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Abstract

Spike-timing-dependent plasticity (STDP) with asymmetric learning windows is

commonly found in the brain and useful for a variety of spike-based computations such

as input filtering and associative memory. A natural consequence of STDP is estab-

lishment of causality in the sense that a neuron learns to fire with a lag after specific

presynaptic neurons have fired. The effect of STDP on synchrony is elusive because

spike synchrony implies unitary spike events of different neurons rather than a causal

delayed relationship between neurons. We explore how synchrony can be facilitated by

STDP in oscillator networks with a pacemaker. We show that STDP with asymmetric

learning windows leads to self-organization of feedforward networks starting from the

pacemaker. As a result, STDP drastically facilitates frequency synchrony. Even though

differences in spike times are lessened as a result of synaptic plasticity, the finite time

lag remains so that perfect spike synchrony is not realized. In contrast to traditional

mechanisms of large-scale synchrony based on mutual interaction of coupled neurons,

the route to synchrony discovered here is enslavement of downstream neurons by up-

stream ones. Facilitation of such feedforward synchrony does not occur for STDP with

symmetric learning windows.

Keywords: spike-timing-dependent plasticity, synchronization, feedforward net-

works, complex networks
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1 Introduction

In many neural circuits, synaptic plasticity depends on relative timing of presynaptic

and postsynaptic spikes, which is known as spike-time dependent plasticity (STDP)

(Gerstner et al., 1996; Bell et al., 1997; Markram et al., 1997; Bi and Poo, 1998;

Zhang et al., 1998). Specifically, long-term potentiation (LTP) ensues when a presy-

naptic neuron fires slightly before a postsynaptic neuron (of the order of 10 ms), whereas

long-term depression (LTD) is elicited in the opposite case (solid line in figure 1). This

STDP rule promotes causal relationship between a pair of neurons in the sense that the

strength of a synapse that contributes to generation of postsynaptic spikes is reinforced.

Computationally, STDP is useful for synaptic competition (Kempter et al., 1999;

Song et al., 2000; van Rossum et al., 2000; Song and Abbott, 2001), coincidence de-

tection (Gerstner et al., 1996), spike-based associative memory (e.g. Lengyel et al.,

2005), implementation of the synfire chain (Horn et al., 2000; Levy et al., 2001),

generation of reproducible spatiotemporal spike patterns (Izhikevich et al., 2004;

Izhikevich, 2006), selection of earlier inputs, to name a few (e.g. Gerstner and Kistler,

2002).

Related to neural computation, coincident firing of multiple neurons in the oscil-

latory regime is found in many parts of the brain and believed to play an important

role (Singer and Gray, 1995; Ritz and Sejnowski, 1997; Buzsáki and Draguhn, 2004).

One could imagine that real neural networks learn to synchronize spikes of different

neurons by STDP-related synaptic plasticity, as suggested by some modeling studies.

However, contribution of STDP to spike synchrony may be limited. For example,

STDP can lead to division of a neural population into clusters in each of which neu-

rons fire in spike synchrony (Horn et al., 2000; Levy et al., 2001). This self-organizing

process actually necessitates homogeneous synaptic transmission delays for different

synapses and puts a strong restriction on the firing period. If there is just one cluster
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(all neurons firing synchronously), the firing period has to be equal to the synaptic

transmission delay. Similarly, if there are two clusters, the first cluster excites a syn-

chronous volley in the second cluster after the synaptic transmission delay. The second

cluster reexcites the first cluster in a similar way. The firing period is equal to the

synaptic transmission delay multiplied by the number of clusters, which seems restric-

tive. Alternatively, coincident firing is achieved via STDP if the amount of LTP and

that of LTD that are caused by a presynaptic and postsynaptic spike pair are perfectly

balanced (Karbowski and Ermentrout, 2002). Evolution of coincident firing survives

heterogeneity in neurons and in the amount of plasticity. However, how coincident

firing is affected by the imbalance between LTP and LTD remains to be explored.

Coincident firing in recurrent neural networks may not be established through

STDP. In general, synchronous firing can be induced by sufficiently strong coupling be-

tween elements (Kuramoto, 1984; Pikovsky et al., 2001; Gerstner and Kistler, 2002).

By contrast, STDP cannot strengthen the synaptic weights between two neurons bidi-

rectionally. An increase of the synaptic weight in one direction implies a decrease in

the opposite direction, and stability requires that the net decrease and the net increase

are roughly balanced (Song et al., 2000; Song and Abbott, 2001). Therefore, STDP

does not necessarily enhance mutual interaction. Indeed, in recurrent neural networks,

STDP does not necessarily support synchronous firing (Masuda and Aihara, 2004). It

rather reinforces reproducible spatiotemporal spike patterns composed of causal spike

pairs of different neurons (Izhikevich et al., 2004; Izhikevich, 2006).

We examine possible mechanisms of STDP-induced synchrony in recurrent networks

of oscillatory elements. We distinguish two types of synchrony using the terminology of

coupled oscillators. One type is phase synchrony, which is equivalent to spike synchrony.

When neurons are in phase synchrony, they share spike timing. The other weaker notion

is frequency synchrony in which neurons possibly with different intrinsic firing rates

share a common firing rate. Frequency synchrony does not imply phase synchrony. The
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spike time of the postsynaptic neuron can differ from that of the presynaptic neuron.

According to these definitions, the previous studies cited above, which relate STDP to

synchrony, regard phase synchrony.

STDP may be more relevant to frequency synchrony. For example, STDP pro-

motes frequency synchrony, but not phase synchrony, in a hybrid circuit of an aplysia

abdominal neuron and an emulated neuron (Nowotny et al., 2003). Unidirectional con-

nectivity from the emulated neuron to the aplysia neuron eventually forms. Numeri-

cal simulations of two coupled Hodgkin-Huxley neurons (Zhigulin et al., 2003) and of

large neural networks (Zhigulin and Rabinovich, 2004) also support the notion that

frequency synchrony is facilitated by STDP.

In the present work, we show that the standard STDP facilitates frequency syn-

chrony to a great extent, particularly when LTP and LTD are roughly balanced. To

examine how heterogeneous neurons interact to produce possible synchronization, we

analyze networks of oscillators with a pacemaker. The pacemaker has a distinct nat-

ural frequency, is not affected by other oscillators, and sets the rhythm to influence

other neurons. No matter whether a pacemaker is realized by a network or a sin-

gle neuron, existence of pacemaker neurons is suggested in, for example, the basal

ganglia (Plenz and Kitai, 1999) and respiratory networks in the pre-Bötzinger com-

plex (Ramirez et al., 2004). Furthermore, many neurons (Hutcheon and Yarom, 2000)

and recurrent microcircuits (Jefferys et al., 1996) are intrinsically oscillatory (also see

e.g. Singer and Gray, 1995). and their rhythmic activities are resistant to perturbation.

These neural networks and single neurons can also serve as pacemakers. With frozen

and sufficiently strong synapses, oscillator networks with pacemakers allow frequency

synchrony (Kori and Mikhailov, 2004). We show that STDP considerably facilitates

frequency synchrony of pacemaker systems by establishing feedforward network struc-

ture whose root is the pacemaker.

For analytical tractability, we mostly deal with networks of phase oscillators in
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which coupling strength evolves according to STDP. Coupled phase oscillators approx-

imate various natural systems composed of self-sustained oscillators with weak coupling

(Winfree, 1980; Kuramoto, 1984; Glass and Mackey, 1988), including pulse-coupled

neurons (Kuramoto, 1991; Hansel et al., 1993; Hansel et al., 1995; Kori, 2003). We

introduce the model in section 2 and analyze simple cases of two connected oscillators

in section 3. We numerically analyze larger oscillator networks with STDP in section 4.

In section 5, we numerically simulate pulse-coupled pyramidal neuron models to show

that our results obtained for coupled phase oscillators qualitatively apply to spiking

neuron models.

2 Model

We analyze a network of n phase oscillators. One oscillator is assumed not to be dis-

turbed by the other n−1 oscillators. We designate this special oscillator as pacemaker

and use the term oscillator to refer to the other n − 1 elements. The pacemaker has

natural frequency Ω and phase φ0 ∈ [0, 2π). The other oscillators are assumed to have

the identical natural frequency ω, and the phase of the i-th oscillator (1 ≤ i ≤ n − 1)

is denoted by φi ∈ [0, 2π). We identify φi = 0 and φi = 2π (0 ≤ i ≤ n − 1). We write

(i, j) ∈ E if there is a synaptic connection from oscillator i to oscillator j. In other

words, E is the set of edges of the underlying neural network. As in real neural net-

works, connectivity is asymmetric in general so that (i, j) ∈ E does not imply (j, i) ∈ E.

A pair of connected oscillators interact via sinusoidal coupling, which usually promotes

synchrony (Kuramoto, 1984).

Dynamics for fixed synaptic strengths are represented by:

φ̇0 = Ω, (1)

φ̇i = ω +
1

〈k〉
∑

j:(j,i)∈E

gji sin(φj − φi), (1 ≤ i ≤ n− 1) (2)

where 〈k〉 is the average number of incoming edges per oscillator. The coupling strength
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gji is associated with synapse (j, i). We note that gi0, which is the synaptic weight from

an oscillator to the pacemaker, does not affect the network dynamics: the pacemaker

is not perturbed by external input. However, we will monitor gi0 to examine how this

connection evolves as synaptic plasticity goes on.

We assume that Ω > ω unless otherwise stated. By rescaling the timescale and the

coupling strength, we set Ω = ω+1 without losing generality. To set the values of Ω and

ω, we take care of two subtle factors. First, a small ω would yield backward rotation

by the effect of coupling. This is because the second term of the right-hand side of

equation (2) can be large negative to overwhelm the first term. Then, the condition

φ̇i < 0 may be satisfied for long enough time to elicit backward firing. This is unrealistic

as a neuron model. Second, we avoid a pair of Ω and ω that accommodates the relation

M1Ω =M2ω with small integers M1 and M2(M1 6=M2). In such a situation, resonant

behavior appears when the pacemaker and the oscillators are decoupled through STDP

and has a pathological effect (see the explanation after equation (16) for more details).

The resonant firing is ruled out by dynamical noise in many real neural networks.

However, we have to carefully specify Ω and ω in the present work because we do not

assume noise for analytical tractability. Keeping these caveats in mind, we set Ω = 9.1

and ω = 8.1.

Spike time is defined to be the time when the φi crosses 0. Synaptic update based

on STDP takes place based on a pair of nearest presynaptic and postsynaptic spike

times, without paying attention to remote spike pairs (see arguments in e.g. Froemke

and Dan, 2002). We compare the upshot of two types of STDP rules for synapse gji

((j, i) ∈ E), namely, asymmetric STDP and symmetric STDP.

Asymmetric STDP is modeled as follows. LTP is induced if a presynaptic firing

(spike of oscillator j) precedes a postsynaptic firing (spike of oscillator i). In the

opposite case, LTD occurs. We denote the presynaptic (postsynaptic) spike time by
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tpre (tpost). A spike-pair event modifies the synaptic weight: gji → gji +∆gji, where

∆gji =







A+ exp
(

− tpost−tpre
τ

)

, tpre < tpost,

−A− exp
(

− tpre−tpost
τ

)

, tpre > tpost,
(3)

under the limitation gji ∈ [0, gmax]. A sample learning window is indicated by the solid

line in figure 1. The width of the learning window is specified by τ , which is known

to be of the order of 10–20 ms (Bi and Poo, 1998; Zhang et al., 1998). We confine

ourselves to the regime in which firing rates are not very large (5–20 Hz), as is true

for many pyramidal neurons. Then, τ is several times smaller than the characteristic

interspike interval T = 50–200 ms. We thus set

τ =
1

6
× 2π

Ω
∼= T

6
. (4)

For completeness, we assume that tpre = tpost does not induce plasticity.

We assume that synaptic weights evolve so slowly that we can solve equation (2) by

regarding the synaptic weights as constant. This assumption is valid if A+Ω, A−Ω ≪
g2 for the following reason. Because the relative phase relationship determines the

evolution of synaptic weights, we should compare the typical timescale of the relative

phase dynamics with that of synaptic plasticity. The former is the inverse of typical

synaptic weight g0. By introducing dimensionless synaptic weight g/g0, we find from

equation (3) that the timescale of dimensionless synaptic plasticity is the inverses of

A+Ω/g0 and A−Ω/g0. The two timescales are separated if A+Ω/g0, A
−Ω/g0 ≪ g0,

which leads to A+Ω, A−Ω ≪ g20
∼= g2. On the slow timescale of synaptic plasticity, we

can set A− = 1 by rescaling the time, so that only the ratio A+/A− is relevant. For the

stability, A+/A− must be balanced. This ratio is assumed to be slightly smaller than

unity according to previous literature (Song et al., 2000; Song and Abbott, 2001).

Most of our theoretical efforts are invested in asymmetric STDP because many

pyramidal neurons show asymmetric STDP. However, symmetric STDP, in which

the synaptic update rule depends only on |tpre − tpost|, is also found in some experi-
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ments. Particularly, the learning window is often shaped like a mexican hat in excita-

tory synapses; small (large) |tpre − tpost| induces LTP (LTD) (Nishiyama et al., 2000;

Abbott and Nelson, 2000; Shouval et al., 2002). Symmetric learning windows have

been found for inhibitory synapses (Woodin et al., 2003) and for the amount of LTD

in excitatory synapses (Dan and Poo, 1992). We numerically analyze networks with

symmetric STDP in section 4. We adopt superposition of two gaussian distributions as

the symmetric learning window, as depicted by the dotted line in figure 1. A spike-pair

event modifies the synaptic weight: gji → gji +∆gji, where

∆gji =
A+

√
2πσ+2

exp

(

−(tpre − tpost)
2

2σ+2

)

− A−

√
2πσ−2

exp

(

−(tpre − tpost)
2

2σ−2

)

, (5)

with σ+ < σ−. We set σ+ = 0.6τ and σ− = 2σ+ = 1.2τ so that the timescale of the

symmetric learning window is comparable to that of the asymmetric learning window

defined in equation (3). The values of A+ and A− are assumed to be the same as those

for asymmetric STDP so that gji is bounded.

3 Analysis of Small Networks with Asymmetric

STDP

We begin with small networks of two oscillators with asymmetric STDP. For these

networks, how much initial coupling is necessary for synchrony can be analytically

evaluated.

3.1 One Pacemaker and One Oscillator

We deal with the case n = 2, namely, a network of one pacemaker and one oscillator.

Because the connection from the oscillator to the pacemaker does not affect the dy-

namics of the pacemaker, it suffices to consider the unidirectional case. The network

is schematically shown in figure 2(a). We write g = g01 to simplify the notation. The
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short-term dynamics in which g is regarded to be constant are described by

φ̇0 = Ω, (6)

φ̇1 = ω + g sin(φ0 − φ1). (7)

With ψ ≡ φ0 − φ1, equations (6) and (7) reduce to

ψ̇ = Ω− ω − g sinψ. (8)

Based on the assumption that synaptic plasticity occurs much more slowly than firing,

we perform quasistatic analysis. For a frozen g, let us derive the average angular

frequency of the oscillator denoted by ω̃. If g ≥ Ω−ω, the pacemaker and the oscillator

are in frequency synchrony, i.e. ω̃ = Ω. If 0 ≤ g < Ω− ω, equation (8) is equivalent to

∫

dψ

Ω− ω − g sinψ
=
∫

dt. (9)

Integration of equation (9) over a cycle yields

2π

Ω− ω̃
=
∫ T

0
dt =

∫ 2π

0

dψ

Ω− ω − g sinψ

=
2π

√

(Ω− ω)2 − g2
, (10)

which results in

ω̃ = Ω−
√

(Ω− ω)2 − g2. (11)

Note that ω ≤ ω̃ < Ω.

The direction and the amount of synaptic plasticity induced by a single spike-pair

event is determined by tpost − tpre. We estimate tpost − tpre in terms of ψ as follows.

Suppose that the phase difference is equal to ψ when the pacemaker fires. Then, it

approximately takes tpost − tpre = ψ/ω̃ for the oscillator to fire. In this case, LTP

is induced because the pacemaker is presynaptic to the oscillator. The pacemaker

and the oscillator can fire in the opposite order. If the phase difference is ψ when
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the oscillator fires prior to the pacemaker does, the pacemaker spends approximately

tpost − tpre = ψ/Ω before firing. In this case, LTD is induced. Because we confine

ourselves to the case in which Ω does not deviate so much from ω, we approximate

tpost − tpre ∼= ψ/Ω regardless of the order of firing.

In equation (4), we assumed that the decay rate of the learning window τ is suffi-

ciently smaller than T/2, which corresponds to phase π. Therefore, the amount of LTP

is negligible for tpost − tpre ∼= π/ω̃ or larger, and the LTP rule is effective only when

0 < ψ ≤ π. By the same token, the LTD rule is effective only for −π < ψ < 0. Using

these approximations, we aim to describe the dynamics of synaptic plasticity in terms

of phase variables. The amount of plasticity given by equation (3) can be rewritten as

∆g =







A+ exp
(

− ψ
Ωτ

)

, 0 < ψ ≤ π, φ1 = 0

−A− exp
(

ψ
Ωτ

)

, −π < ψ < 0, φ0 = 0
(12)

where φ1 = 0 and φ0 = 0 indicate the postsynaptic spike time for an LTP event (the

spike time of the oscillator) and that of an LTD event (the spike time of the pacemaker),

respectively.

We denote by g(0) the initial synaptic weight. If g(0) ≥ Ω− ω, fast dynamics have

two steady states given by

ψ∗ = arcsin

(

Ω− ω

g(0)

)

. (13)

The solution with π/2 < ψ∗ ≤ π is unstable, and hence the fast dynamics converges to

ψ∗ satisfying 0 ≤ ψ∗ ≤ π/2. Therefore, STDP induces potentiation of g. Then, ψ∗ for

an altered g becomes even smaller, which induces further potentiation of g. Eventually,

g = gmax is achieved. In sum, if

g(0) ≥ gc ≡ Ω− ω, (14)

the pacemaker and the oscillator will synchronize quickly without plasticity. The STDP

does not break frequency synchrony. Note that STDP generally decreases the phase
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difference ψ, but ψ does not tend to 0 (no phase synchrony) unless Ω = ω. Alternatively,

if gmax = ∞, g diverges, and ψ goes to 0.

Does asymmetric STDP facilitate frequency synchrony? If g(0) < gc, the oscillator

is initially not entrained by the pacemaker. Then, ψ slips. By averaging over many

spike-pair events, we represent the synaptic dynamics on a slow timescale by

ġ =
ω̃

2π

[∫

t such that 0<ψ<π
A+e−ψ/Ωτdt−

∫

t such that −π<ψ<0
A−e−ψ/Ωτdt

]

(15)

∝
∫ π

0
e−ψ/Ωτ

(

A+

gc − g sinψ
− A−

gc + g sinψ

)

dψ. (16)

Derivation of equation (15) requires the nonresonant situation. If M1Ω = M2ω holds

with smallM1 andM2, the dynamics become periodic with a rather small period when

the oscillator decouples from the pacemaker due to STDP. If this were the case, the

dependence on the initial condition does not vanish permanently. In other words, ψ

conditioned by φ0 = 0 or φ1 = 0 in equation (12) would take only limited values. Then

the distribution of ψ conditioned by a spike event would deviate from the unconditioned

distribution of ψ. With our choice of Ω = 9.1 and ω = 8.1, the effect of such a resonance

is very small.

In the region of g where ġ > 0 holds, the RHS of equation (16) increases monotoni-

cally with g. If g(0) is greater than the value that makes the RHS equal to zero, which

we denote by gc−stdp, we obtain ġ > 0. Under this condition, g continues to increase,

and ψ∗ decreases. This makes ġ in equation (16) even larger. This positive feedback

lasts until g ≥ gc is eventually satisfied. As a result, frequency synchrony is elicited

by STDP. However, if g(0) < gc−stdp, g converges to the lower bound 0, so that the

oscillator is disconnected from the pacemaker.

We bound gc−stdp as follows:

RHS of equation (16)

=
∫ π

0
e−ψ/Ωτ





A+

gc

1

1− g sinψ
gc

− A−

gc



1−
g sinψ
gc

1 + g sinψ
gc








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≥
∫ π

0
e−ψ/Ωτ





A+

gc

(

1 +
g sinψ

gc

)

− A−

gc



1− g sinψ

gc

1

1 + g
gc







 dψ

= −A
− −A+

gc

∫ π

0
e−ψ/Ωτdψ +

g

g2c



A+ +
A−

1 + g
gc





∫ π

0
e−ψ/Ωτ sinψdψ

= −(A− −A+)Ωτ(1 − e−π/Ωτ )

gc
+

g

g2c

A+ + A−

1 + g
gc

Ω2τ 2(1 + e−π/Ωτ )

1 + Ω2τ 2
. (17)

The value of g that makes the RHS of the above equation zero gives an upper bound

of gc−stdp. When A+ and A− are balanced (A+ ∼= A−), we obtain

gc−stdp ≤
A−−A+

A−+A+

(1+Ω2τ2)(1−e−π/Ωτ )

Ωτ(1+e−π/Ωτ )

1− A−−A+

A−+A+

(1+Ω2τ2)(1−e−π/Ωτ )

Ωτ(1+e−π/Ωτ )

gc ∼=
A− −A+

A− + A+

(1 + Ω2τ 2)(1− e−π/Ωτ )

Ωτ(1 + e−π/Ωτ )
gc. (18)

Because Ωτ is assumed to be of the order of π (see equation (4)), Ωτ = O(1). In

addition, when A+ ∼= A−, the inequalities in equations (17) and (18) nearly hold with

the equalities. In such a case,

gc−stdp ∝
(

1− A+

A−

)

gc, (19)

which implies that gc−stdp is much smaller than gc when A
+ ∼= A−. Particularly, gc−stdp

is extinguished when A+ ≥ A−.

In figure 3, we plot gc−stdp evaluated by numerical integration of equation (16) and

the approximation given by equation (18). We also plot gc−stdp obtained by numerical

simulations of our model (equations (3), (6), and (7)), in which gc−stdp is determined by

varying the initial synaptic weight g(0). The evaluation by equation (16) (solid line) is

in good agreement with gc−stdp obtained by numerical simulations of the model (circles)

for a broad range of A+/A−. As expected, the approximate estimation by equation (18)

(dotted line) also agrees with the numerical data (circles) when A+/A− is close to unity.

In conclusion, asymmetric STDP drastically enhances frequency synchrony.

Regarding symmetric STDP, for values of g such that ψ falls in the positive learning

window (refer to the dotted line in figure 1), g is strengthened to eventually exceed gc.
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Therefore, frequency synchrony is facilitated. To what extent synchrony is promoted

depends on the width of the learning window.

When Ω < ω, there are two solutions ψ∗ ∈ (−π, 0), one of which is stable. Then,

STDP elicits LTD. Even though ψ∗ changes, the relation−π < ψ∗ < 0 is preserved until

the pacemaker and the oscillator get disconnected. As a result, frequency synchrony

does not happen.

3.2 Two Oscillators

To examine how the connectivity between a pair of oscillators evolves in a large network,

we analyze the following toy model of two bidirectionally coupled oscillators:

φ̇1 = ω +∆ω + g1 sin(φ2 − φ1),

φ̇2 = ω + g2 sin(φ1 − φ2), (20)

where g1, g2 ∈ [0, gmax]. The network is depicted in figure 2(b). Now two oscillators

influence each other, which contrasts to the case of the pacemaker-oscillator network

examined in section 3.1. The term ∆ω represents the mismatch in natural frequen-

cies. Although the oscillators are identical in our original model (see equation (2)),

we introduce ∆ω because of the following reason. In oscillator networks with a pace-

maker, the oscillators are not completely phase synchronized. The oscillators directly

connected to the pacemaker are the first to fire after the pacemaker does. Then, other

oscillators adjacent to those connected to the pacemaker fire after some delay, and so

forth. Therefore, the oscillators closer to the pacemaker tend to have more advanced

phases, and the distribution of the phases is associated with the hierarchical organiza-

tion of the network. Imagine two oscillators coupled unidirectionally or bidirectionally

in a large network. We denote one that fires first and the other by oscillators 1 and 2

respectively. Precisely, the difference in the firing timing stems from complex effects of

coupling with other oscillators. For analytical tractability, here we replace such effects
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by the frequency mismatch ∆ω, by which the difference in the firing timing can be

easily introduced. As shown in the following, for ∆ω > 0, oscillator 1 tends to fire

in advance of oscillator 2. Accordingly, we regard that oscillator 1 is closer to the

pacemaker than oscillator 2.

We analyze the model given by equation (20). By introducing ψ ≡ φ1 − φ2, we

derive

ψ̇ = ∆ω − (g1 + g2) sinψ. (21)

If

g1(0) + g2(0) ≥ ∆ω, (22)

two oscillators are locked with phase lag 0 < ψ∗ < π/2, where

ψ∗ = arcsin

(

∆ω

g1 + g2

)

. (23)

If synaptic plasticity is absent, equation (22) gives the condition for frequency syn-

chrony.

In contrast to the network of one pacemaker and one oscillator analyzed in sec-

tion 3.1, equation (22) does not guarantee that frequency synchrony is maintained

throughout STDP. When equation (22) is satisfied, the synaptic dynamics are written

as

ġ1 = −A− exp

(

−ψ∗

ω̃τ

)

, (24)

ġ2 = A+ exp

(

−ψ∗

ω̃τ

)

, (25)

where

ω̃ = ω +
g2∆ω

g1 + g2
(26)

is the frequency common to the two oscillators. Because A+ < A−, g1 + g2 decreases

with time. The oscillators desynchronize in frequency if g1 + g2 ≥ ∆ω is violated

via synaptic plasticity. For sufficiently small g1(0) + g2(0), the two oscillators are
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disconnected even from the beginning. In these cases, ψ slips due to the absence of

frequency synchrony.

The average frequencies of the two oscillators out of frequency synchrony are cal-

culated as

ω̃1 = ω +
g2∆ω + g1

√

∆ω2 − (g1 + g2)2

g1 + g2
, (27)

ω̃2 = ω +
g2∆ω − g2

√

∆ω2 − (g1 + g2)2

g1 + g2
. (28)

The synaptic weights evolve according to

ġ1 =
1

2π

∫ π

0

[

A+e−ψ/ω̃1τ

∆ω + (g1 + g2) sinψ
− A−e−ψ/ω̃2τ

∆ω − (g1 + g2) sinψ

]

dψ

=
1

2π

∫ π

0
e−ψ/ω̃1τ

[

A+

∆ω + (g1 + g2) sinψ
− A−

∆ω − (g1 + g2) sinψ

]

dψ, (29)

ġ2 =
1

2π

∫ π

0

[

A+e−ψ/ω̃2τ

∆ω − (g1 + g2) sinψ
− A−e−ψ/ω̃1τ

∆ω + (g1 + g2) sinψ

]

dψ

=
1

2π

∫ π

0
e−ψ/ω̃1τ

[

A+

∆ω − (g1 + g2) sinψ
− A−

∆ω + (g1 + g2) sinψ

]

dψ, (30)

where we approximated e−ψ/ω̃2τ by e−ψ/ω̃1τ , as we did in section 3.1.

Since ġ1 < 0 is always satisfied, g1 eventually reaches 0; backward connectivity from

a downstream oscillator to an upstream oscillator is eliminated. Whether a ‘forward’

connectivity from the upstream oscillator to the downstream oscillator survives relies

on g2(t̂) where t̂ is the time g1 reaches 0. If g2(t̂) is larger than gc−stdp obtained in

section 3.1, frequency synchrony will be eventually established. In this case, the final

oscillation frequency is equal to ω +∆ω so that oscillator 2 is enslaved by oscillator 1.

If g2(t̂) < gc−stdp, the two oscillators are finally disconnected.

The critical value of g2(0) above which frequency synchrony occurs is plotted in

figure 4 for different values of A+/A− and g1(0). The critical g2(0) decreases with g1(0),

implying that a large g1(0) enhances frequency synchrony. Such backward connectivity

transiently serves to keep ψ small so that forward connectivity is enhanced. However,

only the synapse from the faster oscillator to the slower oscillator survives eventually.
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The feedforward network is not created via symmetric STDP, by which g1 and

g2 evolve in the same direction. When initial mutual connectivity is strong enough,

synchrony is established so that the two synaptic weights are saturated (g1 = g2 =

gmax). Then, based on equation (26), the common firing frequency is equal to ω+∆ω/2,

but not to the frequency of the faster oscillator (= ω +∆ω).

The effect of LTP-LTD balance is also shown in figure 4. When A+ is close to A−,

critical g2(0) is lowered, and entrainment occurs easily. Even when LTP is rather weak

compared to LTD (A+/A− = 0.8, thinnest line), the critical g2 is much reduced from

gc.

4 Numerical Results for Large Networks

So far, we have analyzed small networks composed of two elements only. In this section,

we examine how frequency synchrony can be facilitated by STDP in larger networks.

In particular, we compare gc and gc−stdp and also investigate evolution of network

structure. To this end, we numerically simulate randomly connected n = 100 elements

(99 oscillators and one pacemaker) based on equations (3), (6), and (7).

4.1 Initial Setup

We generate a directed random network as follows. Starting from a set of n isolated

vertices, we add a directed edge that connects a randomly chosen pair of oscillators.

We forbid multiple directed edges between a pair of oscillators and self loops, i.e. edges

whose origin and destination are identical. This procedure is repeated n 〈k〉 times. In

the following, we assume that 〈k〉 = 10. In other words, each oscillator is presynaptic

to 10 other oscillators and postsynaptic to the same number of oscillators on average.

We define the distance li of oscillator i from the pacemaker by the smallest number

of directed edges necessary to reach from the pacemaker to oscillator i. For example,

the number of the oscillators at distance 1 is equal to those that receive direct synaptic
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contacts from the pacemaker. Therefore, about 〈k〉 oscillators have distance 1. Among

the other oscillators, those receiving an edge from an oscillator with distance 1 have

distance 2. The depth L of a network is defined as the distance averaged over all the

oscillators: L =
∑n−1
i=1 li/(n− 1).

The initial phases φi (0 ≤ i ≤ n − 1) are taken independently from the uniform

density on [0, 2π). For all the synapses, we initially set gji = g(0).

For a specific random network used in the following numerical simulations, we

obtained L = 3.22. For this network, we numerically found that frequency synchrony

happens without synaptic plasticity if g ≥ gc ∼= 100.7. In this case, the pacemaker first

fires in each cycle, and oscillators with smaller distances tend to fire with smaller lag

with respect to the pacemaker (Kori and Mikhailov, 2004).

4.2 Measured Quantities

We define the degree of frequency synchrony r ≡ r ([t1, t2]) for a time interval [t1, t2].

The mean frequency of each oscillator for this time interval is equal to

ω̃i =
φi(t2)− φi(t1)

t2 − t1
. (31)

We note that ω̃0 = Ω. Then, the synchrony measure is defined by

r =
1

n−1

∑n−1
i=1 ω̃i − ω

Ω− ω
. (32)

When the oscillators are in frequency synchrony with the pacemaker, the mean fre-

quency of the oscillators
∑n−1
i=1 ω̃i/(n−1) is equal to the frequency of the pacemaker Ω,

and we have r = 1. If the pacemaker does not at all affect the other n− 1 oscillators,

the oscillators fire at their natural frequency ω, and we have r = 0. We divide the

total simulation time into consecutive bins of the width t2 − t1 = 100 for oscillator

simulations in sections 4.3 and 4.4.

More microscopically, we inspect possible formation of feedforward chains originat-

ing from the pacemaker. To quantify this, we track several order parameters derived
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from synaptic weights. The first is the depth L extended to networks with heteroge-

neous synaptic weights in the following way. Let us consider a path from the pace-

maker to oscillator i. A path is equivalent to a chain of directed synapses: (j0, j1) ∈ E,

(j1, j2) ∈ E, . . ., (jki−1, jki) ∈ E, where j0 = 0 and jki = i. The length of this path

is given by
∑ki−1
k=0 gmax/gjkjk+1

. The distance li of oscillator i from the pacemaker is

the shortest path length among all possible paths from the pacemaker to oscillator

i (Braunstein et al., 2003). This definition generalizes the prior definition for networks

with unit synaptic weights. The redefined distance is associated with how much a

downstream oscillator is influenced by the pacemaker. The depth of the network is

again defined by L =
∑n−1
i=1 li/(n − 1) and measures effective proximity of the oscilla-

tors from the pacemaker. By definition, the generalized L is equal to or larger than

L of the unweighted network, with equality realized only when gji = gmax for all the

synapses that appear in the shortest paths.

A synaptic connection (j, i) with lj < li (lj > li) is a forward (backward) connection

in the meaning that it complies with the feedforward chain emanating from the pace-

maker. Accordingly, we define the amount of forward connection wf , that of backward

connection wb, and that of lateral connection wl by

Gf =
∑

li−lj>ǫ

gji
n 〈k〉 , (33)

Gb =
∑

li−lj<−ǫ

gji
n 〈k〉 , (34)

Gl =
∑

−ǫ≤li−lj≤ǫ

gji
n 〈k〉 . (35)

Summation is taken over the pairs of oscillators forming synapses ((j, i) ∈ E). Note that

Gl quantifies the connection between oscillators whose distances from the pacemaker

are approximately equal. The number of synapses in the network (= n 〈k〉) gives

normalization, and thus 0 ≤ Gf , Gb, Gp ≤ gmax. The average synaptic weight is given

by 0 ≤ Gf + Gb + Gp ≤ gmax. The tolerance level is chosen to be sufficiently small:
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ǫ = 0.05. We also define local quantities to evaluate feedforwardness. The average

weight of the synapses postsynaptic to the pacemaker is denoted by G0
f . This is equal

to the average of g0i over i with (0, i) ∈ E. This corresponds to g used in section 3.1.

Similarly, the average weight of the synapses presynaptic to the pacemaker is denoted

by G0
b . This is equal to the average of gi0 over i with (i, 0) ∈ E. We note that

0 ≤ G0
f , G

0
b ≤ gmax.

4.3 Asymmetric Learning Window

We apply asymmetric STDP with LTD slightly stronger than LTP (Song et al., 2000;

Song and Abbott, 2001): A+ = 0.009 and A− = 0.01. By setting gmax = 15 < gc, ho-

mogeneous enhancement of all the synapses does not lead to synchrony. We determine

gc−stdp by running numerical simulations with various values of the initial synaptic

weight gji = g(0).

Because A+ is close to A−, our results in section 3 predict the following.

• As shown in section 3.2, backward connection will be eliminated via the asym-

metric STDP so that Gb and G
0
b decrease.

• The unidirectional connection between the pacemaker and the oscillator will be

easily established (section 3.1). As a result, a feedforward chain rooted at the

pacemaker is expected to form.

• gc−stdp is much smaller than gc.

Dynamics of synaptic-weight order parameters for g(0) = 0.7 are shown in fig-

ure 5(a, b). The average synaptic weight (dotted line in figure 5(a)) increases in the

initial stage because some synapses between the oscillators are potentiated. However,

its stationary value is much smaller than the maximal possible value (gmax = 15). There

is no selective potentiation of forward synapses (Gf , thick solid line in figure 5(a)) or
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depression of backward synapses (Gb, thin solid line in figure 5(a)). The forward con-

nectivity from the pacemaker (G0
f , thick line in figure 5(b)) also degrades with time.

Eventually, the oscillators disconnect from the pacemaker, which is observed as indef-

initely growing L (uppermost line in figure 5(e)). Accordingly, frequency synchrony

between the pacemaker and the oscillators is not achieved; figure 5(f) indicates that r

stays near 0.

By contrast, frequency synchrony without phase synchrony is established when

g(0) = 1.5, as supported by the rastergrams in figures 6(a) and 6(b) corresponding to

initial and final periods of simulations, respectively. More in detail, forward connec-

tivity Gf (thick solid line in figure 5(c)) and G0
f (thick line in figure 5(d)) grow toward

gmax to result in frequency synchrony at t ∼= 12500 (figure 5(f)), accompanied by a

decrease in L (lowermost line in figure 5(e)). Backward synapses directly projecting

to the pacemaker are pruned in an initial stage (G0
b ; thin line in figure 5(d)). It takes

longer time for Gb to decay (thin solid line in figure 5(c)). Although randomness in

the initial condition blurs the phase transition, we estimate gc−stdp ∼= 0.9 based on

figures 5(e) and (f). Consistent with the results in section 3.1, gc−stdp is much smaller

than gc ∼= 100.7.

Frequency synchrony is made possible by combined effects of sufficiently large for-

ward weights and sufficiently small backward weights. It is not an immediate conse-

quence of increased average synaptic weights; achieving synchrony merely by homo-

geneously strong synapses necessitates Gf + Gb + Gp ≥ gc. Because of our choice of

gmax (< gc), homogeneous LTP does not induce frequency synchrony. Elimination of

backward weights is essential for frequency synchrony. The final network structure re-

constructed from synapses with gji > g(0) = 1.5 is shown in figure 5(g), with forward

and backward edges shown by thin and thick lines, respectively. Few backward edges

survive asymmetric STDP. The network is close to a feedforward network rooted at

the pacemaker, which enslaves the oscillators.
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We remark that detailed behavior of the network order parameters varies according

to the value of ǫ and the definition of the distance li, which is inherently arbitrary for

weighted networks. However, the general tendency that forward synapses are poten-

tiated and backward synapses are depressed for g ≥ gc−stdp is observed irrespective of

these details. For a reasonably defined li, whether L increases or decreases (figure 5(e))

and whether feedforward networks form (figure 5(g)) are determined independently of

the definition of li.

We have performed additional numerical simulations in which every presynaptic

spike spends for τ/5 = T/30 before exciting the postsynaptic neurons. Because T =

50–200 ms, the corresponding synaptic delay is equal to a few milliseconds. The value

of gc−stdp hardly changes with this synaptic delay (results not shown).

To examine the effect of heterogeneity in oscillators, we pick the intrinsic frequency

of each oscillator from the gaussian distribution with mean ω = 8.1 and standard devi-

ation 0.1. Time courses of r are shown in figure 5(h). We estimate 1.2 < gc−stdp < 1.5,

implying the robustness of our results against heterogeneity. We remark that r con-

verges to a positive level when g < gc−stdp. This is because, even if the oscillators

disconnect from the pacemaker, some oscillators form feedforward networks of small

size in which fast oscillators entrain and speed up slow oscillators. If the heterogeneity

is even larger so that some oscillators are as fast as the pacemaker, frequency syn-

chrony seeding from the pacemaker would be difficult because the pacemaker and fast

oscillators compete in entraining slow oscillators.

4.4 Symmetric Learning Window

Now we examine symmetric STDP. We set gmax = 200 > gc ∼= 100.7 so that frequency

synchrony with small phase lags is achieved if gji = gmax for all (j, i) ∈ E. For the

network same as that used in section 4.3, evolution of synaptic weights are summarized

in figures 7(a, b) and (c, d) for g(0) = 140 and g(0) = 150, respectively. Because
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the oscillators share an identical natural frequency, the phases are fairly close among

them even with weak coupling. The synapses among these oscillators are potentiated.

Accordingly, for both values of g(0), the average synaptic weight initially increases

(dotted lines in figure 7(a, c)). Note that the forward weights (Gf , thick solid lines

in figure 7(a, c)) and the backward weights (Gb, thin solid lines in figure 7(a, c))

are equally potentiated. Accordingly, the distance between the oscillators is initially

shortened to result in a decrease in L (figure 7(e), t ≤ 2000).

When g(0) = 140, the average synaptic weight stops increasing at a value slightly

smaller than gmax = 200 (dotted line in figure 7(a)). This is because the synapses link-

ing the pacemaker to the oscillators have not been potentiated. Actually, G0
f (thick line

in figure 7(b)) and G0
b (thin line in figure 7(b)) decrease to eventually decouple the os-

cillators from the pacemaker. Consequently, L diverges (uppermost line in figure 7(e)),

and frequency synchrony is eventually lost (figure 7(f)).

When g(0) = 150, G0
f (thick line in figure 7(d)) and G0

b (thin line in figure 7(d)) as

well as Gf (thick solid line in figure 7(c)) and Gb (thin solid line in figure 7(c)) increase.

Consequently, L continues to decrease to reach the minimum possible value for which

gji = gmax is achieved for most synapses (lowermost line in figure 7(e)). The synchrony

measure r stays near unity throughout (figure 7(f)). In fact, approximate phase syn-

chrony as well as frequency synchrony has been realized quickly. The synchrony arises

not owing to STDP but to sufficiently strong initial coupling.

Based on figures 7(e) and (f), which show time courses of L and r for several values

of g(0), we estimate 145 < gc−stdp < 146. This value of gc−stdp is much larger than

the case of asymmetric STDP and comparable to gc ∼= 100.7, that is, the threshold for

frozen synapses.

The fact that symmetric STDP does not promote frequency synchrony man-

ifests the importance of the feedforwardness of networks. In general, forward

synapses promote frequency synchrony, whereas backward synapses hamper it
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(Kori and Mikhailov, 2004). Symmetric STDP does not independently control for-

ward synaptic weights and backward synaptic weights. Consequently, it cannot get rid

of backward synapses without sacrificing forward synapses. Final network structure

is shown for g(0) = 150 in figure 7(g). In contrast to the case of asymmetric STDP

(figure 5(g)), many backward synapses (thick lines) remain. Under symmetric STDP,

frequency synchrony is due to strong mutual interaction but not to formation of a

feedforward network.

5 Networks of Pulse-coupled Spiking Neurons

To inspect whether the results obtained for coupled phase oscillators qualitatively ap-

ply to more general neuron models, we numerically simulate pulse-coupled spiking

neurons under STDP. We adopt a two-dimensional neuron model (Izhikevich, 2003;

Izhikevich et al., 2004). The subthreshold dynamics of the i-th neuron are described

by

v̇i = 0.04v2i + 5vi + 140− ui − Isyn,i − Iext,i, (36)

u̇i = a(bvi − ui), (37)

where vi is the membrane potential (mV), ui denotes the recovery variable that evolves

slowly relative to vi, and the time unit is millisecond. The spiking mechanism is im-

plemented by resetting the dynamical variables to (vi, ui) = (c, d) as soon as vi exceeds

30 mV. We set a = 0.02, b = 0.2, c = −65, and d = 8, which are standard parameter

values for modeling pyramidal neurons (Izhikevich, 2003; Izhikevich et al., 2004).

The input Iext,i and Isyn,i are the external bias input and the synaptic input, re-

spectively. We set Iext,0 = 8.4 and Iext,i = 8 (1 ≤ i ≤ n− 1). The inherent firing rate

of the pacemaker (= 18.8 Hz) is about 5 % higher than that of the oscillators (= 17.9

Hz). In figure 8, example traces of the membrane potentials of the pacemaker (solid

line) and that of an oscillator (dashed line) are shown.
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The synaptic input Isyn,i is composed of superposition of incident spikes from the

neurons presynaptic to the i-th neuron. A presynaptic spike of the j-th neuron ((j, i) ∈
E) is assumed to change the postsynaptic membrane potential according to the time

course given by the alpha function:

gjis(t) = gjiα
2te−αt, t ≥ 0, (38)

where t = 0 corresponds to the spike time. We set α = 1, so that the unit synaptic

input s(t) peaks at t = 1/α = 1 ms and then decays slowly. We set A+ = 0.09,

A− = 0.1, and τ = 10 ms.

The random network with n = 100 used in the following simulations are the same

as that used in section 4. We set the initial synaptic weight gji = g(0) for all the

synapses. The initial values of vi and ui are independently chosen according to the

uniform distributions on [−75,−50] and [−8,−6], respectively. Under these conditions,

we track time courses of Gf , Gb, Gl, G
0
f , G

0
b , L defined in section 4.2, and r = r([t1, t2])

redefined based on spike counts:

r =
1

n−1

∑n−1
i=1 (number of spikes from the i-th neuron)

(number of spikes from the pacemaker)
. (39)

Frequency synchrony yields r ∼= 1. If the pacemaker and the oscillators fire indepen-

dently, r is the ratio of the single-neuron firing rate to the pacemaker firing rate. We

set t2 − t1 = 10000 ms.

With these parameter values, we first determined gc without STDP. We numerically

obtained gc ∼= 1.6 for the network of one pacemaker and one oscillator, and gc ∼= 38

for the random network. In the following simulations with asymmetric STDP, we set

gmax = 35 < gc so that uniform increases in gji do not cause synchronization. Frequency

synchrony requires feedforward network structure.

For homogeneous initial synaptic weights g(0) = 5 and g(0) = 10, evolution of

synaptic weights via asymmetric STDP is shown in figures 9(a, b) and 9(c, d), re-

spectively. For g(0) = 5, Gf (thick solid line in figure 9(a)) and G0
f (thick line in
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figure 9(b)) do not grow during the course of plasticity, similar to figures 5(a, b). The

oscillators disconnect from the pacemaker, and frequency synchrony is not realized

(figure 9(f)). For g(0) = 10, the forward connection from the pacemaker to the set of

oscillators is established (thick line in figure 9(d)), and backward connection is gradu-

ally removed (thin line in figure 9(d)), similar to figures 5(c, d). As a result, frequency

synchrony is reached (figure 9(f)). Based on figures 9(e) and 9(f), which respectively

show L and r for different g(0), we estimate gc−stdp ∼= 7, which is much smaller than

gc ∼= 38. Note that g(0) = 7 is a marginal case, which yields a long transient before

frequency synchrony is reached. Frequency synchrony is not induced with, for exam-

ple, g(0) = 10 < gc if synapses are frozen. These numerical simulations confirm that

the results derived in the previous sections apply to networks of pulse-coupled spiking

neurons.

6 Discussion

We have shown that asymmetric STDP greatly reduces the threshold for frequency

synchronization of neural networks with a pacemaker. This reduction is efficient

particularly when LTP and LTD are nearly balanced, as assumed for stabilization

of synaptic weights in previous literature (Kempter et al., 1999; Song et al., 2000;

Song and Abbott, 2001; van Rossum et al., 2000). Our analytical results for two-

oscillator networks provide theoretical understanding of STDP-induced synchrony of

two-body networks with real neurons (Nowotny et al., 2003) and with Hodgkin-Huxley

neurons (Zhigulin et al., 2003). Our numerical results for large networks extend ear-

lier numerical simulations (Zhigulin and Rabinovich, 2004) and provide mechanisms of

synchrony.

More microscopically, we have shown that STDP guides formation of feedforward

networks originating from the pacemaker (figure 5(g)). By eliminating backward con-

nection, frequency synchrony is promoted in terms of required synaptic weights. Net-
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works self-organize by asymmetric STDP so that upstream neurons entrain downstream

neurons. Even though engineered learning algorithms can promote formation of feed-

forward networks (Kori and Mikhailov, 2006), asymmetric STDP naturally achieves

this goal. Facilitation of frequency synchrony does not occur for symmetric STDP,

which cannot suppress backward synapses without sacrificing forward synapses.

In recurrent networks, synaptic delay may destabilize otherwise stable synchrony,

leading to oscillatory or chaotic population dynamics (e.g. Gerstner and van Hemmen,

1993; Gerstner, 2000; Timme et al., 2002). However, our numerical simulations suggest

that this is not the case in our system, which can be explained as follows. In the phase

oscillator model, the effect of delay can be replaced in a good approximation by the

phase shift in the coupling function (Kori and Kuramoto, 2001; Kori, 2003). Dynamics

of the oscillator system under consideration do not change qualitatively for a large class

of the coupling function (Kori and Mikhailov, 2006), which effectively includes the case

of synaptic delay. Although a synaptic delay enlarges the phase difference between

connected neurons, the oscillator dynamics in our model are thus robust against delay.

Another possible complication is that synaptic delay may change synaptic evolution

because it could interact with the learning window. However, since the delay simply

increases the phase difference between connected neurons, the causality of spike timing

does not change even with delay, as corroborated by our numerical experiments.

In terms of network structure, the feedforward structure is distinct from pruning

of synapses in a predefined unidirectional network with many presynaptic neurons

projecting to a single postsynaptic neuron (Kempter et al., 1999; Song et al., 2000;

Song and Abbott, 2001; van Rossum et al., 2000). It also differs from multipar-

tite networks each part of which forms a cluster of synchronously firing neurons

(Horn et al., 2000; Levy et al., 2001). In a sense, feedforward structure and hierar-

chy are straightforward consequences of asymmetric STDP (Song and Abbott, 2001),

which opts for causality. We stress that feedforward structure is naturally organized
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when a network has a distinct pacemaker. The idea of growing feedforward structure

by unsupervised learning dates back to pioneering work by Bienenstock (1991, 1995),

which employed Hebbian plasticity. We have analyzed the network formation in detail

under asymmetric STDP. In real neural networks, there may be multiple pacemakers

as well as a huge number of follower neurons. It is straightforward to extend our results

to the case in which a collection of neurons in a network serves as a pacemaker. Pace-

maker neurons are relevant to, for example, regulation of respiration, internal clock,

and Parkisonian diseases (see section 1 for references). In these brain regions, pace-

maker neurons may recruit downstream neurons for frequency synchrony in order to,

for example, amplify rhythmic activity.

Formation of feedforward structure could occur even when predetermined pacemak-

ers are absent. In this case, neurons with relatively high natural frequencies may play

a role of pacemaker. Backward connection to these fast neurons, which would per-

turb their periodic firing, can be eventually eliminated by asymmetric STDP. Then,

the fast neurons can serve as distinct pacemakers. Regardless of the initial presence

of pacemakers, asymmetric STDP creates frequency synchrony, which can be called

feedforward synchrony. This mechanism of synchrony differs from that of synchrony

based on mutual coupling (Kuramoto, 1984).

Our results do not suggest that asymmetric STDP promotes phase synchrony,

namely, spike synchrony. This is in contrast to the finding that phase synchrony is

caused by asymmetric STDP (Karbowski and Ermentrout, 2002). In their work, fixed

inhibitory coupling as well as excitatory coupling with asymmetric STDP was assumed.

Perfectly balanced LTP and LTD, at least as the average, is a key condition for the

maintenance of bidirectional connectivity and phase synchrony. By contrast, we as-

sumed that LTD is stronger than LTP. This yields a considerable decrease in the

threshold for synchrony. However, this synchrony is frequency synchrony but not spike

synchrony.
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With symmetric STDP, neurons whose spike times are close are likely to bind

together. Then, in addition to frequency synchrony, approximate phase synchrony

whose time resolution is specified by the width of the learning window can develop

(Seliger et al., 2002). In some situations, neurons divide into clusters in each of which

rough spike synchrony is maintained (Masuda and Aihara, 2004). Unlike asymmetric

STDP, symmetric STDP does not lessen the threshold for synchrony.

When feedforward frequency synchrony is achieved, neurons at different distances

from the pacemaker fire asynchronously. On top of that, phase synchrony can be ob-

served for neurons receiving the common signal. For example, the neurons directly

connected to the pacemaker are excited by the common drive from the pacemaker,

so that they are synchronized in phase. Likewise, neurons with the same distance

from the pacemaker tend to fire simultaneously. Indeed, figure 6(b) and its mag-

nification in figure 6(c) indicate that clusters of phase-synchronized neurons can be

aligned according to the distance from the pacemaker (Kori and Mikhailov, 2004).

Even though spike time difference between neurons with different distances is usu-

ally small, the order of firing is fixed and reproducible. The pacemaker triggers a

volley of spikes, which travels down the hierarchy delineated by the distance. This

phenomenon is consistent with propagation of synfire volley through feedforward

neural networks in the excitable regime (Bienenstock, 1995; Diesmann et al., 1999;

Reyes, 2003; Vogels and Abbott, 2005). However, stably embedding synfire volley in

recurrent networks is usually difficult (Mehring et al., 2003). It needs, for example, se-

lective enhancement of forward synapses by 10-fold, which corresponds to large evoked

EPSPs of 8 mV (Vogels and Abbott, 2005). With asymmetric STDP, forward synapses

are enhanced. In addition, automatic elimination of backward synapses appreciably

lessens the forward synaptic strength (or the size of EPSP) needed for stable synfire

volley.

We have shown that the facilitation of frequency synchrony by STDP is robust
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against some heterogeneity in the inherent firing frequency of the neurons. If synap-

tic delays or neurons are strongly heterogeneous, we would obtain more complex but

reproducible spatiotemporal spike patterns (Izhikevich et al., 2004; Izhikevich, 2006;

Lengyel et al., 2005).

Oscillatory neurons can model, for example, temporal coding of place cells

(Mehta et al., 2002) and hippocampal associative memory (Lengyel et al., 2005). By

contrast, many neural circuits operate in the excitable regime, in which neurons

are not spontaneously oscillatory. Investigation of the excitable case is warranted

for future studies. However, we believe that the conclusion that asymmetric STDP

but not symmetric STDP induces feedforward synchrony generalizes to the ex-

citable case, as is consistent with previous numerical work (Song and Abbott, 2001;

Zhigulin and Rabinovich, 2004).
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Figure 1: Asymmetric (solid line) and symmetric (dashed line) learning windows of
STDP as a function of tpost − tpre, namely, the postsynaptic spike time relative to the
presynaptic spike time.
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oscillator, and (b) the network of two oscillators.



Figure 3: gc−stdp for the network with one pacemaker and one oscillator. The evaluation
by equation (16) (solid line), that by equation (18) (dotted line), and gc−stdp determined
by numerical simulations of the coupled phase oscillators (circles) are compared. We
set gmax = 1.25.
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Figure 4: The critical g2(0) as a function of g1(0) for the network with two oscillators
(and no pacemaker). Three lines correspond to A+/A− = 0.96 (thickest line), 0.9, and
0.8 (thinnest line).
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Figure 5: Results for 100 randomly coupled oscillators subject to asymmetric STDP.
Evolution of the synaptic-weight order parameters are shown for (a, b) g(0) = 0.7
and (c, d) g(0) = 1.5. In (a) and (c), Gf (thick solid lines), Gb (thin solid lines), Gl

(moderate solid lines), and the average weight (dotted lines) are shown. In (b) and (d),
G0
f (thick lines) and G0

b (thin lines) are indicated. Time courses of (e) L and (f) r are
compared for g(0) = 0.7, 0.9, 1, 1.2, and 1.5. In (e), lower lines correspond to larger
g(0). (g) Final network structure for g(0) = 1.5. Only the synapses (j, i) ∈ E with
gji > g(0) are presented. The pacemaker is labeled P . Forward edges and backward
edges are indicated by thin lines and thick lines, respectively. The network is drawn
by Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). (h) Time courses of r for
some values of g(0) when the oscillators are heterogeneous.
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Figure 6: Rastergrams of the oscillators under asymmetric STDP in (a) initial and
(b) final cycles. We set g(0) = 1.5. The oscillators are aligned according to their
distances li from the pacemaker, which is calculated at time 0 in (a) and 19995 in (b).
After sufficient time, li is quantized, and the values of li are shown in (b). (c) is a
magnification of (b).
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Figure 7: Results for 100 randomly coupled oscillators subject to symmetric STDP.
Evolution of the synaptic weights are shown for g(0) = 140 (a, b) and g(0) = 150 (c,
d). See the caption of figure 5 for legends. In (c), Gf (thick solid line) and Gb (thin
solid line) overlap almost completely. Time courses of (e) L and (f) r are compared for
g(0) = 140, 145, 146, 148, and 150. In (e), lower lines correspond to larger g(0). (g)
Final network structure for g(0) = 150.
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Figure 8: Sample traces of v0 (solid line) and v1 (dashed line) when the spiking neurons
are uncoupled.
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Figure 9: Results for 100 randomly coupled spiking neurons subject to asymmetric
STDP. Evolution of the synaptic weights are shown for (a, b) g(0) = 5 and (c, d)
g(0) = 10. See the caption of figure 5 for legends. Time courses of (e) L and (f) r are
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