
QM Assisted ML for 19F NMR Chemical 
Shift Prediction 
Patrick Penner*, Anna Vulpetti* 

Biomedical Research, Novartis AG, 4056 Basel, Switzerland 

*Corresponding Authors. Emails:  

patrick.penner@novartis.com 

anna.vulpetti@novartis.com 

ORCIDs: 

Patrick Penner (0000-0003-4988-6183) 

Anna Vulpetti (0000-0002-3114-8679) 

Abstract 
Ligand-observed 19F NMR detection is an efficient method for screening libraries of fluorinated molecules 

in fragment-based drug design campaigns. Screening fluorinated molecules in large mixtures makes 19F 

NMR a high-throughput method. Typically, these mixtures are generated from pools of well-characterized 

fragments. By predicting 19F NMR chemical shift, mixtures could be generated for arbitrary fluorinated 

molecules facilitating for example focused screens. In a previous publication, we introduced a method to 

predict 19F NMR chemical shift using rooted fluorine fingerprints and machine learning (ML) methods. 

Having observed that the quality of the prediction depends on similarity to the training set, we here 

propose to assist the prediction with quantum mechanics (QM) based methods in cases where 

compounds are not well covered by a training set. Beyond similarity, the performance of ML methods 

could be associated with individual features in compounds. A combination of both could be used as a 

procedure to split input data sets into those that could be predicted by ML and those that required QM 

processing. We could show on a proprietary fluorinated fragment library, known as LEF (Local 

Environment of Fluorine), and a public Enamine data set of 19F NMR chemical shifts that ML and QM 

methods could synergize to outperform either method individually. Models built on Enamine data, as well 

as model building and QM workflow tools, can be found at https://github.com/PatrickPenner/lefshift and 

https://github.com/PatrickPenner/lefqm. 

Introduction 
Fragment-based screening (FBS) has become a common hit-finding approach for drug discovery. Small 

and well-characterized fragment libraries typically deliver higher hit rates of ligands with lower molecular 

weight and higher solubility than those derived from high-throughput screening approaches, making FBS 

an attractive technology.[1] Since the inception of fragment-based technology in medicinal chemistry, 

nuclear magnetic resonance (NMR) methods have played, and continue to play, a significant role in the 

screening of fragments.[2][3] 

A particularly attractive ligand-observed NMR technique uses 19F as the NMR active isotope. This method 

known as FAXS[4] is very sensitive to protein binding, uses low concentrations of fragments, and requires 

low amounts of unlabeled protein. It can screen and deconvolute large mixtures of compounds due to the 

wide range of 19F NMR chemical shift, can identify reporter/spy molecules that can then be used to 

screen molecules not containing fluorine, and measure the binding affinity of the identified hits.[4] The 

possibility of screening large mixtures makes 19F NMR a high-throughput method. 
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Establishing and deconvoluting large mixtures of fluorinated compounds typically requires these 

compounds to have been measured in single experiments, so that their measured 19F NMR chemical 

shifts can be used as references.[4] This can be done once for a static library of fragments but quickly 

becomes prohibitive if such a screening library is to be constructed on the fly as a focused set for a 

particular target or using parallel chemistry. Every compound would have to be measured at least once to 

generate mixtures of non-overlapping 19F NMR peaks. 

In our previous work, we used a machine learning (ML) method to predict the 19F NMR chemical shifts of 

compounds for focused 19F NMR screenings we termed 19Focused screens.[5] That method was based 

on a Random Forest  architecture but other architectures have been explored for 13C and 1H NMR[6] or 

even for solid-state NMR[7]. In the analysis of the predictions it became evident that the performance of 

the ML method was dependent on the similarity of the predicted molecules to the training data set. This 

was particularly pronounced in the extension of our in-house LEF4000 library by another 1530 molecules, 

which were chosen to explore new chemical space, and were therefore often dissimilar to the LEF4000 

data being used as a training set. The strong outliers this generated would have been very difficult to 

deconvolute in a mixture of a 19Focused screening. 

Quantum mechanics (QM) calculations are a largely training set independent collection of methods that 

can be used to predict chemical shifts. Their performance in predicting specifically 19F NMR chemical 

shifts has been increasing steadily.[8][9] Several density functional theory (DFT) methods have shown a 

favorable balance of speed and accuracy,[8] especially after a correction by linear regression.[9] 

In this work, we will further formalize our usage of ML methods to predict 19F NMR chemical shift and then 

extend it with QM methodology. To that end we will first describe the limits of the ML method’s 

applicability domain. Those compounds that are outside this will then be split off and handled orthogonally 

by QM. This will involve a more physical description of the molecules that may synergize with the purely 

empirical ML workflow to increase overall performance, but more importantly to prevent strong outliers. 

Methods 

Data Sets 
Two data sets were used in the course of this work. The first data set was a collection of 19F NMR 

chemical shifts from our in-house library of fluorinated fragments, the expansion of which from around 

4000 (referred to as LEF4000) to around 5500 (referred to as LEF5500) fluorinated molecules was 

described in the previous publication.[5] The expansion to the LEF5500 represented not only a time-split, 

but also an expansion of the chemical space contained in the data set, which offered a valuable 

opportunity for assessing 19F NMR chemical shift prediction. 

Molecules with two fluorines at one carbon atom (CF2), as opposed to molecules with one fluorine at one 

carbon atom (CF) or three fluorines at one carbon atom (CF3), had not been considered in the prediction 

analysis of the last publication. The reason CF2 had not been a part of model building previously is that, 

although the CF3 motif displays a 19F NMR signal which is a singlet, the case of molecules containing CF2 

is more complex.[10] In the prediction of CF2 containing molecules by ML and QM, we limit the data to 

those cases in which there is fast exchange with respect to the chemical shift difference between the 

fluorines in the NMR time scale so that the two fluorines are magnetically equivalent. However, this is not 

always the case even for the CF2H motif for which rapid internal rotation is expected. This results in 19F 

NMR spectra with the two fluorines having different chemical shifts and appearing as doublets due to the 

splitting arising from the large two-bond 2JFF scalar coupling constant. The relative intensities of the two 

components of each doublet will depend on the ratio of the chemical shift difference of the two doublets, 

expressed in Hz, divided by JFF. In the approaches described here, we are dealing with CF2 displaying 

only one single signal or two peaks very close to each other. This is also a pre-requisite for the averaging 

of equivalent fluorines in the QM workflow below. 
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The second data set that we used were the 19F NMR chemical shifts of a combination of diverse 

fluorinated fragments available from Enamine.[11] Enamine provides two separate plated sets of 

fluorinated fragments called: “FDS-1000” and “FFL-d6” containing 1000 and 1280 compounds, 

respectively (Version: 21 May 2021). Both sets have an overlap with the LEF5500, which was used to 

analyze how consistent the 19F NMR chemical shifts were across data sets measured by two different 

institutions and two different protocols (See section Experimental Details). 

Data Splitting Strategies 
The initial ML model selection and validation were performed on the LEF4000. The QM assisted ML 

workflow was also initially established on the LEF data and then applied to Enamine data. Most results 

are reported in the main body of the manuscript using the CF containing molecules, the most abundant 

fluorinated motif, to emphasize the statistical effect. Corresponding results for CF2 and CF3 can be found 

in the supporting information. 

The split into tranche 1 and tranche 2 of the LEF expansion was retained from the previous publication 

and used in our analysis. Typically, models were trained on the LEF4000 and then used to predict 

tranche 2. Tranche 1 was occasionally used to augment the training set and expose models to a part of 

the chemical space that the expansion to the LEF5500 had explored. Of the approximately 300 CF2 

containing molecules in the LEF5500 all that had not been part of the LEF4000 before the expansion 

were added to tranche 2 to perform time-split experiments on these motifs as well. We maintained the 

split of Enamine data into the FDS-1000 and the FFL-d6 as a train/test split and all overlapping molecules 

were added to the FDS-1000, the training set. 

Experimental Details 
Enamine provided 19F NMR chemical shifts measured in 1 mM PBS and reported a KF 19F NMR chemical 

shift as a standard for every measurement.[11] Occasionally Enamine reports two peaks for a single 

compound. In these cases, the first peak is taken as a representative. At Novartis the LEF 19F NMR 

chemical shifts were recorded in 50 mM deuterated Tris buffer at pH 7.6, containing 100 mM NaCl, 

100 µM sodium trimethylsilylpropanesulfonate (DSS), and 2% DMSO-d6. Measurements were performed 

at 296 K (23 °C) with DSS as indirect referencing for 19F NMR chemical shift calibration. 

Rooted Fluorine Fingerprint Descriptor 
The core of our in-house 19F NMR chemical shift prediction throughout the years have been rooted 

fluorine fingerprints. They were described in Vulpetti et al. 2009[12] as a variant of the path-based 

topological torsion count fingerprint using atomic numbers, number of π electrons, and number of heavy 

atom neighbors to generate bits. All paths up to a certain path length contribute to the set and the counts 

of bits in the fingerprints. This means a fingerprint with a path length of 7 will count all bits of the paths of 

length 7, 6, 5, and so on. Because fluorine fingerprints are count fingerprints, they will be compared using 

Dice similarity, which compares counts as well as whether a bit is present, instead of the more common 

Tanimoto similarity used for other fingerprints, such as extended connectivity fingerprints. Deviating from 

the original description, the fluorine fingerprints used in this publication always start their path at a fluorine 

atom. In the original publication, paths started at a fluorine atom for the CF motif and from the carbon of a 

trifluoromethyl group for the CF3 motif. The path length of the fingerprint was optimized as a 

hyperparameter (See Table S1 of the supporting information). 

Machine Learning Methods 
Besides the random forest (RF) model shown in the previous publication[5] a number of other 

architectures were evaluated for the task of 19F NMR chemical shift prediction. Lasso regression was 

chosen as a reasonable linear baseline. K-nearest neighbor (KNN) regression has been applied to this 

problem in the past[13] and it was included here as a reference. Random forest and gradient-boosted 

trees (GBT) serve as similar model architectures that have already been used with some success.[5][14] 
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The XGBoost GBT implementation was used.[15] Lastly, we also evaluated a model based on 

Chemprop[16] as a deep-learning representative. 

Separate versions of all models were built for the three fluorine motifs: CF, CF2, and CF3. Models were 

selected based on their hyperparameter optimized performance when trained on the LEF4000 data set. 

Not all models were parametrized using cross-validation, but all parametrized models were eventually run 

in a cross-validation scenario for selection. The regularization parameter of Lasso regression was 

optimized using coordinate descent as implemented in the scikit-learn Python package.[17] KNN 

regression, RF, and GBT model parameters were optimized using a grid search and evaluated in 5-fold 

cross-validation. Chemprop models were hyperparameter optimized using the provided method based on 

Bayesian optimization, which internally performs 80:10:10 splits.[16] All hyperparameter configurations 

can be found in Table S1 of the supporting information. 

Quantum Mechanics Setup 
The full QM workflow is visualized in Figure 1. Molecules were prepared for QM calculation using several 

software packages. RDKit[18] was used to strip salts and assign stereochemistry when possible. 

Unassigned stereocenters were assigned an arbitrary configuration if they were the only stereocenters 

present in a molecule. Unassigned diastereomers were rejected at this point. The most abundant 

tautomer and protomer were chosen using MoKa.[19][20][21] Molecules were only used in their charged 

form for the calculation if they were predicted to be at least 90% charged at physiological pH. 

Conformer ensembles were generated using the Conformator program[22] and optimized with GFN2-xTB 

in water using the ALPB solvent model[23]. These optimized conformers were reduced to a maximum of 

15 clusters with the k-means algorithm implemented in scikit-learn[17] and the lowest-energy 

representative was picked from each cluster. The optimized and clustered conformer ensembles were the 

input for the DFT calculations. 

Turbomole[24] was used to perform NMR shielding constant calculations by first performing a single-point 

DFT calculation and then deriving the isotropic shielding constants using the Gauge-Including Atomic 

Orbital (GIAO) method[25] with def2-TZVP[26] as the basis set and the KT3[27] functional. The 

calculation was performed in water as modeled by the COSMO[28][29] implementation in Turbomole. An 

example Turbomole control file is given in Section 2 of the supporting information. 

After shielding constants had been calculated for all fluorine atoms of all conformers of each molecule 

their values were combined. At first, the shielding constants for equivalent fluorines (CF2, CF3) were 

averaged by arithmetic mean. Shielding constants of fluorines of different conformers were Boltzmann 

averaged together using their xTB energies as weights. This left every molecule with one shielding 

constant for every equivalent set of fluorines. Fluorine shielding constants were converted to chemical 

shifts with linear regression as in Dumon et al.[8] QM calculations were performed in parallel to ML 

predictions, so the linear regression was fitted to the same training set as the corresponding ML method. 

 

Figure 1 The full QM workflow. Molecules are normalized, followed by conformer generation with xTB optimization. 
Turbomole is used to calculate NMR shielding constants. The shielding constants for ensembles are combined so 
that every molecule has one shielding constant for every equivalent set of fluorines. The last step converts shielding 
constants into chemical shifts using a linear regression correction fitted to a corresponding ML training set. 

https://doi.org/10.26434/chemrxiv-2023-sd3vq-v2 ORCID: https://orcid.org/0000-0003-4988-6183 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-sd3vq-v2
https://orcid.org/0000-0003-4988-6183
https://creativecommons.org/licenses/by/4.0/


QM Assisted ML Workflow 
Figure 2 outlines the workflow of QM assisted ML. The decision which molecules were out-of-distribution 

(OOD), i.e. out of the applicability domain, for a ML model was made using two metrics: the Dice similarity 

of the predicted molecule to the training set of the model using fluorine fingerprints and the number of bits 

of a molecule’s fluorine fingerprint not in the training set of the model. The thresholds of both metrics were 

optimized for each separate fluorine motif. The LEF4000 was used as the training set and tranche 2 as 

the test set. Parameters were explored using a grid search. The grid definition can be found in Table S2 

of the supporting information. 19F NMR chemical shifts from the QM calculations for molecules outside of 

the ML model’s applicability domain were fed back into the ML model’s training set. The 19F chemical 

shifts were then predicted with a model trained on the augmented training set. 

 

Figure 2 QM assisted ML workflow. Samples with unknown 19F NMR chemical shifts to predict are first fed into out-of-
distribution (OOD) detection. OOD samples are processed by QM and the QM 19F NMR chemical shifts are fed into 
the ML training set. Thus, chemical shift prediction is performed by a ML model trained on experimental 19F NMR 
chemical shifts as well as QM derived 19F NMR chemical shifts. 

Results 

Data Analysis 
The LEF5500 library-derived data set and the two Enamine data sets were compared. Figure 3 shows the 

populations of the different fluorine motifs in the different data sets. The LEF5500 (Figure 3a) was the 

largest of the data sets, larger than both Enamine data sets put together. The LEF5500 also had the 

highest proportion of CF3 containing compounds in comparison to the two Enamine data sets. The 

LEF5500 also extended most into the ‑130 to ‑230 ppm range, which was a direct result of the expansion 

strategy described in the previous publication.[5] The two Enamine data sets, FDS-1000 (Figure 3b) and 

the FFL-d6 (Figure 3d), had different distributions of fluorinated motifs. All data sets had a similarly low 

proportion of CF2, the least represented fluorine motif, which is likely due to its NMR appearance 

described above. 
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Figure 3 Fluorine motif composition for the three data sets used: (a) LEF5500, (b) FDS-1000, and (d) FFL-d6 and the 
number of overlapping compounds in (c). The total number of compounds for each data set is given in the diagram 
title. 

Figure 3c shows the number of compounds the three data sets had in common. The largest overlap of 

348 molecules was between the FDS-1000 and the LEF5500. There was an overlap of 237 molecules 

between the FDS-1000 and FFL-d6. 

We used the overlap between the LEF5500 and the FDS-1000 to investigate how comparable the 

measured 19F NMR chemical shifts were across data sets. Both data sets were in very good agreement 

as can be seen in Figure 4. There were two molecules with very different chemical shifts. Further 

discussion of these outliers as well as the chemical shift deviations in general can be found in Section 3 

of the Supporting Information. The mean absolute deviation for the CF motif was 0.27 ppm. This was 

substantially worse than the possible deviation of less than 0.03 ppm reported by Rosenau et al. [30], but 

lower than the deviation expected of two data sets with different experimental procedures and different 

referencing.  
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Figure 4 Agreement of 19F NMR chemical shifts between the LEF5500 library and the Enamine FDS-1000. Two 
outliers, Enamine molecules Z1255533334 and Z608352686, are annotated. 

Model Selection on the LEF Data Set 
The performance of all models parametrized on the LEF4000 is reported in Table 1. A large part of the 

problem of predicting 19F NMR chemical shifts appeared to be linear as demonstrated by the high 

performance of Lasso regression. This is in line with older methods that attempted to model chemical 

shifts as linear combinations of substructure contributions with impressive success.[31] KNN tended to 

degenerate into a single nearest neighbor search by cosine similarity. When trained on all data, the best 

performing KNN models only considered one neighbor (see Table S3 of the supporting information). 

Table 1. Cross-validation Model Performance 
Architecture CF (RMSE a, ppm) CF2 (RMSE a, ppm) CF3 (RMSE a, ppm) 

Lasso Regression (LR) 4.868 ± 1.343   6.252 ± 3.112 1.946 ± 0.433 

K-nearest Neighbor (KNN) 6.204 ± 0.756   6.305 ± 4.341 2.128 ± 0.447 

Random Forest (RF) 4.415 ± 1.103   6.329 ± 2.961 1.926 ± 0.425 

Gradient-Boosted Trees (GBT) 4.341 ± 1.281   5.985 ± 3.220 1.932 ± 0.435 

Chemprop 4.068 ± 1.561 12.695 ± 3.367 1.833 ± 0.864 
a Average root-mean-square errors (RMSEs) of 5-fold cross-validation ± their standard deviation on the 

LEF4000 for all parameterized models. 

The top-performing models were RF, GBT, and Chemprop, which performed quite similarly. The most 

difference between the three models was observed for the CF2 motif, which had the least training data. 

The higher standard deviations across the 5-fold cross-validation for CF and CF3, as well as the erratic 

learning curve (Figure S4 of the supporting information) shed doubt on the slightly better performance of 

Chemprop in CF and CF3. This doubt was substantiated when all parameterized models were used to 

predict molecules with CF motifs from tranche 2 after being trained on the full LEF4000. Table 2 shows 

the top-performing models outperforming lasso regression and KNN more clearly, with the two tree-based 

models taking the lead in mean absolute error (MAE). Chemprop manages to outperform RF in root-

mean-square error (RMSE) but is outperformed by GBT in all metrics. The GBT model was determined to 

be the most effective method at this point.  
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Table 2. Time-split Model Performance 
Architecture Kendall’s Tau MAEa (ppm) RMSEb (ppm) 

Lasso Regression (LR) 0.8398 5.662 11.047 

K-nearest Neighbor (KNN) 0.7724 6.386 13.150 

Random Forest (RF) 0.8475 4.806   9.525 

Gradient-Boosted Trees (GBT) 0.8648 4.361   8.561 

Chemprop 0.8480 5.539   9.184 

Kendall’s Tau, aMean absolute error (MAE), and broot-mean-square error (RMSE) of the models 

predicting the 19F NMR chemical shifts on CF motifs of tranche 2 when trained with the LEF4000. 

Importance of Features in ML Performance 
The previous publication assessed how the performance of a RF model is related to the Dice similarity of 

fluorine fingerprints in a test set to the training set.[5] A RF model was trained on the LEF4000, with or 

without tranche 1, and used to predict tranche 2. It yielded good predictions of the 19F NMR chemical shift 

for those molecules with at least one close analog of a Dice similarity greater than 0.7 in the training set. 

We here report the performance of predicting tranche 2 after training with the LEF4000 with or without 

tranche 1 as a function of substructural features present in the fluorine fingerprints. 

Using the feature importance metrics provided by XGBoost[15], specifically the “gain” metric, we could 

measure the average accuracy gain of splits in the decision trees using a particular feature. The feature 

with the highest gain importance resembled a substructure of a fluorine bound to an aromatic 

substructure. The difference between the average chemical shift of all aliphatic CF groups to all aromatic 

CF groups was around 60 - 70 ppm, demonstrating that the model had extracted a very impactful feature. 

Typically, fluorines bound to an sp3 hybridized carbon generate signals in the more shielded (i.e., the 

more negative) region of the 19F NMR spectrum than those bound to sp2 hybridized carbon. 

An analysis of the changes of feature importance when training with the LEF4000 and tranche 1 as 

opposed to just the LEF4000 suggested two main reasons for the performance difference. The first 

reason was the appearance of new features in tranche 1 and tranche 2 that had not been present in the 

LEF4000. As explained above, the expansion of the LEF4000 was intended to explore new chemical 

space, which added new fluorine environments encoded as fingerprint bits into the set. Figure 5a 

visualizes a CF substructure feature present in tranche 1 and tranche 2 but not present in the LEF4000. 

 

Figure 5 (a) is a fluorine fingerprint path that makes up a bit only present in tranche 1 and tranche 2 highlighted in red 
in the Enamine molecule Z2051927854 (19F NMR chemical shift: -169.34 ppm). (b) is a fluorine fingerprint path that 
makes up a feature that becomes more important after the addition of tranche 1 visualized in Enamine molecule 
Z1658083843 (19F NMR chemical shift: -180.63 ppm) 
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The closest analogs to the fluoropyrrolidine substructure carrying the hydroxymethyl shown in 

Z2051927854 in the LEF4000 were four fluoropyrrolidines, which had acids or amides in place of the 

primary alcohol as well as a different stereochemical configuration. These significant structural differences 

in the closest analogs of the LEF4000 resulted in poor predictions of the 19F NMR chemical shift. The 

highlighted fingerprint feature was the one with the highest gain feature importance after the addition of 

tranche 1 that described this substructure. Other fingerprint features with non-zero feature importance 

after training with the LEF4000 and tranche 1 also encoded parts of the fluoropyrrolidine. A combination 

of these bits was likely used by the GBT model to predict the 19F NMR chemical shift. Training with only 

the LEF4000 resulted in predictions with a MAE of around 6 ppm for these fluoropyrrolidines in tranche 2. 

Training with the LEF4000 and tranche 1 managed to improve this to a MAE of around 1 ppm by 

providing more examples of these bits to the GBT.  

Another reason for the performance difference was the re-weighting of features present in the LEF4000 

after the addition of tranche 1. Figure 5b visualizes a feature that became more important. Although this 

feature was present in the LEF4000, the 19F NMR chemical shift of molecules that contained it in tranche 

2 were predicted with a high MAE of greater than 5 ppm after training with only the LEF4000. Less than 

1% of the molecules in the LEF4000 contained this bit and even those could be quite different to the ones 

in tranche 1 and tranche 2. The percentage of molecules that contained this bit in tranche 1 was higher, 

at around 5%, which made this bit more important by augmenting its relative frequency. Training with the 

LEF4000 as well as tranche 1 once again improved the MAE of these molecules to around 1 ppm. 

There was substantial variability in the substructure that the bit in Figure 5b crossed. Some of the 

molecules in the LEF4000 that contained this bit had larger rings, such as the molecule in Figure 5a. 

Some did not have a ring in that position. The fingerprint does not encode whether an atom is in a ring 

and therefore the substructure it matched could be a chain. Other bits also re-weighted along with this bit 

did contain the full azetidine ring. This suggested a more subtle effect of clusters of bits encoding different 

parts of the same substructure being re-weighted to better fit the data. Because the fluorine fingerprint 

does not contain stereochemical or ring information, the path from Figure 5b can also be found in Figure 

5a. The appearance of the fingerprint feature in Figure 5a and the re-weighting of the feature in Figure 5b 

will have influenced each other in model training. 

Feature-based Out-of-Distribution Detection 
The relationship between features and the performance of the GBT model could be used to detect cases 

where the prediction of the 19F NMR chemical shift would be poor. Figure 6 shows the prediction 

performance on CF motifs of a GBT model trained on the LEF4000 generating chemical shifts for tranche 

2. A grid search determined that CF containing compounds with a Dice similarity of less than 0.8 or at 

least 3 unknown bits in its fingerprint should be sorted into a subset of samples with unknown features 

(see Table S4 of the supporting information). The subset of compounds with only known features (Figure 

6a) is visibly better predicted than the subset with unknown features (Figure 6b).  Roughly a third of the 

data set made up the subset of known features. A little less than two-thirds of all samples were sorted into 

the unknown features subset. 
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Figure 6 Performance of the GBT model on CF motifs when trained on the LEF4000 and predicting tranche 2. The 
data was split into subsets of known and unknown features with the size of the subset in the title. The subset with 

only known features (a) is visibly better predicted than the subset with unknown features (b). 

Horizontal clusters of compounds in the prediction of the subset with unknown features suggested that 

the trees in the GBT model did not know how to split some samples and therefore predicted similar 19F 

NMR chemical shifts for them. The features that would have facilitated this split appeared to have not 

been in the training set. The higher density of test cases in the unknown features subset in the ‑130 ppm 

to ‑230 ppm range reflected the expansion of the LEF4000 to the LEF5500 and its explicit goal to expand 

into new chemical space, by embracing alkyl fluorinated motifs.[5] Table S7 in the supporting information 

shows that the unknown features subset was predicted with almost 5-fold higher MAE and RMSE than 

the known features subset. It was obvious that the unknown features subset was outside of the 

applicability domain of the GBT model and required an orthogonal method. 

Quantum Mechanics Assisted Machine Learning 

LEF Library: LEF4000 and Tranche 2 
Not all molecules could be processed by QM mainly due to missing stereochemistry information. Around 

10% of the whole LEF5500 data set had ambiguous stereochemistry annotation. Only unassigned 

enantiomeric compounds could be rescued because their isomers are indistinguishable in NMR with 

achiral solvent and the stereocenter could therefore be assigned arbitrarily. Those molecules that could 

be processed were used in the QM assisted ML workflow and the subsequent comparison. 

In general, the 19F NMR chemical shifts calculated by the QM method for tranche 2 were better than the 

chemical shifts predicted by GBT. QM chemical shifts appeared to generalize more effectively. Although 

the overall trend was towards QM generating less error, comparing QM to GBT on the known and 

unknown features subsets revealed that GBT was better on the known features subsets and QM was 

better on the unknown features subset (see Table S7 of the supporting information). This supported our 

idea that these methods could synergize. Adding QM predictions of the subset with unknown features into 

the training set for GBT in addition to the LEF4000 outperformed GBT and QM in all metrics as shown in 

Table 3. The difference in mean-squared-error (MSE), the parameter most sensitive to strong outliers, 

between GBT and QM assisted GBT on LEF data was statistically significant in a two-sided t-test (p = 

0.008). 

https://doi.org/10.26434/chemrxiv-2023-sd3vq-v2 ORCID: https://orcid.org/0000-0003-4988-6183 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-sd3vq-v2
https://orcid.org/0000-0003-4988-6183
https://creativecommons.org/licenses/by/4.0/


Table 3. Performance of GBT, QM, and QM assisted GBT on CF 
Method Kendall’s Tau MAEa (ppm) RMSEb (ppm) 

Trained on LEF4000, predicted tranche 2 

GBT 0.8763 3.858 7.464 

QM 0.8830 3.623 5.347 

QM assisted GBT 0.9014 3.180 4.965 

Trained on FDS-1000, predicted FFL-d6 

GBT 0.7882 1.818 3.231 

QM 0.7607 2.562 3.677 

QM assisted GBT 0.7855 1.814 3.094 

Kendall’s Tau, aMean absolute error (MAE), and broot-mean-square error (RMSE) of GBT, QM, and QM 

assisted GBT. 

Enamine data sets: FDS-1000 and FFL-d6 
Having established the QM assisted ML method on the LEF, we applied it to the Enamine data sets by 

using the FDS-1000 as the training set and the FFL-d6 as the test set. Table 3 also shows the 

performance for GBT, QM, and QM assisted GBT on Enamine data. 

QM by itself performed worse in every metric in an inversion of the trend seen before. Generally, the ML-

based method produced lower MAE and RMSE. This suggested that the split between the two Enamine 

data sets did not represent as much of an extrapolation as the split from the LEF4000 to tranche 2. The 

split of the test data set, the FFL-d6, into the subset with known features versus the subset with unknown 

features also supported this. Only a quarter of the FFL-d6 CF samples were sorted into the subset with 

unknown features as opposed to around two-thirds of samples in tranche 2 of the LEF (see Table S8 of 

the supporting information). 

Figure 7 shows a plot of the similarity between the LEF and Enamine test/train splits. The similarity is 

calculated as the maximum similarity between all molecules of a test set to any molecule of the training 

set using the Dice similarity of fluorine fingerprints of length 7 (F-FP-7) and the Tanimoto similarity of 

extended connectivity fingerprints with a radius of 2 (ECFP4). The FFL-d6 (the Enamine test set) contains 

only very few molecules with a maximum F-FP-7 Dice similarity lower than 0.6 to molecules of the FDS-

1000 (the Enamine training set). Tranche 2 (the LEF test set) on the other hand contains a substantial 

fraction of molecules with a maximum F-FP-7 Dice similarity lower than 0.6 to molecules of the LEF4000 

(the LEF training set). A higher number of dissimilar molecules in tranche 2 suggests that this train/test 

split required more extrapolation. 

The ECFP4 similarity in Figure 7 is given as a reference to a fingerprint describing the whole molecule. It 

supports that the proportion of dissimilar molecules in tranche 2 is higher than in the FFL-d6. It is 

interesting to note that all molecules in both sets are quite dissimilar using the ECFP4. The F-FP-7, which 

is rooted at the fluorine, not only on average finds training molecules with a greater similarity for test 

molecules but also produces in a more even distribution of similarity. 
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Figure 7 Similarity violin plots for the train/test splits of the LEF4000 to tranche 2 and the FDS-1000 to the FFL-d6 
using fluorine fingerprints of length 7 (F-FP-7) and extended connectivity fingerprints with a radius of 2 (ECFP4). The 
LEF library-derived data is in blue, and the Enamine data is in orange. The distributions are made up of the maximum 
Dice similarity for the F-FP-7 and the maximum Tanimoto similarity for the ECFP4 of molecules in the test set to 

molecules in the training set. 

Despite the lower overall performance of QM and the lower number of samples processed by QM in the 

split of the Enamine set, the synergistic QM assisted GBT method still performed better than GBT or QM 

by themselves in RMSE. The difference in MSE between QM and QM assisted GBT was statistically 

significant (p = 0.019). The MAE did not change much in comparison to GBT but was improved in 

comparison to QM. The Kendall’s Tau dropped slightly in comparison to GBT, which highlights the 

importance of splitting data sets as precisely as possible. Processing everything by QM would have 

resulted in lower overall performance in this case. Note that the splitting that was performed on the FFL-

d6 used the same Dice similarity and number of unknown bits thresholds as the one performed on 

tranche 2 of the LEF. The parametrization of the sorting into known and unknown subsets on the time-

split in the LEF had been stable enough in this case to extrapolate to a different data set. Results for CF2 

and CF3 can be found in Section 6 of the Supporting Information. 

Runtime Comparison 
Training a model on the full Enamine training set took around 3 minutes in total using a single core. The 

prediction of the full data Enamine test set took around half a minute using a single core. Splitting the 

Enamine test set, which is effectively a fingerprint comparison of the test set and the training set, took 

around 5 seconds on a single core. By default, training and prediction are parallelized across 8 cores. 

Conformer generation with xTB optimization and clustering took around 4 minutes per molecule, and 

produced a median of 15 conformers. This meant that over half of the compounds produced the 

maximum number of conformers. Shielding constant calculations took around 55 minutes per ensemble 

of conformers. A rough estimate of the effort involved to process the Enamine test set therefore comes to 

about 1000 CPU hours. The calculations are trivially parallelizable and run overnight on our internal 

computer cluster. Nonetheless, it is important to note that only processing OOD samples in the Enamine 

test set reduces the computational load down to one quarter of that. 

Characterization of Synergistic Effects 
To analyze the synergy between QM and GBT we first generated a learning curve for both using the CF 

motifs in Enamine data. Figure 8 shows learning curves for GBT and the linear regression correction that 

converts QM shielding constants into chemical shifts. Both were trained on increasing amounts of 

randomly sampled FDS-1000 data and used to predict FFL-d6 compounds. The linear regression 

correction of the QM method showed very little dependence on the training set. After 100 randomly 
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sampled training data points the RMSE of the linear regression correction changed by less than 1%, with 

the largest changes ending after 50 points. GBT continually improved with training set size and eventually 

outperformed QM after around 500 data points. This suggested that in situations with less data, our QM 

workflow is more robust, but it is eventually outperformed by ML. 

 

Figure 8 Learning curves for GBT and the QM linear regression correction trained on randomly sampled FDS-1000 
data and predicting the full FFL-d6. Note the logarithmic scale on the training set size. Only the CF containing 
samples are plotted. The GBT model was reparametrized using 5-fold cross-validation at each point. 

QM differs from the ML methods in several fundamental ways. One is that QM by its use of molecular 

geometries can discriminate between stereoisomers. Figure 9a shows all four possible stereoisomers for 

a molecule with two stereocenters. According to the QM calculation, the CF3 motif can have 19F NMR 

chemical shifts ranging from ‑62.98 ppm to ‑73.83 ppm depending on which of the four stereoisomers is 

used as an input. The cis-(2S, 3R) stereoisomer, shown in Figure 9b, was measured to have a shift of 

‑70.34 ppm and QM predicted it as ‑72.75 ppm. The rooted fluorine fingerprint does not include 

stereochemistry and would therefore not be able to distinguish between stereoisomers. 
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Figure 9 (a) Enumerated stereoisomers and (b) the reported stereoisomer of Enamine molecule Z2718608919. The 
most likely conformer by xTB energy is visualized. Hydrogens have been omitted for clarity. The cis/trans positioning 
of the acid and the CF3 group to each other are likely the cause of the large ppm range seen in the QM calculation. 

Another aspect that QM handles is conformer effects. Figure 10 shows a population plot of conformers as 

well as the corresponding conformers for a CF motif. There was a significant difference in chemical shift 

between the most likely and the least likely conformers in the ensemble. None of the chemical shifts of 

the conformers coincided with the measured chemical shift. The most likely (i.e., the lowest energy) 

conformer was associated with a chemical shift of -131.44 ppm compared to the measured chemical shift 

of -134.66 ppm, an error greater than 3 ppm. A Boltzmann average over the conformer ensemble 

produced a better chemical shift prediction of -135.60 ppm, which is an error of around 1 ppm. This 

highlights the importance of sampling more than just the lowest energy conformation for precise 19F NMR 

chemical shift predictions. 
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Figure 10 Conformer population effects on the calculation of 19F NMR chemical shift for Enamine molecule 
Z1266902306. (a) shows a plot of conformer clusters and the chemical shift that would be calculated for them, as well 
as their Boltzmann weights (i.e., their likelihood) in water. A red line shows the measured chemical shift and a blue 
line the prediction. A range in black between the highest and lowest Boltzmann weight denotes what the difference in 
likelihood equates to in kcal/mol at 298.15 K (25 °C) calculated by xTB. Three non-symmetric conformers that 
represent the conformer clusters are shown in (b). Hydrogens have been omitted for clarity. The carbon atoms of the 
different side-chain conformers are colored by their xTB energy in water, where darker colors signify higher and 
brighter colors signify lower energies. The colors of the conformers correspond to the distributions in chemical shift 

and Boltzmann weights in the plot that they represent. 

As an example of the QM workflow’s robustness, Figure 11 shows a collection of quinolines from the FFL-

d6 (Figure 11 top, test set) and their close analogs in the FDS-1000 (Figure 11 bottom, training set). The 

two indoles in the training set have a greater similarity by fluorine fingerprint Dice similarity because the 

larger substituent of the quinoline from the training set is attached at a different position than in the test 

set. For reference, the F-FP-7 Dice similarity values can be found in Table S11 of the supporting 

information. This changes multiple bits in the fingerprint and makes it harder for the GBT model to 

accurately predict these examples. The FFL-d6 quinolines have a 19F NMR chemical shift in the range of 

‑107.73 ppm to ‑109.93 ppm and are all predicted at around ‑119.47 ppm to ‑120.87 ppm, a consistent 

10 ppm error. The QM workflow can more accurately assess the nature of the ring systems involved and 

consider the effect that changes in substitution make, which leads to better predictions of ‑108.37 ppm to 

‑111.76 ppm for the FFL-d6 quinolines. The QM workflow is not as dependent on approximations as the 

ML method and can therefore generalize better. 
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Figure 11 At the top poorly predicted quinolines from the FFL-d6 present in the test set and at the bottom their close 
analogs from the FDS-1000 present in the training set. The indoles from the FDS-1000 have a higher fluorine 
fingerprint Dice similarity to the test set molecules than the quinoline Z199557174 in the bottom because the larger 
substituent at the quinoline is attached at a different position than in the test set molecules. This means that the 
indoles from the FDS-1000 also have more bits in common with the quinolines from the FFL-d6, which probably 
confounds the ML prediction. 

Discussion 
ML-based workflows using the rooted fluorine fingerprint achieve high correlations in the prediction task. 

Even though the MAEs are still orders of magnitude higher than achievable experimental errors[30], the 

predictions are already useful in application.[5] ML workflows are however expected to fail in situations 

when the predicted compounds contain features that are not covered by the training set. Some ML 

architectures managed to extrapolate better than others. Previously used models such as KNN were 

outperformed by more complex models. On the other hand, Chemprop was also outperformed, probably 

because the size of the training sets could not yet justify a deep-learning model. All models incurred a 

significant number of strong outliers. In these cases, a model derived from physics in the form of a QM-

based workflow is more successful. The given QM workflow was able to generalize better in predicting 19F 

NMR chemical shifts for fluorines in new local environments and was largely independent of a training 

set. It was on the other hand less precise on in-distribution samples compared to the ML workflow. 

Handling out-of-distribution samples by QM and in-distribution samples by ML led to better prediction 

performance and significantly fewer strong outliers. A few limitations and possible extensions of both the 

ML and QM methodology are discussed in the following paragraphs in more detail. 

In this work, we focused our efforts on the in-house LEF library-derived data set and the publicly 

accessible Enamine data sets. We kept the two data sources and models trained on these sets separated 

due to the difference in their experimental conditions, despite observing very good fluorine chemical shift 

correlation in the overlap between both data sets. Evaluating whether and under what conditions data 

sets could be combined is key for extending available data sets. One essential part of this is consistent 

referencing of 19F NMR chemical shift between institutions, which has been shown to lower deviations by 
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orders of magnitude.[30] In the absence of a consensus, reporting referencing methods may already 

facilitate corrections to correlate chemical shift measurements. ML model building could then leverage the 

availability of more 19F NMR chemical shift data sets of fluorinated molecules in aqueous solution, for 

example, from other vendors or academic groups, to expand the applicability domain. 

The efforts to understand the model’s performance could also be extended to try and reverse engineer 

the most impactful features and build a fully human-interpretable model. Building a single decision tree, 

ideally at minimal loss of performance due to the reduction of model complexity, with the most impactful 

features could start to approximate the more complex GBT model. This would make patterns detected by 

the model more accessible, as well as generally improve the trust in the model. 

The out-of-distribution detection presented here can be seen to lack some beneficial complexity. Splitting 

samples by number of unknown bits and Dice similarity cannot take into account the re-weighting of 

known features that we observed in the LEF expansion upon the addition of tranche 1. Furthermore, the 

OOD detection could be extended to specifically focus on phenomena that QM can handle and the ML 

method based on the fluorine fingerprint cannot, such as stereochemical effects. 

Building up a 19F NMR chemical shift prediction model from the ground up is a difficult task. Public data 

sets are a good starting point. Alternatively, a different starting point could use the presented QM 

workflow or a similar one to bootstrap such a model from minimal or no experimental data. While a model 

trained on QM results would not have the same precision as a model trained on experimental data, it 

could be a way to start predicting and screening mixtures. The 19F NMR chemical shifts measured as a 

consequence could then be fed back into the model starting a continuous improvement cycle. Another 

option would be to train a model on QM generated data and then fine-tune on available experimental data 

in a transfer learning workflow[32]. 

The problem with generating QM data is the large amount of CPU time necessary. QM assisted ML as we 

have presented it, minimizes the number of QM calculations necessary for good-quality predictions. 

Integrating QM parameters directly into the model requires the users to perform QM calculations for all 

predictions they want to make. Decoupling these systems gives the user more freedom. The splitting and 

re-training time necessary for the presented workflow have negligible runtimes in comparison to the QM 

workflow and the user has full discretion about which samples to process by QM. The system is 

intentionally designed in such a way that even if samples cannot be processed by QM for whatever 

reason the ML system is still able to provide a prediction at baseline performance. 

The QM workflow could also be extended methodologically by, for example, enumerating all 

diastereomers of a stereochemically unannotated molecule and predicting them all. This would initially 

approximate the expected error of a predicted 19F NMR chemical shift due to stereochemistry. These 

calculation results could also be used to hypothesize what the actual stereochemistry may be. The 

presented QM workflow represents a cost-efficient approximation that is adequate for our application but 

with many avenues for further improvement. For example, one could use the Δ-learning paradigm 

recently applied to NMR chemical shift prediction[33] or replace the linear regression correction with a 

non-linear method such as has been done for 1H and 13C NMR chemical shift prediction[34]. 

In general, the QM assisted ML workflow demonstrates on one hand the difference between purely 

empirical and more physical models, as well as their synergistic potential. The purely empirical model was 

more successful at precise predictions in the chemical space that was covered in the training set. The QM 

workflow was more robust in extrapolation and less dependent on a training set. Knowing how and when 

to combine the two methodologies can lead to a workflow that benefits from the performance of both. 
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