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Abstract

An important aspect in the development of small molecules as drugs or agro-
chemicals is their systemic availability after intravenous and oral administration.
The prediction of the systemic availability from the chemical structure of a poten-
tial candidate is highly desirable, as it allows to focus the drug or agrochemical
development on compounds with a favorable kinetic profile. However, such pre-
dictions are challenging as the availability is the result of the complex interplay
between molecular properties, biology and physiology and training data is rare.
In this work we improve the hybrid model developed earlier [1]. We reduce the
median fold change error for the total oral exposure from 2.85 to 2.35 and
for intravenous administration from 1.95 to 1.62. This is achieved by training
on a larger data set, improving the neural network architecture as well as the
parametrization of mechanistic model. Further, we extend our approach to predict
additional endpoints and to handle different covariates, like sex and dosage form.
In contrast to a pure machine learning model, our model is able to predict new
end points on which it has not been trained. We demonstrate this feature by
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predicting the exposure over the first 24h, while the model has only been trained
on the total exposure.

Keywords: Hybrid modelling, Deep Learning, Property prediction, PBPK modelling,
Drug design, Bioavailability, Pharmacokinetics

1 Introduction

Drug discovery is about the optimization of the interaction of molecules with biologi-
cal targets to achieve the desired therapeutic effect, while reducing toxical effects. The
same is true for developing compounds for applications in agriculture, with a large
focus on the reduction of toxical effects in mammals. Both development processes are
long and risky. Numerous methods and tools have therefore been established to support
decisions in the search for best performing candidates. Experimental characterization
of compounds can take up considerable resources and time. The targeted, early iden-
tification of favorable properties and consequently informed selection of compounds
can significantly reduce development cycles and the associated costs. Selection criteria
include both, pharmacological and toxicological effects, as well as pharmacokinetics
(PK)1, in particular the availability of the compound in the body.

In this multi-parameter optimization of physicochemical properties, efficacy, safety
and PK, many compounds are usually tested in different high-throughput assays to
generate a basic understanding of a compound’s characteristics. However, as PK is
determined by the complex non-linear interplay of compound properties and physiol-
ogy, using these assays to test and optimize all aspects and parameters relevant for
PK is usually not possible. Therefore, animal studies remain an important contribu-
tion to understanding the PK characteristics of a potential drug candidate. However,
animal studies are usually performed later in research for selected compounds that are
already optimized with respect to the early accessible assays. This approach helps to
keep the number of animal experiments low, but unfortunately often struggles from
eventual limitations in further PK optimization.

The most import quantity in PK is the blood plasma concentration C as a func-
tion of time after a an oral (per os, PO) or intravenous (IV) administration. In
this publication we are mainly interested in a few key parameters characterizing the
concentration-time curve, such as the maximal concentration (Cmax) and the exposure
between two time points t1 and t2:

AUCt1,t2 =

∫
t2

t1

dt C(t). (1)

Most important is the total exposure, i.e. the exposure between the time of administra-
tion and infinity, here simply denoted as AUC, sometimes also the exposure during the
first 24h after administration AUC24h is considered. For pharmaceutical compounds,

1Even though the name Pharmacokinetics implies that the field is only concerned with pharmaceutical
substances, the field is concerned with all types of xenobiotic substances, see https://en.wikipedia.org/wiki/
Pharmacokinetics
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oral drug delivery plays an important role. It represents the most common admin-
istration route and is convenient for patients and physicians leading to high patient
compliance. The extent to which the systemic exposure of a drug after PO admin-
istration (AUCPO) differs from the exposure after intravenous (IV) administration
(AUCIV) is quantified by the oral bioavailability F defined as

F =
AUCPO

AUCIV
· DIV

DPO
, (2)

where DPO denotes the oral dose and DIV the IV dose. We would like to stress that
AUCPO , AUCIV and hence F depends on the compound as well as on the dose and
the formulation. In general the AUC is a non-linear function of the dose, depending
on e.g. the metabolic capacity or the availability of binding proteins. In addition, the
AUCPO can have non-linear dose dependencies related to the oral absorption, e.g. due
to a limited solubility or a transport mechanism. Typically, non-linearities in the dose
dependence of AUCIV can be neglected, this allows to extrapolate the AUCIV from
DIV to DPO hence it is sufficient to consider DPO = DIV .

Furthermore, the oral dosage form can affect the PK, i.e. whether the compound
is administered as solution, suspension or tablet. The AUCPO is typically lower for
administration of a suspension or tablet than for a solution, since for a suspension or
a tablet the particles first have to be released from the formulation and dissolve in the
gastrointestinal tract (GIT). Note, that for tablets special so-called enabling formu-
lations exist, which can increase the dissolution rate hence increase AUCPO and F .
Those formulations are usually not used in the early phases of drug and agrochemical
development, hence we do not consider them in this publication.

While in pharmaceutical development a compound’s systemic availability is desired
to be as high as possible, for agrochemicals a compounds’ it should be as low as
possible to minimize the risks associated with safety and toxicities.

As the determination of the PK-parameters AUC, Cmax and F requires performing
in-vivo studies in animals or even humans, they can not be used as a selection criterion
for the early screening and optimization phases due to effort, cost and animal welfare
considerations. Therefore, being able to predict them as early as possible, preferably
directly from a compound’s chemical structure, would reduce the risk during lead
identification and optimization phases. Equally important, focusing only on the most
promising compounds reduces the number of animal experiments.

There have been several attempts to predict PK-parameters from chemical struc-
ture [2, 3]. However, most of them are purely data-driven, hence do not exploit the
available mechanistic knowledge about the different processes determining PK. In the
present work, we combine Deep Learning with a mechanistic model to predict AUCPO,
AUCIV and Cmax,PO in rats from the chemical structures only. Predictions for F can
be calculated using (2) from the prediction for AUCPO and AUCIV .

Our approach builds on the recent progress in applying Deep Learning to molecule
property predictions [4–7]. But, in contrast to these works, our data set is rather small
with only a few thousand compounds. To compensate for this, we combine Deep Learn-
ing for property prediction with physiological based pharmacokinetic (PBPK) models.

3



RESTRICTED
C

h
e

m
ical Stru

ctu
re

G
rap

h
 C

o
n

v. Size: 2
5

6

B
atch

 n
o

rm
alizatio

n

D
ro

p
o

u
t R

ate: 0
.0

2

D
en

se Size: 2
5

6

G
rap

h
 gath

er

O
D

ESo
lve

: 
P

B
P

K

D
en

se Size: 5
1

2

D
en

se o
u

tp
u

t

D
en

se o
u

tp
u

t

M
o

lecu
le 

p
ro

p
erties

D
o

se

Sex, 
Fo

rm
u

latio
n

8 Times

M
o

lecu
le P

ro
p

erties

B
atch

 n
o

rm
alizatio

n

D
ro

p
o

u
t R

ate: 0
.1

4

A
U
C
,C

m
a
x

3 Times

D
o

se

…

A
U
C
,C

m
a
x

…

Surrogate approximation

B
atch

 n
o

rm
alizatio

n

D
ro

p
o

u
t R

ate 0
.0

2

Fig. 1 Overview over our hybrid model structure consisting of a graph convolutional neural network
for predicting a set of molecule properties. These molecule properties are the free parameters of a
physiological model of rats predicting the pharmacokinetics. In practice, we approximate the PBPK
model by a surrogate neural network.

PBPK models are well established mechanistic models, describing the kinetics of com-
pounds in physiological environments [8, 9]. Doing so we benefit from our knowledge
about rat physiology and the interplay of different processes, and make much more
efficient use of the available data to learn relevant molecule characteristics.

2 Methods and materials

In this section we first describe our hybrid model and give a brief overview on PBPK
models. Then we describe the training procedure for our model. Finally, we give an
overview over the data used to train our hybrid model

2.1 Hybrid modelling

To predict pharmacokinetics in rats we combine Deep Learning for molecular property
prediction with PBPK models. A PBPK model is a system of ordinary differential
equations (ODE) describing the PK processes a compound is undergoing within an
organism. The processes are usually referred to as ADME processes, which stands for
administration, distribution, metabolism and excretion. PBPK models are compart-
ment models in which organs are represented by the compartments and the processes
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are parametrized by physicochemical and other molecule properties. For readers not
familiar with PBPK models we provide a brief overview in A.

In our approach, depicted in figure 1, the molecular properties predicted by a neural
network, here called property net, correspond to parameters of the PBPK model, e.g.
the solubility and the amount of substance cleared in the liver (hepatic clearance).
The other parameters of the PBPK models are compound independent and describe
the physiology of the organism, e.g., the organ volumes, blood flows, or specify the
drug administration, e.g., administration route (IV/PO), dose and formulation.

The clear split between parameters describing the physiology and the molecule
in our model highlights the expected advantages of our hybrid model in terms of
required data and generalization. In our model the physiological parameters are fixed
by the choice of target organism, so the neural network bridges between the molecular
structure and the physiology. Furthermore, as certain aspects of the problem, e.g.
the dose dependency, are mechanistically modelled, our model is able to exploit the
extrapolation capabilities of the PBPK model, for example by generalizing to dosages
outside the training range or predicting properties it has not been trained on, e.g.
concentrations in different tissues.

Furthermore, we can exploit the flexibility of the property net to compensate for a
misspecified or inaccurate mechanistic model. Two examples we consider in this pub-
lication, are the differences between male and female rats and different formulations
used for the oral administration. We model those cases by a mechanistic model for
male rats and solution as formulation, but let the molecule properties depend on these
covariates by passing them to the (last layers) of the property net. By doing so, the
property net learns to adapt its outputs such that even though we are using a wrong
mechanistic model, we are still able to obtain an accurate model for female rats and
suspensions.

2.2 Physiologically based pharmacokinetic models

For the mechanistic model, we use the generic rat PBPK model available in the Open
Systems Pharmacology (OSP) Suite [11] and add a generic hepatic (metabolism)
and renal clearance (glomerular filtration in kidney) as well as a generic global P-
glycoprotein (P-gp)-like active transport, which causes a flow from the inside to the
outside of cells. For our purpose of predicting bioavailability in the early phases of
drug and agrochemical development, it is sufficient to fix the physiological parameters
to those of a typical rat, by using the OSP default values. The compound properties
used as input for the PBPK model are listed in table 1. For oral administrations we
assume a solution as formulation and account for differences between solution and
suspension as well as differences between male and female rats by passing formulation
and sex to the property net as described in section 2.1.

2.3 Neural network architecture

Compared to the model developed in [1] we here replace the SMILES string represen-
tation of molecules and the corresponding 1D convolutional architecture with a graph

5



Parameter Short description Pretraining data
source

Distribution for
surrogate model
training

Hepatic clearance Clearance rate in
liver

In-vitro data (from
Hepatocyte stability
assay)

Log-normal

Vmax P-gp like transporter In-vitro data (Caco-2
assay)

Mixtrure of point
mass at 0 and a
half-normal

GFR fraction Fraction filtered in
kidney

No pretraining Uniform

Fraction unbound Fraction unbound in
plasma

Predicted by
independent DNN

Truncated normal

Lipophilicity Membrane affinity
(log(MA))

Predicted by
independent DNN

Normal

Effective molecular
weight

Surrogate for
molecule size

Calculated molecular
weight excluding
halogens

Half-normal

Stomach solubility Solubility in stomach Predicted using
Henderson-
Hasselbach equation,
DNN for solubility
and pKa

Log-normal

Small intestine
solubility

Solubility in small
intestine

Predicted using
Henderson-
Hasselbach equation,
DNN for solubility
and pKa

Log-normal

Large intestine
solubility

Solubility in large
intestine

Predicted using
Henderson-
Hasselbach equation,
DNN for solubility
and pKa

Log-normal

Small intestine
permeation

Absorption rate in
small intestine

Predicted from
predicted log(MA)
and molecular weight

Log-normal

Large intestine
permeation

Absorption rate in
large intestine

Predicted from
predicted log(MA)
and molecular weight

Log-normal

Table 1 Overview over the compound properties used as input of the PBPK model and whether
predicted or in-vitro observed values are used for pertaining. Details on the used prediction models
can be found in [10].

convolutional network (GCN) architecture directly acting on the graph representa-
tion of molecules. As SMILES representations are generated by a depth-first traversal
through the molecular graph with an arbitrary starting node, they are not unique and
connected sub-graphs are neither represented as contiguous sub-strings nor are they
represented in same way when occurring in different molecules. In contrast, graph
convolutional layers explicitly respect permutation invariance of the graph nodes and
the connectivity of the graph. Hence, they do not suffer from the non-uniqueness
and connectivity issues of SMILES based architectures. We therefore expect a GCN
architecture to be superior to a SMILES based architecture. Indeed, we even have dif-
ficulties finding a set of hyperparameters for the SMILES based architecture, which
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Fig. 2 Overall accuracy of surrogate neural evaluated on a hold out test set of simulations. A median
fold change error of 2-4% is small to the expected biological variability of the data of 50%.

result in stable pre-training and acceptable accuracy, while we easily found those
hyperparameters for the GCN.

We use the GCN-architecture proposed in [12] implemented in deepchem [13]. This
GCN-architecture uses differentiable operations inspired by those used to calculate
circular fingerprints and equips them with learnable weights.

2.4 Model training

2.4.1 Surrogate

For end-to-end training of the hybrid model, we need to back-propagate through the
PBPK model. Even though this is possible for small ODE systems, it is computation-
ally prohibitive for our model with about 300 stiff ODEs. Therefore, we replace the
PBPK model by a surrogate neural network approximating the PBPK model. Here,
we use a fully connected neural network. We train the surrogate model on 2.4M sim-
ulations with random model parameters, sampled using latin hyper-cube sampling,
and test it on additional 0.72M randomly sampled simulations. Each parameter is
distributed according to a simple parametric distribution, e.g. normal or log-normal,
roughly matching the distribution of values in our training data. The functional form
of the distributions are summarized in table 1. We increase the variances of the dis-
tributions by 50% to avoid the predictions of the property net leaving the training
range of the surrogate. As can be seen from figure 2, the surrogate is able to repro-
duce the PBPK model accurately, with a fold change error of about 1.04 for the two
PO endpoints and 1.02 for the IV endpoint. The error of the surrogate is negligible
compared to the expected error caused by the high biological variability of about 50%
of the in-vivo data.

To be able to reliably back-propagate through the surrogate, good point wise
approximations of the PBPK model are not sufficient. Also, the surrogate gradients
and ideally higher order derivatives need to be good approximations of the PBPK
models derivatives, i.e. the surrogate needs to reproduce the response of the PBPK
model to changes in the molecule properties. We confirm this qualitatively by randomly
generating a set of points in the PBPK input space and then vary each molecule prop-
erty individually, while holding the others fixed, some examples are shown in figure 3.
Overall, we find good agreement between the curves predicted by the surrogate and
the PBPK model.
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Fig. 3 Some examples showing the full PBPK model and the surrogate model as a function of a
single model parameter, while keeping the others fixed. In these examples the dependence on the
hepatic clearance (top left) and dose (bottom right) is very accurately described by the surrogate. In
the GFR example (top right) the surrogate is able to reproduce the shape of the PBPK, but shows a
constant offset of about 20%, which is acceptable given the variability of the PK-data. The solubility
example (bottom left) shows an offset of similar size, but is able to qualitatively reproduce the step-
like behavior seen in the PBPK model. The small oscillations of about few % do not introduce major
problems during training of the hybrid model.

2.4.2 Training strategy

To overcome the small data set of about 7000 compounds, we pre-train the property net
on molecule properties of about 140k compounds. sing seemingly unrelated data and
targets is often sufficient for pre-training [14–16], we therefore use predicted properties
where available and measured values otherwise. Table 1 indicates for which properties

8



Fig. 4 Number of data points for different sub-sets of the data set. Since the standard test for
pharmaceuticals is on male rats using, for PO, a solution, most of our compounds are tested on male
rats.

predicted and for which measured values are used. Details on the pretraining data set
are given in section 2.5. The pretrained property net is then trained end-to-end, as
part of the hybrid model, on the in-vivo data to predict the target PK-parameters.

To constrain the model parameters predicted by the property net to physiological
values, e.g. a non-negative clearance, and to the range of the surrogate training data,
we add a penalty term to the loss function Ltotal

Ltotal =
∑
i

L (yi, ŷi) + λ
∑
i,j

max (pj,i − pmax,j , 0)
2
+max (pmin,j − pj,i, 0)

2
. (3)

The first sum is over all data points i, the second over all data points i and all molecule
properties indexed by j. pi,j denotes all predicted molecule properties for all data
points. The penalty is zero as long as pmin,j ≤ pi,j ≤ pmax,j and positive otherwise.
When during training the penalty term is not decreasing for several epochs, we increase
the weight λ until a pre-defined tolerance, here 10−8, is reached. Empirically, we find
that this is sufficient to constrain the PBPK model parameters to the viable range,
see section B.

2.5 Data

We retrieved all in-vivo data taken after PO or IV administration in Wistar rats from
the Bayer data warehouse. After filtering out pro-drugs, salts, molecules heavier than
1500 g/mol and non-standard formulations we are left with 7192 compounds, with
in total 5731 AUCPO, 6183 Cmax,PO and 6408 AUCIV measurements. In contrast
to [1], in addition to male rats and PO administrations as solution we consider also
female rats and suspensions. Furthermore, in contrast to our previous work [1], we do
not restrict the dose, therefore, our data covers a dose range from 0.0024 mg/kg to
1000mg/kg. Overall, there is more data available for low dosages than for high dosages,
see figure 5. The large dose range reflects the fact that our data set includes relative
low dose (∼ 1mg/kg) data mainly taken from male rats at Bayer Pharmaceuticals,
as well as high dose data (≳ 10mg/kg) mainly taken from female rats at Bayer

9



Fig. 5 Distribution of used dose in PO (left) and IV (right) measurements. High doses are typically
tested only in PO experiments, hence they span much large dose range then the iv experiments.

CropScience. Furthermore, the compounds from both divisions are expected to have
different properties. This increases the diversity in our data set. We expect that this
results in a better generalization of the model. To challenge the capabilities of our
hybrid model to generalize to new observables we also collect available AUC24h data.
We select 20% of the compounds randomly for testing the models performance. This
test set is not used for training the model.

For pretraining, we use about 100k compounds from the Bayer data warehouse. We
use our internally available models to predict solubility, pKa values, lipophilicity and
plasma protein binding in human for all compounds. For the hepatic clearance and
membrane permeation no model is available, so we use all available in-vitro measure-
ments resulting in an additional 40k compounds for pretraining. Note that usually no
urine data is collected, so neither data nor a model is available for the GFR fraction,
hence the GFR fraction is only trained end-to-end. In total, we use about 140k com-
pounds for pre-training. We ensured that none of the compounds used for pretraining
the model is part of our in-vivo data set.

3 Results

In this section we validate the predictive performance of our model and compare it
to a standard GCN. We further challenge the generalization capabilities of our hybrid
model by using it to predict the AUC24h, a quantity the model has not been trained
on.

3.1 Model performance

We optimize the hyperparameters of our hybrid model using the HORD algorithm [18].
The model architecture is optimized on the pretraining set while training hyperparam-
eters are optimized on the training set. We validate the best model on our 20% hold
out test set in figure 6. For evaluation, we use the median fold change error defined as:

mfce = exp (median |log (y)− log (ŷ)|) , (4)

10



Fig. 6 Model predictions vs observed values for our three training tasks AUCPO (top left),
AUCIV (top right) and Cmax,PO (bottom left). For comparison with earlier work [1, 17] we also show
the derived predictions for F (bottom). The predictions for AUCIV are more accurate than the PO
predictions, this is expected since the processes involved in a PO administration are more complex
than those involved in an IV administration. We observe that despite having less data for female rats
than for male rats the predictions have a similar accuracy, while predictions for suspensions are a bit
less accurate than those for solutions.

such that for a perfect model mfce = 1. A fold change error of 2 to 3 is consid-
ered sufficient to inform compound selection [19–25]. For all targets, except for the
AUCPO for male rats and suspension, we reach this goal. For AUCIV and F our model
even achieves mfce < 2. Compared to previous work [1], which uses a slightly differ-
ent test set, the mfce of AUC predictions for male rats for PO (solution) and IV has
improved from 2.85 to 2.35 (PO) and from 1.95 to 1.62 (IV). Also the mfce of F pre-
dictions improved from 1.83 to 1.62. Additionally, we observe a more stable training
and easier to tune hyperparameters. Cmax,PO after oral administration, which has not
been considered in [1], can be predicted with a slightly higher accuracy than the AUC.
Even though there is less data available for female rats than for male rats, predictions
for female rats after an IV administration or a PO administration using solution can
be made with similar accuracy as for male rats. We observe that PO predictions for
suspensions are less accurate than predictions for solutions. This is expected, given
that the dissolution of a suspension adds complexity to the dynamics in the GIT.
Likewise, predictions for IV are more accurate than predictions for PO. As described
in section 2.1 we predict suspension by using a mechanistic model for solutions with
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Fig. 7 Model accuracy for a pure GCN model for the same three predictions tasks AUCPO (top),
AUCIV (mid) and Cmax,PO (bottom) as for the hybrid model. The accuracy of all 3 end-points is
higher for the hybrid model than for the pure deep learning model, see figure 2.

Fig. 8 Predicted AUC24h compared to the observed values. The AUC24h are predicted from the
molecule properties predicted by the property net, using the exact PBPK model. Despite not being
trained on the AUC24h our hybrid model achieves an accuracy comparable to the total AUC.

adapted molecule properties, we expect that using a mechanistic model for suspension,
the prediction accuracy for suspension can be improved.

3.2 Advantages of hybrid models

Figure 7 shows for comparison the performance of a standard GCN, having the same
architecture as the property net except for the output layer’s size. The predictions
of the GCN are for all three endpoints worse than those of the hybrid model. While
the performance drop of the AUCIV predictions is moderate, the performance drop of
AUCPO and Cmax,PO is of practical relevance as the standard GCN does not reach
mfce < 3.

In addition to the improved performance of the hybrid model, compared to a pure
Deep Learning model, we can expect that the hybrid model is able to extrapolate and
predict target parameters on which it has not been trained. For a first assessment
of the extrapolation capability of our hybrid model we use the AUC24h. Figure 8
shows the AUC24h predictions of our hybrid model compared to the observed values.
The accuracy of the AUC24h predictions are comparable to the endpoints the model
was trained on. Note that the AUC24h are predicted using the full PBPK model
instead of the surrogate. The high predictive accuracy reconfirms that our surrogate
is an accurate approximation of the PBPK model. This is further confirmed by the
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predictions of our training targets using the PBPK model instead of the surrogate
model in section C.

4 Summary and conclusion

In this work we present a hybrid model to predict the pharmacokinetics of pharma-
ceutical and agrochemical compounds bioavailability in rats directly from chemical
structure. As predicting in-vivo targets is challenging due to the complex non-linear
interplay of many processes as well as the low amount and high variability of data.
We tackled these challenges by combining expert knowledge about rat physiology
and processes affecting pharmacokinetics with Deep Learning for molecular property
predictions.

The work in [1] was extended by using a GCN for the property net and changing
the parametrization of the mechanistic model which improves the interface between
the neural network and the mechanistic model. Additionally, we increased the available
training data set by less restrictive filtering of the data and the inclusion of additional
training endpoints, such as Cmax,PO or predictions for female rats and suspensions.
Furthermore, we used a larger internal data set for pre-training, which is expected to
be better correlated to bioavailability than the previously used public data from the
TOX21 challenge [26]. That lead to an improved performance of the model compared
to [1]. An interesting subject for a future publications would be to investigate whether
different architectures, e.g. Transformer, or pre-training strategies, e.g. self-supervised
training, as in [27] can improve the model even further.

For all except one end-point our model has anmfce < 3. Our AUCIV and F predic-
tions even have an mfce < 2. This is expected to be accurate enough to inform decisions
during early phases of drug discovery [19–25]. Furthermore, our model enables the
selection and prioritization of compounds which are directly optimized with respect
to their pharmacokinetic profile [28–30].

Our prediction accuracy is competitive to the F prediction accuracy in [17], when
their model is only trained on in-vivo data from the chemical series it is applied to and
superior otherwise. Our model shows a similar performance to the different models in
[31], which seem to have a slightly higher accuracy, but to achieve this, the chemical
structure as well as in-vitro parameters are required, whereas our approach does not
rely on in-vitro measurements. We like to stress that such a comparison should not be
over interpreted, as different data-sets are used for training and validating the different
models.

Additionally, our approach is able to handle different covariates like sex and for-
mulation by predicting effective molecule properties, which are sex and formulation
dependent. We expect that prediction the accuracy can be improved by accounting for
these covariates in the mechanistic model. The inclusion of further covariates like body
weight is therefore likely to result in even better predictions. However, the incorpora-
tion of more covariates is limited in practice as the typically available covariates do
not fully specify the physiology of an individual. To account for the residual variability
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and to possibly improve predictions further probabilistic models which estimate pop-
ulation parameter distributions are required. To do so one could build on the recent
progress in building deep generative models [32–34].

Incorporating more covariates - either deterministic or probabilistic - requires more
input parameters to the mechanistic model, which complicates the use of a surrogate
neural network for the PBPK model. Training and using a surrogate worked well for
the small number of inputs and outputs considered in this work, but becomes harder
if their number increases. In such cases the use of a full PBPK model can become
superior. However, this is currently computationally infeasible. Recently, there has
been increasing interest in combining differential equations and Deep Learning [35–
37] and, consequently, in tools to train these models [38–40], such that one can expect
using the full PBPK model will become feasible in the near future. A complementary
approach is to use simpler and hence computationally cheaper PK models, such as
compartmental models or a reduced version of the full PBPK model.

Using PBPK models directly would also alleviate the need for constraining the
molecule properties to the validity range of the surrogate. Constraining the molecule
properties by introducing a penalty term in the loss worked in our case, but still
complicated model training. Using a PBPK model directly would also enable to train
the hybrid model on concentration-time profiles, which would be highly desirable,
since more accurate predictions of concentration time profiles would allow a much
more detailed description of the pharmacokinetics of a compound.

Successful application of PK models not only depends on the prediction accu-
racy, but also on the possibility to estimate uncertainty on the prediction. Such, that
decisions based on predictions are only made for molecules for which the model is
expected to be accurate. Ref. [31] assesses prediction uncertainty. For none of the
tested approaches the uncertainty estimates are fully satisfactory. But, approaches
with statistical correct Bayesian or Frequentist epistemic uncertainty provide better
uncertainty estimates. We expect that in both cases well calibrated uncertainties can
be provided by computationally expensive ensembles techniques [41–43].

Our model has the potential to reduce cost, development time and animal exper-
iments in drug and agrochemical research by focusing the development on the most
promising candidates and being able to directly optimize a compounds PK. Fur-
thermore, our approach can be used to predict human PK [44], therefore directly
optimizing for clinical use.
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Appendix A Physiologically based
pharmacokinetic models

Physiologically based pharmacokinetic (PBPK) models are ordinary differential
equation models describing how a substance, e.g. a drug, is absorbed, distributed,
metabolized, and excreted in an organism. For the reader not familiar with PBPK
models we provide a brief overview over the basic concepts, building blocks and
equations forming a PBPK model. For more details we refer to [45].

In PBPK models physiological organs and tissues are represented by compart-
ments. The transport of substance via the blood is modeled by balance equations of
the form

dCi

dt
=

Qi

Vi

(
Cart −

Ci

Pi

)
, (A1)

where Ci denotes the compound concentration in the compartment i, Vi its volume,
Qi the blood flow, Pi the partition coefficient between blood and tissue, and Cart the
compound concentration in arterial blood, which is governed by

dCart

dt
= −

∑
i

Qi

Vi

(
Cart −

Ci

Pi

)
, (A2)

To describe dissolution, absorption, metabolism and excretion, as well as additional
distribution mechanism the equations A1 and A2 need to be extended. For example,
dissolution and absorption in a single GIT compartment is described by the following
equations:

dCg

dt
=

Qg

Vg

(
Cart −

Cg

Pg

)
+KaClum, (A3)

dClum

dt
= −KaClum +

dCdis

dt
, (A4)

dCdis

dt
= K (C0 − Cdis)

2/3
(Cs − Clum) , (A5)

Equation A3 describes concentration in the GIT tissue Cg, which is sourced by a
linear absorption process from the GIT lumen. Equation A4 is describes the compound
concentration in the GIT lumen Clum, which is sourced by the dissolved compound
Cdis. Equation A5 is the Noyse-Withney equation describing the dissolution of the
compound in the GIT lumen, with K being a compound dependent constant, C0 is the
total amount of compound administered divided by the administered volume and Cs

is the solubility, i.e. the compound concentration the GIT lumen at (thermal) equilib-
rium. Metabolism is described by the Michaelis-Menten-Kinetics, which for C ≪ Km
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can be linearized:

dC

dt
= −Vmax

C

KM + C
= −Vmax

KM
C +O

((
C

Km

)2
)
, (A6)

The constants Vmax and KM depend on the compound and the metabolizing enzyme
and control the speed and saturation of metabolism. We assume a single generic metab-
olizing enzyme, hence in our hybrid model hepatic clearance is fully characterized by
the rate Vmax

KM
.

An active P-gp like transport via membrane proteins, assuming a constant protein
concentration, follows also a Michaelis-Menten-Kinetics

dC1

dt
= −Vmax

C1

KM + C1
(A7)

dC2

dt
= Vmax

C1

KM + C1
. (A8)

As for the metabolism, the constants Vmax and KM control the speed and saturation
of the transport are compound and are transport protein dependent. For our purpose
it is sufficient to set KM = 1 µmol

L , i.e. use the OSP default value, hence the transport
is parametrized by its maximal velocity Vmax.

Appendix B Validation of property constraints

In figure B1 the distribution of predicted molecule properties of the test set are shown
together with the maximal and minimal values in the surrogate training data set. All
predicted molecule properties lie within in the surrogates training range, confirming
the effectiveness of the penalized loss described in section 2.4.2. Note that for Vmax

and FU we used heavy tailed distributions for generating the surrogate training data,
resulting in the large range shown in figure B1. For the FU this results in unphysio-
logical values > 1, for which the equations of the PBPK model are still defined. But
in practice the property net does not predict a FU > 1. Furthermore, to increase the
flexibility of our clearance model we increased the maximal allowed value for the GFR
fraction from 1 to 5.25.

Appendix C A posteriori surrogate validation

We can validate the surrogate model a posteriori by predicting the training targets of
our hybrid model using the PBPK model instead of the surrogate. Figure C2 shows
the predictions obtained using the PBPK model vs those obtained using the surrogate.
The accuracy is not as good as expected from the analysis in section 2.4.1, but still
accurate enough to be used in the hybrid model, the mfce of the surrogate (1.2−1.4)
is clearly better than the mfce of the hybrid model (mfce ≳ 1.6). Additionally,
figure C3 shows the predictions using the full PBPK vs the observed values. These
predictions are almost as accurate as those using the surrogate model. A maximal
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Fig. B1 Distribution of the molecule properties in the test set. The vertical line show bounds for
the properties to lie within in the validity range of the surrogate. All molecule properties lie within
in their bounds.

difference of 0.24 in the mfce can be observed, and no additional features are visible.
This highlights again the accuracy of the used surrogate model.

Appendix D Charge state dependence of model
performance

We check for a potential dependence of the model accuracy on the charge state in
figure D4. We evaluate the performance for male rats when a solution is used. As
charge states can reliably be predicted, we use predicted charge states at the pH of
blood (pH = 7.4). We observe the best performance neutral compounds, and a worse
performance for positively and negatively charged compounds. But, in all three cases
we achieve mfce < 3, so predictions are accurate enough to guide decisions. For
zwitterions the mfce for AUCPO and Cmax,PO is larger than 3, but here only very few
compounds are in our test set.
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Fig. C2 Simulation vs surrogate predictions for the predicted properties of the compounds in our
test set for AUCPO (left), AUCIV (center) and Cmax,PO (right). The accuracy is a bit smaller
compared to the estimate on the simulation test set, but still significantly better than the accuracy
of the hybrid model, hence the accuracy of the surrogate is sufficient.

Fig. C3 Hybrid model test set predictions using the full PBPK model instead of the surrogate
predictions for the predicted properties of the compounds. The accuracy for the three end-points
AUCPO (left), AUCIV (center) and Cmax,PO (right) is similar to the accuracy when using the surro-
gate. Demonstrating the accuracy of the surrogate model.

Fig. D4 Dependence of the hybrid models accuracy on the compounds charge state at pH =
7.4, i.e the pH value of blood. Shown are the three endpoints AUCPO (left), AUCIV (center) and
Cmax,PO (right) for the case male rat and solution. For neutral compounds the predictions are most
accurate, followed by positively and negatively charged compounds. For zwitterions the accuracy
is significantly worse, but here the number of compounds is too low for a reliable estimate of the
accuracy.
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