and thus correctly rank the bound 
peptides. For this protocol we used six scoring functions: 
DLigand2 [34], Vina [35], Cyscore [36], NNscore [37], a 
Rosetta score configured for docking [38], and the internal 
Rosetta score used during the relaxation phases [39]. In the 
case of NNscore, the negative of the predicted value was 
used to enable ranking the molecules similar to the other 
functions. Details of each scoring function are provided in 
the Supplementary Note 2.

Each complex was sampled and scored using the 
mPARCE approach (explained in “Design protocol”), using 
the last conformation of the relaxation. We evaluated if the 
sign of the difference between the predicted scores agrees 
with the experimental activity difference (∆∆G). This is, for 
each scoring function, we checked if a peptide compared to 
the other one increases or decreases the activity as a dichoto-
mous response.

Application using a protease‑peptide complex

As an application of the design protocol, we selected a gran-
zyme H protease (PDB id 3tjv) bound to a 9-mer peptide 
substrate. Two design runs were performed. For the first, we 
allowed random mutation of four arbitrary positions within 
the peptide (i.e. positions 2, 4, 6 and 8) using any of the 
parameterized NNAAs. For the second strategy, we modified 
the same positions but only allowed NNAAs with similar 
properties with regards to their hydrophobicity, charge, and 
size. Specifically, we allowed mutations to neutral, hydro-
phobic, and medium size amino acids (see Supplementary 
Note 1). During both design runs, we attempted a total of 
100 mutations that were accepted when four or more scoring 
functions agreed on a favorable mutation. After achieving 
the number of attempts, a pool of accepted sequences was 
prioritized as candidates for further validations.

Results

Design protocol

Sampling and mutation

The mPARCE design protocol goal is to explore efficiently 
the sequence space through a stochastic search guided by 

the potential affinity between the protein and the bound 
modified peptide. To run the protocol, a 3D structure of a 
protein-peptide complex is required. The protein-peptide 
complex is protonated and subjected to sampling using the 
Backrub method from Rosetta [29]. A total of 20,000 trials 
are run using a kT of 1.2. These parameters were optimized 
in previous studies of sampling protein-peptide complexes 
[16]. Then a score is calculated using the last frame of the 
Backrub trajectory and with either a single scoring function 
or a consensus methodology explained in the next section. 
Then, the fixbb package is used to randomly mutate any 
position of the peptide by any of the NNAAs previously 
parameterized and included into Rosetta [40]. The mutated 
complex is relaxed with flexible side chains [41] and sub-
jected to Backrub simulations using the same parameters. 
A new score is calculated and compared with the previous 
one. Based on the acceptance criterion, the modification is 
accepted or rejected, and the process is iterated for a selected 
number of times.

Scoring strategies

After sampling the mutated protein-peptide complexes, the 
last frame can be scored using a single scoring function or 
applying a consensus metric based on the selected set of 
scoring functions used for protein-ligand affinity predictions 
(see Methods). The mutation acceptance can be determined 
with two approaches. If a single scoring function is selected, 
the comparison is assessed by a Metropolis-Hastings Monte 
Carlo criterion [42] using an effective temperature between 
1 and 10 (i.e., 1 is stricter to accept mutation if the differ-
ence score is not favorable, and 10 is more relaxed) [11]. If 
multiple scoring functions are selected, a consensus-based 
approach with the chosen N scoring functions is applied. In 
this case, if a particular number n of scoring functions agrees 
with negative scoring differences between the previous and 
mutated peptide, then the final consensus will accept the 
change and update the system [43]. The evolution of the 
peptide is iterated over a selected number of times to achieve 
better scores and explore the best candidates. A complete 
summary of the protocol is shown in Fig. 1.

Benchmark outputs

After running the Backrub trajectories with each PDB 
structure, six scoring functions were used to score the last 
frame. Then, we checked which scoring favored the same 
rank-ordering of the peptides as the experimental results. 
Based on that, we counted in which scenarios more than half 
(i.e., ≥ 4) of the scoring functions agree with the experimen-
tal ranking. This analysis was run for two datasets, one of 
them containing six pairs of protein-peptide complexes with 



828	 Journal of Computer-Aided Molecular Design (2022) 36:825–835

1 3

100-fold affinity differences. Details and structural represen-
tations of the six complexes are shown in Fig. 2.

The results for the first dataset are summarized in Table 1. 
Specific scoring values are given in Supplementary Table 3.

In four of the six pairs, four or more scoring functions 
correctly predicted the affinity ranking. Based on our analy-
sis, the consensus scheme should be able to discriminate 
between peptides differing in multiple amino acids (see 
Supplementary Table 1). We note that using the consensus 
scheme is beneficial given that the protein-ligand scoring 
functions can complement each other due to the limitations 
of predicting protein-peptide affinity scores [50].

We followed a similar analysis with a second dataset 
containing nine pairs of protein-peptide complexes but with 
lower affinity differences. Details of the included complexes 
are available in the Supplementary Note 3, and the main 
results are summarized in Table 2. We found that despite the 
challenging affinity differences, six of the nine complexes 
were able to surpass the defined threshold to rank each pair 
of peptides. Specific scoring values are given in Supple-
mentary Table 4. Overall, these results allowed us to use the 
same scoring strategy to design modified peptide binders 
for a known protease-peptide complex to check the protocol 
performance.

Application using a granzyme H‑peptide complex

To test mPARCE we selected a well-characterized protease 
system (PDB id 3tjv) bound to a 9-mer peptide substrate. 
The peptide covers the cleavage binding site from position 

S4′ to S4, including the catalytic region between S1′ and S1 
[51]. The peptide consists of 9 natural amino acids, and the 
goal was to allow changes in four positions, covering both 
the flanking and core amino acids close to the catalytic site. 
A structural view of the starting system is shown in Fig. 3a.

After attempting 100 mutations, a total of seven muta-
tions were accepted, covering three of the four positions 
marked to be modified. The number of accepted sequences 
is associated with the consensus threshold (i.e., the larger the 
threshold, the stricter the acceptance criterion). In particular, 
position 8 was the most susceptible to be improved given 
its interaction with an exposed part of the protease binding 
site. Position 4 remained the same after multiple attempts 
to be changed, probably because the binding subpocket is 
very specific for tyrosine (Fig. 3b). In Supplementary Fig. 1, 
we show the conformation of that tyrosine in comparison 
with other attempted mutations. From a structural point 
of view, the tyrosine rotamer accommodates tightly in the 
available cavity, generating a set of interactions that none of 
the attempted substitutions were able to improve. Table 3 
shows the progress of the design process through the itera-
tion steps where the new sequences were accepted, including 
the specific mutation and the new mutated peptide sequence. 
The calculated scores of each step are reported in the Sup-
plementary Table 5.

From a chemical composition perspective, hydrophobic 
NNAAs were accepted during the design such as MKD (i.e., 
(2 S)-2-amino-2-methyloctanoic acid) and modified versions 
of natural amino acids like 41 H, a methyl-L-phenylalanine 
and 54 C, a modified tryptophan. More information about 

Fig. 1   Design protocol. 
Schematic representation of 
the modified peptide design 
protocol (mPARCE) that opti-
mizes the peptides following 
a stochastic methodology. It 
includes three main phases: a 
single-point mutation over a 
peptide chain, relaxation of the 
new protein-peptide complex, 
and the scoring of the new com-
plex that allows the acceptance 
or rejection of the mutation. The 
scoring can be done using a sin-
gle scoring function following 
a Metropolis-Hastings Monte 
Carlo strategy [42], or with a 
consensus scoring approach. 
The protocol is iterated to 
modify the peptide and improve 
its binding towards the target of 
reference
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the NNAAs can be found on the PDB using the 3-letter 
codes. However, a graphical representation of the protein-
peptide interactions (depicting the peptide chemical struc-
ture for the original and final peptides) is shown in Fig. 4.

In general, the original and final modified peptides gener-
ate a similar number of backbone and side chain hydrogen 
bonds within the largely exposed binding site. However, the 
final modified peptide has the possibility to generate more 

hydrophobic interactions that can stabilize its binding pose. 
The latest behavior can be modified during the design by 
allowing the user to select just a subset of physico-chemi-
cally similar amino acids. To evaluate that, we ran a second 
design strategy but with a set of neutral, hydrophobic, and 

Fig. 2   Benchmark systems of the first dataset. A total of six protein 
systems each bound to a pair of modified peptides. The protein is 
colored in blue, and the peptides in orange and green, with the cor-
responding PDB ids of the protein-peptide complexes. The systems 
are: a  human beta-secretase from human (PDB ids 1xn2 and 1xn3) 
[44], b human caspase-7 (PDB ids 2qlb and 2qlf) [45], c HIV-1 gp41 

N-trimer pocket region (PDB ids 2r5b and 2r5d) [46], d Endothiapep-
sin from Cryphonectria parasitica (PDB ids 3er5 and 4er4) [47], e 
human HDM2 (PDB ids 2axi and 2gv2) [48], and f FpvA from Pseu-
domonas aeruginosa (PDB ids 2w6t and 2w6u) [49]. All the com-
plexes report Kd and IC50 values at nanomolar range (nM) (Table 1)

Table 1   Number of matches for the first benchmark dataset based on 
the number of scoring functions in agreement during the consensus 
ranking analysis for each pair of protein-peptide complexes

The PDB codes and the affinity values in nanomolar (nM) range are 
shown

PDB id 1 Affinity 1 (nM) PDB id 2 Affinity 2 (nM) Matches

1xn2 0.03 1xn3 40 5
2qlf 1.4 2qlb 1300 3
2r5d 0.07 2r5b 2.5 3
2w6t 2.7 2w6u 10,000 5
2axi 5 2gv2 140 5
3er5 1 4er4 160 4

Table 2   Number of matches for the second benchmark dataset based 
on the number of scoring functions in agreement during the consen-
sus ranking analysis for each pair of protein-peptide complexes

The PDB codes and the affinity values in nanomolar (nM) range are 
shown

PDB id 1 Affinity 1 (nM) PDB id 2 Affinity 2 (nM) Matches

2aoj 22,100 2aoi 96,700 4
2h5i 1.3 2h5j 12.4 1
6m9f 6 6m8y 415 4
2w16 0.1 2w78 2.7 3
3ove 270 3ov1 6250 4
1a1c 400 1a08 2400 4
1jyq 2 1zfp 26 3
4er2 0.5 2er9 40 5
5apr 17 4apr 200 4
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medium size amino acids from the original list. A list of the 
accepted sequences is shown in Supplementary Tables 6, 
and their calculated scores are in Supplementary Table 7. 
Similar to the previous scenario, the more exposed peptide 
positions were susceptible of being modified during the 
design process.

To validate the stability and rank predictions of the 
designed peptides from the first design strategy, we per-
formed MD simulations of 500 ns using the initial sequence 
and the final modified peptide. The Amber package was used 
for both simulations, including the parameterization of the 
NNAAs. Details of the simulations are available in the Sup-
plementary Note 4. We calculated the average score using 
the last half of the trajectory to rank the two peptides, which 
is in agreement with that predicted by mPARCE (see Sup-
plementary Table 8). We found that the modified peptide 
tends to remain in the binding pocket in comparison to the 
initial sequence after 100 ns (Supplementary Fig. 2), which 
also suggests a better affinity of the designed peptide.

Regarding the evolution of the scoring functions, we plot-
ted the acceptance rate for the six scoring functions used in 
the design after 100 random mutation attempts (Fig. 5). We 
observed different behaviors for the scoring functions, with 
some showing convergence (i.e., Rosetta scores) and others 
with a decreasing tendency as in the case of Dligand2 or 
Cyscore. The performance can be optimized by attempting 
more mutations or changing the acceptance criteria. How-
ever, after comparing the accepted mutations between the 
six functions, the consensus metric can help overcome local 
minimization problems, as in the case of Vina between the 
4th and 5th accepted sequences (Fig. 5). We also observe 
that NNscore finished the design run with a final sequence 
having a similar score with respect to the original molecule, 
but with previous sequences before the final mutation having 
better scores. This is expected given the stochastic nature of 
the sequence search that the consensus facilitates. A similar 
score tracking was performed for the second design run (see 
Supplementary Fig. 3).

Code insights

The code, called mPARCE, is publicly available at: https://​
github.​com/​rocho​a85/​mPARCE/. The code was written in 
Python 3, with calls to third-party tools such as Biopython 
[52], Open Babel [53], Rosetta [27], and a set of protein-ligand 
scoring functions. The code was prepared and tested using the 
operating system Ubuntu 20.04. mPARCE on a single CPU 
core, and attempting 100 mutations, will require approximately 
10 h. However, the user can update the code to call MPI-com-
piled versions of Rosetta to reduce the computational time 
using multiple cores. Another alternative to exploit paralleliza-
tion is to launch multiple runs of the protocol simultaneously, 
using one core per run. In that way, multiple solutions can 
be obtained from each design by exploiting multi-processor 

Fig. 3   Application system. a  Structure of the granzyme H (PDB id 
3tjv) bound to the starting 9-mer peptide substrate. The positions 
selected to be modified are colored in green, and the remaining amino 
acids in yellow. b Final complex with the mutations accepted during 

the design protocol. The new NNAAs are colored in cyan, the posi-
tion that remain unchanged in green, and the remaining positions in 
yellow. The final accepted sequence is shown using the PDB code 
names for the accepted NNAAs.

Table 3   Accepted peptide sequences obtained during the design run

The iteration step and the mutation with the format: [old AA]-posi-
tion-[new AA] is provided. The NNAAs are represented using the 
PDB 3-letter codes

Iteration Mutation Peptide sequence

Step 0 Original PTSYAGDDS
Step 2 G-6-[ORN] PTSYA[ORN]DDS
Step 14 [ORN]-6-[41 H] PTSYA[41 H]DDS
Step 27 [ASP]-8-[G5G] PTSYA[41 H]D[G5G]S
Step 33 [G5G]-8-[C1J] PTSYA[41 H]D[C1J]S
Step 36 [C1J]-8-[KHB] PTSYA[41 H]D[KHB]S
Step 40 T-2-[MKD] P[MKD]SYA[41 H]D[KHB]S
Step 86 [KHB]-8-[54 C] P[MKD]SYA[41 H]D[54 C]S

https://github.com/rochoa85/mPARCE/
https://github.com/rochoa85/mPARCE/
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acceleration. Regarding the computational resources to gener-
ate the NNAA parameters, our protocol can generate them in a 
few minutes for any monomer of interest using one single core.

The NNAA parameters and a csv with general information 
of each NNAA are available in the code repository. The chosen 
NNAAs contain chemical modifications only on the side chain, 
but the user has the option to include new NNAAs based on a 
correct parameterization of the structures in Rosetta. A script 
is available to automatically generate NNAAs parameters for 
Rosetta. The protocol requires a local Rosetta installation, and 
a set of instructions are provided to add the parameterized 
NNAAs into the program paths. These include the parameters 
and a master file with all the residue types read by the Rosetta 
functions. Instructions to do the full set up are provided in the 
code’s README file.

Discussion

Here we describe a computational protocol to design 
modified peptides based on a starting protein-bound con-
formation and inspired by the PARCE protocol for peptide 
design [10]. The protocol allows a guided exploration of 
the sequence space through efficient Monte Carlo mov-
ers available in Rosetta. The design is achieved by sin-
gle mutations on the binder chain, which are accepted or 
rejected based on a sampling/scoring hybrid approach. A 
benchmark of six peptide pairs to different protein targets 
showed that with the consensus scoring the most active 
peptide could be identified for most cases. A subsequent 
prospective study on a protease of therapeutic relevance 

Fig. 4   Peptide-protein interac-
tions for the original and finally 
accepted peptide sequence. The 
chemical structure of the origi-
nal peptide PTSYAGDDS (a) 
and the final modified sequence 
P[MKD]SYA[41 H]D[54 C]S 
(b) is shown. Protein residues 
are represented by circles, and 
main and side chain hydrogen 
bonds through dashed arrows. 
Receptor and ligand exposures 
as well as the physico-chem-
ical nature of the residues are 
explained in the color legend. 
The diagrams were generated 
with the Molecular Operating 
Environment (MOE®) com-
mercial software package
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yielded seven modified peptides, which can be prioritized 
for further studies.

The goal of the protocol is to provide a virtual screen-
ing approach to design modified analogs of bound peptides. 
To allow exploring a large chemical space by including 
NNAAs in the design protocol, we needed to implement 
efficient but less accurate tools to sample the peptide-bound 
conformations and their scoring. This is an alternative to 
more exhaustive computational methods such as molecular 
dynamics [9, 54], enhanced sampling [55] alchemical free 
energy perturbations [56], thermodynamic integration [57], 
among others. However, predicting affinity differences for 
highly flexible molecules such as peptides is still an active 
challenge, even for the more sophisticated methods [58]. Our 

hybrid Monte Carlo/scoring approach has shown promis-
ing results on datasets with peptides ranging from low to 
100 times in the differences of the experimental affinities. 
Specifically, we have tested the proposed sampling/scoring 
approach with a set of proteases [51], and by ranking peptide 
binders of the MHC class II using the same sampling param-
eters of this study [16]. Based on these results, we expect 
that after attempting a considerable amount of mutations 
with our acceptance criteria, it can be possible to explore a 
larger number of sequences with potential better affinities. 
The final candidates can be re-ranked using more computa-
tionally demanding calculations.

One aspect about our protocol is the combination of 
diverse scoring functions, which have demonstrated to 

Fig. 5   Evolution of the scoring 
functions using a consensus 
criterion. We used six scor-
ing functions to calculate the 
consensus with a threshold of 4 
after attempting 100 mutations. 
The dots in the curve repre-
sent the mutations that were 
accepted. The scoring functions 
used are DLigand2 (yel-
low), Cyscore (pink), Internal 
Rosetta score (gray), NNscore 
(magenta), Vina (blue) and 
Rosetta docking score (green)
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be useful for ranking peptide binders [16, 59] despite not 
being specific for predicting affinities of highly flexible 
molecules. Based on previous studies using the same con-
sensus criteria, we found that accepting the mutations with 
three or four from the six scoring functions can be enough 
to explore efficiently the sequence space, avoiding overfit-
ting or other statistical misleading effects [10, 43]. Using 
the consensus criterion is also a key differential factor to 
avoid relying exclusively on a single scoring function. 
However, during the consensus it is possible to observe 
underperforming functions given their dependency on 
the systems used to fit them. For example, we found that 
NNscore had a 60% of incorrect rankings for all the pairs 
of peptides used in the benchmark. An advantage of the 
consensus strategy is that it does not rely on all scoring 
functions performing well, and it overcomes these prob-
lematic cases to find better sequences based on optimizing 
a consensus score. In the case of getting more reliable 
scoring functions for at least certain protein-peptide com-
plexes, running design projects using Metropolis Monte 
Carlo with a single scoring function is also a viable option 
that is included in the current code version.

Regarding the challenge of manipulating NNAA 
chemical structures, something relevant is to do a correct 
parameterization of them for the modelling and simula-
tion steps [60]. One advantage of the Rosetta framework 
is the availability of tools to generate such parameters, in 
particular for new building blocks differing only in the 
amino acid side chain. With the expansion of the NNAAs 
chemical space that can be used in pharmacological appli-
cations [61], the user has the option to add novel entities in 
mPARCE by providing a 3D structure of the new monomer 
to generate the parameters. However, our protocol has been 
configured to do exclusively side chain modifications by 
conserving the original backbone. In the context of other 
type of amino acid modifications, or even more mimetic 
structures, our method is not suitable at the moment, but 
can be further adapted in order to guarantee a chemically 
correct substitution of the novel components. The latest 
can be complemented with the option of adding or deleting 
amino acids on the peptide chain to explore even bigger 
chemical spaces.

Finally, the code has been configured to facilitate its 
reproducibility under any computational infrastructure. The 
exhaustiveness is associated to the peptide sequence size 
and the number of attempted mutations. The mPARCE code 
is different from the original PARCE method in terms of 
the sampling method (Monte Carlo mover instead of MD) 
and the possibility to add NNAAs during the design. The 
dependencies can be easily installed, and we expect that 
mPARCE can become a valuable open option to design mod-
ified peptide binders of any protein target reporting resolved 
3D-structures and characterized binding sites.
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