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The result of 
omputational operations performed at the single 
ell level are 
oded into sequen
es

of a
tion potentials (APs). In the 
erebral 
ortex, due to its 
olumnar organization, large number of

neurons are involved in any individual pro
essing task. It is therefore important to understand how

the properties of 
oding at the level of neuronal populations are determined by the dynami
s of single

neuron AP generation. Here we analyze how the AP generating me
hanism determines the speed

with whi
h an ensemble of neurons 
an represent transient sto
hasti
 input signals. We analyze a

generalization of the θ-neuron, the normal form of the dynami
s of Type-I ex
itable membranes.

Using a novel sparse matrix representation of the Fokker-Plan
k equation, whi
h des
ribes the

ensemble dynami
s, we 
al
ulate the transmission fun
tions for small modulations of the mean


urrent and noise noise amplitude. In the high-frequen
y limit the transmission fun
tion de
ays

as ω−γ
, where γ surprisingly depends on the phase θs at whi
h APs are emitted. If at θs the

dynami
s is insensitive to external inputs, the transmission fun
tion de
ays as (i) ω−3
for the 
ase

of a modulation of a white noise input and as (ii) ω−2
for a modulation of the mean input 
urrent

in the presen
e of a 
orrelated and un
orrelated noise as well as (iii) in the 
ase of a modulated

amplitude of a 
orrelated noise input. If the insensitivity 
ondition is lifted, the transmission fun
tion

always de
ays as ω−1
, as in 
ondu
tan
e based neuron models. In a physiologi
ally plausible regime

up to 1kHz the typi
al response speed is, however, independent of the high-frequen
y limit and is

set by the rapidness of the AP onset, as revealed by the full transmission fun
tion. In this regime

modulations of the noise amplitude 
an be transmitted faithfully up to mu
h higher frequen
ies

than modulations in the mean input 
urrent. We �nally show that the linear response approa
h

used is valid for a large regime of stimulus amplitudes.

I. INTRODUCTION

Neurons are the basi
 building blo
ks of neural net-

works and thus 
onstitute the 
omputational units of the

brain. They dynami
ally transform synapti
 inputs into

output a
tion potential (AP) sequen
es. To 
on
eive the


omplex 
omputational 
apabilities of the brain, it is 
ru-


ial to understand this transformation and to identify

simple neuron models whi
h a

urately reprodu
e the dy-

nami
al features of 
orti
al neurons.

Here we study this mapping in a redu
ed neuron

model. This model is obtained by a generalization of

the θ-neuron [11, 18℄, whi
h is a 
anoni
al phase os
il-

lator model of ex
itable neuronal membranes exhibiting

Type-I ex
itability. Phase os
illator models have a long

history in physi
s and biology [9, 17, 43, 44℄ and re-


ently they were introdu
ed in theoreti
al neuros
ien
e

[11℄. In 
ontrast to integrate-and-�re models, whi
h are

phenomenologi
al models of 
orti
al neurons, they 
an

be derived from the limit 
y
le dynami
s of 
ondu
tan
e

based neuron models, redu
ing the 
omplex dynami
s

whi
h usually in
orporates many degrees of freedom to

a single phase variable. This redu
tion is an important

prerequisite for analyti
al studies of either the dynami
s

of single neurons or of neural networks.

Corti
al neurons in vivo are subje
t to an immense

synapti
 bombardment, resulting in large �u
tuations of

∗
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their membrane potential (MP) [2, 10, 40℄ and irregular

a
tion potential �ring [35℄. Be
ause the exa
t 
ompu-

tational role of these �u
tuations is largely unknown, it

was suggested to treat them as a random pro
ess, divid-

ing the synapti
 input into a mean input 
urrent and a

random �u
tuating 
ontribution [39℄ with a given 
or-

relation time τc. The �u
tuations 
an serve as a po-

tentially independent information 
hannel be
ause when

the a�erent a
tivity of a neuron 
hanges, not only the

mean input is a�e
ted, but also the amplitude of the

�u
tuations[5, 25, 41℄.

The stationary response properties of the 
lassi
al θ-
neuron subje
t to �u
tuating input 
urrents were 
al
u-

lated in [18, 26℄ for a temporally un
orrelated input and

in [8℄ for a temporally 
orrelated input 
urrent. Both

studies showed that the θ-neuron 
an reprodu
e the sta-

tionary response properties exhibited by many 
orti
al

neurons, i.e. a square-root dependen
e of the �ring rate

on the input 
urrent 
lose to threshold for small noise

amplitudes [37℄ and irregular �ring in the noise driven

regime. Despite its su

ess to reprodu
e the stationary

�ring behavior of 
orti
al neurons, the θ-neuron la
ks a


ru
ial dynami
al feature: The fast a
tion potential up-

stroke exhibited by 
ondu
tan
e based neuron models.

Here we study a generalization of the 
lassi
al θ-neuron
with an adjustable a
tion potential onset speed, intro-

du
ing a phenomenologi
al term whi
h mimi
s the fast

a
tivation of sodium 
hannels.

We derive the time dependent response in the pres-

en
e of temporally 
orrelated noise to a modulation in

the mean input 
urrent and a modulation in the noise

http://arxiv.org/abs/q-bio/0411042v1
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amplitude. For both modulation paradigms we 
al
u-

late the high frequen
y limit. In this limit, the response

amplitude de
ays as ω−γ
, where the integer exponent γ

is 
ompletely independent of the a
tion potential onset

dynami
s and surprisingly only depends on the os
illa-

tor phase θs, at whi
h an a
tion potential is emitted: If

at θs the dynami
s is insensitive to external inputs, the

transmission fun
tion de
ays as (i) ω−3
for the 
ase of

a modulation of an un
orrelated noise amplitude and as

(ii) ω−2
for a modulation of the mean input 
urrent in

the presen
e of a 
orrelated and un
orrelated noise as

well as (iii) in the 
ase of a modulated amplitude of a


orrelated noise input. If the insensitivity 
ondition is

lifted, the transmission fun
tion always de
ays as ω−1
,

as in 
ondu
tan
e based neuron models.

The full transmission fun
tion is then 
al
ulated via

the eigenvalues and eigenfun
tions of the Fokker-Plan
k

operator, whi
h des
ribes the dynami
s of the ensem-

ble averaged probability density fun
tion. The eigenval-

ues and eigenfun
tions are 
omputed using a high per-

forman
e iterative s
heme, the Arnoldi method [24, 38℄,

from a novel sparse matrix representation of the Fokker-

Plan
k operator. This method allows for a fast 
ompu-

tation and high numeri
al pre
ision, hard to a
hieve by

dire
t numeri
al simulations.

We then demonstrate that the response amplitudes for

the 
lassi
al θ-neuron typi
ally exhibit a 
ut-o� behav-

ior, where the 
ut-o� frequen
y, whi
h is 
losely linked

to the spe
tral properties of the Fokker-Plan
k operator,

is approximately given by the neurons stationary �ring

rate. Stimulations at frequen
ies larger than the 
ut-

o� frequen
y are strongly damped. For an in
reasing

a
tion potential onset speed at a �xed stationary rate,

stimuli with mu
h larger frequen
ies 
an be transmitted

almost unattenuated. We show that the response ampli-

tude for the 
ase of a noise modulation typi
ally de
ays

mu
h slower than in the 
ase of a mean input 
urrent

modulation.

The impa
t of noise on the dynami
 response prop-

erties was previously almost ex
lusively studied in

integrate-and-�re models [23, 39℄. The �rst studies were

pioneered by Knight [21℄, who 
onsidered a simple in-

tegrator model, in whi
h the �ring threshold is drawn

randomly, every time an a
tion potential o

urs. These

results were then extended to models, where the reset

voltage was also drawn randomly, and to models in whi
h

the the input 
hanged either very slowly, or to spike re-

sponse models, where the input is assumed to 
hange very

fast [16℄. Re
ently, the impa
t of 
urrent noise on the

dynami
al response of the leaky integrate-and-�re model

was investigated [5, 6, 7, 13, 25℄. In these studies it was

shown that integrate-and-�re models driven by a synap-

ti
 �u
tuating input exhibit a linear response amplitude

whi
h does not de
ay to zero in the high frequen
y limit.

This lead some to the 
on
lusion that 
orti
al neurons


an transmit information instantaneously [7, 25℄. Only

re
ently, this interpretation was questioned by two stud-

ies [14, 29℄ whi
h demonstrated that the unattenuated

Figure 1: Phase plane of a type-I single 
ompartment 
ondu
-

tan
e based model (Morris-Le
ar model [28℄) in the ex
itable

regime (�lled dot: stable �xed point, open dots: unstable

�xed points). Gray lines are the null
lines, denoted by ẇ = 0

and V̇ = 0. Bla
k lines are stable and unstable manifolds

of the saddle and the node. The ex
itable dynami
s 
an be

redu
ed to a phase os
illator with one degree of freedom pa-

rameterized by the angle ϑ.

transmission of high frequen
y signals in integrate-and-

�re models are more a 
onsequen
e of the oversimpli�
a-

tion of the model rather than property of real neurons.

II. MATERIAL AND METHODS

A. Model

The model is based on the normal form of the dynam-

i
s of type-I membranes at the bifur
ation to repetitive

�ring. Condu
tan
e based neuron models whi
h exhibit

Type-I ex
itability typi
ally undergo a saddle-node bi-

fur
ation of 
odimension one, when brought to repetitive

�ring. A 
enter-manifold redu
tion at the bifur
ation

point leads to the following normal form [36℄:

C ˙̄V =
g

V0

(

V̄ − V ∗
)2

+
(

Ī(t)− Ic
)

, (1)

whi
h is a dynami
al equation for the MP V̄ of the neu-

ron. The input 
urrent relative to the rheobase Ic of the
neuron is denoted by Ī(t). The 
onstants A and V ∗


an

be dedu
ed from a given multidimensional 
ondu
tan
e

based model. It is 
onvenient to introdu
e dimensionless

quantities V and I:

V =
(

V̄ − V ∗
)

/V0 (2)

I(t) =
(

Ī(t)− Ic
)

/ (gV0) (3)

and the e�e
tive time 
onstant:

τ = C/g (4)
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The res
aled dynami
s is then given by:

τV̇ = V 2 + I(t) (5)

For I(t) > 0, the MP has a �nite �blow-up� time, mean-

ing that it needs a �nite time to get from −∞ to +∞,

where both ends of the real axis are identi�ed, turning the

model into a phase os
illator. The normal form Eq. (5)

is equivalent to a phase os
illator, the θ-neuron [11, 18℄.

Its equation of motion,

τ θ̇ = (1− cos θ) + I(t) (1 + cos θ) (6)

is found by substituting V = tan (θ/2) with the angle

variable θ in the interval (−π, π].
In the model, a spike is emitted ea
h time θ rea
hes

the value θs. By 
hoosing θs = π, the original θ-neuron is
obtained. Figure 1 illustrates s
hemati
ally the redu
tion

of a 
ondu
tan
e based neuron model to a phase os
illator

model.

Although the θ-neuron is the normal form of the dy-

nami
s at the bifur
ation, it la
ks the rapid AP onset

exhibited by 
ondu
tan
e based neuron models and real

neurons. To a

ount for this dynami
al feature we gen-

eralized the model to re�e
t the rapid depolarization of

the membrane resulting from the fast kineti
s of sodium


ondu
tan
es in the following way:

τV̇ = V 2 + I(t) + α (1 + tanh(βV )) , (7)

where we introdu
ed two additional parameters α and

β. The sigmoidal term phenomenologi
ally models the

part of the sodium 
hannel a
tivation 
urve, whi
h is

not in
luded in the V 2
-term of the normal form. The

parameter α 
ontrols the sodium peak 
ondu
tan
e and

the parameter β the width of this a
tivation 
urve. Both

parameters 
ontrol the rapidness of the AP onset. As for

the normal form an equivalent phase os
illator equation


an be found by substituting V = tan (θ/2):

τ θ̇ = (1− cos θ) + (1 + cos θ) · (8)

+ {I(t) + α (1 + tanh(β tan (θ/2))}

B. Flu
tuating input 
urrents

In vivo, neurons are subje
t to an ongoing synapti


bombardment, resulting in a �u
tuating MP. To model

this situation, we assume a temporally �u
tuating input


urrent,

I(t) = I0 + σz(t), (9)


omposed of a mean I0 and a stationary �u
tuating part

σz(t), where z(t) is an Ornstein-Uhlenbe
k pro
ess with

a given 
orrelation fun
tion 〈z(t)z(t′)〉 = exp (−t/τc).
Thus z(t) obeys the Langevin equation [15℄,

τc
d

dt
z(t) = −z +

√
τη(t) (10)

with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t − t′). Eq. (6) and

Eq. (8) des
ribe a realization of the dynami
s of a sin-

gle neuron. Sin
e the input is �u
tuating and we are

interested in 
oding at population level it is natural to


onsider an ensemble of su
h units, des
ribed by the time

dependent probability density fun
tion P (θ, z, t). Its dy-
nami
s is determined by the Fokker-Plan
k equation [32℄:

∂tP (θ, z, t) = L̂P (θ, z, t), (11)

with,

L̂ = −τ−1∂θ {(1− cos θ)

+ (I0 + σz + α (1 + tanh (β tan (θ/2))))

· (1 + cos θ)}+ τ−1
c ∂z

(

z +
τ

2τc
∂z

)

. (12)

The boundary 
onditions for P (θ, z, t) are periodi
 in the

θ- and natural in the z-dire
tion.

C. Time dependent �ring rate

The ensemble averaged �ring rate is given by the prob-

ability 
urrent a
ross the line θ = θs with positive velo
-

ity. At θs = π the dynami
s is independent of the input


urrent I(t) and the rate is equal to the probability 
ur-

rent through the entire line θ = π:

ν(t) = 2

∫ ∞

−∞

dz P (π, z, t) (13)

Although quite 
onvenient for analyti
al 
onsiderations,

the de�nition of this spike-phase is, however, rather arbi-

trary. In the normal form, the point θs = π 
orresponds

to the point V = ∞, where the model re�e
ts least the

dynami
s at the bifur
ation. To assess if this parti
u-

lar 
hoi
e has any in�uen
e on the dynami
al response

properties of the model, we also 
al
ulate the �ring rate

at θs = π − δ. The probability 
urrent through this line

is given by:

Jθ = τ−1

∫ ∞

−∞

P (θs, z, t) ((1 − cos θs) (14)

+(I0 + σz + α(1 + tanh(β tan(θs/2)))) dz

The rate is, however, not exa
tly given by the �ux

Jθ. There is a 
ontribution from traje
tories, whi
h are

driven ba
k below the threshold due to the external �u
-

tuations. For a 
orrelated input 
urrent, however, the

introdu
ed error is exponentially small. This 
an be seen

in Eq. (8). For small values of δ, the probability distri-

bution P (θ, θ̇) around π − δ is a Gaussian with a mean

value 2− δ2 and a width ∝ δ2. The negative part of this
Gaussian is proportional to:

(

2πδ4σ2
)−1/2

∫ 0

−∞

exp

(

−
(

x− (2− δ2)
)2

2δ4σ2

)

dx (15)
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For all pra
ti
al purposes (δ < 0.5 and σ < 1), this inte-
gral is smaller than 10−10

. We will see, however, that the

de�nition θs = π in the 
lassi
al θ-neuron qualitatively


hanges the dynami
 response of the model in the high

frequen
y limit.

D. Parameter 
hoi
e

Before dis
ussing the stationary and dynami
al proper-

ties of the generalized θ-neuron we would like to de�ne a

biologi
ally plausible parameter regime. The parameters

whi
h we need to �x are the time 
onstant τ , the mean

input 
urrent I0, the strength of the �u
tuating input σ
and the synapti
 input 
orrelation time τc. An estimate

of the 
orrelation time of the MP is given by approximat-

ing the dynami
s for I0 < 0 near the stable �xed point

by an Ornstein-Uhlenbe
k pro
ess. Straightforward lin-

earization around the stable �xed point at −
√
I0 then

yields:

τrelax ≈ τ
(

2
√

I0

)−1

(16)

In the subthreshold noise-driven regime, whi
h we will

dis
uss in the following, we 
hoose I0 = −0.1. The time


onstant τ is then adapted via Eq. (16), to a
hieve a re-

laxation time of approximately 5ms, whi
h leads to values

for τ of approximately 3ms.

The parameters α and β parameterize the sodium a
-

tivation 
urve, whi
h, in 
ondu
tan
e based models, de-

termines the speed at the a
tion potential onset. For the

following numeri
al treatment we keep β, whi
h mediates

the width of the a
tivation 
urve and is an intrinsi
 phys-

iologi
al parameter, �xed to a value of 20. The parame-

ter α, whi
h represents the sodium peak 
ondu
tan
e, is


hanged in the range from 0 to 1.
Figure 2 shows three sample realizations of Eqs. (8,

9) for di�erent values of the parameter α. If the input


urrent is positive for a su�
ient amount of time, a
tion

potentials are initiated. With in
reasing values of α the

sharpness at the onset in
reases, while the subthreshold

�u
tuations are not a�e
ted.

E. Dynami
 Response Theory

For time-dependent input 
urrents εI(t), the Fokker-

Plan
k operator L̂(θ, z, t) 
an always be split into two

parts:

L̂(θ, z, t) = L̂0(θ, z) + εL̂1(θ, z, t), (17)

where L̂0(θ, z) is the time-independent part and

L̂1(θ, z, t) 
ontains all time-dependen
ies of the exter-

nal input. In the following we require that the time-

dependent inputs are small in magnitude, i.e. ε ≪ 1.
We then expand the general time-dependent solution in

Figure 2: In
reasing α leads to a sharper a
tion potential

onset. (a) Sample MP traje
tories for α = 0, α = 0.1 and

α = 1. The inset shows the deterministi
 part of Eq. (7).

(b) Flu
tuating input 
urrent I(t). Parameters: τc = 1.5ms,

σ = 0.3, I0 = −0.1 and β = 20. Right before AP onsets the

traje
tories are virtually identi
al.

powers of ε :

PTD(θ, z, t) = P0(θ, z) + εP̃ (θ, z, t) +O(ε2) (18)

Inserting this solution into the Fokker-Plan
k equation

and keeping only terms up to linear order in ε leads to

a dynami
al equation for the time dependent part of the

density P̃ (θ, z, t):

∂tP̃ (θ, z, t) = L̂0(θ, z)P̃ (θ, z, t)+ L̂1(θ, z, t)P0(θ, z) (19)

Formally the solution of this equation is given by:

P̃ (θ, z, t) =

∫ t

−∞

eL̂0(t−t′)L̂1(θ, z, t)P0(θ, z) dt
′

(20)

In the following we will 
onsider stimuli of the type:

L̂1(θ, z, t) = eiωtL̂1(θ, z) (21)

Eq. (20) 
an then be readily solved, yielding:

P̃ (θ, z, t) =
∑

k

ck
iω − λk

Pk(θ, z)e
iωt

(22)

The ck are the expansion 
oe�
ients of L̂1(θ, z)P0(θ, z)

into the eigenfun
tions Pk(θ, z) of L̂0(θ, z). The time-

dependent �ring rate is given by Eq. (13):

ν(t) = τ−1

∫ ∞

−∞

dz ((1− cos θs)
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Figure 3: Sket
h of the population response paradigm. An ensemble of neurons re
eives a modulated noisy input 
urrent or

a 
urrent, where the noise amplitude is modulated. The noise realization whi
h ea
h neuron re
eives is di�erent, leading to

di�erent MP tra
es and AP sequen
es. The output quantity is the population averaged �ring rate in the interval [t, t + dt),
ν(t).

+(I0 + σz + α(1 + tanh(β tan(θs/2)))))

·
(

P0(θs, z) + εP̃ (θs, z, t)
)

=: ν0 + εν1(ω)e
i(ωt+ϕ(ω))

(23)

In the following we will 
onsider two types of external

stimulations:

1. Modulations in the mean input 
urrent:

I0 −→ I0 + εeiωt

2. Modulations in the noise amplitude:

σ −→ σ + εeiωt

F. High frequen
y limit

In this se
tion we sket
h how to analyti
ally 
al
ulate

the asymptoti
 de
ay of ν1(ω) in the limit ω → ∞. In-

serting Eq. (22) into Eq. (19) leads to:

(

iω − L̂0

)

P̃ (θ, z, t)e−iωt = L̂1P0(θ, z) (24)

If the right hand side vanishes at θ = θs, P̃ (θ, z, t) has
to de
ay at least as ω−2

. Di�erentiation of Eq. (19) with

respe
t to t and subsequent reinsertion leads to:

(

ω2 + L̂0

)

P̃ (θ, z, t) = −L̂0L̂1P0(θ, z) (25)

If now the right hand side vanishes at θ = θs, Eq. (19)
has to be di�erentiated again, until, after reinsertion, the

right hand side is di�erent from zero.

G. Matrix Method

As demonstrated the dynami
al response properties of

the generalized θ-neuron to small time-dependent inputs

are 
ompletely determined by the spe
trum and eigen-

fun
tions of the Fokker-Plan
k operator L̂. To 
ompute

the dynami
al response properties in the presen
e of a

temporally 
orrelated noise 
urrent for arbitrary stimu-

lation frequen
ies we expand L̂ into a 
omplete orthonor-

mal basis leading to a sparse matrix representation for

whi
h we 
ompute the eigenvalues and eigenfun
tions nu-

meri
ally. This approa
h has the advantage that the re-

sponse properties 
an be 
omputed with very high a

u-

ra
y. The two subtleties we will have to deal with are

that (1) the resulting matrix is very large in the parame-

ter regime we are interested in (up to 106 × 106) and (2)

the operator L̂ is not Hermitian and thus standard di-

agonalization pro
edures su
h as the Lan
zos algorithm


an not be applied. We solved both problems by using a

basis-set, whi
h results in a very sparse matrix represen-

tation, and by using a high performan
e iterative s
heme,

the Arnoldi method [24℄, to 
ompute the eigenfun
tions

and the spe
trum of this matrix to a high numeri
al a
-


ura
y.

H. Eigenvalues and eigenfun
tions for a 
orrelated

noise input

1. Matrix equation

We �rst repla
e the probability density P (θ, z, t) in an

eigenmode Ansatz with eλktPk(θ, z). Inserting this into

Eq. (11) the exponential 
an
els:

λkPk(θ, z) = L̂Pk(θ, z) (26)

Due to the imposed boundary 
onditions, the set {λk},
i.e. the spe
trum of L̂(θ, z) is dis
rete. There is, however,
a ma
ros
opi
 drift in the system, meaning that detailed

balan
e is not ful�lled and thus L̂ is not Hermitian [15℄.

This means that the resulting spe
trum {λk} and the


orresponding eigenfun
tions Pk(θ, z) are 
omplex. By


omplex 
onjugation of Eq. (26) it is easy to show that
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to every eigenvalue λk with the 
orresponding eigenfun
-

tion Pk(θ, z), an eigenvalue λ∗k with the eigenfun
tion

P ∗
k (θ, z) exists. This guarantees that a real solution 
an

always be 
onstru
ted. The solution with λ0 = 0 
orre-

sponds to the stationary density and the time dependent

solution 
an always be given in terms of eigenfun
tions

and eigenvalues [32℄:

P (θ, z, t) = eL̂(t−t0)Pinitial(θ, z)

=
∑

k

ake
λk(t−t0)Pk(θ, z) (27)

with Pinitial(θ, z) =
∑

k akPk(θ, z). Although the eigen-

fun
tions of L̂ form a basis, it is important to note that

they are not orthogonal. An important property is that

the mean value of all eigenfun
tions ex
ept P0(θ, z) is

zero:

∫ π

−π

dθ

∫ ∞

−∞

dz Pk(θ, z) = 0 (28)

To a
tually 
ompute the spe
trum and eigenfun
tions we

expand P (θ, z) into a set of 
omplete orthonormal fun
-

tions:

P (θ, z) =

∞
∑

m=0

an,mψn,m(θ, z) (29)

with

ψn,m(θ, z) =
(

2m+1
√

πτ/2τcm!
)−1/2

einθHm

(

√

2τc/τz
)

e−z2τc/τ . (30)

This expansion obeys the imposed boundary 
onditions.

In the θ-dire
tions it 
onsists of plane waves, while in

the z-dire
tion harmoni
-os
illator fun
tions are used [15℄

with the Hermite polynomials Hm(z) [1℄. We now in-

sert Eq. (29) in Eq. (11). Multiplying from left with

ψ∗
n′,m′(θ, z) and integrating over the whole domain leads

to a matrix eigenvalue equation for the (an,m):

λan,m =
(

−iτ−1(1 + I0)n− τ−1
c m

)

an,m

+(2τ)−1i(1− I0)n (an−1,m + an+1,m)

− inσ

2
√
ττc

(

(m+ 1)an,m+1 +man,m−1

+
1

2
(m+ 1) (an−1,m+1 + an+1,m+1)

+
1

2
(m+ 1) (an−1,m−1 + an+1,m−1)

)

+
(√

2ττc
)−1√

(m+ 1)(m+ 2) an,m+2

−iτ−1α

(

an,mc0 +
1

2

K
∑

k=1

(ick + sk) an−k,m

+(iCk − Sk) an+k,m

)

=
∑

n′,m′

Ln,m;n′,m′an′,m′ . (31)

The 
oe�
ients Ckand Sk denote the Fourier 
ompo-

nents of (1 + cos θ) tanh (β tan (θ/2)) of the expansion in

cos (kθ) and sin (kθ) up to order K. To solve this eigen-

value problem numeri
ally we have to restri
t the indi
es

n and m to

n ∈ {−N . . .N} , m ∈ {0 . . .M} (32)

Sin
e the stationary density is very peaked for realisti


�ring rates, we need many plane wave basis fun
tions,

i.e. up to N ≈ 104. With M = 50 the matrix that we

have to diagonalize will be of size 106×106. To only rep-
resent this matrix in full form would require 3.8·103GB of

storage 
apa
ity. We note, however, that the matrix L in

Eq. (31) is very sparse, for α = 0 it 
onne
ts an element

an,m even only to the elements an±1,m±1and an,m+2. For

α > 0 the number of nonzero entries in L solely depends

on the number of Fourier 
omponents K of the AP on-

set term of the generalized model. In general, however,

the number of elements in the matrix L is only of order

N×M , i.e. very sparse 
ompared to its full size N2×M2
.

This makes it possible to use a high performan
e itera-

tive algorithm, the Arnoldi-method [24, 38℄ to solve this

eigenvalue problem numeri
ally. The time-dependent �r-

ing rate ν(t) is 
al
ulated using Eq. (23).

III. RESULTS

A. High frequen
y limit

1. Dynami
s insensitive at a
tion potential (θs = π)

For both types of input modulations the modulus of the

right hand side of Eq. (24) vanishes at θ = π. Therefore

the P̃ (θ, z, t) has to be at least of order ω−2
, su
h that

the left hand side vanishes for ω → ∞. Di�erentiation of

Eq. (19) and subsequent reinsertion leads to:

(

ω2 + L̂0

)

P̃ (θ, z, t) = −L̂0L̂1P0(θ, z) (33)

The right hand side does not vanish at θ = π in the


ase of a mean 
urrent modulation and in the 
ase of a

modulation in the noise amplitude. Sin
e both sides have

to be real valued, the modulus of P̃ (θ, z) has to be ∝ ω−2

and the phase ϕ(ω) goes to −π.
In the limit τc → 0, i.e. an un
orrelated input 
urrent,

the same argument holds in the 
ase of a mean 
urrent

modulation. For a modulation in the noise amplitude,

the right hand side of Eq. (33) is zero, resulting even in

a ω−3
de
ay and a phase lag of 3π/2.

2. Generi
 
ase (θs 6= π)

For θs = π − δ, δ > 0 the right hand side of Eq. (24)

does not vanish. This means that for large frequen
ies

the rate modulation ν1(ω) de
ays as ω
−1

and the relative
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θ-neuron

θs = π θs 6= π

Noise 
orrelation τc > 0 τc → 0 τc > 0 τc → 0

Mean modulation ω−2 ω−2 ω−1 ω−1

Noise modulation ω−2 ω−3 ω−1 ω−1

LIF model CB models

τc > 0 τc → 0 τc > 0 τc → 0

Mean modulation ω0 ω−1/2 ω−1 ω−1

Noise modulation ω0 ω0 ω−1 ω−1

Table I: High frequen
y behavior of the generalized θ-neuron,

the leaky integrate-and-�re model [7, 25℄ and 
ondu
tan
e

based models. The response of a 
ondu
tan
e based model

for τc > 0 and a mean 
urrent modulation was studied in [14℄.

The asymptoti
 response of the 
ondu
tan
e based model in

the other 
ases follows from the same argument as for the

asymptoti
 response of the θ-neuron and was 
on�rmed by

dire
t numeri
al simulations (data not shown)

phase shift ϕ(ω) is −π/2, whi
h is the same asymptoti


de
ay as in 
ondu
tan
e based neuron models. Table

I summarizes the high frequen
y behavior of the gener-

alized θ-neuron and 
ompares it to the high-frequen
y

limit of 
ondu
tan
e based model neurons and the 
las-

si
al leaky integrate-and-�re model.

We would like to point out, that the ω−2
and ω−3

de
ay of the 
lassi
al θ-neuron is only due to (i) the in-

sensitivity of the dynami
s to inputs at θ = π and the

symmetri
 up- and downstroke of the a
tion potential

around θs = π. Here, both 
onditions are lifted by de�n-

ing the spike phase at a di�erent value than π. Another
way to indu
e a ω−1

-de
ay would be to 
hange the right

hand side of Eq. (8), su
h that L̂1P0 does not vanish at

θ = π, e.g. by introdu
ing high order terms in cos θ.
This would however require a stru
tural 
hange of the

os
illator dynami
s. A se
ond important point to note

is the independen
e of the high-frequen
y limit from the

dynami
s at the a
tion potential onset.

B. Linear response transmission Fun
tions

Using the matrix method des
ribed above, we 
om-

puted the linear responses to modulations in the mean

input 
urrent and to modulations in the noise amplitude.

Figure 4 summarizes the response amplitude 
urves for

the θ-neuron model, the generalized θ-neuron model and


ompares them to dire
t numeri
al simulations of the re-

sponse of the leaky integrate-and-�re (LIF) model.

The θ-neuron exhibits a 
ut-o� behavior in its response

amplitude to both types of input modulations. Frequen-


ies up to the stationary �ring rate 
an be transmit-

ted unattenuated larger frequen
ies are strongly damped.

For an in
reasing onset speed and �xed stationary rate

the resonan
e maximum shifts only to slightly larger fre-

quen
ies, a dramati
 
hange, however, o

urs at interme-

diate frequen
ies up to 1kHz. In this regime the response

amplitude is substantially lifted to mu
h larger transmis-

sion amplitudes. This e�e
t is mu
h more pronoun
ed for

the 
ase of a modulation in the noise amplitude than for

modulations in the mean input 
urrent, leading to an

undamped response for frequen
ies up to 200Hz. The

LIF model, on the other hand, shows a 
ompletely arti-

�
ial response behavior. The transmission fun
tion, for

both types of modulations does not de
ay at all, even

for frequen
ies up to 1kHz. For modulations in the noise

amplitude, the transmission fun
tion 
an even grow for

in
reasing stimulation frequen
ies.

C. Nonlinear response for large stimulation

amplitudes

So far we have only 
onsidered the linear response

transmission fun
tion, whi
h is stri
tly speaking only

valid in the limit in whi
h the stimulation amplitude goes

to zero. Here we show, however, that the linear response


overs a large range of input amplitudes. In prin
iple,

we 
ould use the same matrix method employed for the

linear response theory, taking into a

ount higher order

Floquet modes [31℄. Here we explore this regime, how-

ever, by dire
t numeri
al simulation of Eq. (8). Figure

5 shows the amplitude of the �rst four Fourier modes of

the rate response as a fun
tion of the overall amplitude of

the rate modulation. For both types of modulations, the

�rst Fourier 
omponent 
learly dominates the response

up to amplitudes 
lose to the mean rate, where nonlin-

earities are naturally expe
ted, as there are no negative

�ring rates. This demonstrates that the linear response

theory, although rigorously valid for small modulation

amplitudes only, predi
ts the response in a large dynam-

i
al range of input amplitudes.

IV. SUMMARY AND DISCUSSION

The dynami
al response properties of the generalized

θ-neuron with adjustable AP onset speed were 
al
ulated

in the presen
e of a �u
tuating 
orrelated ba
kground

noise. Methodologi
ally we introdu
ed a new approa
h

whi
h is based on the expansion of the 
orresponding

Fokker-Plan
k operator to a 
omplete set of orthonormal

fun
tions, leading to a sparse matrix representation. We

then 
omputed the eigenvalues and eigenfun
tions of this

matrix using an iterative s
heme, the Arnoldi method.

The high frequen
y limit was 
al
ulated analyti
ally. It

turned out, that the response amplitude de
ays as ω−γ
,

where γ depends on the kind of stimulation and, surpris-

ingly, the phase at whi
h a spike is emitted. As soon

as this point di�ers from π, where the dynami
s is in-

sensitive to external inputs, the exponent γ is 1, giving
the same asymptoti
 response behavior as 
ondu
tan
e

based neuron models. Using the eigenvalues and eigen-
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Figure 4: Response amplitude for in
reasing values of the a
tion potential onset speed. In the left 
olumn the response of the

θ-neuron for modulations in the mean input 
urrent and the noise amplitude is shown for di�erent values of the stationary

�ring rate. The response exhibits a 
ut-o� behavior, frequen
ies larger than the stationary �ring rate are strongly damped.

The middle 
olumn shows the response of the generalized model for both types of modulation and a stationary rate of 20Hz.

For in
reasing values of the a
tion potential onset speed the response amplitude grows for frequen
ies in the interval from

100Hz to 1kHz, while the resonan
e maximum only slightly shifts to larger frequen
ies. The response of the noise modulation

is mu
h larger in this interval than the response to modulations in the mean 
urrent. For 
omparison the right 
olumn shows

the response of the leaky integrate-and-�re (LIF) model. The response amplitude does not de
ay for large frequen
ies, for

modulations of the noise amplitude it 
an even grow with in
reasing input frequen
ies. Parameters in the LIF simulation are

as in [7℄, ex
ept τs = 10ms, σ = 5mV, I0 = 14.6; 16.2; 17.5; 19.5mV for a mean �ring rate of 2, 5, 10, 20Hz.

fun
tions we then presented a method to evaluate the

dynami
 response to small time-varying inputs. There

we found that for the 
lassi
al θ-neuron model the re-

sponse exhibits a 
ut-o� behavior: For a modulation in

the mean input 
urrent as well as for a modulation in the

noise amplitude frequen
ies above the stationary rate of

the neuron were strongly damped. In the generalized

θ-neuron the damping in the regime up to 1kHz is sub-

stantially redu
ed for both types of input modulations

when the AP onset speed is in
reased, although the high

frequen
y limit is the same as in the 
lassi
al θ-neuron.
The response amplitude for the noise amplitude modula-

tion is typi
ally mu
h larger than the response amplitude

for the mean input modulation. The linear response the-

ory, although only derived for small modulations of the

input 
urrent turned out to be valid in a large dynami
al

range, whi
h we demonstrated by dire
t numeri
al sim-

ulations. Amplitudes of the rate modulation up to the

mean output rate turned out to be well des
ribed by the

linear theory.

Simple phenomenologi
al, yet dynami
ally realisti


models of 
orti
al neurons are of key importan
e for

studies in theoreti
al neuros
ien
e, starting from stud-

ies on spike timing to large s
ale network simulations or

analyti
al network studies. While stationary response

properties, su
h as mean �ring rates or pro
esses have

been studied in many models, whi
h operate on long

time s
ales, e.g. adaptation (see e.g. [3, 19, 33℄), stud-

ies on the dynami
 response properties are rare. Most

of these studies 
onsider the dynami
 response in the


lass of integrate-and-�re (IF) models [7, 13, 21, 25℄. In

these studies, it was demonstrated that IF models 
an

relay in
oming stimuli instantaneously. Re
ently it was

shown, however, that this response behavior strongly dis-

agrees with the response of 
ondu
tan
e based models

and rather represents an oversimpli�
ation of the model

than a feature of real neurons [14, 29℄. While in [29℄ the

response properties of the 
lassi
al θ-neuron were inves-

tigated, the authors of [14℄ studied another phenomeno-

logi
al neuron model, the EIF model, whi
h mimi
s the
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Figure 5: Amplitude of the �rst four Fourier 
omponents as

a fun
tion of overall modulation amplitude of the population

averaged �ring rate for (a) modulations in the mean input 
ur-

rent and (b) for modulations in the noise amplitude (α = 0.7).
The mean output rate is 20Hz, the modulation frequen
y 1Hz.

The dashed line is the diagonal. Up to amplitudes 
lose to

the mean output rate, the �rst Fourier 
omponent is indistin-

guishable from the diagonal, indi
ating that the response is

essentially linear. Starting from amplitudes 
omparable to the

mean rate, the in�uen
e of higher order Fourier 
omponents

be
omes substantial. The insets show the rate modulation for

a modulation amplitude of 20Hz.

dynami
al response properties of a 
ondu
tan
e based

model. Our study 
orroborates and extends some of their

results using a generalized model of the 
lassi
al θ-neuron
[12, 18℄, a 
anoni
al model of 
ondu
tan
e based neu-

ron models, whi
h exhibit type-I ex
itability and whi
h,

in 
ontrast to IF models, in
orporates a dynami
 a
-

tion potential onset. While the 
lassi
al θ-neuron model

was originally studied in the super-threshold, noise-free


ase[11, 12℄, re
ent studies fo
used on the response in the

presen
e of �u
tuating input 
urrents [8, 18, 26℄. These

studies indi
ated that in a large parameter regime the θ-
neuron exhibits the same stationary response properties

as 
orti
al neurons, e.g. a realisti
 shape of the f-I 
urve

and irregular �ring in the subthreshold regime.

Despite these results, a major point of 
riti
ism ques-

tioning the biologi
al relevan
e of the model, remained:

While the θ-neuron re�e
ts the dynami
s at the onset to

repetitive �ring, it la
ks the sharp a
tion potential up-

stroke found in more detailed 
ondu
tan
e based models

and real neurons [14℄. It was further argued that this

de�
ien
y results in a high frequen
y limit of the lin-

ear response amplitude, whi
h de
ays too fast ∝ ω−2
,

while the linear response amplitude in 
ondu
tan
e neu-

ron models only de
ays ∝ ω−1
. To address these issues

we generalized the 
lassi
al θ-neuron, in
orporating an

adjustable AP onset speed, thereby mimi
king the fast

sodium a
tivation at the a
tion potential onset. Surpris-

ingly, our study reveals that the high frequen
y limit,

does not depend at all on the speed at the AP onset, but

rather on the phase variable, at whi
h a
tion potentials

are emitted. If at this point the dynami
s is insensitive

to external inputs, as in the 
lassi
al θ-neuron, the de-


ay of the linear response amplitude is at least ∝ ω−2
,

whereas the de
ay is always ∝ ω−1
if the dynami
s is

not 
ompletely insensitive to external inputs, as is the


ase in 
ondu
tan
e based neuron models. Moreover, the

full transmission fun
tion reveals that the onset of the

high-frequen
y limit 
an be shifted to very high frequen-


ies if the speed of the AP onset is in
reased. These

results question the relevan
e of the high frequen
y limit

as a 
riterion for the typi
al transmission speed of neuron

models.

For the 
omputation of the linear response amplitude

we did not resort to dire
t numeri
al simulations, but

used a method based on the eigenfun
tions and eigenval-

ues of the Fokker-Plan
k operator, des
ribing the dynam-

i
s of the probability density fun
tion in the presen
e of

a temporally 
orrelated �u
tuating input 
urrent. While

this approa
h is in general well-known (see e.g. [32℄ and

[22, 27℄ for an appli
ation to the non-leaky integrate-

and-�re model in the presen
e of an un
orrelated ba
k-

ground noise), we derived a sparse matrix representation,

for whi
h we 
omputed eigenvalues and eigenfun
tions

with very high numeri
al a

ura
y using a fast iterative

s
heme, the Arnoldi method [24, 38℄. Compared to pre-

vious studies on dynami
al responses [7, 13, 14℄, this al-

lowed for the 
omputation of the linear response proper-

ties with an a

ura
y that would be hard to meet by a

dire
t simulation of the single neuron dynami
s.

Besides this, our results provide a dire
t link to exper-

iments. In a re
ent study [4℄ it was shown that the AP

width in neo
orti
al neurons is strongly 
orrelated with

the 
riti
al frequen
y up to whi
h a neuron 
an phase

lo
k to sinusoidal input stimulations. This is indeed the

same result we found for the generalized θ-neuron: With

in
reasing AP onset speed the response amplitude shifts

to larger frequen
ies, enabling the model to respond to

frequen
ies mu
h larger than its own stationary rate. In a
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se
ond experimental study it was demonstrated that 
or-

ti
al neurons subje
t to �u
tuating input 
urrents adapt

their instantaneous �ring mu
h faster when stimulated

with a step input in the noise amplitude than with a step

mean input 
urrent [34℄. This behavior is well reprodu
ed

by the generalized θ-neuron. For in
reasing values of the
AP onset speed, the response amplitude at high frequen-


ies is one order of magnitude larger for the stimulation

in the noise amplitude, 
ompared to the stimulation in

the mean input 
urrent. Both results strongly suggest

that the generalized θ-neuron, despite its simpli
ity and

analyti
 tra
tability, 
aptures well the essen
e of the AP

generating me
hanism of multidimensional 
ondu
tan
e

based neuron models. Future experimental studies will

have to show to what extent the generalized θ-neuron
predi
ts the dependen
e of the dynami
al response prop-

erties on the AP generating me
hanism.
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