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Abstract 
The growing size of make-on-demand chemical libraries is posing new challenges to cheminformatics. These ultra-large 
chemical libraries became too large for exhaustive enumeration. Using a combinatorial approach instead, the resource 
requirement scales approximately with the number of synthons instead of the number of molecules. This gives access to bil-
lions or trillions of compounds as so-called chemical spaces with moderate hardware and in a reasonable time frame. While 
extremely performant ligand-based 2D methods exist in this context, 3D methods still largely rely on exhaustive enumeration 
and therefore fail to apply. Here, we present SpaceGrow: a novel shape-based 3D approach for ligand-based virtual screening 
of billions of compounds within hours on a single CPU. Compared to a conventional superposition tool, SpaceGrow shows 
comparable pose reproduction capacity based on RMSD and superior ranking performance while being orders of magni-
tude faster. Result assessment of two differently sized subsets of the eXplore space reveals a higher probability of finding 
superior results in larger spaces highlighting the potential of searching in ultra-large spaces. Furthermore, the application of 
SpaceGrow in a drug discovery workflow was investigated in four examples involving G protein-coupled receptors (GPCRs) 
with the aim to identify compounds with similar binding capabilities and molecular novelty.
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Graphical abstract
SpaceGrow descriptor comparison for an example cut in the molecule of interest. Scoring scheme is implied for one frag-
ment of this cut. 
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Introduction

Due to the growing interest in searching and analyzing giant 
make-on-demand chemical libraries, [1–4] novel cheminfor-
matics approaches became indispensable. [5, 6] A navigation 
through reaction-driven combinatorial libraries, so-called 
chemical spaces, offers synthetically accessible compounds 
far beyond the reach of enumerable databases. [7] Given an 
active compound, the investigation of the proximal chemical 
space around it can accelerate the lead optimization process 
(SAR-by-Space). [8–11] The imminent interest in individual 
chemical spaces brought a huge variety of free, [12] propri-
etary, [7, 13–17] and make-on-demand [18–22] spaces as 
well as tools to create those. [23–25] While navigating such 
spaces using a variety of 2D methods is well established by 
now and incredibly fast, [26–29] comparable 3D methods are 
largely missing as of today. Yet, the ability to take molecular 
shape into account and thereby facilitate scaffold hopping 
is extremely desirable but more complex. [30–34] Make-
on-demand libraries originate largely from combinatorial 
chemistry. Thus, using a combinatorial approach instead 
of an exhaustive enumeration of all possible synthesizable 

compounds comes with the benefit that the resource require-
ment scales approximately with the number of synthons 
instead of the number of all compounds. [31, 33] However, 
even the combinatorial way of a structure-based molecular 
docking routine for chemical spaces remains a task of heavy 
computational effort. [31–34]

In ligand-based design, small molecule superposition 
is a standard technique to assess 3D ligand similarity, to 
enable visual inspection, and to estimate the likelihood of a 
compound to be active. A huge variety of existing methods 
has been designed for diverse application scenarios. [35] 
Among established commercial superposition methods like 
ROCS, [36, 37] FlexS [38–40] or MOE, [41, 42] especially 
volume overlap between the query molecule and another 
compound was the main feature of the underlying scoring 
functions. While some approaches like ROCS have been 
tuned to significantly increase search speed,  [43] these 
are still restricted to enumerated compound libraries. A 
recent, development parallel to ours shows an urgent need 
of a method to overcome these restrictions and to conquer 
3D ligand-based searches in chemical spaces (Cheng C, 
Beroza P. Shape-Aware Synthon Search (SASS) for virtual 
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screening of synthon-based chemical spaces. ChemRxiv. 
Cambridge: Cambridge Open Engage; 2023; This content 
is a preprint and has not been peer-reviewed.).

To tackle this problem, we developed a novel approach 
named SpaceGrow for shape-based 3D virtual screening of 
combinatorial chemical spaces containing billions of com-
pounds within hours on a single CPU. Given a molecule of 
interest (MOI) as query, the method scores molecular over-
lays of built-up compounds conceived in the space. Thus, 
it does not require knowledge of the protein structure. The 
use of directional shape-based descriptors already showed 
its high potential in the structure-based design setting. [44, 
45] In SpaceGrow, these descriptors enable a shape-based, 
fuzzy, and rapid search for similar and topologically-
related molecules. Based on a comprehensive list of known 
drugs [21] and structures from PDBbind, [46, 47] a data 
set of 56 ligand pairs binding to the same binding site in 
homologous pockets was created. On this data set we com-
pared SpaceGrow to the open-source superposition tool LS-
align. [48] Pose ranking and retrieval of the MOI as well as 
the homologous ligand were evaluated. Additionally, 160 
of the active conformations of known drugs were utilized to 
compare the quality of results found searching in the indi-
vidually created eXplore S (containing 6x104 compounds) as 
well as the eXplore 2C (containing 6x109 compounds) sub-
spaces. Finally, the potential of SpaceGrow to mine relevant 
chemistry for drug discovery campaigns was investigated. 
SpaceGrow was used as the starting point of a computa-
tional workflow to mimic the scenario of mining spaces for 
potential binders at four different G protein-coupled recep-
tors (GPCRs). Ligand-target complexes were then evaluated 
by HYDE, [49, 50] a structure-based post-optimization and 
scoring procedure, for free-energy estimation. Results were 
further assessed for their Tanimoto similarity to the co-
complexed ligand with the aim to identify candidates with 
molecular novelty.

Methods

Descriptor and database generation

An efficient shape comparison has already been successfully 
applied in structure-based design in the scenario of frag-
ment growing. [45] The underlying method named FastGrow 
scores the match of a fragment shape with the shape of a 
binding pocket based on a specific type of descriptor. [44] 
The basic idea of the SpaceGrow approach is the reimple-
mentation and adaption of the shape descriptor for an ultra 
fast ligand-based 3D screening of combinatorial chemical 
spaces. The algorithmic strategy of SpaceGrow and the 
theory of the adapted descriptor are further described in the 
following.

Given a molecule of interest (MOI) for the search of 
analogs in a combinatorial chemical space, consisting 
of fragments and connection rules representing reaction 
types. In the subsequent paragraphs, fragments used in 
the creation of the chemical space will be referred to as 
synthons to match the present terminological consensus.

As already mentioned, SpaceGrow searches in combi-
natorial spaces, not enumerated libraries. Chemical spaces 
are created from given building blocks and reaction rules 
by CoLibri, [51, 52] which stores the synthons as SMILES 
files and the reaction rules as FragmentSpaceFiles (FSF). 
Setting up the databases from the combinatorial spaces for 
using SpaceGrow was done with the FastGrowDBCrea-
tor. [53, 54]

For each synthon of the space, the bond at which the 
reaction attaches another synthon is refered to as the exit 
bond. The exit bond is considered as one directional vector 
pointing in the direction of the respective synthon volume.

To compare the MOI with the synthons of the space, the 
MOI is fragmented iteratively. Each bond at which the MOI 
is cut is used as the exit bond for the two resulting fragments. 
All acyclic bonds are dissected, but only one bond at a time. 
Therefore, the presented implementation of SpaceGrow 
leads to multiple two-fragment pairs for an MOI. Conse-
quently, the current coverage extends to only two component 
reactions.

To form the shape descriptor, a cylinder is constructed 
along the axis of the exit bond. For synthons, the cylinder 
begins at the atom of the exit bond at which another synthon 
is attached when the reaction forms a molecule. For frag-
ments of the MOI, the cylinder is similarly aligned with 
the exit bond, i.e. the bond which was cut. An example of 
how an MOI might be cut at a bond is depicted in Fig. 1a. 
As suggested by Liu et al. [55] and Penner et al., [44] depth 
and radius of the cylinder were chosen to be 10 Å. The cyl-
inder was also extended 2 Å into the opposite direction of 
the exit bond to more accurately describe fragments that 
extend beyond the start of the cylinder. This is sketched in 
Fig. 1b. The cylinder part in positive as well as the part in 
negative direction both are used for descriptor generation. 
The volume is sampled in regular distance increments of 
1.5 Å along the cylinder axis. At each distance increment, 
rays are shot radially in a 20 ◦ pattern. In our implementation 
of the descriptor, rays are binned into intervals of 0.7 Å. If 
a line segment representing a bin intersects with the van der 
Waals sphere of an atom, its value is set to one. Otherwise 
it remains zero. This way, the rays describe the shape of the 
fragment by the volume of its atoms. A descriptor is build as 
a matrix composed of the bits representing these bins. Thus, 
the descriptor is named Ray Volume Matrix (RVM). [44] 
Within this matrix, rows represent the evaluated section at 
the axis of the exit bond while columns represent the angle 
at which the ray was sampled.
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For a chemical space, the descriptors of 10 conforma-
tions per synthon are precomputed and stored in a database. 
To overcome the issue that fragments change when concat-
enated at the exit bonds, [56] geometry variants like induced 
planarity are stored with the fragments. For the fragments 
of the MOI, the descriptors and geometry variants are com-
puted on the fly. The geometry variants are important for 
synthons whose atoms at the exit bond can adopt differ-
ent atomic geometries. An example are synthons with an 
amino group at the exit bond: Depending on the type of 
reaction, the nitrogen can adopt a trigonal planar geometry 
in the reaction product (e.g., formation of an amide) or a 
tetrahedral geometry (e.g., formation of an aliphatic second-
ary amine).

Descriptor comparison and pose scoring

Descriptors of two fragments can rapidly be compared by 
bit comparisons. Two equal bins at the same position give a 
match score. If the MOI fragment contains volume at a posi-
tion, where the synthon does not, this is penalized as a mis-
match. If the synthon contains volume where the MOI frag-
ment does not, this is considered a clash, since we assume 
everything outside the MOI volume is potential protein 

volume. A clash is penalized twice as high as a mismatch. 
An example descriptor comparison is shown in Fig. 2.

The descriptors are translation invariant and partially 
rotation invariant with respect to the alignment of the axis 
given by the exit bond. The only degree of freedom left is 
the rotation along the axis of the exit bond. To find the ideal 
rotation at this axis, the synthon is rotated along the exit 
bond by applying bit shift operations on the RVM descriptor.

To find the best matching pair of synthons for the MOI, 
we iterate over all acyclic bonds of the MOI. In each itera-
tion, the MOI is cut into two and the descriptors for both 
sides are generated. Both descriptors are scored indepen-
dently against the descriptors for the synthons. For each syn-
thon, the generated score, the cut bond of the MOI, the side 
of the MOI it was compared to, and the rotation with the best 
score are stored. After all acyclic bonds of the MOI were 
processed, the synthons are sorted in descending order by 
score and the top scoring combinations of compatible syn-
thons are generated. Two synthons are compatible, if there 
is a corresponding reaction within the chemical space. Addi-
tionally, their scores need to come from MOI fragments that 
were the opposite parts of the same cut inside the molecule. 
Depending on the number of requested results, the synthons 
are combined until enough pairs are found in a result list, 

Fig. 1  Descriptor generation in SpaceGrow. MOI fragmentation for an example cut is illustrated in (a) and a scheme of a descriptor for an MOI 
fragment or synthon is shown in (b)

Fig. 2  SpaceGrow descriptor 
comparison for an example cut 
in the MOI. Scoring scheme 
is implied for one fragment of 
this cut
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again sorted by score in descending order. If the length of 
the list reached the number of requested results and the com-
bined score from the next considered synthons is not higher 
or equal to the score at the end of the result list, no better 
combinations can be found and the algorithm terminates.

Finally, the best scoring pairs of synthons are selected 
to generate the resulting molecules. For achieving a final 
molecular alignment, the fragments are mapped onto the 
respective part of the MOI by superposing the exit bonds. 
The torsion angle of the newly formed bond is derived from 
the descriptor comparison.

Data generation for validation experiments

For an objective validation, a data set of overlays with a 
ground truth, i.e. ligands binding at an identical binding 
site, was generated. Starting with a published list of 3008 
FDA approved drugs, [21] we searched in the PDBbind 
refined set (version 2020)  [46, 47] for structures where 
these ligands were cocrystallized. With 160 ligand structures 
found in their respective target binding site, we conducted a 
SIENA [57] search. For this search, a binding site is defined 
by the sequence of amino acids that are located in a distance 
of 6.5 Å around the ligand. SIENA detects all binding sites 
with an identical sequence in homologous proteins from all 
PDBbind refined structures. Subsequently, the homologous 
protein structure is overlaid onto the structure of the query 
protein. Thereby, the ligands binding in the same active site 
are superimposed with respect to their native binding mode 
as ligand ensembles. Of each ensemble, we only kept the 
ligand of the homologous protein with the lowest backbone 
RMSD to the query structure. No cutoff for the backbone 
RMSD was defined. In some cases, no proper superposition 
was achieveable, thus leading to their exclusion from the 
validation set. Those cases include long fatty acids (e.g., 
PDB: 3UEV) or ligands with huge differences in their size 
(e.g.; PDB: 1V2J). The final data set contained 56 ligands 
pairs, with one reference and another binding ligand, in the 
following denoted as homologous ligand, both interacting at 
an identical binding site.

To make these ligands accessible for SpaceGrow as a 
chemical space, they were fragmented into a combinatorial 
chemical space by clipping all acyclic bonds. In the fol-
lowing, this chemical space will be called validation space. 
Resulting fragments with at least 25 % of the heavy atoms of 
the original ligand were kept. This resulted in 322 fragments 
from the 112 ligands of our data set. For four of the reference 
ligands and one of the homologous ligands no suitable frag-
ments could be created. These ligands either did not contain 
an acyclic bond to cut or none of the created fragments met 
the 25 % criterion. Three reaction rules for the validation 
space were defined by the bond type at which the fragments 
were cut, i.e. the exit bond of the generated synthons may 

be a single, a double or a triple bond. When combining 
synthons at their exit bonds to generate compounds from 
the space, two synthons can only be combined if their exit 
bonds have the same bond type. To make all molecules of 
the validation space accessible for conventional superposi-
tion approaches, we enumerated all 34,134 molecules into 
a validation library.

Using the validation space and library, SpaceGrow was 
compared to the superposition tool LS-align. [48] LS-align 
was selected, since it was the only open-source superposition 
tool available with a mode and score that address the flex-
ibility of the ligands and could be executed with the present 
hardware.

LS-align was executed with default settings with the fol-
lowing exceptions: The Flexi-LS-align method was enabled, 
and hydrogen atoms were considered. The ranking of the 
matches was realized based on the PC-score. The larger this 
score, the higher the rank of the target molecule. The flexible 
alignment of LS-align involves generating a list of rotatable 
single bonds and superposing the initial target conformer 
to the query using Rigid-LS-align. Well-aligned rotatable 
bonds are removed from the initial list of rotatable bonds. 
Next, three bonds whose rotation can change the conforma-
tion most are chosen to construct alternative conformers. 
Torsion angles are sampled between -180◦ and 180◦ in 60◦ 
steps. The best ten conformers are chosen for a Rigid-LS-
align superposition to optimize the alignment.

With the ligand pairs binding in their native conforma-
tions, we generated a gold standard for two tests on Space-
Grow and LS-align. First, in a retrieval experiment we ana-
lyzed how good the tools were able to rank the reference 
ligand among all molecules from the validation space and 
library, respectively. Additionally, we investigated how 
good the tools were able to reproduce the binding mode 
of the bound pose by means of RMSD. In a second experi-
ment, the ranking of the homologous ligands was evaluated 
when using the reference ligands as the MOI for a search. In 
order to remove bias from MOIs fragments in the validation 
space, all resulting molecules containing MOI fragments 
were omitted in the ranking of the homologous ligands. The 
RMSD of each homologous ligand from the superposition 
of the tools to its bound pose was compared as well. The 
second experiment shows particularly the capability of gen-
erating a reasonable pose with respect to the target protein 
of the MOI.

Generation of eXplore subspaces and comparison 

To test SpaceGrow on individual chemical spaces of differ-
ent sizes, we generated our own versions of the make-on-
demand eXplore space. [21, 58] We decided on using the 
eXplore space since its reactions are publicly available. [59] 
The building blocks and reaction rules were provided by 
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eMolecules. These were processed into the actual synthons 
in a suitable format for generating a SpaceGrow database 
using CoLibri. [51, 52] The sample of all two component 
reactions comprises about 6x109 molecules. We denote 
this space as the two component eXplore space, or short 
eXplore 2C. Given the fact that eXplore 2C was designed 
to be navigatable with SpaceGrow, it still contains approxi-
mately 6 billion compounds which makes the content too 
large for full enumeration. In order to prepare an enumerated 
library that can be processed with other superposition tools, 
we created a subset of the eXplore 2C space that contains 
6x104 compounds, denoted as eXplore S. To generate this 
space, a random sample of the synthons from each reaction 
in the eXplore 2C was taken. Both spaces comprise three 
reaction types: amide coupling, substitution, and ring clos-
ing reactions. The eXplore S is composed as follows: 22,953 
molecules from amide coupling, 6393 molecules from sub-
stitution reactions, and 29,148 molecules from ring closing 
reactions.

As a sanity check, searching conformers of molecules 
from the eXplore S led to the retrieval of about 70 % of these 
molecules among the top 10 SpaceGrow results (see Sup-
plementary Information, Conformer Validation for details).

To elucidate potential blind spots of smaller libraries 
compared to vast combinatorial chemical spaces, results of 
SpaceGrow on the eXplore S and the eXplore 2C spaces are 
compared. For this purpose, the 160 structures of the FDA 
approved drugs [21] found in the PDBbind refined set (ver-
sion 2020) [46, 47] were taken as MOIs to search in both 
spaces.

The main goal in structure-based virtual screening is to 
find molecules that display activity at a target of interest. In 
the ligand-based scenario on the other hand, similarity meas-
ures and scores allow no knowledge about a potential target 
but try to abstract information about the binding pocket from 
a given MOI. Therefore, additionally to the structure-agnos-
tic approach, we investigated the results with an orthogonal 
method, i.e. a post-scoring with the MOI binding site was 
performed.

Here, the affinity and ligand efficiency of the found mol-
ecules was estimated using HYDE. [49, 50, 60] Based on 
a scoring function for affinity assessment in the structure-
based design scenario considering hydrogen bond and dehy-
dration energies, compounds can be locally optimized to best 
possibly fit the protein pocket.

Mining for potential binders

 Over the past years, GPCRs remained difficult targets 
of highest interest [61]. Due to their high flexibility and 
anchoring in the phosphilipid bilayer, they represent diffi-
cult objectives for crystallization and the associated structure 
elucidation. The lack of 3D information for the target of 

interest coupled with challenging prediction of the binding 
site topology and the subsequent generation of ligand poses, 
impedes structure-based campaigns aiming at GPCRs. 
Ligand-based approaches therefore represent a viable alter-
native for mining potential binders without exhaustive calcu-
lations and refinement of ligand-GPCR complexes. For four 
members of the GPCR family we performed a SpaceGrow 
search in the eXplore 2C with the aim to identify compounds 
with similar or improved estimated binding affinity and 
molecular novelty. For this, structures of the GPCRs were 
downloaded from GPCRdb [62, 63] and prepared by remov-
ing crystalline water and non-ligand heteroatom groups.

To guide our shape-based search through chemical 
space, we utilized SpaceGrow to generate thousand results 
per target. These results were then scored and optimized by 
HYDE. [60] To efficiently scan for novel and potentially 
binding compounds with a low 2D similarity to the co-crys-
tallized reference ligand, the result set was filtered. Only 
Compounds with a higher predicted affinity as the query 
molecule and a Tanimoto similarity of less than 0.7 were 
kept. The Tanimoto similarity was calculated using the 
Morgan Fingerprint implementation with radius four from 
RDKit. [64] The first ten results of this list were taken into 
further consideration for a more detailed analysis.

Results and discussion

Validation on active binding poses of known drugs 
and their analogs

 On the validation space of the 112 fragmented MOIs and 
corresponding homologous ligands, SpaceGrow is evalu-
ated. The conventional superposition tool LS-align [48] is 
evaluated on the corresponding validation library, contain-
ing the 34,134 molecules enumerated from validation space. 
Here, the results of SpaceGrow and LS-align are compared 
in their ranking and pose reproduction by RMSD.

Both, SpaceGrow and LS-align found at least 35 % of the 
56 MOIs on first rank. While SpaceGrow found almost 80 % 
of the MOIs among the first ten ranks, here, LS-align was 
able to retrieve about 60 %. There were four MOIs (7.1 %), 
for which no fragments were present in the generated space. 
Thus, it was impossible for both tools to find these. Figure 3 
shows the ranking of the MOIs in their active conformation 
by SpaceGrow and LS-align.

SpaceGrow poses had a median RMSD of 0.5 Å and a 
mean RMSD of 0.7 Å. LS-align reproduced the MOI pose 
with a median RMSD of 0.6 Å and a mean RMSD of 1.2 Å. 
Note that the conformations generated by SpaceGrow result 
from ten conformers per synthon pre-generated from the 
synthons’ SMILES strings for the SpaceGrow database. The 
respective RMSD values are depicted in Fig. 5.
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For both tools, ranking and reproduction for the homolo-
gous ligands of the MOIs was much more difficult than for 
the MOIs themselves as Fig. 4 indicates. While SpaceGrow 
still found more than 20 % of the homologous ligands among 
the first ten ranks, LS-align found about 10 %. In contrast 
to SpaceGrow, for some molecules of the validation library 

LS-align was not able to generate poses. While one homolo-
gous ligand was not part of the space (1.8 %), LS-align was 
not able to find poses of three homologous ligands (5.4 %).

As can be derived from Fig. 5, for both tools the mean 
and median RMSD values were distributed around 3 Å. 
Maximum values are reaching up to 10 Å.

Fig. 3  Retrieval of the 56 MOIs with an active binding pose derived from a PDBbind structure. Rankings are compared between the different 
tools. Overall, 34,134 molecules were ranked. The numbers of the pie charts give the percent of MOIs placed on a respective rank

Fig. 4  Ranking of homologous ligands for the 56 MOIs with an 
active binding pose derived from a PDBbind structure. Rankings are 
compared between the two tools. Overall, 34,134 molecules were 

ranked. The numbers of the pie charts give the percent of molecules 
placed on a respective rank
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Summing up, both benchmarking experiments were chal-
lenging for the evaluated tools. Figure 5 shows widely spread 
distributions, especially for the homologous ligands, indicat-
ing that the molecules inside the benchmark are diverse in 
their level of difficulty for all tested tools. The four most dif-
ficult ligand pairs for both tools were further analyzed in the 
Supplementary Information, Fig. 4. SpaceGrow outperforms 
LS-align in pose ranking for both, the MOI and the homolo-
gous ligands. Furthermore, SpaceGrow is superior in pose 

reproduction of the MOIs and shows slightly lower average 
and median RMSD values for the homologous ligands than 
LS-align. In summary, the investigated tools displayed the 
ability to rank and reproduce active poses of shape-related 
molecules. Shape-related molecules are resembled by our 
pairs of MOIs and their homologous ligands.

Comparison of results from spaces of different size

 Since no ligand pairs but only the MOIs were needed for 
the following analysis, there were no more restrictions in 
picking the MOIs. Therefore, all 160 active MOI poses 
from mapping a list of known actives [21] against PDB-
bind [46, 47] were utilized. Analyzing the two eXplore sub-
spaces eXplore S and eXplore 2C, it should be noted that the 
smaller space eXplore S was constructed to contain exactly 
the same reactions as the large space but with fewer synthons 
per building block.

The two boxplots for the maximum SpaceGrow scores 
found during the search of each MOI in the eXplore S as 
well as the eXplore 2C are shown in Fig. 6. The average 
of the maximum scores over these 160 results improves by 
approximately a factor of two for the larger space results, 
implying better shape complementarity of the results.

Taking into account the median of the SpaceGrow score 
values over the top thousand results, the average over the 
160 searches was over thirty times higher when searching in 
the larger space. A comparable observation was also made 
analyzing the median values of the top hundred and top ten 

Fig. 5  Comparison of RMSD values for the poses of the retrieved 
MOI (light green) and the homologous ligand (light blue) generated 
by the alignments of SpaceGrow and LS-align. The orange line indi-
cates the median value. The green triangle marks the average value

Fig. 6  SpaceGrow Score distri-
butions of the maximum score 
(max) and the median score of 
the top thousand, top hundred, 
and top ten results from the 
160 searches in the eXplore S 
(blue) and eXplore 2C (green), 
respectively. The orange line 
marks the median value. The 
green triangle marks the average 
value
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results. This suggests that larger chemical spaces can offer 
more possibilities that can match the 3D profile of the query 
better.

The top thousand results from eXplore S were on average 
composed out of 620 different fragments (standard devia-
tion: 72). The top thousand results from eXplore 2C were 
composed of 344 fragments on average (standard devia-
tion: 148). A similar observation was made by counting 
the unique Bemis-Murcko scaffolds within the top thou-
sand results for each MOI. Scaffolds were computed using 
RDKit. [64] Results found within eXplore S on average 
contained 213 unique scaffolds (standard deviation: 168) 
while results from eXplore 2C contained 142 unique scaf-
folds (standard deviation: 101). Histograms of the unique 
fragment and scaffold counts within the top hundred and top 
thousand results can be found in Fig. 5 of the Supplementary 
Information. Since the current version of SpaceGrow reports 
results by the best combined score without further cluster-
ing or filtering for diversity, this indicates that the larger 
space offers synthons with a very good shape match with 
the potential to form multiple interesting fragment combina-
tions on top ranks. Thus, larger spaces offer the possibility 
to deeply explore SAR around fragments with high shape 
similarity.

To further analyze the improvement in screening the 
larger space and to assess the SpaceGrow results using an 
independent orthogonal strategy, HYDE was used to analyze 
the ligand candidates for their binding affinity at the interac-
tion site. The results are summarized in Fig. 7. HYDE pro-
vides an upper and a lower bound for the estimated affinity 

that correlate with each other. For reasons of convenience, 
only the lower bound was used for our evaluations.

The estimated affinity is shown as a lower boundary of 
the K

d
 value for the MOIs and the ligand candidates, so 

lower values mean a higher affinity of the molecule. The 
best as well as the median HYDE scores for the 160 MOIs 
are depicted in Fig. 7a with a logarithmic scale. This should 
also be noted when comparing the HYDE scores generated 
for results from the eXplore S and the eXplore 2C. The 
distribution of the best scores is comparable for the results 
from both spaces. However, the median of the scores implies 
that potentially better binders can be mined from the larger 
space.

For visual comparison of the results’ HYDE scores, per-
centages of ligands retrieved from the larger space display-
ing improved calculated affinity compared to their MOI 
counterpart are depicted in Fig. 7b. When considering for 
each MOI only the SpaceGrow result with the best HYDE 
score, this percentage decreases from about 60 % within 
the top ten to about 50 % within the top thousand results. 
Considering the median HYDE score of the result enables a 
comparison of the results from the different spaces beyond 
first rank, again showing a benefit when using the larger 
space. For the top ten, hundred and thousand results, in 
over 75 % of the cases a better median expected affinity was 
achieved when using the larger space.

When it comes to the diversity of the result molecules, 
Fig. 8 shows statistics on the average heavy atom count, 
topological polar surface area and molecular weight of 
the top thousand result molecules. The properties of the 

Fig. 7  Estimated affinity of SpaceGrow results when evaluated with 
HYDE on the PDBbind protein structures associated with the respec-
tive 160 MOIs. Results were evaluated  (a) by HYDE score given 
as the lower boundary of the estimated affinity. Minimum HYDE 
scores (min) for the top thousand SpaceGrow results are shown as 
blue boxes. Median HYDE scores (med) for the top thousand Space-
Grow results are shown as green boxes. The orange line indicates the 
median value of the 160 data points. The green triangle marks the 

average value of the 160 data points. Estimated affinity lower bound-
ary for all 160 MOIs in their native binding mode is depicted as a 
reference in the middle. In (b) results were evaluated by the percent-
age of MOIs for which results from the larger eXplore 2C space had 
a lower estimated K

d
 value, i.e. a higher affinity. The min value only 

takes the best HYDE score into consideration while the median com-
pares the median HYDE score of the top thousand results for each 
search
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MOIs are shown as well. The MOIs are diverse in their 
size, containing between six and 34 heavy atoms and 
show a molecular weight between 87 and 465 Da. Over-
all, the MOIs had an average number of heavy atoms of 
16 and an average molecular weight of 238 Da. Compar-
ing the results found in eXplore S and eXplore 2C, the 
results from eXplore 2C are more spread for all analyzed 
properties. Also, the median and average of the values 
are smaller for all properties when searching in the larger 
space. However, Figure 6 of the Supplementary Informa-
tion reveals that regarding results of a single search for an 
MOI, the ranges of each property are smaller for results 
from eXplore 2C compared to results from eXplore S. The 
heavy atom count and molecular weight ranges of mol-
ecules found within the larger space tend to be closer to 
the corresponding values of the MOI, which was used as 
the query.

Besides estimated affinity, HYDE also classifies mol-
ecules according to their ligand efficiency into five catego-
ries, i.e. from best to least efficient ( ++,+, 0,−,−− , respec-
tively). The ligand efficiencies for the top 10 ranking results 
of each MOI query are summarized in Fig. 9. Regarding the 
results of the smaller space, 53.6 % of the results were clas-
sified into the least efficient category while only 5.3 % were 
classified into the best category. Searching in the large space, 
molecules in the last category were reduced to 36.5 % and 
17.4 % were classified into the best category. This trend is 
can also be observed among the top hundred and top thou-
sand results, as the corresponding Figure 8 in the Supple-
mentary Information confirms.

The differences between the top results per search found 
in the differently sized spaces become evident considering 
the median scores. The median SpaceGrow score increased 
when searching in the larger space, implying results with a 
higher molecular shape similarity between the results and 
the MOIs. Analyzing the HYDE scores on the top ten, hun-
dred, and thousand results shows that for over 75 % a higher 
median affinity was predicted for results of the larger space. 
However, a closer look on the results revealed that there was 

Fig. 8  Averaged molecular 
properties of the top thou-
sand result molecules for 
each search of the 160 MOIs 
in the eXplore S (S) and the 
eXplore 2C (2C). The proper-
ties of the MOIs are depicted as 
well. The orange line indicates 
the median value. The green 
triangle marks the average value

Fig. 9  Ligand efficiency classes predicted by HYDE for the top ten 
result molecules for each search of the 160 MOIs in the eXplore  S 
and the eXplore 2C. Bars provide the percentage of molecules which 
were rated according to the underlying ligand efficiency class. Dark 
green ( ++ ) is rated as best and red ( −− ) as least efficient
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only one result found in both spaces when comparing the top 
thousand results for each MOI found on both spaces. The 
larger space provides more synthons and thus also provides 
more high scoring results. Still, the evaluations of the aver-
age heavy atom count, topological polar surface area and 
molecular weight show wider ranges of the values for the 
results of the larger space. This indicates a more diverse 
selection of molecules with the opportunity of more avail-
able synthons. Another observation was the lower average 
and median of these properties in the results from searching 
in the larger space. As the larger space contains more syn-
thons and SpaceGrow penalizes aligned molecules which 
are larger than the MOI, molecules with a better shape fit 
are smaller in general. Since size in terms of the number of 
heavy atoms also has an influence on ligand efficiency, the 
smaller results of the larger space are categorized into better 
efficiency classes. Thus, results from the larger space are 
likely to contain a higher number of molecules with similar 
binding capabilities as the query.

Run time evaluations

To search in chemical spaces with SpaceGrow, a space has 
to be converted into a database with a suitable format and 
3D conformer ensembles for the synthons have to be gener-
ated. On an eight core machine with an 11th Gen Intel(R) 
Core(TM) i9 processor (2.5 Ghz) with 32 GB memory and 
Windows 11, the generation of the database with the syn-
thons of eXplore 2C took approx. 4.5 h. The generation of 
the database for eXplore S took less than 4 min.

While performing the searches with the 160 selected 
MOIs for the above experiment, the run time of Space-
Grow was evaluated for both spaces. Each search ran using 

one thread (on a single CPU core) of a machine in a het-
erogenous linux compute cluster. The SpaceGrow process 
can be divided into three parts. First, in a preprocessing 
step, the database is checked to be valid and loaded. Next, 
the screening includes the partitioning of the MOI and 
the generation of the corresponding descriptors, the com-
parison of the descriptors to those of the database, and 
picking the best scoring molecules as results. Finally, the 
molecule construction combines the synthons according 
to the underlying reaction rules.

In Fig. 10 the three parts are depicted separately. On 
both spaces, preprocessing is a matter of milliseconds and 
molecule construction is done in less than ten seconds. 
While the median screening time on the small space is 
less than 1.5 min, on the large space it is less than 1.5 h. 
The average screening time is less than 2 min or 2 h, 
respectively. The run time of the screening scales with 
the number of descriptor comparisons. Thus the number of 
synthons in the space has a huge impact. While the small 
space is composed of approx. 10,000 synthons, the large 
space consists of approx. 400,000 synthons.

The shortest run time on the large space was about half 
an hour and the longest run time over seven h. Next to the 
number of synthons, the number of acyclic bonds within 
the MOI is an important factor for the run time. As Fig. 11 
shows the run time correlates linearly with the number of 
acyclic bonds in the MOI, i.e. the number of iterations in 
SpaceGrow. In each iteration, a pose scoring of the entire 
database is performed and a descriptor for both parts of the 
partitioned MOI is performed. Overall, using SpaceGrow, 
the large eXplore 2C can be searched within h on a single 
CPU of a regular desktop computer.

Fig. 10  SpaceGrow run times (wall clock time) of preprocessing, 
screening and result construction process. The 160 MOIs were used 
to search  (a) in the eXplore  S and  (b) in the eXplore  2C. Calcula-

tions were performed on a single CPU core of a heterogenous com-
pute cluster. Note that every boxplot has its own scale. The median is 
depicted as an orange line and the average as a green triangle
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Application: mining for potential GPCR binders

 To elucidate the relevance of SpaceGrow for drug discov-
ery purposes, we performed an analysis on four members 

of the GPCR family with the aim to discover chemically 
novel potential binders.

Our first GPCR of interest is the human glucagon-like 
peptide-1 receptor (GLP-1R). It is captured with danuglipron 
(PF 06882961, PDB-ID: 7LCK). [65, 66] Danuglipron is 
of current interest, since it is under investigation in clinical 
trial for the treatment of type 2 diabetes and obesity. [67–73] 
Fig. 12 shows Danuglipron within the binding site of GLP-
1R (a) and the overlay with three retrieved results (b-d), 
together with the estimated affinity and the respective 
Tanimoto similarity calculated using the Morgan Finger-
print implementation with radius four from RDKit. [64]. 
Compound 1 shows a good superposition due to sharing 
several structural features of danuglipron. This includes the 
positioning of the chlorine atom on the nitrile group of the 
query. The middle of the molecule shows a replacement of 
the central ring system with a benzoisoxazole which can be 
considered a scaffold hop. This is also reflected by the low 
Tanimoto similarity. Overall, the results found for GLP-1R 
provided different scaffolds and various interaction patterns. 
By picking compounds from eXplore 2C, it is also likely 
that the found compounds are easy to synthesize. The other 
top ten SpaceGrow results after filtering for this MOI and 
all following can be found in Table 1 of the Supplementary 
Information.

Fig. 11  Correlation of number of bonds in the MOI iterated and run 
time of the search in the eXplore 2C

Fig. 12  Structure of the human glucagon-like peptide-1 receptor 
(PDB-ID: 7LCK) with danuglipron as MOI and HYDE optimized 
SpaceGrow results. The MOI is colored light blue. SpaceGrow results 

are colored orange. Estimated affinity is provided as the reported 
lower bound of the HYDE score
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The next GPCR investigated was the �-opioid receptor 
( �-OR), which is responsible for hallucinogenic, dysphoric, 
and analgesic activities induced by opioids. With the PDB-
ID 6B73 [74, 75] of the nanobody-stabilized active state, an 
apomorphin derivate was co-crystalized. This ligand served 
as an MOI for a SpaceGrow search. The result shown in 
Fig. 13 has an alkynyl group which can be considered as 
a bioisostere to the iodine group of the MOI. Overall, the 
results show a series of bioisosteres, which are more chemi-
cally accessible than the MOI which belongs to the class of 
natural products. All ten analyzed result compounds contain 
an imidazole with two methyl groups predicted to interact as 
dowels that improve the fit of the ligand within the pocket.

� -2 adrenergic receptors (ADRB2) are targets for 
asthma [76] and COPD [77]. Also, ADRB2 regulates the 
phenotype and metabolism of adipose and smooth skeletal 
muscle tissue and had therefore recently been discussed as 
a re-emerging target to combat obesity. [78] It has also been 
discussed in context of neural disease development [79] and 
cardiac fibroblast autophagy. [80] Timolol was cocrystalized 
with ADRB2 within the structure 6PS1 [55, 81]. Back in 

1997, Timolol was already introduced as a beta-adrenergic 
blocking agent to treat glaucoma. [82] Using Timolol as 
an MOI, a result of SpaceGrow is shown in Fig. 14. Com-
pound 5 shows a good shape overlay matching the isopropyl 
group and the ring systems of five atoms. In the superposi-
tion, H-bond interactions between the pyridine moiety with 
Asn293 and the ether group with Asn312 are feasible. Even 
though most active compounds acting at ADRB2 contain a 
protonated amine, a class of ligands lacking a charge at phys-
iological pH 7.4 has been reported [83]. The series of the ten 
considered results in general shows many 3D derivates with 
a high similarity to Compound 5 but various decorations. 
Also, the series contains the ether group that could form 
possible interactions.

The Free Fatty acid receptor 4 (FFAR4/GPR120) medi-
ates potent anti-inflammatory and insulin sensitizing 
effects. [84]. The structure with the PDB-ID 8ID8 captures 
GPR120 with the selective GPR120 agonist TUG891 [85, 
86]. Figure 15 shows the results of using TG891 as the MOI 
to screen the eXplore 2C with SpaceGrow. Compound 6 
shows a good shape match and overall matches the pocket 

Fig. 13  Structure of the �-opioid receptor (PDB-ID: 6B73) with an apomorphin derivate as MOI and HYDE optimized SpaceGrow results. The 
MOI is colored light blue. SpaceGrow results are colored orange. Estimated affinity is provided as the reported lower bound of the HYDE score

Fig. 14  Structure of the � -2 adrenergic receptor (PDB-ID: 6PS1) with timolol as MOI and HYDE optimized SpaceGrow results. The MOI is 
colored light blue. SpaceGrow results are colored orange. Estimated affinity is provided as the reported lower bound of the HYDE score
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well. The fluorine group complements the lipophilic prop-
erties of the pocket. The protonated piperazine allows for 
potential interaction with carboxylic acids. The ligand 
structure contains a Michael acceptor in close proxim-
ity to Thr119 and which may increase the duration stay of 
the ligand at the receptor. Overall, the results for the MOI 
TUG891 can be split into two series. One series contains 
the Michael acceptor, whereas the other replaced it by a 
simple amide, as can be seen in Table 4 of the Supplemen-
tary Information.

Conclusions

SpaceGrow is a solely shape-based approach for screen-
ing ultra-large chemical spaces. For validation-purposes a 
sample space was created and also fully enumerated for the 
comparison to a freely available state of the art superposition 
tool. The sample space consists of the fragments of a set of 
molecules of interest as well as their analogs. The corre-
sponding fully enumerated library consists of all valid pairs 
of coupled fragments. SpaceGrow was able to retrieve on top 
ranks a significantly higher number of both, the molecules 
of interest and their analogs, compared to a conventional 
method from the enumerated set. When comparing RMSD 
values of the reproduced poses of the MOIs and the analogs, 
SpaceGrow shows to produce very reasonable alignments. 
Searching in a comparatively small ( 104 ) and a much larger 
( 109 ) subset of a tailored version of the trillion-sized eXplore 
space with SpaceGrow gave a glimpse on the advantages 
of being able to search in larger and larger spaces of mol-
ecules. The median SpaceGrow score of the top thousand 
results per search was found to be over thirty times higher 
using the larger space, indicating a significantly higher shape 
similarity. In order to check for the relevance of these search 
results, we also used the generated poses to calculate esti-
mated binding affinities for the given target structure. The 

median estimated affinity of the top ten, top hundred, and top 
thousand results, was higher in over 75 % of the results from 
the larger space. The average heavy atom count, however, 
was smaller for the results from the larger space leading 
to overall more efficient ligands with a higher probability 
to be a viable substitute for the MOI used for searching. 
The run time of SpaceGrow scales roughly linearly with 
the number of acyclic bonds in the molecule of interest as 
well as the number of fragments spanning the space. This is 
the major advantage over conventional search methods that 
scale with the number of product molecules. This way of 
avoiding the combinatorial explosion is of key importance 
for the ability to screen combinatorial chemical spaces worth 
billions and even trillions of molecules. The benefits of min-
ing chemical spaces in the drug discovery process, using 3D 
virtual screening methods has already been proven by other 
applications. [31–34] Applying the SpaceGrow workflow 
on a number of GPCR targets allowed for a closer look on 
the quality of results and the potential of this method. The 
compounds retrieved, showed a potential for scaffold hop-
ping, generally a high estimated affinity and a low Tanimoto 
similarity compared to the MOI. Therefore, SpaceGrow is 
able to retrieve compounds from ultra-large spaces that offer 
novel chemotypes to explore. The current implementation 
of SpaceGrow should be considered a proof of concept that 
shows the benefits of 3D shape-based screening in large 
chemical spaces. A future goal must be an extension of this 
concept that allows to work with three and four-component 
reactions as well. This would enable searching in even larger 
chemical spaces taking full advantage of the currently avail-
able make-on-demand libraries from a number of compound 
vendors. Another future research topic is an extension of 
the SpaceGrow score, which is currently shape-based only. 
Incorporating interactions could further improve the match-
ing of polar atoms when comparing the SpaceGrow descrip-
tors of molecules early in the workflow. To increase the 
diversity and molecular novelty of the resulting molecules, 

Fig. 15  Structure of the Free Fatty acid receptor GPR120 (PDB-ID: 8ID8) with TG891 as MOI and HYDE optimized SpaceGrow results. The 
MOI is colored light blue. SpaceGrow results are colored orange. Estimated affinity is provided as the reported lower bound of the HYDE score
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a clustering mechanism could be included in addition to the 
SpaceGrow score.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10822- 024- 00551-7.
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