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Abstract
Determination of the bound pose of a ligand is a critical first step in many in silico drug discovery tasks. Molecular docking 
is the main tool for the prediction of non-covalent binding of a protein and ligand system. Molecular docking pipelines often 
only utilize the information of one ligand binding to the protein despite the commonly held hypothesis that different ligands 
share binding interactions when bound to the same receptor. Here we describe Open-ComBind, an easy-to-use, open-source 
version of the ComBind molecular docking pipeline that leverages information from multiple ligands without known bound 
structures to enhance pose selection. We first create distributions of feature similarities between ligand pose pairs, comparing 
near-native poses with all sampled docked poses. These distributions capture the likelihood of observing similar features, 
such as hydrogen bonds or hydrophobic contacts, in different pose configurations. These similarity distributions are then 
combined with a per-ligand docking score to enhance overall pose selection by 5% and 4.5% for high-affinity and congeneric 
series helper ligands, respectively. Open-ComBind reduces the average RMSD of ligands in our benchmark dataset by 9.0%. 
We provide Open-ComBind as an easy-to-use command line and Python API to increase pose prediction performance at 
www.​github.​com/​drewn​utt/​open_​combi​nd.
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Introduction

Drug discovery is a complex, multifaceted process involv-
ing the identification of small molecules capable of interact-
ing with specific biological targets to produce a therapeutic 
effect. Computer-aided drug design (CADD) tools allow 
for the reduction of the enormous complexity and cost of 
the traditional drug discovery pipeline [1]. CADD can be 
broadly divided into two main techniques: structure-based 
and ligand-based. Structure-based drug design (SBDD) uses 
the knowledge of the three-dimensional structure of a target 
protein to guide the selection of molecules that can bind with 
high affinity and selectivity [2, 3].

Molecular docking is a vital tool in the SBDD toolbox 
that predicts the non-covalent binding of two molecules in 

three-dimensional space. Knowledge of the ligand binding 
pose is critical for many downstream drug discovery tasks, 
such as lead optimization, affinity prediction, and virtual 
screening. Typical molecular docking algorithms either 
utilize energetics of interactions or the statistics of known 
binding interactions to predict the relative placement of the 
molecules [4]. Conventional docking algorithms, such as 
Autodock Vina [5] or Glide [6, 7], and even deep learning-
based docking algorithms, like gnina [8]or DiffDock [9], 
predict the binding of every ligand separately even when 
multiple ligands are docked to the same receptor structure. 
Many drug targets are unsuitable for molecular docking 
due to a lack of suitable crystal structures (i.e. large ligand 
volume difference with cognate ligand or no available holo 
crystal structures). In these cases, alternative approaches 
must be employed.

One such approach is ligand-based drug design (LBDD), 
which relies on the analysis of known active compounds 
rather than the target protein itself. LBDD typically involves 
comparing the chemical features of known actives to those 
of putative inactives in order to identify pharmacophores - 
sets of chemical properties necessary for activity against a 
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target [10]. These pharmacophores can be one, two, or three-
dimensional, providing an understanding of active molecule 
properties or shape [11, 12]. The generated pharmacoph-
ores are used to screen large libraries of compounds to find 
drug-like molecules with similar properties. LBDD allows 
for fast screening of incredibly large molecule libraries. Still, 
its reliance on empirical observations means it can struggle 
to capture subtle differences between closely related analogs. 
The results may not always generalize to a new series of 
compounds.

There have been several recent works that integrate LBDD 
with molecular docking to improve predictive performance. 
[13] and [14] utilize LBDD techniques to determine pro-
tein conformations that will increase docking performance 
with a given drug molecule. [15] use protein-ligand interac-
tion fingerprints to increase the scoring power of standard 
molecular docking scoring functions. [16] and [17] harness 
knowledge of known bound poses to guide the molecular 
docking of novel ligands binding to the same receptor. These 
methods are able to reduce the sampling space of the ligands 
during docking by using known bound ligand poses as a bias 
to their sampling procedure. [18] integrated structure-based 
docking from Glide, a commercial docking software, [6, 7] 
and 3D ligand similarities to increase pose prediction per-
formance with their docking pipeline ComBind. Their work 
allows the use of abundant information on known active 
molecules that have no known bound structure to improve 
pose selection. Using Glide to dock a diverse protein-ligand 
benchmark set, they derive two distributions describing 
the pairwise pose similarity of poses near the ground truth 
and the pairwise pose similarity of all docked poses with 
respect to features such as hydrogen bonds or hydrophobic 
contacts. During the pose selection procedure, the feature 
distributions are converted to energy-like terms using the 
log ratio of the near-native similarity distribution to the all-
pose similarity distribution. These likelihood terms are used 
in combination with Glide’s pose score to select a pose for 
a query ligand as well as for a set of ligands known to bind 
to the same receptor that do not require resolved structures. 
Their pipeline showed increased pose selection performance 
over only using Glide’s pose score, however, their pipeline 
utilized closed-source, licensed tools for pose generation and 
featurization, limiting its adoption by the molecular mod-
eling community.

Here we present an easy-to-use, open-source alternative 
to ComBind that we call Open-ComBind. The open-source, 
deep learning-based molecular docking software gnina is 
used to generate high quality ligand poses, and open-source 
tools like ProDy [19, 20] and RDKit are used to featurize the 
docked compounds. Using a likelihood framework identi-
cal to ComBind, we utilize a set of helper ligands without 
known structural information to improve the pose quality of 
our docked ligand. The pose selection procedure strikes a 

balance between the individual pose scores assigned by the 
per-ligand deep learning scoring functions and the similari-
ties and differences between the poses of various ligands. As 
a result, Open-ComBind produces a set of optimized poses 
for all ligands simultaneously, without requiring a shared 
ligand scaffold or knowledge of any ligand’s binding pose.

Methods

Here, we detail the dataset used in the creation of the dock-
ing pipeline as well as the dataset employed for evaluation 
of our pipeline. We describe the creation of inter-pose simi-
larity statistics by performing cross-docking on a diverse 
protein-ligand benchmark dataset. The Open-ComBind 
docking pipeline is described, harnessing the similarity sta-
tistics to performing pose selection on a ligand of interest, 
the ‘docking ligand’, using a set of ligands with unknown 
bound structures, the ‘helper ligands’. Finally, an experiment 
to determine the validity of Open-ComBind’s underlying 
hypothesis: ‘distinct ligands bind to a receptor in similar 
ways’.

Data

Similarity dataset

Following [18], a list of 30 target proteins (Table S1) rep-
resentative of all major families of drug targets is used to 
generate the pairwise pose feature similarity distributions. 
The entire benchmark dataset of 421 protein-ligand pairs is 
used to generate the similarity statistics.

Benchmark dataset

Generating the dataset used for evaluating pose prediction 
pipelines necessitates removal of easy-to-dock ligands. Fol-
lowing [18], we filter the Similarity Dataset to remove any 
ligand that has greater than 50% of its atoms in the maximum 
common substructure computed with the cognate ligand 
of the receptor structure used for docking. If a new ligand 
shares most of the same structure as the cognate ligand then 
its probable the pocket has an appropriate configuration to 
bind the similar ligand. This reduces the set to 245 protein-
ligand complexes for determining the performance of a pose 
prediction pipeline. These ligands are used as the ‘docking 
ligand’ during the evaluation of the pipeline.

Helper ligands

Helper ligands are a set of ligands known to bind to the 
receptor of interest with < 1𝜇M affinity, but may not have 
a solved bound structure. These ligands are used along 
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with the ‘docking ligand’ in the Open-ComBind pipeline 
to improve pose selection of both the ‘docking ligand’ and 
the ‘helper ligands.’

We utilize the same two sets of helper ligands as in [18]: 
one in which the helper ligands do not share a scaffold with 
the docking ligand, termed ‘High-affinity helper ligands’, 
and the other in which the ligands have the largest Maximum 
Common Substructure (MCSS) with the docking ligand, 
termed ‘Congeneric series helper ligands’. We use the MCSS 
definition from [18] to ensure we are using the same set of 
helper ligands.

Derivation of similarity distributions

Here we detail the development of pairwise similarity dis-
tributions for near-native poses and all docked poses using 
the Similarity Dataset.

Protein and ligand pre‑processing

Protein and ligand pre-processing separates the protein and 
ligand into separate docking-ready structures. Initially, a set 
of co-crystallized protein-ligand structures for each recep-
tor in the Similarity Dataset is downloaded from RCSB.
org [21, 22]. The ligand of interest in each co-crystallized 
structure is then designated based on its residue name. Using 
ProDy [19, 20], separate files are generated for the protein, 
ligand, waters, and other heteroatoms that are present in the 
original crystal structure. The instance coordinates of the 
ligand structure are downloaded directly from RCSB.org 
[21, 22] using their File Download Service to ensure proper 
coordinate and bond information. Using only the protein 
and ligand complex, we align all structures of a receptor 
based on the residues closest to the binding pocket. Protein 
residues within 15 Å of the ligand are used to align each 
receptor structure with PyMol [23] to the alphabetically 
lowest PDB ID (PDB IDs specified in Table S1). The co-
crystallized ligand’s coordinates are transformed according 
to the receptor alignment object. The aligned ligand and 
receptor are then separated into their own files to provide 
a ground-truth ligand and a holo structure for cross-dock-
ing with non-cognate ligands. After removal of the ligand, 
missing residues, atoms, and hydrogens are added (at a 
pH of 7.0) to the receptor structures using PDBFixer and 
minimized, ensuring interactions are detected properly after 
docking. Missing atoms and hydrogens are minimized using 
the default OpenMM forcefield. Finally, a gnina docking 
command template is created for each protein. The gnina 
docking command template specifies the docking protein 
structure (i.e. the aligned-to receptor structure) as well as 
the binding box location, defined by the cognate ligand of 
the docking receptor.

Docking with gnina requires knowledge of the 3D struc-
ture of the ligands to be docked. Conformations are gen-
erated for ligands using Experimental-Torsion with basic 
Knowledge Distance Geometry (ETKDG) [24, 25] to yield 
likely conformations of the ligand based on trends seen in 
crystal conformations. Using RDKit, we generate 50 confor-
mations, and use the Universal Force Field (UFF) to mini-
mize and report the energy of each generated conformation. 
Combining the ten lowest energy conformations into a single 
file for each ligand. A set of low-energy conformations gives 
a higher likelihood that one of the conformations is close to 
the ground-truth ligand conformation. Additionally, gnina 
docking keeps rigid bond angles and lengths, so using mul-
tiple conformations of a ligand during docking allows for 
exploration of different bond angles and lengths.

Cross‑docking

After both ligand and protein preparation, cross-docking is 
performed with gnina. All of the ligands are docked against 
the receptor structure used for the alignment, the alphabeti-
cally lowest PDB ID (Table S1). The receptor’s cognate 
ligand identifies the binding site. Docking is performed 
using all default parameters, except for exhaustive-
ness, min_rmsd_filter, and num_modes (Table S2). 
exhaustiveness is increased to 16 to perform more 
sampling of the ligand during docking. min_rmsd_fil-
ter is reduced to 0.01 to allow highly similar, high-scoring 
poses to be output. num_modes is set to 30 to ensure we 
have a max number of 300 total poses for each ligand if we 
have ten starting conformations for each ligand. Following 
the docked pose statistics of [18], which have up to 300 
poses per docked ligand, we attempt to sample 300 docked 
poses per ligand complex. Additionally, gnina tends to pro-
duce distinct poses in comparison to Glide which tends to 
output highly similar poses, often leading to generating sev-
eral near-native poses. Therefore, we utilize several ligand 
conformations during docking to increase the likelihood that 
gnina outputs more than one pose close to the native state. 
After docking, we re-sort the combined output poses from 
gnina for each ligand according to the ‘CNNscore’, a score 
in the range [0,1] denoting the likelihood a ligand pose is 
correct [26]. Following [18] and to reduce computation, only 
the top 100 docked poses of each ligand are used for sub-
sequent steps.

Featurization

The top 100 docked poses of each ligand are investi-
gated for their interactions with the receptor and their 
distance from the ground truth, if available. Each pose 
has associated docking scores from both Autodock Vina 
and the Convolutional Neural Network (CNN) scoring 
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functions in gnina. Additionally, the interaction finger-
print of each docked pose is computed. The interaction 
fingerprint profiles and scores the hydrogen bonds, salt 
bridges, and hydrophobic contacts between the protein 
and ligand. Hydrogen bond scores are a product of the 
distance between the donor and the acceptor’s hydrogen 
and the angle between the donor, hydrogen, and acceptor. 
However, since gnina ignores hydrogens in both the input 
and output, we add hydrogens to the docked poses with 
RDKit and minimize the hydrogen atom placement with 
UFF, ignoring the effect of the protein environment. Both 
the salt bridge and hydrophobic contact scores are simply 
the distance between the involved atoms. Unique to Open-
ComBind, salt bridges are determined via ligand substruc-
ture matches to SMARTS strings, taken from Pharmit [27], 
for the detection of positive and negative ions rather than 
using atoms with a formal charge since gnina does not 
modify the formal charge of the input molecule based on 
the receptor environment. These scores are summed by 
protein residue for each feature type.

Following the featurization of individual poses, we can 
calculate the similarity of pairs of poses based on their 
features. A pseudo-Tanimoto Similarity is used for the 
similarity of hydrogen bonds, salt bridges, and hydropho-
bic contacts. Since the features are not bit vectors, the 
Tanimoto Similarity between pose i and j is calculated as 
follows:

where f is one of the features and P are all of the residues 
of the docking protein. An additional inter-pose feature is 
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calculated via the RMSD between the MCSS of the two 
poses. We utilize a set of MCSS parameters that find a sub-
structure with both matching atom IDs and bond orders. 
However, halogen atoms are allowed to match any other 
halogen atoms and rings are constrained to only match other, 
complete rings. We do not consider the MCSS if the number 
of heavy atoms in the MCSS is less than half the number of 
heavy atoms in the smallest ligand.

Generating similarity statistics

Given our inter-pose features, we can now compute the 
extent to which ligands binding to the same receptor do 
so in a similar manner. We first define the ‘native distribu-
tion’, which looks at the inter-pose similarity between only 
poses with < 2Å RMSD from the ground truth, denoted as 
f (s(⋅, ⋅)|Native) . We next define the ‘reference distribution’ 
to be the inter-pose similarity between all pairs of the top 
100 poses output by gnina, denoted as f (s(⋅, ⋅)|Reference) . 
Both distributions are determined via a Gaussian kernel den-
sity estimate on each of the inter-pose features. Following 
[18], the Gaussian kernel density estimate uses a standard 
deviation of 0.03 for interaction similarities and 0.18 for 
MCSS RMSD. Reflected boundaries are used to reduce bias 
near the boundaries.

The distributions for MCSS RMSD were both capped at 6 
Å to eliminate the effect of the sparse distribution for higher 
RMSDs. Any values greater than 6 Å were set to 6 Å.

Open‑ComBind pose prediction pipeline

Open-ComBind provides a pipeline (Fig.  1) that pre-
pares protein and ligand structures for docking, a suite of 
methods to compute the similarity of features from pairs 
of docked ligands, as well as predicting a set of poses 

Fig. 1   Open-ComBind pose prediction pipeline: the user provides 
a docking ligand, a holo receptor structure, and a defined bind-
ing pocket on the structure. The user can then define a set of helper 
ligands: molecules with < 1𝜇M affinity to the receptor but not requir-
ing any bound structure. A set of conformations is generated for 
the docking ligand and the helper ligands. gnina is used to dock the 

docking and helper ligands, outputs are sorted by CNNscore. The 
poses for each ligand are featurized and inter-pose similarities are 
calculated between all pairs of poses. Finally, the poses for the dock-
ing ligand as well as the helper ligands are selected using the Open-
ComBind objective function which harnesses the pre-computed simil-
iarity distributions
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utilizing pre-computed similarity distributions. Protein-
ligand ground-truth complexes, usually determined via 
X-ray crystallography, are manipulated to extract separate 
protein and ligand structures after alignment of the pocket 
residues of similar protein structures. Ligands are prepared 
for docking by generating a set of low-energy 3D ligand 
conformations. Docking is run on a single receptor confor-
mation with all of the generated conformers per ligand and 
the output for each ligand is sorted according to its docking 
score. Featurization of the top poses for each ligand includes 
their docking score and fingerprint of the protein-ligand 
interactions. Feature similarities are computed between 
all pairs of ligand poses, both inter- and intra-ligand pairs, 
utilizing the pose interaction fingerprints and the RMSD 
between the MCSS of the pose pair. We use the same protein 
and ligand pre-processing, conformation generation, dock-
ing, and featurization procedure as enumerated in “Deriva-
tion of similarity distributions” section. Finally, a pose is 
selected for each docked ligand by maximizing the sum of 
the similarity between the pose selected for each ligand and 
the pose’s docking score.

Poses are selected for the docking ligand and the set of 
helper ligands utilizing the inter-pose features in tandem 
with the pre-computed native and reference distributions. 
Adhering to the same procedure as [18], we randomly initial-
ize pose selections and randomly iterate through the ligands, 
picking a pose that maximizes the objective:

where �i is the pose selected for the current ligand, S is our 
set of similarities, f (s(⋅, ⋅)|Native) and f (s(⋅, ⋅)|Reference) 
refer to the pre-computed native and reference similarity 
distributions, respectively, and C is a hyperparameter to 
weight the CNNscore. We attempt to identify the set of 
selected poses that optimizes this objective function through 
a greedy iterative process. We continue iterating through the 
ligands, updating the selected pose, until no new poses are 
selected for any ligands. This procedure is run 500 times to 
increase the likelihood of finding the global minimum. The 
poses selected by the objective function for each ligand are 
returned.

Selection of CNNscore weight

We select the hyperparameter, C, for the weight of the 
CNNscore (the pose score output by gnina [26]) within the 
Open-ComBind score function in the same way as [18]. The 
same cross-docked top 100 poses for each ligand used for 
computing the similarity statistics are pooled and sorted 
according to their CNNscore. For each consecutive cluster 

LOpen-ComBind = −C ⋅ CNNscore(𝓁i)
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of 100 poses, we calculate the average CNNscore and the 
negative log-likelihood of those 100 poses being a correct 
pose (i.e. ≤ 2 Å from the ground truth). A line is fit to the 
data and the slope is used as the weight for the CNNscore.

Benchmark dataset evaluation

Cross-docking is the main focus of many docking studies as 
it most closely emulates docking experiments in drug discov-
ery campaigns. We test the performance of Open-ComBind 
by performing cross-docking on the Benchmark Dataset. 
We utilize the protein and ligand pre-processing available 
in the Open-ComBind pipeline to prepare the ligands for 
cross-docking. A protein and ligand file are created for each 
complex of the Benchmark Dataset, however, binding site 
cofactors are manually added back to the protein, follow-
ing ComBind’s preparation procedure for a fair comparison. 
Next, we create two sets of helper ligands for each ligand 
we are docking, as defined above: high-affinity binders and 
congeneric series. We then use the Open-ComBind Pose 
Prediction Pipeline (Fig. 1) on each ligand in which we are 
performing cross-docking with each set of helper ligands. 
When predicting poses for docking ligands of a given recep-
tor, we omit that receptor’s docked ligand similarity statistics 
from the pre-computed similarity statistics used in the Open-
ComBind objective function.

We run the evaluation, for each docking ligand, using 
five different random seeds to determine the variability of 
Open-ComBind given slightly different ligand poses. The 
random seed are used for the creation of the conformations 
of the docking ligand and helper ligands as well as the gnina 
docking procedure.

Hypothesis evaluation

[18] built ComBind on the hypothesis that distinct ligands 
bind to a receptor in similar ways. We aim to investigate 
whether this underlying hypothesis of the pipeline is cor-
rect by comparing the value of the Open-ComBind objec-
tive function for the lowest RMSD ligand poses to the value 
of the objective when selecting from all gnina generated 
poses. We only look at target proteins in the Benchmark 
dataset containing at least ten ligands with a gnina gener-
ated near-native pose. In the following experiment, we only 
use ligands with a defined ground truth pose (i.e. the set of 
docking ligands for each target receptor in the benchmark 
dataset) and only ligands that have a gnina generated pose < 
2Å RMSD from the ground truth. We first measure the value 
of the Open-ComBind objective function when we restrict 
our selection to the best gnina generated pose, according 
to lowest RMSD to the ground truth. We next evaluate the 
value of the Open-ComBind objective function when we 
select from all gnina generated poses of the ligands. If the 
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underlying hypothesis of Open-ComBind is true, then the 
Open-ComBind objective function value when selecting 
from the best poses will be greater than or equal to the objec-
tive function value when selecting from all gnina generated 
poses. The Open-ComBind objective is optimized in a sto-
chastic manner, so it is possible we will not converge on the 
globally optimal pose selections which is assumed to be the 
set of poses with the lowest RMSD to the ground truth.

Results

Similarity distributions

The pairwise feature similarity distributions are pivotal to 
the Open-ComBind objective function. Shifts from the refer-
ence to native distribution help to ensure the poses selected 
by the Open-ComBind objective are more likely to be pulled 
from the set of near-native poses. We calculate the pair-
wise feature similarity distributions by cross-docking all 
ligands in the Similarity Dataset using gnina. Then the top 
100 poses of each ligand were analyzed for their interac-
tion with the receptor structure used for docking. We see 
in Fig. 2 that all of the intermolecular interactions: Hydro-
gen bonds, Salt Bridges, and Hydrophobic contacts have 
higher similarity in the native distribution than in the refer-
ence distribution. The hydrogen bonds reference distribu-
tion is heavily right-skewed, while the native distribution is 
centered around 0.43 with a Gaussian-like appearance. Salt 
Bridges are much less frequent interactions, therefore both 
the native and reference distributions are heavily focused on 
the points 1

3
 , 1
2
 , and 2

3
 indicating that most ligands only make 

a small number of salt bridges with the protein. The native 
distribution shift is not as pronounced in the salt bridge due 
to its infrequency; however, we still see an increase in the 
density centered around 2

3
 and a slight decrease in the density 

around 1
3
 Pseudo-Tanimoto similarity relative to the reference 

distribution. Hydrophobic contact similarity is left skewed 
in both the native and reference distributions. The native 
distribution has a mean of 0.83, while the reference distribu-
tion has a mean of 0.69. The RMSD of the MCSS shows the 

same trend as the intermolecular interactions, with the native 
poses being more similar than the similarity distribution of 
all poses. Due to the cutoff at 6 Å we see a spike in both 
distributions at 6 Å. The spike in the reference distribution 
far outweighs the left tail.

The hyperparameter C is set to 1 following the slopes of 
the best fit lines in Figure S1.

Docking results

After defining our pairwise similarity distributions and the 
hyperparameter for the weight of the CNNscore, we can 
utilize the Open-ComBind framework to select poses from 
gnina’s sampled poses. Binders lacking structural informa-
tion are used as helper ligands to select docked poses for our 
ligand of interest that interact with the receptor in similar ways 
to the helper ligands. Utilizing the pairwise similarity distri-
butions shown in Fig. 2 along with the gnina docking scores 
enables selection of near-native poses more often than when 
only the gnina score is used to select a pose (Fig. 3 and S2). 
Following [18], we compute the “Overall" statistic, which is 
the weighted average of the different protein classes accord-
ing to the proportion of FDA-approved drugs for that class of 
proteins. Open-ComBind increases the Overall percentage of 
ligands with a correct pose by 5% and 4.5% for high-affinity 
and congeneric series helper ligands, respectively. Nuclear 
receptors, GPCRs, and ion channels have the greatest increase 
in performance for high-affinity ligands over only the gnina 
docking score, 6.8%, 6.3%, and 4.7%, respectively (4.7%, 
3.2%, and 12.7%, respectively for congeneric series ligands). 
However, in contrast to [18], we find that many proteins show 
a reduced performance when utilizing the Open-ComBind 
framework relative to gnina. Additionally, for most of the pro-
teins, we see large variances in Open-ComBind’s performance 
with different runs of gnina.

When we compare our overall performance to that of 
[18] in Fig. 4 and S3, we see that our open-source version 
is slightly below the performance of ComBind. However, 
when comparing ComBind to Open-ComBind on each 
individual protein, we see a different story. ComBind tends 
to either increase or not change the percentage of ligands 

Fig. 2   Pairwise similarities of 
different intra-molecular fea-
tures and inter-pose similarities. 
The mean distribution across 
five seeds is plotted with the 
shading denoting the standard 
deviation
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whose pose is predicted correctly across all of the proteins 
in the benchmark dataset. Open-ComBind has widely vary-
ing performance across different protein targets, with some 
protein targets seeing a major boost in performance for their 
docked ligands, like SMO and NR3C2 with a 100% and 
50% increase, respectively. Other protein targets show a 
drastic decrease in the percentage of ligands whose pose is 

predicted correctly, for instance, MGLUR5 and NR3C1 with 
a 50% and 11% decrease, respectively. ComBind only has 
worse pose selection than Glide on one protein target when 
using high-affinity helper ligands, while Open-ComBind has 
worse pose selection than gnina on five protein targets across 
varying protein classes. This is all in spite of the fact that 
gnina and Glide demonstrate similar pose selection perfor-
mance across a majority of the protein targets.

The RMSD to ground truth of poses selected by gnina 
is higher than the RMSD of the poses selected by Open-
ComBind for the exact same ligand (Figures S4 and S5), 
average RMSDs of 2.67 and 2.43 Å for gnina and Open-
ComBind using high-affinity ligands, respectively. Across 
all of the random seeds, there is a reduction in the average 
RMSD of the ligands when using Open-ComBind. However, 
Open-ComBind does not always choose a lower or equiva-
lent RMSD pose for each ligand. This could be due to the 
fact that some of the featurizations do not contribute to better 
pose selections.

The importance of Open-ComBind docking components 
to the pose selection is inspected by removing pieces from 
the full docking pipeline to see their impact on performance. 
We see from Figs. 5 and S6 that removing the CNNscore 
from the pose selection process completely destroys Open-
ComBind’s ability to select correct poses, dropping from 
63.1 to 33.3% when using high-affinity helper ligands 
(62.5–38.8% when using congeneric series helper ligands). 
Removing individual features from Open-ComBind does 
not have as great an effect as removing the CNNscore, but 
can significantly impact Open-ComBind’s pose selection. 
The interaction fingerprint is pivotal to pose selection. Still, 
we see that only using the H-bonds (55.9%) or salt bridges 
(58.2%) gets about the same performance as gnina-only 
pose selection (58.1%). Using only Hydrophobic contacts 
in Open-ComBind is not significantly different (p = 0.20 
and p = 0.29 for high-affinity and congeneric series helper 
ligands, respectively) from using all of the features. Remov-
ing the whole interaction fingerprint and only using the 
maximum common substructure RMSD between ligand 
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poses slightly increases performance (63.3%, p = 0.44 and 
64.6%, p = 0.11 for high-affinity and congeneric series 
helper ligands, respectively) but still shows improvements 
over gnina pose selection. Removing both the H-bonds and 
salt bridges from the Open-ComBind pose selection pro-
cess gets about the same performance as when they are used 
(65.1%, p = 0.09 and 63.1%, p = 0.38 for high-affinity and 
congeneric series helper ligands, respectively), further dem-
onstrating the inadequacy of H-Bond and salt bridges for 
pose selection improvements in Open-ComBind.

Pose selection performance should be dependent on the 
number of helper ligands we use during pose selection. 
When no helper ligands are used during the pose selection 
process, we see that the percentage of ligands whose pose 
is predicted correctly drops (‘gnina(G)’ in Fig. 5 and S6). 
However, we see in Figs. 6 and S7 that performance plateaus 
as more helper ligands are added. The performance with ten 
helper ligands, (61.47% and 62.55% for high-affinity and 
congeneric series helper ligands, respectively) is about the 
same as using all 20 helper ligands (61.56% and 62.59% 
for high-affinity and congeneric series helper ligands, 
respectively).

Hypothesis evaluation

The Open-ComBind objective function is formulated to 
encourage all the ligands being docked to assume similar 
interactions with the receptor. However, when we com-
pare the Open-ComBind objective function value of the 
best gnina poses for each ligand to the optimal value when 

selecting from all gnina poses, we find that they are never the 
same when the full objective is used. (Fig. 7). The value of 
the objective function when only using the lowest RMSD to 
the ground truth pose found by gnina for each of the ligands 
being docked is less than selecting from all gnina poses, 
except when only the MCSS featurization is used. This 
implies that the underlying hypothesis of Open-ComBind 
is not necessarily true for these protein-ligand complexes 
during cross-docking. When we remove the hydrogen-bond 
and salt bridge interactions from the Open-ComBind objec-
tive function, the values from the two sets of poses come 
closer together. This is exacerbated when all interaction 
fingerprint features are removed from the Open-ComBind 
objective function and only RMSD of the MCSS is used 
and some proteins even have equal values of the objective 
function for both sets. The collection of poses identified by 
Open-ComBind is more similar in their interactions accord-
ing to the objective function than the ensemble of lowest 
RMSD to ground truth poses. We additionally find that the 
Open-ComBind objective will not always select the native-
pose when it is included in the list of poses to select from 
(Figure S8).

Discussion

Implementing an open‑source ComBind alternative

Open-ComBind is an open-source alternative to ComBind, 
developed by [18], that has comparable increases in pose 
prediction performance over the respective baseline dock-
ing method. Building out Open-ComBind took a concerted 
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effort as the original pipeline uses opaque software tools 
with unspecified methods for pose generation and fea-
turization of the docked poses. The feature distributions 
generated with only the poses of a single ligand confor-
mation gnina docking run did not show more similarity in 
the native distribution than in the reference distributions. 
By comparing the inter-pose RMSD pose of both gnina 
and Glide, we found that Glide was much more likely to 
output a set of highly similar poses while gnina did not. 
Therefore, we were able to increase similarity of the native 
distributions by docking a set of ten ligand conformations 
and combining the docking runs of each conformation into 
one single set of poses which were sorted by CNNscore. 
This produces a list of 100 conformations that has a higher 
likelihood of being less than 2 Å RMSD from the ground 
truth and reduces the RMSD between better scoring poses.

Differences between gnina’s and Glide’s output poses 
required further development of the featurization pipe-
line as Glide produces poses with hydrogens placed to 
maximize hydrogen bonding and alters the tautomeric 
form of the ligand to form salt bridges with the protein. 
We overcame these differences by adding hydrogens with 
RDKit during featurization and detecting salt bridge form-
ing moieties with SMARTS string patterns. Placing the 
hydrogens in this manner ignores the location of hydro-
gen bond-forming donors and acceptors on the receptor; 
this likely decreases the strength of the hydrogen bonds 
seen in Open-ComBind in comparison to ComBind. We 
see that the Hydrogen bond similarities do not add infor-
mation over only utilizing the CNNscore in Figs. 5 and 
S6, despite the fact that there are many hydrogen bonds 
detected in the benchmark dataset (Table S3). The usage 
of SMARTS string patterns for detection of salt bridges 
may also decrease the information provided by salt bridge 
similarity for increasing pose selection performance, but it 

is difficult to be sure as salt bridges are a rare occurrence 
in the benchmark dataset (Table S3).

The RMSD calculation between the MCSS of two ligand 
poses is the largest difference between Open-ComBind and 
ComBind. ComBind uses a MCSS strategy in which any 
two atoms can match in the graph regardless of atom type. 
We tested this relaxed MCSS strategy with Open-ComBind 
and found reduced performance (Figs. 5 and S6). Therefore, 
our MCSS calculation enforces stringent atom type match-
ing (excluding halogens which can all match each other). 
We additionally require that bond orders be identical for 
the bond to be included in the MCSS and that rings can 
only match other complete rings. These MCSS requirements 
enforce a stronger match between substructures of ligands 
and ensure that the scaffold of a congeneric series is placed 
in a similar location for all ligands.

Open ComBind performance

The exact poses selected by Open-ComBind vary signifi-
cantly when the generated, docked ligand poses are changed 
via different random seeds. However, on average Open-
ComBind tends to improve pose selection in comparison to 
the gnina baseline. We see in Figs. 4 and S3 that the standard 
deviation for a given protein is often much larger than its 
mean, indicating the results of Open-ComBind pose selection 
are highly dependent on the poses of the ligands. Altering the 
random seed affects the poses in the top scoring 100 used for 
the pose selection process, which can affect the consensus 
pose found for the docking ligand and helper ligands. We do 
see that the average RMSD decreases in comparison to the 
baseline docking method, gnina, regardless of the random 
seed used (Figures S4 and S5).

Hydrophobic contact similarity and MCSS RMSD are suf-
ficient features to increase the pose prediction performance 
to that of the full Open-ComBind pipeline. This is likely due 
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to the fact that hydrophobic contacts are the most common 
intramolecular interaction seen in the benchmark dataset by 
a factor of 6 (Table S3). Only utilizing these two features 
significantly decreases the computational cost of Open-
ComBind. In fact, with congeneric series, we see (Figure S6) 
that only MCSS is required for the same performance as the 
full Open-ComBind pipeline. We expect congeneric series 
to have a much higher consistency in the placement of the 
MCSS because the MCSS is likely referring to the scaffold 
of the congeneric series. We also see that only 10 helper 
ligands are required to reach the pose prediction power of 
20 helper ligands (Figs. 6 and S7). Reducing the number 
of helper ligands will also decrease the computational cost 
of the docking pipeline as a similarity matrix must be con-
structed for each feature which is O(N2) with the number of 
ligands used, N.

[18] built the ComBind pose selection pipeline on the 
hypothesis that distinct ligands bind to the same receptor 
in similar ways. However, we show in Fig. 7 that the Open-
ComBind objective function does not always select ligand 
poses that are the lowest RMSD to the ground truth. All of 
the proteins tested show a lower full objective function value 
when evaluating on the lowest RMSD near-native poses sam-
pled by gnina in comparison to the objective function value 
when selecting from all sampled poses. However, we do see 
that our inspection of the underlying hypothesis agrees with 
the ablation studies in that the usage of only the hydrophobic 
contacts similarity and RMSD of MCSS improves the objec-
tive function’s performance in selecting near-native poses. 
Further, we see that use of only the RMSD of MCSS is able 
to find poses with the same objective function value as the 
lowest RMSD to ground truth poses. This implies that the 
RMSD of MCSS featurization aligns well with the underly-
ing hypothesis, while the other features do not. It is likely 
that the hydrogen bonds, salt bridges, and hydrophobic con-
tacts of the lowest RMSD to ground truth poses do not show 
as great of a consensus due to side chain rearrangement dur-
ing binding of different ligands. Therefore, allowing side 

chain rearrangement during docking would likely improve 
the performance of Open-ComBind pose selection.

Future directions

Open-ComBind is an easy-to-use, open-source alternative to 
ComBind, although more work is needed to match the perfor-
mance gains achieved by [18]. Open-ComBind provides the 
molecular modeling community the opportunity to quickly 
and easily modify the featurization pipeline for increased pose 
prediction performance utilizing the large quantity of avail-
able, non-structural data. Features such as � − � bonds and 
ligand shape similarity can be added easily to the docking 
pipeline. Since Open-ComBind uses gnina as the pose gen-
erator, we can utilize the internal representation of the CNN 
scoring functions within the docking pipeline as a featuri-
zation of the protein-ligand interaction for little extra com-
putational cost. gnina also allows flexible sidechains during 
docking which could be used in the Open-ComBind frame-
work for finding different pocket configurations to fit ligands 
of different sizes or ligands forming non-bonded interactions 
in different relative locations. Finally, Open-ComBind could 
be extended to predict the protonation state of the ligand to 
form better hydrogen bonds with the receptor and select better 
ligand poses than docking with the input protonation state.

Ease to use API

Open-ComBind has been developed as a Python package 
with an accompanying command-line interface for running 
the entire pipeline. We provide the pre-processing, dock-
ing, featurization, and pose selection as easy-to-use Python 
modules or a single command on the command line. After 
installation of Open-ComBind and its pre-requisites from 
our github repository: www.​github.​com/​drewn​utt/​open_​
combi​nd, users can run the entire Open-ComBind pipeline 
with the command:

open_combind prep -dock -and -predict helper_ligands.csv

http://www.github.com/drewnutt/open_combind
http://www.github.com/drewnutt/open_combind
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 where helper_ligands.csv is a comma-delimited 
file of the helper ligands SMILES strings and identifiers. 
The user must specify the location of the raw protein-ligand 
complex to use for docking. Other protein-ligand crystals 
can be placed in the same directory for pre-processing.

Additionally, we provide scripts and instructions for using 
the Open-ComBind pose prediction pipeline with other 
molecular docking tools. Use of molecular docking tools 
that directly consider hydrogen bonds and predict ligand 
hydrogen coordinates would likely improve the utility of 
the hydrogen bond similarity in enhancing pose prediction.

Conclusion

In this work, we developed Open-ComBind, an open-source 
alternative to ComBind, to increase pose prediction perfor-
mance over gnina. Open-ComBind reduces the average 
RMSD to ground truth from gnina’s 3.24 Å to 3.03 Å for all 
ligands. We utilize ligands lacking structural information 
as well as a distribution of ligand feature similarity of both 
native poses and all poses. Open-ComBind utilizes pairwise 
similarities between sets of ligand poses to determine the 
poses which maximize inter-ligand similarity of binding. 
We see pose selection improvement equal to the full pipe-
line when using only hydrophobic contact similarity and 
the RMSD between the MCSS of ligand pairs. Additionally, 
we observe that Open-ComBind only requires ten helper 
ligands to reach the pose prediction performance of using 20 
helper ligands. We provide the Open-ComBind in an easy-
to-use API as well as source code and data to use the Open-
ComBind pipeline at our GitHub repo: www.​github.​com/​
drewn​utt/​open_​combi​nd/
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