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Abstract
The design of accurate virtual screening tools is an open challenge in drug discovery. Several structure-
based methods have been developed at different levels of approximation. Among them, molecular
docking is an established technique with high e�ciency, but typically low accuracy. Moreover, docking
performances are known to be target-dependent, which makes the choice of docking program and
corresponding scoring function critical when approaching a new protein target. To compare the
performances of different docking protocols, we developed ChemFlow_py, an automated tool to perform
docking and rescoring. Using four protein systems extracted from DUD-E with 100 known active
compounds and 3000 decoys per target, we compared the performances of several rescoring strategies
including consensus scoring. We found that the average docking results can be improved by consensus
ranking, which emphasizes the relevance of consensus scoring when little or no chemical information is
available for a given target. ChemFlow_py is a free toolkit to optimize the performances of virtual high-
throughput screening. The software is publicly available at https://github.com/IFMlab/ChemFlow_py.

Introduction
The development of a new drug is a complex and time-consuming process with costs exceeding billions
of dollars [1]. To improve the e�ciency of drug discovery, many computational tools have been developed
to help identify new drug candidates [2]. Among them, virtual screening based on high-throughput
docking has become popular to search for hit compounds [3]. Although approximated, this technique is
advantageous over more rigorous approaches due to its e�ciency, which allows for covering a large
portion of the chemical space in a short amount of time [4].

Starting with one or more high-resolution structures of a pharmacological target (e.g., a protein molecule
or a nucleic acid) in complex with a known modulator, molecular docking aims at creating virtual protein-
ligand complexes, starting from the 3D structure of the target and of a set of ligands under investigation
[3]. Molecular docking represents the initial step of a vHTS campaign, especially in structure based drug
design (SBDD) [2], [5]. Using a search algorithm, many conformations of the ligand are generated
automatically in the binding site of the protein and their �tness is evaluated by means of a simpli�ed
energy function or score. The conformational search is usually carried out by a stochastic algorithm,
while pose ranking relies on physics-based, knowledge-based, or empirical scoring [3]. Recently, machine
learning methods have been introduced to improve the docking scores, e.g., to account for the �exibility
of the ligand and the protein [6].

To preserve computational e�ciency, docking methods introduce approximations. In many cases, for
instance, solvation effects and/or the entropy loss on binding are neglected [4]. These contributions,
however, are critical for a rigorous evaluation of the ligand-binding a�nity, making docking predictions
inaccurate. To improve the �nal ranking of the compounds, the rescoring of a limited number of docking
poses is often envisaged [7]–[10].
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This involves: i. re-ranking of the docking poses by more accurate scoring functions that account for
solvation-free energy contributions [11] and/or entropy corrections [12]; or ii. the combination of docking
results from different programs for ranking by consensus scoring [9]. The latter was shown to increase
the success rate of virtual screening at a relatively low additional cost, e.g., improving enrichment factors
and/or the area under the Receiver Operating Characteristic (ROC) curve [13]–[15], and has become quite
popular. However, the origin of the bene�t(s) remains to be understood and what docking programs or
scoring functions should be used for the consensus is not yet known. In addition, a wide range of docking
programs and rescoring methodologies exist [9], [16], each of them requiring knowledge and expertise,
which makes consensus docking not straightforward for non-expert users.

To ease the implementation of consensus scoring for virtual screening, we developed Chem�ow_py, a
Python interface for docking and rescoring. Chem�ow_py provides straightforward access to �ve popular
docking programs, eight scoring functions, seven consensus methods, and free energy rescoring powered
by Amber or Gromacs [17]. The code is based on customizable Python modules, so that other docking
programs can be easily integrated. In the following, we present a benchmark of Chem�ow_py to analyze
the performance of docking with consensus ranking on four different protein targets extracted from
Directory of Useful Decoys Enhanced (DUD-E) [18]. Chem�ow_py is a development of ChemFlow, our 'in
house' software, which was designed to bridge the gap between 2D chemical libraries and protein-ligand
binding free energies calculations [19]. In this study, the focus is on docking and no free-energy rescoring
was considered.

Method:

Datasets

Four biological targets and corresponding ligands were retrieved from the Directory of Useful Decoys
Enhanced [18]. We chose proteins belonging to different protein classes: the β1 adrenergic receptor
(ADRB1, PDB: 2vt4), the cyclin-dependent kinase 2 (CDK2, PDB: 1h00), the human immunode�ciency
virus type 1 protease (HIVPR, PDB: 1xl2), and HMG-CoA reductase (HMDH, PDB: 3ccw). DUD-E provides
the PDB structure of the receptor along with MOL2 structures for experimentally active compounds,
decoys and the crystal structure of (at least) one ligand co-crystallized with the protein [18]. For each
receptor, we randomly selected 100 known actives and 3000 decoys.

Docking Programs

Five non-commercial docking programs are currently supported in ChemFlow_py: Autodock4 [20],
Autodock Vina [21], PLANTS [22], Smina [23] and QVina2.1 [24]. In this study, we analyzed the
performances of Autodock4, one of the �rst open-source docking programs that uses a Lamarckian
Genetic Algorithm and an empirical free-energy scoring function as defaults; Autodock Vina that relies on
an Iterated Local Search global optimizer and uses a simpler scoring function for a more e�cient
conformational search [21]; PLANTS, the �rst docking program based on the ant colony optimization
algorithm that supports three empirical scoring functions, i.e. chemplp, plp and plp95 [25]; and Smina, a
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fork of Autodock Vina designed to support custom scoring functions and improved energy and �exibility
features [23].

Rescoring

For rescoring, only the best-�tting docking pose per ligand was considered and its �tness re-evaluated
using a different scoring function. For this purpose, eight scoring functions were considered: autodock
[26], chemplp [25], dkoes_fast, dkoes_scoring, plp [25], plp95, vina [21], and vinardo [27]. Essentially,
PLANTS was used for rescoring with chemplp, plp, plp95, Smina for rescoring with vina, vinardo,
dkoes_fast and dkoes_scoring, and Autodock for rescoring with its native scoring function.

Consensus

In consensus docking, a new score is assigned to each ligand by combining scores or rankings from
different docking programs. Many consensus protocols have been developed to improve docking
performances. In this work, we used seven consensus ranking methods as described in Ref. [9]. These
methods can be classi�ed depending on whether the consensus is based on the score or the rank.

A score-based method relies on the combination of scores obtained by docking. Those implemented in
ChemFlow_py are Rank by Number (RbN), Auto-Scaled Score (ASS), Auto-Normalized Score (ANS) and Z-
Score. RbN consists in averaging the score by each docking program per ligand. Since the scores of
different docking programs may have signi�cantly different magnitudes, new methods like ANS and ASS,
which work with normalized docking scores, were introduced. The former divides the docking scores by
the maximum value, the latter normalizes them between 0 and 1. A more sophisticated scaling is
performed with Z-score: the docking results are normalized to variance units and centered according to
the mean value [28].

Consensus protocols based on ranking do not rely on the docking score but only on the position of the
ligand in the �nal ranking. The rank-based methods implemented in ChemFlow_py are Rank by Rank
(RbR), Rank by Vote (RbV) and Exponential Consensus Ranking (ECR). The �rst method computes an
average of the ranking positions per ligand. It is equivalent to Rank by Number with scores substituted by
the rank order. Rank by Vote requires �xing a threshold in the ranking (e.g., top 5% of the dataset). If the
ligand is positioned above this value, it gets a vote (+ 1), and the votes are summed up for all rankings.
This approach elicits ligands with high ranks in all docking programs. ERC assigns to each ligand an
exponential score based on the ligand ranking and a normalizing parameter sigma (σ). As a rule of
thumb, sigma is the number of molecules to analyze. Finally, the exponential scores are summed up and
normalized over sigma. In our work, we set both the RBV threshold and sigma value to 5% of the dataset
(155 molecules).

In all consensus rankings, only the best-�tting docking pose per ligand was used according to the
merging and shrinking procedure described in Ref. [29].

Metrics
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Area Under the Curve (AUC): The Receiver Operating Characteristic (ROC) curve is used to evaluate the
performance of a classi�cation method. In drug discovery, ROC curves are used to compare the
performances of different models and evaluate how good they are in discriminating between true
positives (active compounds) and false positives (decoys). The ROC curve is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) at various fractions of the dataset. The area
under the curve (AUC) provides a measure of the classi�cation performance: an AUC close to 1 indicates
a perfect classi�er, and an AUC close to 0.5 indicates a random classi�er [30].

Enrichment Factor (EF)

the enrichment factor provides another measure of the classi�cation performance. The EF at a given
fraction of the dataset, i.e., at 1%, indicates if the fraction of active compounds in the top 1% of the
ranked dataset is higher or lower than the fraction of hits over the full dataset. It is calculated as

where  and  indicate the number of active compounds in the dataset and its x% top-
ranked fraction. An EF of 10 indicates that the probability of �nding hits in the top-ranked x% fraction is
ten-fold increased. Viceversa, an EF of 1 or 0 indicates that the classi�cation method does not improve
the hit rate or that no active compound could be found in the top-ranked x%.

Method Score (MS)
The Method Score (MS) is a metric to compare the performances of rescoring or consensus scoring
methods with the average docking performance. For a given protein target, if the EF1% of a given
rescoring method is higher than the average EF1% from docking, its MS value is increased by one (+ 1).
Vice versa, if the consensus EF1% is lower, the MS is decreased by one (-1). The MS remains unchanged
if the two EF1% are the same. Since the docking performances are typically target-dependent, the MS
value indicates whether a given rescoring strategy outperforms or underperforms the average docking.
Considering our benchmark made of four targets, an MS of + 4 indicates better performance for each
dataset, 0 implies no average improvement, and − 4 indicates that the docking average systematically
leads to better results.

Implementation

ChemFlow_py is a software conceived to improve the outcome of vHTS work�ow by running and
postprocessing docking simulations with simple commands. It contains default settings for each docking
program, which are ready for use by non-experts, but it also allows customizations for advanced users.
The implementation of different docking programs often requires going through time-consuming ligand
preparations and/or post processing. ChemFlow_py e�ciently automatizes these steps, so that the user
can focus on the work�ow rather than its implementation.

EFx% = ⋅
Hits (x%)

N (x%)

N (tot)

Hits (tot)

N (tot) N (x%)
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Chem�ow_py is an evolution of ChemFlow [19]. ChemFlow_py maintains the original features of
ChemFlow, i.e., support for Vina, Smina, Plants and Qvina. In addition, it supports Autodock and Gromacs
MD simulations. While ChemFlow is written in bash, ChemFlow_py was developed in Python.
ChemFlow_py is based on Python modules, which allows one to integrate new docking and/or rescoring
programs following a module template. Furthermore, it can be used from the command line or imported
into a Python script, to build a completely customizable work�ow. Another relevant feature in
ChemFlow_py is multiprocessing on multiple compute nodes, e.g., when running on a cluster. Last,
ChemFlow_py supports seven consensus ranking methods (see Methods). The average execution time
per protocol is shown in Table 1, using a CPU Intel(R) Core(TM) i7-8700K (3.70GH) on a ligands dataset
with an average molecular weight of 375.58 g/mol. Docking is the step which requires more execution
time, while all the consensus methodologies are extremely fast. Rescoring requires an intermediate
amount of time due to a short optimization of the structure according to the new scoring function. Even
though performing consensus or rescoring is fast, docking must be run �rst, which remains the bottleneck
of the pipeline.

Table 1
Average execution time per ligand of different methods.

VS step Program/method Time (sec)

Autodok Autodock 51.2

Plants 6.79

Smina 7.47

Vina 12.9

Scoring function rescoring Autodock 3.46

Smina-vinardo 0.0230

Plants-plp 0.554

Consensus ranking ANS 1.33 10–6

ASS 4.98 10–6

ECR 1.72 10–6

RBN 1.72 10–6

RBR 1.67 10–6

RBV 6.69 10–6

Z-score 2.69 10–6
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Results
We performed docking, rescoring and consensus ranking at four protein targets (see Methods). The
docking results are given in Table 2. For each docking program, two metrics were calculated: the Area
Under the ROC Curve (AUC) and the Enrichment factor at 1% of the dataset (EF1%). The former quanti�es
the ability to prioritize active compounds over decoys, the latter is related to the probability of �nding
active compounds in a fraction of the dataset. Because experimental testing is expensive and time
consuming, EF is generally more meaningful than AUC for drug discovery, as it is more directly related to
the probability of �nding hits in the fraction of compounds that can be tested experimentally. In this work,
we analyzed classi�cation performances based on EF1%, i.e. the larger the EF1%, the better the classi�er.
For comparison, AUC scores are given in SI.

The docking results in Table 2 do not follow a clear trend. Autodock, for instance, is best for CDK2 but it is
the worst for ADRB1 and HIVPR. Smina is best-performing for ADRB1 and HMDH, but is poor for HIVPR.
Although limited to four proteins, this benchmark shows that the docking performances are highly
system-dependent and that there is no docking method that is better than the others.

Since large and diverse datasets of known active compounds for a protein target are rarely available
before virtual screening, the performances of different rescoring or consensus scoring strategies (see
Methods) were evaluated on the quest for more robust classi�cation methods. To this aim, we took a
statistical approach and evaluated the rescoring/consensus performances by comparing the EF1% per
protein target with the average EF1% over the four docking methods. The results are shown in Table 3. By
highlighting in red and blue EF1% results above and below the docking average, respectively, the results
show that no method nor combination of methods is absolutely best. However, an analysis of the method
score (MS), which allows to compare rescoring strategies with the docking average, provides clearer
indications. In fact, albeit soring-function rescoring provides no global improvement over the average
docking performances, i.e. the EF1% is higher for HIVPR and HMDH but lower for ADRB1 and CDK2 for a
MS of zero, two consensus methods outperform average docking with MS of + 2 for Z-score and + 1 for
RbV. Interestingly, the latter is based on ranking (it relies only on the order of the ligands classi�cation),
while Z-score relies on the docking score per ligand. The other consensus scoring strategies have MS
equal zero or below. In the limit of the dataset explored, these results indicate that docking can be
improved by consensus ranking. Although consensus comes at no cost per se (Table 1), being able to
evaluate consensus requires collecting results from multiple docking programs, which introduces an
additional cost that is approximately linear with the number of docking programs in use. In this respect,
docking methods based on machine learning, such as DeepDocking [31], which decrease the
computational time quite extensively, make consensus ranking more appealing.

Table 2: Docking performances evaluated by EF 1%. The results are highlighted in blue when below the
docking average, and highlighted in red when above it.
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Table 3: For each protein target, we calculate the average enrichment factor at 1% for docking and
rescoring. Below, we added the EF 1% value obtained by each consensus method. Consensus results are
highlighted in blue when below the average of docking, highlighted in red when above the average. In the
end we evaluated a score for each method, assigning +1 if the EF 1% is above the average, -1 if under the
average and 0 if matching it.

Discussion
The use of consensus scoring to improve the hit rate of a dataset is not a novel strategy. By performing
an idealized computer experiment under certain conditions, i.e. assuming perfect conformational search
and independent scoring functions, Wang et al. demonstrated that consensus ranking enhances the hit
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rate when more than three scoring functions are used [32]. Subsequent work by Ericksen et al
corroborated this conclusion showing that by combining commercial and open-source software
consensus ranking outperformed any docking program [6]. Most recently, using an arti�cial intelligence-
driven platform (Deep Docking) with �ve docking programs to screen for noncovalent inhibitors of SARS-
CoV-2, it was shown that consensus scoring increased the EF1% �ve fold relative to docking [33].
However, other studies in the literature appear to reach different conclusions. For instance, using 20
protein targets from DUD-E, Masters et al found that consensus scoring based on open-source docking
programs like Vina, Smina, and Idock was systematically worse than Smina [34]. Therefore, the question
of whether consensus ranking should be systematically applied or not in virtual screening remains open.
Moreover, different ways of doing consensus scoring exist [9] and it is not yet established which one is
best for �ltering drug candidates for a given target.

In this work, using only non-commercial software and a statistical approach, we found that consensus
ranking outperforms docking for the classi�cation of active compounds. The results collected on four
protein targets from DUD-E con�rm that docking performances are highly system dependent, such that it
is impossible to know a priori which docking program and/or scoring function are best for the protein
target of interest. By introducing a metric, termed Method Score (MS), that allows comparing different
consensus scoring methods with the average docking performances, we found that consensus ranking
based on Z-scores or votes (ranking-by-vote) outperforms any other method yielding higher enrichment
factors at 1%. These results emphasize the relevance of consensus ranking when little or no chemical
information is available for a given target, which is often the case in virtual screening. On the other hand,
if chemical information is available, the identi�cation of the optimal docking program and scoring
strategy is absolutely critical for the success of a screening campaign. In this case, tools and work�ows
that allow benchmarking multiple docking programs and rescoring strategies methods in a standardized
and automated manner offer a competitive advantage.

ChemFlow_py was developed to make the implementation of docking and rescoring consensus ranking
straightforward. The code is written in Python3 and can be used both as a standalone or imported as a
Python module. The current version of ChemFlow_py supports �ve open-source popular docking
programs, eight scoring functions, and seven consensus scoring methods. In addition, the
standardization of protocols provides access to comparing performances of different docking programs
even to non-expert users. Since it is impossible to know a priori which docking method would be best for
ranking compounds for the target of interest, toolkits such as ChemFlow_py are expected to increase the
success rate of virtual screening.
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Software availability
ChemFlow_py is a freely available software package that can be downloaded from the following link:
https://github.com/IFMlab/ChemFlow_py. This software can be used either from the command line (on
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Linux or MacOS) or as a library that can be imported into a Python script. A tutorial on how to install and
use ChemFlow_py is available at https://github.com/IFMlab/ChemFlow_py/blob/main/tutorial.md. The
tutorial covers different aspects from docking to rescoring using the protein CDK2 from the DUD-E
database.

ChemFlow_py interfaces with several programs whose availability is outlined below. Conda is an open-
source package manager that is available free of charge for not-for-pro�t institutions. The docking
software Autodock4, Autodock Vina, QVINA, and SMINA are all open-source and available free of charge.
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agreement. The Open Babel tool is open-source and available free of charge.
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