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Abstract
Out-of-phase bursting is a functionally important behavior displayed by central pattern generators
and other neural circuits. Understanding this complex activity requires the knowledge of the interplay
between the intrinsic cell properties and the properties of synaptic coupling between the cells. Here
we describe a simple method that allows us to investigate the existence and stability of anti-phase
bursting solutions in a network of two spiking neurons, each possessing a T-type calcium current
and coupled by reciprocal inhibition. We derive a one-dimensional map which fully characterizes
the genesis and regulation of anti-phase bursting arising from the interaction of the T-current
properties with the properties of synaptic inhibition. This map is the burst length return map formed
as the composition of two distinct one-dimensional maps that are each regulated by a different set
of model parameters. Although each map is constructed using the properties of a single isolated
model neuron, the composition of the two maps accurately captures the behavior of the full network.
We analyze the parameter sensitivity of these maps to determine the influence of both the intrinsic
cell properties and the synaptic properties on the burst length, and to find the conditions under which
multistability of several bursting solutions is achieved. Although the derivation of the map relies on
a number of simplifying assumptions, we discuss how the principle features of this dimensional
reduction method could be extended to more realistic model networks.
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1 Introduction
Electrical bursting activity is a widely observed phenomenon in neurons and hormone secreting
cells (Selverston and Moulins, 1986; Bertram and Sherman, 2000; Sohal and Huguenard,
2001; Llinas and Steriade, 2006). Considerable effort has been made to classify different types
of bursting activity resulting in many detailed mathematical models (Izhikevich and
Hoppensteadt, 2004; Coombes and Bressloff, 2005). Bursting activity often depends on
properties of the networks in which these neurons lie. For example, bursting in reciprocally
coupled inhibitory networks can arise from ionic currents that produce post-inhibitory rebound,
such as the low-threshold transient calcium current, known as the T-current (Perkel and
Mulloney, 1974; Wang and Rinzel, 1994; Huguenard, 1996).
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Reciprocally inhibitory networks are common circuit elements in many neuronal systems, from
the mammalian neocortex and hippocampus to the invertebrate central pattern generators, and
play a crucial role in rhythmogenesis (Traub et al., 1996; Wang and Buzsaki, 1996). Central
pattern generators, in particular, make use of reciprocal inhibition between pairs of neurons or
populations of neurons as a general mechanism for producing out-of-phase oscillations
(Satterlie, 1985; Marder and Calabrese, 1996). Consequently, reciprocal inhibition has been
the subject of many theoretical studies that have demonstrated the existence of a multitude of
possible network behaviors arising through distinct mechanisms (Skinner et al., 1994; Van
Vreeswijk et al., 1994; Wang and Rinzel, 1994). In many cases, reciprocally inhibitory
networks demonstrate dynamically complex outputs such as irregular oscillations or
multistability of distinct modes of activity (Terman et al., 1998).

When considering networks or even pairs of reciprocally coupled neurons, the high
dimensionality of the ensuing set of equations is often an obstacle in analyzing the dynamics
of the system. Various methods such as averaging and singular perturbation theory have proved
useful for reducing the dimensionality of larger systems of equations in a variety of network
models (Butera, 1998; Lee and Terman, 1999; Medvedev, 2005). These approaches involve
tracking the behavior of a smaller number of variables in a phase space of lower dimension
than the original system. An alternative approach has been to ignore certain state variables of
the system, and instead track quantities that are experimentally and mathematically measurable.
The inter-spike interval (ISI), the time between successive spikes of a neuron, is one such
quantity and Ermentrout and Kopell (1998), for instance, use this approach to derive a one-
dimensional map based on the ISI that they use to prove the existence and stability of
synchronous spiking solutions in a hippocampal network.

We are interested in exploring the anti-phase bursting activity arising from the interplay
between the low-threshold calcium T-current and synaptic inhibition in a reciprocally coupled
network of two inhibitory neurons. In such a model, we observe that several stable bursting
states may exist for the same set of parameters (Fig. 1). Each of these states has a different
number of spikes per burst and thus different cycle periods. In this study, we provide an
analytically and numerically tractable method for proving the existence and stability of these
anti-phase bursts. This method exploits time-scale separations of variables to construct a one-
dimensional Poincaré map whose fixed points correspond to periodic anti-phase solutions. The
map is the burst length return map which tracks the length of a burst from one cycle to another,
and, as such, does not directly track the state variables of the governing set of equations.
Interestingly, the construction of this map does not even require the coupled network. Instead,
it is constructed as the composition of two different maps, each of which can be derived by
studying the properties of a single uncoupled cell. By restricting the two maps to parameter
ranges that are consistent with anti-phase bursts, we can use these single-cell maps to
characterize the solutions of the coupled two-cell network.

A primary advantage of our approach is that we are able to pinpoint how certain key parameters
of the model affect each of the single-cell maps which, in turn, affect both the existence and
the stability of anti-phase solutions. In situations where this solution is unstable, the map is
used to construct higher order periodic (or possibly chaotic) solutions. Thus, we show that a
wide range of dynamic outputs of the reciprocally coupled network can be examined by
analyzing the one-dimensional Poincaré map.

2 Model
Single-cell dynamics

We first describe the dynamics of a single neuron. The two cells are assumed to be identical,
each modeled as a two-variable Morris-Lecar oscillator (Morris and Lecar, 1981), which we
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have modified to include a low-threshold Ca2+ current (T-current: IT), described in detail
further below. The spiking of the model cell results from the interplay between the dynamics
of membrane potential v, and the recovery variable w, which describes the activation of the
potassium current:

(1)

where Iapp is a constant applied current, gL, gCa and gK are conductances and EL, ECa and
EK are reversal potentials for the leak, fast high-threshold calcium and potassium currents,
respectively (Fig. 2). Both m∞ and w∞ are monotonically increasing sigmoidal functions of
cell potential v. The functions and parameters are described in detail in the Appendix A1.

The T-current in Eq. (1) models the low-threshold Ca2+ current with both activation and
inactivation gating. Since the T-current activation is faster than its inactivation kinetics
(Huguenard and McCormick, 1992), we make the simplifying assumption that the activation
variable is instantaneous and is described as a sigmoidal function of the membrane potential
a = a(v). The inactivation variable of the T-current is given by the dynamic variable h. For the
mathematical analysis we make the further simplifying assumption that the activation function
and the steady-state inactivation function are Heaviside functions of the membrane voltage.
We discuss the implications of relaxing this assumption in the Discussion section. Also, the
activation and steady-state inactivation curves are smoothed out to sigmoidal form in the
simulations, as described in the Appendix A1. The T-current is therefore described as

(2)

(3)

(4)

where H(v) is the Heaviside function. The inactivation variable h decreases to zero if the cell
is depolarized above vh (inactivation), and increases to 1 if a cell is hyperpolarized below vh
(de-inactivation). We assume for simplicity that the T-current activation and inactivation
thresholds are equal.

Our choice of model parameters corresponds to Type-I excitability (in the absence of synaptic
coupling and the T-current): each cell spikes at a low baseline frequency, as shown in Fig. 2
A. The phase portrait of each cell in the absence of the T-current is illustrated in Fig. 2 B. The
nullclines for Eq. (1) are obtained by setting the right-hand side equal to zero. When IT = 0 the
v-nullcline is cubic shaped, while the w-nullcline is sigmoidal (see Fig. 2 A). Note that the T-
current inactivation threshold vh is chosen to be below the minimal value of v of the spiking
trajectory of an uncoupled cell (Fig. 2). Therefore, the T-current is completely inactivated
during tonic spiking (h = 0), and plays no role in the dynamics of the uncoupled cell.

The main effect of IT is to produce a rebound burst of spikes in response to hyperpolarization,
as shown in Fig. 3. If a hyperpolarizing current pulse lowers the cell potential below vh
(horizontal bar in Fig. 3 A), then a gradual de-inactivation of the T-current occurs, i.e. h
increases. When such external hyperpolarization is removed, the cell will depolarize above
vh, causing the activation of the T-current (a grows), which results in a burst of action potentials.
In phase space, the activation of the T-current lifts the v-nullcline above its resting position,
increasing the spike frequency due to larger distance of the periodic trajectory from the lower
branch of the w-nullcline (Fig. 3 B). During the rebound burst, the T-current gradually
inactivates (h decreases) with time constant of inactivation equal to τhi (see Eq. (4)). This
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inactivation manifests itself in the decrease of spike frequency during the burst. In phase space,
inactivation corresponds to the gradual lowering of the v-nullcline (Fig. 3 B), from the elevated
position (labeled 3) to the rest position (labeled 1, 4).

Effect of Synaptic Inhibition
The network we consider includes two neurons described by Eqs. (1-4), reciprocally coupled
by synaptic inhibition. The model for the synaptic current is adapted from Bose et al. (2001),
and is given by (i, j = 1, 2, i ≠ j):

(5)

where vθ is the spike threshold that intersects the middle branch of the v-nullcline and si is the
gating variable describing the synaptic input from neuron i to neuron j. The synaptic growth
(onset) time constant is short compared to the spike width, thus allowing si to reach its maximal
value with each action potential. We consider the case of intermediate to slow synaptic decay
time, with τsyn exceeding the spike width (τsyn > τw). This results in the following full set of
model equations (i, j = 1, 2, i ≠ j):

(6)

The influence of inhibitory synaptic input to a cell is opposite to that of the T-current. In the
v - w phase plane, the effect of inhibition from cell i to j is to lower the cubic shaped v-nullcline,
which causes a decrease in the frequency of spiking. If inhibition is sufficiently weak (small

), both cells will continue spiking, and their spiking trajectories are only slightly perturbed
by the coupling. In this case the inhibitory input is not enough to hyperpolarize the partner cell
below vh, and therefore the T-current remains inactive and plays no role in cell dynamics. For
stronger synaptic coupling strength , however, a spike in one cell may be sufficient to
hyperpolarize the other cell below its T-current de-inactivation threshold. In this case, the T-
current will play a role in the network dynamics and, in particular, will make anti-phase bursting
possible.

A quantity of central interest to us is the inter-spike interval (ISI). The ISI measures the time
between successive spikes of the same neuron. We will use ISItonic to denote the inter-spike
interval of the tonic spiking uncoupled cell. We choose parameters so that this value is relatively
large, as compared to the shorter ISIs generated by the bursting mechanism described below.

3 Results
3.1 Half-center (anti-phase) bursting

The IT-induced post-inhibitory rebound burst mechanism can work synergistically or
cooperatively with the synaptic inhibition to entrain the network into a periodic anti-phase
bursting state (Fig. 4; see Perkel and Mulloney, 1974,Huguenard, 1996, and Destexhe and
Sejnowski, 2003, for related work). This periodic bursting is a half-center oscillation where
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the two cells are active out of phase with one another (see Fig. 4A). The half-center oscillation
requires a sufficiently strong synaptic coupling , so that a burst of one cell (say, cell 1)
provides enough synaptic current to hyperpolarize the postsynaptic cell (cell 2) below vh,
causing its T-current to gradually de-inactivate (h2 grows). At the same time, the T-current of
cell 1 gradually inactivates (h1 decreases), and its ISIs grow larger, approaching the uncoupled
cell’s intrinsic spiking period, ISItonic. This increase in ISI eventually allows the inactive cell
2 to escape from inhibition. This happens when the inter-spike interval increases beyond a
certain critical value,  (discussed in detail below). Once the suppressed cell escapes from
inhibition, its potential increases beyond vh. Since h2 is now non-zero, the IT current rapidly
activates, producing a burst of spikes, terminating the burst of cell 1, and hyperpolarizing it
below vh. The process then repeats.

The escape mechanism underlying the burst termination can be understood by considering the
phase-plane dynamics shown in Fig. 4 B. The v-nullcline of the bursting cell (thin black curve)
is elevated, but gradually descends as IT inactivates (h1 decreases, black curve in middle panel
of Fig. 4 A), resulting in a gradual increase of the inter-spike interval for this cell (black curve
v1 in top panel of A). The inhibitory synaptic input from the bursting cell keeps the v-nullcline
of the suppressed cell in a low position (thick black curve in B). Because of our assumption
that τsyn > τw(v), the trajectory of the suppressed cell lies in a neighborhood of the intersection
of the v and w-nullclines (filled circle in B). However, this intersection point moves left and
right (double horizontal arrow in B) as the v-nullcline of the suppressed cell moves up and
down with each spike of the bursting cell (double vertical arrow). The nullcline moves down
quickly which each spike, and moves up somewhat slowly following the dynamics of the
synaptic variable, s1(t), shown in the bottom panel of A (black curve). Accordingly, the
membrane potential v2 of the suppressed cell oscillates up and down (top panel in A), following
this nullcline movement. As the ISI of the bursting cell increases, s1(t) decays to smaller and
smaller values during the inter-spike interval, and the potential of suppressed cell moves closer
to the T-current activation threshold (dotted vertical line, open circle in B). When the ISI is
large enough to allow v2 to reach vh, the nullcline of the suppressed cell shifts up abruptly, due
to the activation of its T-current, and the cell escapes from inhibition. The resulting burst of
the previously suppressed cell terminates the burst of the active cell. The process then repeats
with the two cells switching their roles.

The condition for escape of cell 2 can be described analytically by finding when it reaches the
T-current activation threshold vh. This occurs for a specific value of s, denoted , that satisfies:

where Itot = Iapp-IL(v)-ICa(v)-IK(v, w)-Isyn(v, s). Geometrically, this condition can be interpreted
as the value of s at which the v- and w-nullclines intersect the line v = vh. Solving for  and
using the fact that w∞(vh) ≈ 0, we find

(7)

This value  is closely related to the ISI. Namely, there exists a value  such that if s(0) = 1,

then . Using Eq. (5),  satisfies:

(8)
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Thus,  corresponds to the amount of time it takes a cell starting on the “s = 1” v-nullcline
to reach the activation threshold vh. Note that  is completely independent of the T-current
properties since the suppressed cell feels no influence of IT(a = 0 for v < vh).

We now quantify the definition of bursting given earlier. We say that a cell is in the bursting
regime if it exhibits a series of spikes for which the . Thus the term  allows us to
use aspects of the nullcline geometry of the Morris-Lecar model to define the length of the
burst.

3.2 The one-dimensional Poincaré map
The set of equations describing the dynamics of the two-cell network (Eq. 6) forms a system
of eight first order differential equations and two algebraic equations (for a1 and a2). Despite
the high-dimensional phase space, it is possible to construct a one-dimensional Poincaré map
which can predict the existence and stability of anti-phase burst states depicted in Fig. 1. The
Poincaré map is the return map for the lengths of successive bursts and also determines the
number of spikes per burst. It is constructed as the composition of two different single-cell
maps. The first map, denoted L = F (h*), determines the burst length of a cell as a function of
h*, the level of T-current de-inactivation (h) at the beginning of the burst. The second map,
denoted h* = G(L) determines the amount of T-current de-inactivation as a function of the
inter-burst length. We then define the return map  by the relationship:

We will show that a fixed point of this map corresponds to an anti-phase bursting solution for
the coupled network given by Eq. (6). Both of the maps F(h*) and G(L) are constructed using
information obtained from the dynamics of a single cell, coupled with restrictions imposed by
the geometry of our model and by the condition of existence of a periodic half-center
oscillation.

Dependence of burst length on the h* value: L = F(h*)—To reconstruct the relationship
L = F(h*) between the burst length and h*, the level of T-current de-inactivation at the
beginning of the burst, we study a single uncoupled cell. Suppose that at t = 0 the cell begins
a burst with h(0) = h*. We will find the duration of each inter-spike interval ISIn for a given
value of h*, and then sum them up to obtain the burst length. Note that the length of each
ISIn is uniquely determined by the value of h(t) right before the corresponding interval, hn.
This relationship is the same for all ISIn’s, and is given by a monotone decreasing function
ISI = T(h) as shown in Fig. 5 A. This curve may be thought of as a special version of the f-I
curve of the cell, capturing the dependence of spiking period ISI = 1/f on the level of
depolarization provided by the T-current, which is proportional to h. The value ISI1 = T(h*)
yields the length of the first inter-spike interval. The value of h at the beginning of the second
interval, , is determined by the inactivation kinetics of h (see Eq. (4)): h2 = h* exp{-ISI1/
τhi}. Since h2 is smaller than h1 ≡ h*, the second inter-spike interval, ISI2 = T(h2), is greater
than the first. Subsequent ISIs are obtained similarly. Thus:

(9)

The pairs (hn, ISIn) are labeled along the curve T(h) in Fig. 5 A, for the particular case h* =
0.12, corresponding to the numerical simulation shown in Fig. 5 B.

It is useful to represent the duration of each ISIn within a burst as a function of h at the very
beginning of the burst, h*. As Eq. (9) illustrates, the dependence of each of the ISIn intervals
on h* is governed by the same T(h*) curve that determines ISI1. Therefore for n > 1,
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(10)

The ISIn(h*) curves are plotted in Fig. 5 C. The section of each curve highlighted in bold shows
the last inter-spike interval of the burst for a given value of h* (in Fig. 5 B, the last ISIn is
ISI10). The dashed line corresponds to the burst shown in panel B. Note that each curve in the
panel is obtained by stretching the curve T (h) in panel A to the right, as described by Eq. (10).

To determine the burst length for any particular value of h* we first sum all ISIn values that
lie below the critical value  (dotted line in Fig. 5 C). Recall that the critical value  is
determined by Eq. (8) and is used to indicate the termination of a burst. To complete the
definition of F(h*), we use the fact that, in half-center oscillations, exactly one cell is active at
any time. Thus,  needs to be added to the sum of the ISIs to calculate the time from the last
spike of one cell to the first spike of the other (see Fig. 5B). Therefore,

(11)

The function F(h*), shown in Fig. 5 D, has two important features. First, it is piecewise
continuous, and second, it is decreasing on the subintervals where it is continuous. The latter
observation is easy to understand since the original ISI vs. h* curve is itself monotone
decreasing. The function F(h*) is discontinuous because as h* is increased, new spikes are
added to the burst at certain values of h* denoted hcrj. In fact, hcrj are the values of h at which
the ISIj curves intersect the  line. As h* increases through each value hcrj, the inter-spike

interval ISIj satisfies , resulting in the addition of another spike. For example, in Fig.
5 C, the vertical line at h* = 0.12 shows that the associated burst has 11 spikes and 10 ISIs.
Thus the length of the burst in this case is given by

If we were to increase h* to the value 0.15, then the vertical line h* = 0.15 would intersect the
curve ISI11 at a value smaller than . Therefore a new spike would be added to the burst
since . The new burst length would be

(12)

The size of the jump discontinuity in the burst length at each hcrj equals the length of the added

inter-spike interval, .

Since the monotonic decay of the continuous stretches of F(h*) reflects the monotonic increase
in spike frequency with increasing h*, the rate of this decay is proportional to the value of
conductance , which multiplies h in the expression for the IT (Eq. (2)). In fact, the effect of
the variation of the  parameter can be obtained by re-scaling the h* axis in Fig. 5 C, D (see
Fig. 7 A and discussion below). The value of the inactivation time constant τhi affects the slope
and the magnitude of F(h*) in a similar manner. Increasing τhi slows down the T-current
inactivation, decreasing the difference between successive ISIs shown in Fig. 5 A-B, and
thereby increasing the number of ISIs that fit below the  burst termination limit for any
given value of h*. This corresponds to the leftward “squeeze” of the ISIn(h*) curves in Fig. 5
C toward the ISI1(h*) curve, thereby increasing the magnitude of F(h*) by increasing the
number of spikes per burst.
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In contrast, as discussed above,  is only sensitive to the fast spike kinetics and the synaptic
coupling parameters, and does not depend on the characteristics of the T-current. However, an
increase in  would have a similar effect to an increase in τhi. Namely, it would increase the
number of spikes per burst, and also increase the slope of the continuous stretches of F(h*). In
turn, an increase in  or the membrane time constant would also influence F(h*) through the
effect of these parameters on .

Note that our method for constructing the F(h*) easily generalizes to any model of single-cell
dynamics, as long as each neuron has a well-defined f - I curve, and all intrinsic currents except
the T-current are fast compared to the time scales of synaptic inhibition and the T-current
inactivation and de-inactivation. The specifics of the single-cell model would only affect the
T(h) curve in Fig. 6, while the value of  can always be determined numerically even if the
analytical approximation given by Eqs. (7), (8) does not apply.

Dependence of h* on the burst length: h* = G(L)—The second part of Poincaré map,
the dependence h* = G(L) (see Fig. 6 A) is easier to construct. It measures how the T-current
of an uncoupled cell de-inactivates when the cell is silent. It follows straightforwardly from
the first-order kinetics of the T-current de-inactivation given by Eq. (4):

Solving this equation with h(0) = ho yields:
(13)

The value ho is the minimum value of h obtained at the end of the burst (see Fig. 4). However,
in the coupled network, there is no a priori way to know the value of ho. Nonetheless, this
value will be bounded from above by , defined as the value of h* at the intersection of ISI1

and , and bounded from below by . For definiteness, let . Evaluating
Eq. (13) at t = L, we obtain:

(14)

We note that for a periodic solution, we can replace  with its equilibrium value,
. This yields an equilibrium condition for Eq. (14):

(15)

The map h* = G(L) is plotted in Fig. 6 A using Eq. (15). Note that this map is only a function
of the inactivation and de-inactivation time constants of the T-current, τhi and τlo, with a much
greater sensitivity to τlo than to τhi (assuming τhi ≪ τlo). Thus, the two maps h* = G(L) and L
= F(h*) are controlled by two distinct sets of model parameters. As will be shown below, this
fact greatly simplifies the understanding of the parameter control of the network’s bursting
dynamics.

Fixed points of the Poincaré map: —Periodic solutions of Eq. (6) correspond

to the fixed points of the Poincaré map . Introducing an equilibrium

value of h*, , this equilibrium condition can also be written as

. Therefore, geometrically the periodic solutions correspond to the
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intersections of the graph of L = F(h*), given in Fig. 5 D, and the inverse of the map G(L) given
by Eq. (15) and shown in Fig. 6 A. In Figure 6 B we superimpose these two maps and show
their intersection points. Interestingly, the two curves share more than one intersection point,
demonstrating that multiple bursting solutions can exist for the same parameter values. Indeed,
below we verify numerically the existence of such multiple bursting solutions.

Apart from providing the information about the periodic network activity, the Poincaré map
simplifies the parameter sensitivity analysis of the model, illustrating the control of the burst
duration by various model parameters. This is achieved by examining the influence of model
parameters on the two individual parts of the Poincaré map, the curves F(h*) and G(L).
Consider for example the effect of a variation of , the maximal IT conductance. As discussed
above, G(L) (Eq. (15)) is dependent on τhi and τlo, but is not sensitive to . The dependence
on  of F(h*) is straightforward: namely, an increase in  “squeezes” the L = F(h*) curve to
the left (h* axis scales down with ), as shown in Fig. 7 A. As a result, as  is increased, the
Poincaré map intersections shown in Fig. 6 B would lie along the segments of F(h*)with larger
number of spikes per burst.

In contrast, varying τlo affects only G(L) and not F(h*) (Fig. 7 B). The change in G(L) occurs
because an increase in τlo effectively moves the G curve up (the L axis scales up with τlo). Thus,
by changing different model parameters, different components of the Poincaré map are
affected, leading to multiple degrees of control of the existence of periodic bursting solutions.

Stability of periodic bursting solutions—The stability of the periodic bursting solutions
can be determined by checking the slopes of the graphs L = F(h*) and L = G-1(h*) at a point
of intersection. A burst solution will be stable if . This derivative satisfies

(16)

The derivative dG/dL is easy to calculate from Eq. (14):

which clearly shows dependence on the parameter τlo. It is also indirectly affected by other
parameters such as τsyn since this synaptic time constant affects  and hence . The derivative
dF/dh* is harder to explicitly quantify. Note, however, that since each inter-spike interval in
the burst is inversely proportional to h, each spike contributes to the slope of the F(h*) curve.
Therefore, the relationship between L and h* becomes progressively more steep at higher
values of τhi. Likewise, the derivative dF/dh* grows with increasing  since this parameter
increases the number of spikes per burst as well.

It is straightforward to numerically calculate the value of dF/dh* at a point of intersection. This
is what we did, for example, in Fig. 6 B to conclude the stability of the obtained solutions. We
further tested how well the Poincaré map, based on single cell dynamics, correctly determines
the dynamics of the coupled network by numerically solving the latter. Figure 8 shows the
numerically reconstructed phase diagram of the network model, indicating the stable periodic
activity states as a function of the IT conductance,  (see Appendix A2 for details of the
numerical crawl algorithm used to construct the phase diagram). Note the overlap between the
regions of stability of the various bursting solutions, in agreement with the multistability
exhibited by the Poincaré map in Fig. 6 B. The phase diagram also validates the dependence
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of burst length on the value of  inferred above by analyzing the Poincaré return map (Fig.
7). Namely, it shows that an increase in  increases the number of spikes per burst. Note that
a more dramatic increase in  would also reduce the number of co-stable bursting solutions
(cf. Fig. 11).

The analysis above suggests that the parameters τhi, τlo,  and τsyn affect both the existence
and the stability of periodic solutions. For example, the parameter variations shown in Fig. 8
changed the number of spikes per burst but preserved the stability of the equilibrium points,
as determined from Eq. (16). However, a more drastic increase in  or a decrease in τlo can
change the slopes of the corresponding parts of the Poincaré map to the extent that the
equilibrium points become unstable.

The loss of stability can be also achieved by increasing the value of τsyn, as is shown in Fig. 9
A. According to Eq. (8), increasing τsyn increases . With our choice of parameters, the value

 intersects the curve T(h) along a very steep portion of this curve (Fig. 5). Thus an increase
in  can change the burst length quite significantly, but not change the corresponding h value
much. Thus the slope of the function F(h*) is quite sensitive to changes in . Figure 9 B, C
demonstrates this fact and shows the dynamics of the network for τsyn = 10 for which no stable
periodic solution exists.

Relaxing some assumptions leads to greater multistability—The analysis presented
above relies on a number of assumptions. Notably, we considered the case of slow synaptic
decay, which allowed us to formulate the escape condition in terms of the critical value of

 (Eq. 8). Further, we assumed that vh lies just below the spiking threshold of each cell. This
ensures that the bursting cell falls below the T-current (de-)inactivation threshold immediately
after its burst is terminated by the escaping cell, leading to exact anti-phase solutions
demonstrated in Figs. 2-7.

Figure 10 shows that the above constraints may be relaxed without loss of the qualitative
features of the Poincaré map. In this figure the value of vh has been lowered from -47.5 to -52
mV, and the synaptic decay time is 1 ms. The time trace in panel A shows that there is a
significant lag (labeled ϕ) between the escape time of one cell and the time that the inhibition
pushes the other cell below the T-current threshold. The main result of this lag is a shift in the
the value of h at the transition to the silent state, i.e. when v drops below vh. Thus we can no
longer utilize Eqs. (14) or (15) to calculate the map h* = G(L). Instead, we numerically calculate
the map using a feed-forward network and the steady-state approximation. Namely, we
consider a network in which cell 1 inhibits cell 2 with cell 1 starting in the bursting regime
with h = h* and cell 2 in the silent state with h = h* exp(-L/τhi) ≡ hL. For different values of
L for cell 1, we calculate the time ϕ(h*) before v2 falls below vh. This is done using simulations
of the feed-forward network. We then use this information and the steady-state approximation
to numerically and iteratively solve for the function h* = G(L). The inverse of the function
h* = G(L) is plotted in Fig. 10 B. Note that this map has a number of discontinuities that arise
at values of L below which an extra spike is required to inhibit the suppressed cell below vh
(see Appendix A3 for more details). Interestingly, in this case, the discontinuity increases the
number of stable periodic solutions that exist. As is shown, as many as six stable periodic
bursting solutions exist, corresponding to the six points of intersection of the two maps, for the
same values of parameters. Several of these solutions are shown in Fig. 1. Figure 11 shows the
numerically-generated phase diagram obtained by using the crawler method (see Appendix
A2) on the coupled network for the new parameter values. Note that multistability is achieved
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for a range of  values, which provides evidence that the Poincaré map formalism (this time
partially based on a feed-forward map as opposed to a single-cell map) is valid.

A qualitatively different case of multistability of periodic bursting states has been previously
analyzed in the context of a single-cell bursting model of Canavier et al. (1991,1994) by Butera
(1998), using an approach which is very similar to the one adopted in this work (see below).

4 Discussion
4.1 Summary

There have been countless biophysical models of neurons and networks in the past two decades
that have successfully reproduced outputs of their biological counterparts and made numerous
useful predictions (Hines et al., 2004). In almost every case the models themselves produce
quite complex outputs which, due to the large number of parameters and variables involved,
are quite difficult to analyze. In the current study, we take one such model, a two-cell anti-
phase half center oscillator producing bursting activity, and analyze it by focusing on outputs
of interest and reducing the original system of differential equations to a one-dimensional map.
We then show that the analysis of the one-dimensional map provides information about both
existence and stability of solutions to the original high-dimensional system.

We studied a network of two identical neurons coupled with reciprocally inhibitory synapses.
Each neuron was constructed as a Morris-Lecar model to produce the spiking activity together
with a low-threshold calcium (T-type) current. The synapses are action-potential mediated with
fast rise and intermediate to slow decay time constants. We described an analytic method that
produces a Poincaré return map formed as the composition of two one-dimensional maps (F
and G) of an interval. Each of these maps is constructed by using the properties of a single
isolated neuron: the map G yields the level of inactivation/de-inactivation (h*) of the T-current
at the transition to bursting as a function of the time interval during which the cell is inactive;
the map F produces the burst duration L as a function of h*. These two maps depend on different
sets of model parameters.

4.2 Significance
There is a large body of literature on reciprocally coupled inhibitory networks. These networks
arise naturally in central pattern generating circuits that control rhythmic motor activity. (Perkel
and Mulloney, 1974; Marder and Calabrese, 1996; Grillner et al., 2005). In such networks,
anti-phase bursting outputs of neurons is ubiquitous and results in the out-of-phase activity of
opposing groups of muscles such as flexors and extensors. Inhibitory networks have also been
studied in the context of synchronization, especially in the presence of slowly decaying
synapses (Wang and Rinzel, 1992; Van Vreeswijk et al., 1994; Terman et al., 1998). Our
analysis only deals with anti-phase solutions and specifically omits the analysis of synchrony.

Post-inhibitory rebound in networks with T-currents has also been studied quite extensively
(Wang and Rinzel, 1994; Huguenard, 1996; Destexhe and Sejnowski, 2003). While our study
fits in this context, our primary reason for including the T-current in our model was not to
achieve post-inhibitory rebound — the model cells spike in the absence of input and thus do
not need the rebound to fire — but rather to work cooperatively with the synapse to control
the burst duration. The presence of the T-current enables the model to produce bursting activity
with a large range of burst periods depending on the T-current parameters. In fact, the presence
of the T-current is essential for multistability of solutions with different burst durations.
However, our analysis would still apply if the bursting was due to the slowly-activating
potassium current rather than the T-current.
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The primary advantage of our method is that it provides a simple tool for the identification of
parameters that control the existence and stability of the bursting solutions. For example, the
map h* = G(L) was shown to depend only on the T-current inactivation and de-inactivation
time constants, while the map L = F(h*) depended both on the T-current properties and the
properties of the synapse. This analysis also enabled us to show how parameters of the synapse
and of the T-current interact to determine the burst length and the number of spikes per burst.
A second advantage of our method is that it reveals the circumstances under which single-cell
or feed-forward maps — constructed by tracking a network quantity through a feed-forward
subnetwork — can be used to characterize the dynamics of the coupled (feedback) network.
For example, both the symmetric anti-phase bursting solutions and the more complex chaotic
anti-phase bursting (see Fig. 9) are found as fixed points and chaotic trajectories of the one-
dimensional map, respectively. Note that the maps constructed in our study are of lower
dimension, and thus easier to analyze, than standard Poincaré return maps that track the state
variables. Yet, we demonstrated that the one-dimensional map yields excellent qualitative and
quantitative agreement with solutions of the full network obtained by numerically solving the
full set of equations (Figs. 8, 9B; cf. Figs. 10B & 11).

Reduction to lower-dimensional maps to prove existence and stability of solutions has been
used in a wide variety of contexts (Butera, 1998; Lofaro and Kopell, 1999; Lee and Terman,
1999; Medvedev, 2005; Terman, 1994). Most of these studies involve tracking state-variables
in a lower-dimensional phase space. For example, Terman et. al. have used geometric singular
perturbation theory to derive low dimensional maps to find oscillatory solutions in a variety
of networks (Rubin and Terman, 2000; Terman, 1994; Terman et al., 1998). Butera (1998)
used a Poincaré return map to analyze the multistability of bursting solutions and chaotic
bursting displayed by the aplysia bursting neuron model of Canavier et al. (1991, 1994). In
each of these studies, a map, defined on a lower dimensional slow manifold, tracks a subset of
the state variables of these full system. Medvedev has shown how to construct one-dimensional
maps using singular perturbation theory and averaging to understand the complicated dynamics
of a bursting neuron model of Chay (Chay and Rinzel, 1985; Medvedev, 2005). This method
involves deriving a return map for the single slow variable of the model and understanding its
bifurcation structure. A notable exception to tracking state variables can be found in the work
of Ermentrout and Kopell (1998) in which the inter-spike interval (ISI) is tracked to construct
a one-dimensional map associated with a hippocampal network. This map is formed as a
combination of two feed-forward maps, similar in spirit to the two single-cell maps in our
study. The map constructed by Ermentrout and Kopell tracks spikes of different cells in a four-
cell network and shows that synchronization can be closely tied to the existence of a spike
doublet from a specific cell in the network.

Our approach bears close resemblance to the above-mentioned work of Butera (1998), who
obtained the return map capturing the multistable bursting of a model cell as a composition of
two separate components representing the spiking and the silent states of the bursting cell,
respectively, In both studies, the component related to the active phase is a piece-wise
continuous map, with each branch corresponding to a continuum of states with an identical
number of action potentials. Finally, as in our case, one of the crucial parameters of their model
exerted its influence on only one of the two components of the map, allowing a simple
description of the burst length control by this parameter.

One significant consequence of the analysis presented in this work is the demonstration of
multiple fixed points corresponding to bursting solutions with different numbers of spikes per
burst. As shown in Figs. 6-11, the stability of multiple such fixed points can give rise to
multistability of bursting activity (see Fig. 1). To our knowledge, this is the first modeling
study that examines the possibility of emergence of such network multistability from the
interplay between the synaptic interaction and the intrinsic cell dynamics. As discussed above,
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the existence of multiple stable bursting solutions has been previously considered in the context
of intrinsic cell bursting (Canavier et al., 1991,1994;Butera, 1998); however, it has not been
carefully examined experimentally. On the other hand, there are known examples of bistability
(Lechner et al., 1996;Manor and Nadim, 2001). It is intriguing to speculate whether multiple
stable periodic states could coexist in biological networks, enabling the system to quickly
switch between distinct activity states. However, the basin of attraction of the distinct bursting
solutions may be too narrow for these states to be reliably sustained. In biological systems,
multistability of bursting activity is much more likely to manifest itself as cycle to cycle
variability in the number of spikes per burst due to noise and other extrinsic influences on the
network. Such variability is in fact observed in many half-center oscillatory networks (Bartos
et al., 1999;Masino and Calabrese, 2002).

4.3 Relaxing the Simplifying Assumptions
In order to implement our map-based approach, we made a few simplifying assumptions. First,
we assumed that the synaptic and recovery variables evolved slowly in the silent state compared
to the voltage variable. This allowed us to slave the v variable to the dynamics of the w and s
variables thus enabling us to determine the value  (see Eq. (7)). This multiple-time-scale
assumption is critical for using our single-cell map approach, but is less important if we wish
to derive the map by analyzing the feed-forward network. For example, when we relaxed the
slow-synapse assumption by changing τsyn from 4 ms to 1 ms, thus allowing s to evolve more
quickly in the silent state, we were still able to use a feed-forward map to determine h* = G
(L) (see Fig. 10 and Appendix A3), which enabled us to accurately predict the behavior of the
full model.

In our analysis we assumed that the T-current activation threshold (va) and inactivation
threshold (vh) are equal. If we consider the case va > vh, then the T-current would begin to
inactivate while the neuron is still in the silent state. If the inactivation rate is too fast, the effect
of the T-current may be lost before it is activated. However, even if the inactivation rate is not
too fast, constructing a single-cell map for h* = G(L) would not be possible since we would
need to know how the silent cell responds to individual synaptic events. However, a feed-
forward approach to construct the map similar to the fast τsyn case would still be possible,
provided that v lies below va in the silent state. In this case  would be computed from Eq.(7)
using the value of va instead of vh. Further, we used a Heaviside function to demarcate the
inactivation and activation thresholds. These functions are smoothed out when performing
numerical simulations. They could also be smoothed out in the analysis and would mostly
affect how we calculate the map h* = G(L). We would no longer be able to explicitly calculate
, but would instead have to estimate it.

In this paper, the post-synaptic cell escapes from inhibition when it reaches the T-current
activation threshold. With a change of parameters, it is possible for this cell to instead be
released from inhibition. For example, suppose each cell has a stable rest state at a potential
larger than the T-current activation threshold vh, and that the synaptic decay constant is large
relative to the intrinsic time constant τw. The difference in scales of the time constants would
imply that the post-synaptic cell could not reach vh while the pre-synaptic cell is still active.
Once the pre-synaptic cell stopped firing, its synaptic input would decay sufficiently to allow
the post-synaptic cell to fire. In this scenario, the firing patterns of each cell would have a much
wider spread of ISIs. In order to calculate L = F(h*) in this case, we have to keep track of the
time required for the nullcline of the bursting cell to cross the lower branch of the w-nullcline
(i.e. time to the saddle-node bifurcation). In addition, we would then have to calculate the extra
time that the post-synaptic neuron needs to reach vh.
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Another simplifying assumption of our model was that individual synaptic inputs are sufficient
to force the inhibited cell below vh. In many cases, however, summation of multiple IPSPs is
necessary to produce effective inhibition of the postsynaptic neuron. We examined one such
example in Fig. 10 by lowering vh and using faster synaptic decay. The result was the
appearance of discontinuities in the map G. A full analysis of this case requires keeping track
of synaptic summation to find the time interval between the first spike in the burst and the time
that the opposite inhibited neuron falls below vh. Such an analysis, as mentioned earlier, would
require construction of G as a feed-forward map so that the effect inter-spike intervals have on
the summation of IPSPs can be taken into account. Although we did not address this issue in
detail, the map G constructed for Fig. 10 shows the feasibility of constructing the one-
dimensional map in this case.

A similar technique can be used to keep track of any influence of short-term synaptic dynamics
such as facilitation and depression on the shape of the map G. Thus, the effect of short-term
synaptic dynamics can be accounted for by the one-dimensional maps so long as these effects
are short lived on the time scale of a burst and do not accumulate from burst to burst. Note that
the presence of synaptic facilitation would possibly act synergistically with the T-current in
producing bursting oscillations by increasing the duration and effectiveness of inhibition and
therefore allowing for additional de-inactivation of the T-current. However, the analysis of this
synergistic interaction requires only modifications in the map G because the map F is not
strongly influenced by modifications of synaptic dynamics.

Note finally that we have only considered the case of identical cells. However, the method
readily generalizes to the heterogeneous case, in which case the map can be written as

, where the subscript indicates the cell number corresponding to
each of the single-cell maps. The analysis of the dynamics of a heterogeneous network is
beyond the scope of the current work and will be explored in future studies.

4.4 Analysis of more complicated dynamics and complex systems
The one-dimensional map based approach can be applied to understand some of the more
complicated dynamics of the two-cell network. For example, simple cobwebbing using the
map (Fig. 9) revealed the existence of chaotic solutions which were then numerically obtained.
The existence of higher order periodics can also be explored in this way. In a network consisting
of a larger number of cells, the formulation of a one-dimensional map may be considerably
more difficult. However, if the ISI remains a quantity of interest, then presumably the map can
be built as the composition of several (more than two) single-cell maps, each of which measures
a quantity of specific interest over some portion of the trajectory.

4.5 Conclusions
We have described a simple analytical tool, a one-dimensional map constructed from single-
cell properties, for the analysis of the output of a relatively complex network model. This one-
dimensional map accurately predicted the existence and stability of solutions to the network
model as well as the presence of chaotic solutions and the simultaneous stability of multiple
solutions. The one-dimensional map was built by focusing on a subset of solutions of interest,
i.e. anti-phase bursts, and using some basic simplifying assumptions. We emphasize that the
usefulness of the one-dimensional map is primarily as an aid to understanding the behavior of
the full model network. As such, the map is not meant as a substitute for the full model in
producing and predicting outputs of the biological network of interest. Rather, a thorough
understanding of biological neural networks would require a combination of numerical
simulations using detailed biophysical models and the mathematical analysis of these high-
dimensional models using reduction techniques such as the one described in this study.
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5 APPENDIX

A1. Model equations and parameters
The Morris-Lecar parameters in Eqs. (6) are adapted from Keener and Sneyd (1998):Iapp =
14μA/cm2, Cm = 2μF/cm2, ϕ = 2/3, EK = -84, ECa = 120, EL = -60, gCa = 4, gK = 8, gL = 2.
Here the voltage units are mV, and conductance units are mS/cm2.

The functions m∞, w∞ and τw(v) are given by

(17)

The discontinuous dynamics of hj(t) and sj(t) in Eqs. (3), (4) and (6) are smoothed out in the
numerical simulation using:

where σ(v) is the sigmoidal function given by

The T-current inactivation time is set to τhi = 20 ms, while the synaptic growth time is τγ = 0.2
ms. The synaptic reversal potential is set to Einh = -80 mV.

Except for the figure panels exploring the parameter sensitivity of the network dynamics, the
remaining parameter values in Figs. 2-9 are: vh = -47.5 mV, τlo = 200 ms,  mS/cm2,

 mS/cm2, vθ = -35 mV, and τsyn = 4 ms.

In Figures 1, 10 and 11, these parameters are changed to: vh = -52 mV, τlo = 100 ms,
 mS/cm2,  mS/cm2, vθ = -3 mV, and τsyn = 1 ms.

The values of τhi and τlo given above are close to the values measured by Huguenard and
McCormick (1992) of about 30 ms and 300 ms, respectively.

MATLAB code implementing the model can be found at http://web.njit.edu/∼matveev/Burst

Note that in principle the precise value of vθ is not critical to the model dynamics, provided
that vθ is less than the maximal potential of the spiking limit cycle. However, a more
hyperpolarized level of vθ used in Figs. 2-9 allows for a more reliable inhibition by the cell
initiating the burst, ensuring that the potential of the cell terminating the burst quickly drops
below vh. On the other hand, the use of a higher spiking threshold enhances the situation
whereby a single burst spike is insufficient to suppress the potential of the partner cell below
vh, a situation which holds in the case of multistability of solutions (Figs. 1, 10 and 11).
However, the same effect could be achieved by varying  alone.

Matveev et al. Page 15

J Comput Neurosci. Author manuscript; available in PMC 2008 December 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://web.njit.edu/matveev/Burst


Finally, in the computation of the single-cell map L = F(h*), we ignored a minor contribution
to the burst length of the duration between cell escape time and the peak of first spike. This
correction is easy to include, and is incorporated in all numerical calculations involving this
map. Denoting the time to first spike as Δt(h*), the sums in Eqs. (10-12) should be extended
to include Δt(h*), and in Eq. (9), h1 should be set to h* exp[-Δt(h*)/τhi].

A2. Numerical reconstruction of burst bifurcation diagram
The phase diagrams shown in Figs. 8 (gray curve) and in 11 are reconstructed numerically, by
“crawling” along the relevant parameter direction. The algorithm is implemented in MATLAB,
and involves two main parts: (1) the periodic state detector, and (2) the parameter “crawler”/
continuer.

1. The detector of periodic solutions is implemented in the most straightforward way. Namely,
model equations are continuously integrated while checking for a pattern in the sequence of
burst intervals. A burst interval is defined as the time period between two consecutive spikes
of one cell containing at least one spike of the second cell. If a sequence of such intervals is
found to repeat itself a sufficient number of times with a given degree of accuracy, the
corresponding state is assumed periodic, and the number of spikes, the duration of the state
and its state vector are returned. For a symmetric anti-phase periodic bursting solution, the
burst interval sequence would normally represent the lengths of consecutive bursts of the two
cells, such as in { 35.4, 35.4, 35.4, ...}. However, in some cases the synchronization of the last
and first spikes in the burst may occur, which may lead to a periodic sequence of length 4, such
as {25.2, 2.1, 1.4, 25.2, 2.1, 1.4, 25.2, 2.1, 1.4 }. The latter sequence corresponds to the situation
where the last spike of one cell occurs after the first spike of the partner cell. In this example
1.4 represents the first intra-burst inter-spike interval (containing one last spike of the partner
cell), and 2.1 is the duration of the last inter-spike interval of the partner cell (containing one
first spike of cell 1). However, this complication does not arise in the simulations shown in
this work.

Empirically, tracking the lengths of burst intervals defined above is more robust than tracking
the sequence of the inter-spike intervals. Also, it automatically takes into account the identity
of the spikes as coming from a particular cell.

2. Once a periodic solution is detected, a variation of a standard predictor-corrector step is
performed. Namely, the relevant parameter is increased by a certain increment (or decreased,
depending on the direction of the crawl), and the periodic detection is repeated, using the
periodic state from the preceding parameter point as the initial condition. If the new periodic
solution has the same number of spikes (burst sequence signature) as for a previous parameter
value, a bigger parameter step is undertaken (parameter increment is stretched). If the new
periodic state is different from the old one, the parameter increment is decreased, and the new
state sequence is put into a queue along with the corresponding parameter value and the full
state vector. The process continues until the parameter step drops below a certain minimal
value, which will occur close to the boundary (bifurcation point) of the parameter interval
supporting the corresponding periodic state.

Once one boundary of the relevant parameter interval is detected, the crawl is re-started from
the initial parameter point, but in the opposite direction (i.e. the parameter is decreased). When
the second parameter bound/bifurcation is detected, the parameter basin of the stable state has
been determined. The process is then repeated for the next periodic state in the parameter queue.
Recall that the queue is composed of activity states that the algorithm encounters when the
parameter value is increased beyond the bifurcation point. Therefore, the algorithm “hops”
from one state to another one which lies close to the first one in the parameter space.
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Note that the completeness of the reconstructed phase diagram is by no means guaranteed. For
instance, if the parameter support of one state lies completely within the parameter state of the
other cell, thatstate may never be detected, unless it lies close to the bifurcation point of some
third stable periodic state.

A3. Case of discontinuous h* = G(L) map
Here we describe the reconstruction of the discontinuous h* = G(L) map shown in Fig. 10B.
The discontinuity is directly related to the amount of time needed for the cell potential to drop
below the vh threshold after burst termination. This time duration is labeled ϕ and marked by
a double arrow in Fig. 10A. If the T-current threshold vh is close to the spiking threshold of
the cell, as is the case for the simulations in Figs. 2-9, the potential of each cell will reach vh
almost instantaneously on burst termination, and ϕ is approximately zero (ϕ is ignored in Eqs.
(18-20)). If however vh is significantly lower than the potential of the cell upon burst
termination, it may take several inhibitory synaptic inputs to lower the potential below vh.

ϕ depends on the level of T-current inactivation of both cells, ϕ = ϕ(h*, hL), where hL is the T-
current inactivation of the bursting cell at the end of the burst (see Fig. 10A). The larger hL,
the higher is the V-nullcline of the cell on termination of its burst, and the longer it takes for
the potential of the cell to drop below the vh threshold. ϕ is also a function of h*, since h*
determines the initial burst spiking frequency, and hence, it determines how quickly the
inhibitory synaptic input can lower the potential of the suppressed cell below vh.

Thus, the de-inactivation of the T-current is described by

where ho (the minimal value of h(t)) and hL are determined using the steady-state
approximation, i.e. under the assumption of periodicity in burst characteristics h*, ϕ and L.
Examination of Fig. 10A leads to:

 Thus, ϕ is a function of both h* and L:

Therefore, we have

Solving for h* yields

(18)

In the above equation, the function Φ(h*, L) is defined numerically. Namely, the potential of
one cell (bursting cell) is set above the spiking threshold, while the potential of the partner cell
(the suppressed cell) is set below the excitation threshold, and their h values are set respectively
to h* and hL = h* exp[-L/τhi]. Given these initial conditions, the feedforward network equations
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are then integrated until the potential of the suppressed cell reaches vh. The corresponding
passage time determines the value ϕ(h*, hL).

Since the right-hand side of Eq. (18) depends on h* through Φ(h*, L), this equation defines the
h* = G(L) map implicitly. It is solved iteratively for each value of L:

where the initial condition h*1 is obtained under the approximation ho = 0, ϕ = 0:

The iterative solution approaches the thin curve shown in Fig. 10A. The discontinuity in this
curve is the result of the discontinuity of the function ϕ(h*, hL): as h* decreases or hL increases
past some critical value, it will take one more inhibitory input to suppress the cell below vh,
resulting in a jump increase in ϕ by one inter-spike interval.

References
[1]. Bartos M, Manor Y, Nadim F, Marder E, Nusbaum MP. Coordination of fast and slow rhythmic

neuronal circuits. J Neurosci 1999;19:6650–6660. [PubMed: 10414994]
[2]. Bertram R, Sherman A. Dynamical complexity and temporal plasticity in pancreatic beta-cells. J

Biosci 2000;25:197–209. [PubMed: 10878861]
[3]. Bose A, Manor Y, Nadim F. Bistable oscillations arising from synaptic depression. SIAM J Appl

Math 2001;62:706–727.
[4]. Butera RJ. Multirhythmic bursting. Chaos 1998;8:274–284. [PubMed: 12779730]
[5]. Canavier CC, Baxter DA, Clark JW, Byrne JH. Multiple modes of activity in a model neuron suggest

a novel mechanism for the effects of neuromodulators. J Neurophysiol 1994;72:872–882. [PubMed:
7983542]

[6]. Canavier CC, Clark JW, Byrne JH. Simulation of the bursting activity of neuron R15 in Aplysia: role
of ionic currents, calcium balance, and modulatory transmitters. J Neurophysiol 1991;66:2107–
2124. [PubMed: 1725879]

[7]. Chay TR, Rinzel J. Bursting, beating, and chaos in an excitable membrane model. Biophys J
1985;47:357–366. [PubMed: 3884058]

[8]. Coombes, C.; Bressloff, P., editors. World Scientific. 2005. Bursting: The Genesis of Rhythm in the
Nervous System.

[9]. Destexhe A, Sejnowski TJ. Interactions between membrane conductances underlying thalamocortical
slow-wave oscillations. Physiol Rev 2003;83:1401–53. [PubMed: 14506309]

[10]. Ermentrout GB, Kopell N. Fine structure of neural spiking and synchronization in the presence of
conduction delays. Proc Natl Acad Sci U.S.A 1998;95:1259–1264. [PubMed: 9448319]

[11]. Grillner S, Markram H, De Schutter E, Silberberg G, LeBeau FE. Microcircuits in action-from CPGs
to neocortex. Trends Neurosci 2005;28:525–33. [PubMed: 16118022]

[12]. Huguenard JR, McCormick DA. Simulation of the currents involved in rhythmic oscillations in
thalamic relay neurons. J Neurophysiol 1992;68:1373–1383. [PubMed: 1279135]

[13]. Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev
Physiol 1996;58:329–48. [PubMed: 8815798]

[14]. Hines M, Morse T, Carnevale N, Shepard G. Model DB: A database to support computational
neuroscience. J Comput Neurosci 2004;17:7–11. [PubMed: 15218350]

[15]. Izhikevich EM, Hoppensteadt FC. Classification of Bursting Mappings. Int J Bifurc and Chaos
2004;14:3847–3854.

[16]. Keener, J.; Sneyd, J. Mathematical Physiology. Springer-Verlag; New York: 1998. p. 154-155.
[17]. Llinas RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol

2006;95:3297–308. [PubMed: 16554502]
[18]. Lofaro T, Kopell N. Timing regulation in a network reduced from voltage-gated equations to a one-

dimensional map. J Math Biol 1999;38:479–533. [PubMed: 10422266]

Matveev et al. Page 18

J Comput Neurosci. Author manuscript; available in PMC 2008 December 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[19]. Lechner HA, Baxter DA, Clark JW, Byrne JH. Bistability and its regulation by serotonin in the
endogenously bursting neuron R15 in Aplysia. J Neurophysiol 1996;75:957–962. [PubMed:
8714668]

[20]. Lee E, Terman D. Uniqueness and stability of periodic bursting solutions. J Diff Eq 1999;158:48–
78.

[21]. Manor Y, Nadim F. Synaptic depression mediates bistability in neuronal networks with recurrent
inhibitory connectivity. J Neurosci 2001;21:9460–9470. [PubMed: 11717380]

[22]. Masino MA, Calabrese RL. Period differences between segmental oscillators produce
intersegmental phase differences in the leech heartbeat timing network. J Neurophysiol
2002;87:1603–1615. [PubMed: 11877529]

[23]. Marder E, Calabrese R. Principles of rhythmic motor pattern generation. Physiol Rev 1996;76:687–
717. [PubMed: 8757786]

[24]. Medvedev G. Reduction of a model of an excitable cell to a one-dimensional map. Physica D
2005;202:37–59.

[25]. Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys J 1981;35:193–
213. [PubMed: 7260316]

[26]. Perkel DH, Mulloney B. Motor pattern production in reciprocally inhibitory neurons exhibiting
postinhibitory rebound. Science 1974;185:181–183. [PubMed: 4834220]

[27]. Satterlie R. Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor
pattern generator. Science 1985;229:402–404. [PubMed: 17795901]

[28]. Skinner FK, Kopell N, Marder E. Mechanisms for oscillation and frequency control in reciprocally
inhibitory model neural networks. J Comput Neurosci 1994;1:69–87. [PubMed: 8792226]

[29]. Sohal V, Huguenard J. It takes T to tango. Neuron 2001;31:35–45. [PubMed: 11498049]
[30]. Sohal VS, Pangratz-Fuehrer S, Rudolph U, Huguenard JR. Intrinsic and synaptic dynamics interact

to generate emergent patterns of rhythmic bursting in thalamocortical neurons. J Neurosci
2006;26:4247–4255. [PubMed: 16624945]

[31]. Rubin J, Terman D. Geometric Analysis of Population Rhythms in Synaptically Coupled Neuronal
Networks. Neural Comput 2000;12:597–645. [PubMed: 10769324]

[32]. Selverston, A.; Moulins, M. The Crustacean stomatogastric system : A model for the study of central
nervous systems. Springer-Verlag; Berlin, New York: 1986.

[33]. Smolen P, Terman D, Rinzel D. Properties of a Bursting Model with Two Slow Inhibitory Variables.
SIAM J Appl Math 1993;53:861–892.

[34]. Terman D. Chaotic Spikes Arising from a Model of Bursting in Excitable Membranes. SIAM J
Appl Math 1994;51:1418–1450.

[35]. Terman D, Kopell N, Bose A. Dynamics of Two Mutually Coupled Slow Inhibitory Neurons.
Physica D 1998;117:241–275.

[36]. Traub RD, Whittington MA, Colling SB, Buzsaki G, Jefferys JG. Analysis of gamma rhythms in
the rat hippocampus in vitro and in vivo. J Physiol 1996;493:471–484. [PubMed: 8782110]

[37]. Van Vreeswijk C, Abbott LF, Ermentrout B. When Inhibition not Excitation Synchronizes Neural
Firing. J Comput Neurosci 1994;1:313–321. [PubMed: 8792237]

[38]. Wang XJ, Buzsaki G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal
network model. J Neurosci 1996;16:6402–6413. [PubMed: 8815919]

[39]. Wang XJ, Rinzel J. Alternating and synchronous rhythms in reciprocally inhibitory model neurons.
Neural Computat 1992;4:84–97.

[40]. Wang XJ, Rinzel J. Spindle rhythmicity in the reticularis thalami nucleus: synchronization among
mutually inhibitory neurons. Neuroscience 1994;53:899–904. [PubMed: 8389430]

Matveev et al. Page 19

J Comput Neurosci. Author manuscript; available in PMC 2008 December 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 1.
A two-cell network of reciprocally inhibitory neurons with a T-current exhibits multiple stable
periodic bursting solutions characterized by different number of spikes per burst for a single
parameter set.
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FIGURE 2.
Single-cell dynamics: the Morris-Lecar oscillator (Eq. (1) with IT = 0). (A) In the absence of
the T-current each uncoupled cell produces slow tonic spiking activity. (B) The phase-plane
diagram demonstrates the periodic spiking arising from the interplay between the dynamics of
the membrane potential v and the K+ current activation variable w. The model parameters are
chosen to produce Type-I excitability. The vertical dotted line shows the T-current inactivation
threshold vh.
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FIGURE 3.
Post-inhibitory rebound induced by the T-current. (A) Time course of cell potential (top
panel), IT inactivation h (middle panel), and IT activation a (bottom panel), in response to a
hyperpolarizing pulse (horizontal bar) applied during t ∈ [50, 80] ms. Hyperpolarization
pushes v below IT inactivation threshold, vh (dotted line), allowing IT to de-inactivate (h grows).
When hyperpolarization is removed, IT is activated (bottom panel). The decrease in spike
frequency during the rebound burst is caused by the decay of h (inactivation). (B) Effect of a
hyperpolarizing pulse in the v-w phase plane. The positions on the v-nullcline labeled as 1, 2,
3 and 4 correspond to the accordingly labeled time points in A. The hyperpolarizing pulse
lowers the v-nullcline (2), creating a stable hyperpolarized equilibrium (circle). Note that the
equilibrium lies to the left of vh, allowing IT to de-inactivate (h grows). When hyperpolarization
is relieved, the v-nullcline shifts up (3), leading to a burst of action potentials (spike frequency
is proportional to the elevation of the left knee of the v-nullcline). During the burst IT gradually
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inactivates, and the nullcline goes back to its unperturbed location (1, 4). The trajectory of the
rebound burst sweeps the gray area.

Matveev et al. Page 23

J Comput Neurosci. Author manuscript; available in PMC 2008 December 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 4.
Periodic anti-phase bursting of the coupled system of equations. (A) Time traces of the
membrane potentials (top panel), IT inactivation, hj (middle panel), and the synaptic strength
variables of the two cells, sj (bottom panel). (B) Phase plane dynamics of the network activity.
The v-nullcline of the bursting cell gradually moves down as h decreases (inactivation). The
inhibitory synaptic input from the bursting cell lowers the v-nullcline of the postsynaptic cell,
trapping the cell at an equilibrium (filled circle). Double arrows indicate the oscillatory
movement of the v-nullcline and the equilibrium point with each spike of the bursting cell. The
open circle on the v = vh line marks the escape point of the suppressed cell (IT activation
threshold).
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FIGURE 5.
Dependence of burst length on h, the level of T-current de-inactivation. (A) The relationship
T(h) between ISI and h shown in a single cell. Filled circles mark the values of h and the
corresponding ISIs for a burst characterized by the initial condition h(0) ≡ h* = 0.12, and shown
in panel B. (B) Membrane potential (top panel) and T-current inactivation level h (bottom panel)
for a numerically-generated burst with h(0) = 0.12 shown for illustrative purposes. Filled circles
label the value of h at the beginning of each of the 10 inter-spike intervals (cf. A). (C)
Dependence of each inter-spike interval on h*, the value of h at the start of the burst. Each
curve was generated using the curve T(h) curve in panel A and Eqs.(9-10). Note that ISI1 is the
curve T (h) shown in panel A. The horizontal dotted line denotes . The highlighted section
of each curve indicates the last ISI at a given value of h*. The dotted vertical line corresponds
to the burst in panel B. (D) The dependence of burst length on h* is obtained by adding all
ISIn in panel C at each value of h*, plus . In C, numeric labels indicate the index of last ISI
in the burst, while in D, the integers indicate the number of spikes per burst.
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FIGURE 6.
The function h* = G(L) obtained from Eq. (15) (A) and the fixed points of the Poincaré return
map (B). (A) The dependence of h*, the IT inactivation level at burst initiation, on the length
of the preceding inter-burst interval, L, with τlo = 200 ms and τhi = 20 ms. The gray box
corresponds to the axis limits in panel B. (B) The stable periodic bursting solutions are obtained
as the intersections of the piece-wise continuous L = F(h*) map see Fig. 5 D), and the inverse
of the map shown in panel A, L = G-1(h*) (dashed curve). The intersection points of the two
curves correspond to the two stable periodic solutions, with 19 and 20 spikes per burst,
respectively. Note that panel B implicitly describes the Poincaré return map, which is given by

.
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FIGURE 7.
Control of burst properties by parameters  and τlo. (A) An increase in the value of  from
1.0 to 1.08 mS/cm2 is equivalent to a horizontal contraction of the the F(h*) map, but does not
affect the G(L) map. Filled circles indicate the stable periodic solutions for the parameter values
corresponding to Fig. 6; open circles label the stable periodic solutions after the value of  is
increased from 1.0 to 1.08 mS/cm2. Note that the bursting state with 19 spikes per burst
disappears and is replaced by a solution with 21 spikes per burst. (B) An increase in the value
of τlo from 200 to 220 ms causes a vertical stretch of the G(L) map, but has no effect on the F
(h*) map. Note that the bursting solution with 20 spikes is replaced with a solution with 18
spikes per burst.

Matveev et al. Page 27

J Comput Neurosci. Author manuscript; available in PMC 2008 December 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 8.
Comparison of the bifurcation diagrams for the bursting states as a function of T-current
conductance, obtained from the Poincaré map (black) and by the numerical crawl algorithm
(gray). The dashed lines and circles mark the values  and  and the corresponding
stationary states shown in Fig. 7 A.
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FIGURE 9.
Dynamics of the network near unstable equilibria. (A) Bifurcation diagram as a function of the
synaptic decay time constant τsyn obtained from the single-cell map L = F(h*). Black curves
label the stable periodic solutions, while the gray curves label the unstable solutions. Note that
the stability of periodic bursting is lost near τsyn = 4.8. The dashed lines mark the value τsyn =
4 corresponding to Figs. 4-8 and the value τsyn = 10 corresponding to panel B. (B) The dynamics
of the network for τsyn = 10, shown as a cobweb and obtained by parsing the numerically
integrated solution to the network equations, shown in panel C. Note the irregular pattern of
the peak value of T-current de-inactivation (h*) apparent in the time trace shown in C,
corresponding to the (possibly) chaotic dynamics of the discrete Poincaré map shown in B.
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FIGURE 10.
Poincaré map for the case of faster synaptic decay (τsyn = 1 ms) and lower T-current activation/
inactivation threshold (vh = -52 mV). (A) shows the potential and T-current inactivation of the
two cells for the 9 spikes per burst solution (shown also in Fig. 1). Note that the T-current
dynamics of the two cells are not completely anti-phase, due to the lag between cell escape
time and the time of suppression of the other cell below vh (ϕ, double arrow). (B) The Poincaré
map. Note that the G(L) map is discontinuous; each discontinuity corresponds to the value of
L below which an extra spike is required to inhibit the suppressed cell below vh (see Appendix
A3). Dashed line corresponds to the G(L) curve obtained under assumption of half-center
bursting. Three of the 6 stable periodic bursting solutions are shown in Fig. 1 B.
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FIGURE 11.
Numerically reconstructed bifurcation diagram as a function of T-current conductance, , for
the case of fast synaptic decay and low vh. Dotted line corresponds to the value of  in Fig.
10.
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