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Abstract In this study, a neuromusculoskeletal model
was built to give insight into the mechanisms behind
the modulation of reflexive feedback strength as exper-
imentally identified in the human shoulder joint. The
model is an integration of a biologically realistic neural
network consisting of motoneurons and interneurons,
modeling 12 populations of spinal neurons, and a one
degree-of-freedom musculoskeletal model, including
proprioceptors. The model could mimic the findings
of human postural experiments, using presynaptic in-
hibition of the Ia afferents to modulate the feedback
gains. In a pathological case, disabling one specific
neural connection between the inhibitory interneurons
and the motoneurons could mimic the experimental
findings in complex regional pain syndrome patients. It
is concluded that the model is a valuable tool to gain
insight into the spinal contributions to human motor
control. Applications lay in the fields of human motor
control and neurological disorders, where hypotheses
on motor dysfunction can be tested, like spasticity,
clonus, and tremor.
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1 Introduction

Human motor control is a continuous interaction be-
tween muscles, sensory organs and the central nervous
system (CNS). Numerous modeling and experimental
studies have tried to elucidate the role of the CNS
in controlling movement and posture (e.g. Rack et al.
1984; Kearney et al. 1997; Prochazka et al. 1997). The
lowest level of feedback is at the spinal cord, result-
ing in spinal reflexes. In van der Helm et al. (2002)
a method was developed that allows a quantitative
assessment of circuits that modulate the strength of
spinal reflexes of the upper extremities during postural
control in vivo. Force disturbances were applied at the
hand while subjects had to minimize the deviations
resulting from a force disturbance. Healthy subjects
modulate the magnitude of their reflexes based on
the frequency content of the force disturbance and
these reflexes can provide up to half of the total joint
stiffness. Literature suggests that presynaptic inhibition
is the primary mechanism to modulate reflex strength
(Stein and Capaday 1988). The reflex modulation can
even result in negative feedback gains (i.e. positive
feedback: negative feedback gains in a negative feed-
back loop) for disturbances containing only frequen-
cies in a small bandwidth around a centre frequency
(van der Helm et al. 2002). Theoretical studies showed
that these adaptations to the disturbance properties, in-
cluding the negative feedback gains, are optimal in the
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sense of performance (Schouten et al. 2001; De Vlugt
et al. 2001). However, quantification of reflex gains
in complex regional pain syndrome (CRPS) patients
with tonic dystonia revealed their inability to achieve
negative gains, although modulation of positive gains
was still possible (Schouten et al. 2003).

System identification methods as used in van der
Helm et al. (2002) and Schouten et al. (2003) estimate
lumped feedback gain parameters for position, veloc-
ity and acceleration feedback in vivo, based on a lin-
earization of the neuromuscular system. The reflexive
feedback gains and the modulation thereof is the result
of a network of motoneurons and interneurons at the
spinal cord level. The present study will make a first
attempt to model the neural network responsible for
the reflexive feedback gain settings at the spinal cord.
A neuromusculoskeletal model is presented, based on a
biologically realistic neural network (BNN) describing
the spinal segment which is connected with a mus-
culoskeletal model. The BNN consists of 2,298 (in-
ter)neurons, of which the strength and distribution of
the synaptic connections were taken from Bashor’s
model (Bashor 1998). The model can give insight into
the neural mechanisms at the spinal cord, their func-
tional effect on human motor control, and the setting
of reflexive feedback gains. The model will be simu-
lated using spike based signals and integrate-and-fire
neurons, in order to stay close to biological reality. As
the BNN model is rather complex, its robustness is
assessed by analyzing the sensitivity of the individual
BNN parameters onto the dynamics of the complete
neuromusculoskeletal model (NMS).

Applications of the model lay in the field of mo-
tor control and movement disorders. In this study the
model will be used to describe experimental findings
of human posture control in healthy subjects (van der
Helm et al. 2002), by simulating presynaptic inhibition
to modulate the reflex strength. It will be investigated
if negative lumped feedback gains can be obtained
with presynaptic inhibition. Literature concerning the
neural mechanisms to generate negative feedback gains
is scarce. Negative feedback gains imply that the activa-
tion of a shortening muscle increases, and the activation
of a lengthening muscle decreases, in mere contrast to
the well-know mono-synaptic reflexes. Since shorten-
ing muscles do not provide Ia afferent feedback, the
simultaneous lengthening of the antagonistic muscle
might provide the necessary sensory input: reciprocal
excitation, as suggested by Jankowska and Hammar
(2002). Finally, in a pathological case the possible appli-
cations for movement disorders are demonstrated. The
model is used to elucidate mechanisms involved in the
setting of negative feedback gains. Dysfunction of such

mechanisms could give insight into the pathophysiology
of CRPS.

2 Method

First, a BNN was integrated with a musculoskeletal
model of the human arm with proprioceptors, creating
a complete NMS model. The musculoskeletal model
represents the experimental set-up on the shoulder
joint (van der Helm et al. 2002; Schouten et al. 2003).
In these experiments the subject was seated in a chair
while holding the handle of a linear actuator. The sub-
ject was positioned in such a way that the elbow made
an angle of 90 degrees. Force perturbations applied
through the handle resulted in ante-/retroflexion move-
ments of the shoulder joint. Since the perturbations
induced motion in one degree-of-freedom (DOF), the
experimental setup was modeled as a single limb with a
pair of antagonistic muscles. The BNN is based on the
model of Bashor (1998), which includes a minimal set
of spinal (inter)neurons necessary for reflex modeling.
It is important to note that no further training of the
synaptic connections was done. General data for the
models for the muscle spindles and Golgi tendon organs
were derived from literature (Prochazka and Gorassini
1998a,b; Crago et al. 1982).

Second, the NMS model was stimulated by force
disturbances in computer simulations. The scheme of
the model is given in Fig. 1. In the simulations, the
force disturbance d(t) acted on the endpoint of the limb
resulting in position deviations x(t). The BNN blended
tonic supraspinal excitatory commands from the brain
and reflexive feedback from proprioceptors (muscle
spindles and Golgi tendon organs) into activation sig-
nals for both muscles. The lumped reflexive feedback
gains were quantified by applying the procedure of
van der Helm et al. (2002).

Third, a sensitivity analysis was performed on the
model, with two main goals. The first is to check
whether the linear approximation method, used for ob-
taining lumped reflex gains, remains valid under large
parameter changes in the highly non-linear BNN. The
second goal is to quantify the amount of influence that
each parameter has on the overall motor output, thus
to determine the dominance of the BNN parameters.

Fourth and finally, the effect of presynaptic inhibi-
tion of the monosynaptic stretch reflex on modulating
the lumped feedback parameters was investigated and
neural mechanisms were analyzed for their ability to
generate or prevent negative feedback gains. The re-
sults were compared to the experimental results for
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Fig. 1 Scheme of the NMS model. d(t): external force dis-
turbance which act to the limb; x(t): endpoint position; iss(t):
supraspinal excitatory commands; Fm(t): muscle force from the
contraction dynamics (CD); xm(t): muscle stretch; ẋm(t): muscle
stretch velocity; u(t): motoneuron activation. The muscle spindles
(MS) and Golgi tendon organs (GTO) sense the muscle stretch,
stretch velocity and force resulting in afferent signals on the Ia(t),
Ib (t), and I I(t) afferents respectively. These afferent signals have
a conduction time τI or τI I , depending on the afferent path,
before reaching the BNN. After the conduction time τu(t), u(t)
reaches the muscle and is converted into the muscle activation
a(t) by the activation dynamics (AD). An asterisk (*) denotes
the necessity to double the components for the flexor and the
extensor muscles

both healthy subjects and CRPS patients (van der Helm
et al. 2002; Schouten et al. 2003).

2.1 Simulation model

2.1.1 Musculoskeletal model

Figure 2 shows the geometrical model representation
of the human shoulder for postural control tasks. The
model has one DOF and comprises a lumped mass ml of
2 kg on the endpoint of a 0.3 m long limb (ll), on which
two antagonistic muscles (normal length lm = 0.3 m) act
with a constant moment arm la of 0.04 m (Stroeve 1999).

Using a non-linear model simulation of the ex-
periment, Schouten et al. (2001) showed that a Hill-
type muscle model underestimated the muscle stiffness
and overestimated the muscle viscosity. Therefore, in
the present study a simple linear muscle model rep-
resenting experimental values was preferred above a
non-linear model which can not predict the muscle
visco-elasticity. The muscles were represented with a
linearized model with activation a, muscle stretch xm

and stretch velocity ẋm as inputs. In the reference po-
sition, the stretch is defined as zero. The muscle force
Fm(t) is given by:

Fm(t) = a(t) (Fmax + Kmxm(t) + Bmẋm(t)) (1)

Fig. 2 Geometrical
representation of the
one-DOF model of the
human shoulder. The limb
with concentrated mass ml is
actuated by two antagonistic
muscles, (1) and (2), and
disturbed by a force d(t)
resulting in the position
deviation x(t). The limb
length is represented by ll and
the constant moment arm of
the muscle force by la. The
black figure is the limb in
equilibrium or reference
position; the grey figure is the
limb after a small deviation ll

lala

x(t)

d(t)

1 2

ml

with a maximum contraction force Fmax of 800 N
(Stroeve 1999), muscle stiffness Km and damping Bm,
and the activation dynamics:

da(t)
dt

= −a(t) + u(t)
τa

(2)

where τa is the muscle activation time constant of 30 ms
(Winters and Stark 1985), u(t) the motoneuron activa-
tion, and a(t) the muscle activation. Both u(t) and a(t)
are normalized, ranging from 0 to 1.

In the study of van der Helm et al. (2002) an end-
point stiffness of 800 N/m and an endpoint damp-
ing of 40 Ns/m were found, representing the visco-
elastic properties of the (co-contracted) muscles and
surrounding tissues. Note that in the musculoskeletal
model all the visco-elastic properties are accounted for
in the muscles. The above mentioned endpoint values
were converted to muscle stiffness Km and damping
Bm. It was shown that in the experiments muscle
co-activation was approximately 40% of maximum
Abbink (2002), resulting in a Km of 56.3 kN/m and a
Bm of 2.81 kNs/m.

2.1.2 Proprioceptors

Vital to any feedback control network is the quality of
the sensory input. Prochazka and Gorassini (1998a,b)
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compared several mathematical models for their ability
to predict the firing characteristics of muscle spindle
primary afferents recorded chronically during normal
stepping in cats. Jankowska and Hammar (2002) argued
that the essential properties and organizations of spinal
interneuronal systems in cat and man are comparable,
and therefore relevant cat data and models are used
in the NMS model of this study when human data and
models are unavailable.

Muscle spindles provide muscle length and veloc-
ity information via two separate afferent spike train
channels: the Ia afferent for both length and velocity
information (conduction delay τI = 15 ms Winters and
Stark 1985) and the slower II afferent for pure length
information (τI I = 30 ms Winters and Stark 1985). Two
equations are used to determine the spike rate (in sp/s)
for both channels (Prochazka and Gorassini 1998a,b):

Ia(t) = pm + ppxm(t) + pv1 ẋpv2
m (t) (3)

I I(t) = pm + ppxm(t) (4)

where xm(t) is the muscle stretch (in mm) and ẋm(t)
the muscle stretch velocity (in mm/s). The constant pm

represents the mean firing rate and is arbitrarily set to
80 sp/s. The length change constant pp and velocity con-
stants pv1 and pv2 scale the length and velocity informa-
tion. Although Prochazka and Gorassini (1998a,b) kept
the pp at 2 for the Ia afferent channel, in this study it
is set to 13.5, equal to their choice for the II afferent
channel. This increases the static component of the Ia
afferent channel, as is expected for postural control
tasks. Values for pv1 and pv2 (4.3 and 0.6) are claimed
to be valid for both humans and cats and therefore used
unaltered (Prochazka and Gorassini 1998a,b).

Golgi tendon organ models are far more scarce, but
available literature suggest that the firing rate is linear
with the force (Crago et al. 1982). The Ib afferent spike
rate output is linear from zero to maximum isometric
muscle force:

Ib (t) = pf
Fm(t)
Fmax

(5)

where Fm is the muscle force (in N) and Fmax the before
mentioned maximum muscle force (800 N). With a
mean muscle force of 40% of maximum, the Ib afferent
output is arbitrarily set to the muscle spindles’ firing
mean of 80 sp/s, hence giving the constant pf a value
of 200 sp/s.

2.1.3 Biological neural network

Bashor (1998) created a large-scale BNN model to
study the dynamic interactions in neuron populations.

He calibrated the model by examining its ability to
reproduce known aspects of the reflexes, but without
linking it to a musculoskeletal model. Here the BNN
model is used to control a musculoskeletal model dur-
ing postural control tasks. Early simulations showed
that three adaptations to Bashor’s BNN model were
required.

Firstly, the recurrent projections within neuron pop-
ulations resulted in mass synchronized firing which
disrupted the motoneuron to muscle signal. This mass-
synchronization was considered an artifact which could
have multiple origins, like the limited number of neu-
rons in the network, the relatively large integration
time step, the homogeneity of neuron properties and
projection time delays and finally the absence of noise
in the neural projections. Bashor (1998) already noted
the synchronized firing and applied a moving average
filter (100 ms) before plotting the signals. However, in
this study these signals are the input to the muscles
and applying a moving average filter would introduce
additional artificial dynamics in the loop. Disabling the
intra-populational projections made the neurons less
responsive when the neurons were of the excitatory
kind, and more when inhibitory. However, model-wide
behavior was unaffected by these static gain changes
and disabling largely reduced synchronized firing.

Secondly, the default connection strength to one spe-
cific group of interneurons, the inhibitory interneurons
(IN, see Fig. 3), were too weak to generate any signifi-
cant background firing on which (downwards) modula-
tion was possible. Increasing all the synaptic connection
strengths to the inhibitory interneurons provided a
level of background activity comparable to the other
interneurons, but did make them more responsive
to input changes. These adaptations eliminated the
lack of significant firing, without disrupting model-wide
behavior.

Thirdly, there were no II afferent pathways, impor-
tant for the length information feedback from mus-
cle spindles. II afferent paths are polysynaptic and
possibly also reciprocally coupled to the motoneurons
(Jankowska and Hammar 2002). A pair of II afferent
paths was added including synaptic connections to the
Ia and excitatory interneurons (EX). The synaptic con-
nection strengths were made approximately equal to
the Ia and Ib afferent connections.

The BNN generates the motoneuron activation u(t)
by combining supraspinal excitations iss(t) and afferent
signals from the muscle spindles and Golgi tendon or-
gans. The network consists of motoneurons and several
types of interneurons. The motoneurons directly drive
the muscles; the interneurons are exciting or inhibit-
ing intermediates (possibly recurrent or reciprocal) for
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Fig. 3 Neuron populations and their interconnections in the
BNN of this study (based on Bashor 1998). Proprioceptive input
comes through the Ia, Ib and II afferents and the firing rate out-
put of the motoneurons drives the muscles in the musculoskele-
tal model. The supraspinal commands (iss, paths not displayed)
excite the BNN via synapses e6, e11, e16 and e24. ESTC are
the normal excitatory short time constant synapses, DESTC and
TESTC the ESTC with double and triple connection strengths,
ELTC the excitatory long time constant synapses and ISTC the
inhibitory short time constant synapses. The neuron types are
given inside the circles, where MN denotes the motoneurons, RC
the Renshaw cells and IA, IB, IN and EX respectively the IA, IB,
inhibitory and excitatory interneurons. The synapse identifying
numbers are denoted by e.. (excitatory) or i.. (inhibitory) and the
value between the brackets represents the number of terminals
received from the indicated source by a representative cell

passing the Ia, II, and Ib afferent information received
from the proprioceptors on to the motoneurons.

The BNN model (Fig. 3) consists of a large popula-
tion of 2,298 neurons (Bashor 1998). The neurons in the
model are grouped in six antagonistic population pairs,
representing motoneurons (MN, n = 169, for both the
agonistic and the antagonistic population), Renshaw
cells (RC, n = 196), and intermediating interneurons
(Ia, Ib, inhibitory and excitatory interneurons, abbre-
viated by IA, IB, IN, EX respectively, n = 196 each).
Pairs of Ia, II, and Ib afferent (n = 121 each) and
supraspinal excitation fibers (n = 98) provide further
input to the neurons.

Cell and network algorithms and the synaptic mech-
anism of the BNN are based on the SYSTM22 program
using the PTNRN10 neuron model of MacGregor
(1987), see also Bashor (1998). Input to the model are
the spike trains Sk(t) to each neuron k, originating
from supraspinal centers (tonic excitation) and from
the Ia, II and Ib afferent nerves. The neuron model
uses discrete equations with a time-step �t of 1 ms,
based on the following first order differential equations
to calculate the potassium conductance Gp(t) (times
resting conductance), the membrane potential Vm(t) (in
mV) and the threshold potential Vt(t) (in mV) for every
neuron k at time t (in ms):

dGk
p(t)

dt
= −Gk

p(t) + Bk̃Sk(t)

τ k̃
r

(6)

dVk
m(t)
dt

=
−Vk

m(t) + Gk
p(t)

(
Vk̃

p − Vk
m(t)

)

τ k̃
m

+
∑5

m̃=1 Gk,m̃
i (t)(Vm̃

e − Vk
m(t))

τ k̃
m

(7)

dVk
t (t)

dt
=

−
(

Vk
t (t) − Vk̃

0

)
+ Ck̃Vk

m(t)

τ k̃
t

(8)

where:

dGk,m̃
i (t)
dt

=
−Gk,m̃

i (t) + ∑3558
m=1

Gk,m̃,m
s Sm(t)

1−e−�/τm̃
s

τ m̃
s

(9)

and resulting in the spiking output for each neuron k:

Sk(t) =
{

0 if Vk
m(t)<Vk

t (t)
1 if Vk

m(t)≥Vk
t (t)

(10)

where the superscript k denotes the neuron number
(out of 2,298 network neurons), k̃ the type of neuron
(motoneuron, Renshaw cell or general interneuron),
m the origin of the synaptic connection to neuron
k (out of 3,558 neural, afferent or tonic descending
sources), and m̃ the type of synaptic connection (ESTC,
DESTC, TESTC, ELTC, or ISTC). All potentials are
relative to the resting potential of a neuron (≈ −70
mV). See Table 1 for the parameter names and values
of neurons and synapses and Fig. 3 for the synaptic con-
nection strengths and numbers. Conductance changes
Gi(t), produced by afferent and tonic descending ex-
citation fiber input and cell to cell connections, in-
crease or decrease the membrane potential Vm(t). The
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Table 1 Properties of neuron
and synapse types in the
PTNRN10 neuron model and
SYSTM22 program
(MacGregor 1987) based on
Bashor (1998, and personal
communications)

All potentials are relative to
the resting potential of a
neuron (≈ −70 mV).

Description Neuron type

MN RC IA,IB,IN,EX

B [-] Sensitivity to potassium conductance 70 4 35
C [-] Sensitivity to accommodation 0.6 0.7 0.6
V0 [mV] Initial threshold 10 10 10
Vp [mV] Equilibrium potential for potassium −10 −10 -10
τm [ms] Membrane time constant 5 5 5
τr [ms] Refractory time constant 20 3 10
τt [ms] Time constant for accommodation 25 25 25

Synapse type

ESTC DESTC TESTC ELTC ISTC

Gs [-] Conductance change per transmission 0.01 0.02 0.03 0.01 0.01
Ve [mV] Equilibrium potential for synaptic type 70 70 70 70 −10
τs [ms] Time constant for synaptic action 1 1 1 50 1

potential Vm(t) determines the threshold potential
Vt(t). When the membrane potential Vm(t) is higher
than the threshold potential Vt(t), the cell fires a spike
on its output channel S(t) and the potassium conduc-
tance Gp(t) rises, creating a refractory period.

The synaptic connections from neural, afferent or
tonic descending sources to targeted neuron popula-
tions are randomly distributed in these populations in
the MacGregor SYSTM22 program. Figure 3 shows
the number of connections a single neurons receives
from the projecting population and the type of synapse
used to make that connection. The spike trains of the
afferent fibers and supraspinal descending fibers were
generated by Poisson processes with an instantaneous
firing rate matching the spike rates of the fibers.

2.1.4 Normalized muscle activation

The motoneuron activation u(t) provides the input for
the muscle activation dynamics, and is constructed by
taking the average output over the motoneurons in the
agonistic or antagonistic population and then applying
a moving average filter (20 ms) to smooth the signals.
The motoneuron output requires a conductance time
τu of 10 ms before it reaches the muscle activation
dynamics (Winters and Stark 1985).

With a tonic supraspinal excitatory input of 80 sp/s,
the motoneurons have a mean firing rate of 25 sp/s, the
Renshaw cells 100 sp/s and the interneurons from 15 to
40 sp/s. These firing rates are biologically realistic, while
allowing for both up- and downwards variations. The
average 25 sp/s output firing rate of the motoneurons is
therefore set to equal the 40% of maximum activation
into the muscle activation model (see Section 2.1.1).

2.1.5 Mono-, di- and tri-synaptic feedback paths

The flow of proprioceptive information from the mus-
cle spindles and Golgi tendon organs may pass several
interneurons before reaching the motoneurons. The ex-
act path of the information flow has an influence on the
net result of agonistic and antagonistic muscle activa-
tion. The net result for any path can be defined as pos-
itive or negative; a positive result for a feedback path
starting at an agonistic proprioceptor is the increase in
the activation of the agonistic muscles relative to the
antagonistic muscles, either by increased activation of
the agonistic or decreased activation of the antagonistic
muscles. Crossing a reciprocal or inhibitory synapse
will make the net result of the path negative; crossing
another makes it positive again.

The net result of a path is thus dependent on the
types and number of synaptic connections it crosses (see
Fig. 3). The information from the proprioceptors may
reach the motoneurons over many paths, yet for this
network, the influence of a path decreases with the num-
ber of crossed synapses due to information dilution; any
interneuron will output a mean result of all the, possibly
conflicting, inputs. Therefore, paths crossing more than
three synapses are ignored. All possible mono-, di- and
trisynaptic paths in the spinal reflex model are given in
Table 2. The total net result of the agonistic path on the
agonistic motoneuron is also given.

2.2 Lumped reflex model

In this study the relation between lumped feedback
gains at endpoint level and neural network properties
was analyzed. For each specific setting, the NMS model
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Table 2 Mono-, di- and tri-synaptic paths in the BNN (see Fig. 3)

Aff. Syn. Nrn. Syn. Nrn. Syn. Nrn. result

Monosynaptic feedback path

Ia
e5−→ MN positive

Disynaptic feedback paths

Ia
e14−→ IA i2=⇒ MN positive

Ia
e20−→ IN

i3−→ MN negative

Ib
e21−→ IN

i3−→ MN negative

II
e15−→ IA i2=⇒ MN positive

II
e23−→ EX

e4−→ MN positive
Trisynaptic feedback paths

Ia
e14−→ IA i10=⇒ RC

i1−→ MN negative

Ia
e14−→ IA i13=⇒ IA i2=⇒ MN positive

Ia
e17−→ IB

e19−→ IN
i3−→ MN negative

Ia
e17−→ IB e22=⇒ EX

e4−→ MN negative

Ib
e18−→ IB

e19−→ IN
i3−→ MN negative

Ib
e18−→ IB e22=⇒ EX

e4−→ MN negative

II
e15−→ IA i10=⇒ RC

i1−→ MN negative

II
e15−→ IA i13=⇒ IA i2=⇒ MN positive

Ia, Ib and II denote the type of afferent (first column: aff.), MN, RC, IA, IB, IN and EX the type of neuron (nrn.), and e.. and i..
the synaptic type of the connection (syn.), respectively excitatory and inhibitory, together with the synapse identifying number. A
−→ corresponds to a connection within the agonistic or the antagonistic populations, whereas a =⇒ represents a connection from the
agonistic to the antagonistic populations or vice versa. The last column (result) indicates whether the net result of the afferent to the
muscles will be positive or negative; i.e. positive when an increase of the agonistic afferent activation also increases the agonistic muscle
activation relative to the antagonistic muscle activation.

is simulated with a force disturbance applied to the
endpoint of the limb and the resulting position devi-
ations are recorded. The reflexive feedback gains are
estimated by fitting a linear model to allow comparisons
with experimental results of van der Helm et al. (2002)
and Schouten et al. (2003).

2.2.1 Disturbance signal

The force disturbances d(t) used in this study are con-
tinuous wide-bandwidth signals, with a length of 9 s,
a uniform power distribution between 0.6 and 20 Hz
and a random phase. The signals are designed in the
frequency domain, inverse fast Fourier transformed to
time domain and then stored for use in the simulations.
To allow linear model approximations, the force distur-
bance signal is scaled such that the root-mean-square
(RMS) of the endpoint position is around 5 mm.

2.2.2 Data recording and processing

The force disturbance d(t) and position deviation x(t)
are sampled at 1 kHz. From the 9 s over which each

realization is simulated, only the last 8,192 samples are
used. This removes any transient response coming from
the NMS model. The signals are transformed to the
frequency domain by fast Fourier transform (FFT) and
the frequency response function (FRF) for the joint
admittance Ĥnms( f ) of the NMS model (see Fig. 4) is
estimated from the appropriate spectral densities.

Ĥnms( f ) = Ĝdx( f )

Ĝdd( f )
(11)

N(f)
D(f) X(f)+ +

Hnms(f)

Fig. 4 Block scheme of human postural control expressed in the
frequency domain. Hnms( f ): transfer function of the dynamics of
the NMS model; D( f ): external force disturbance; X( f ): skeletal
bone endpoint position; N( f ): model remnant. The NMS dynam-
ics (dashed box) are described by the linear transfer function
Hnms( f ), together with the remnant N( f ), which is uncorrelated
with D( f )
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where Ĝ denotes the auto (Ĝdd( f ), Ĝxx( f )) and cross
(Ĝdx( f )) spectral densities (hat denotes estimate). To
improve the estimate and to reduce the variance of the
estimators, each setting is simulated eight times with
eight different disturbance realizations. The spectral
densities resulting from these eight realizations are then
averaged, where after another improvement of the es-
timate is achieved by averaging the spectral densities
over four frequency bands (Jenkins and Watts 1968).
After the averaging step, the spectral densities have a
frequency resolution of 4

8.192 s ≈ 0.49 Hz
As a measure for the reliability of the estimated FRF

the coherence is estimated:

γ̂ 2( f ) =
∣∣∣Ĝdx( f )

∣∣∣
2

Ĝdd( f )Ĝxx( f )
(12)

By definition the coherence ranges between 0 and 1.
A coherence of 1 at a specific frequency means that a
linear relationship exists between the signals and the
measurements contains no noise or nonlinearities at
that frequency. Possible causes of low coherence must
be found in nonlinearities in the BNN, since there is no
noise in the simulation.

2.2.3 Fitting the linear model

Fitting a linear arm model on the estimated FRF of the
joint admittance Ĥnms(s) quantifies the feedback gains
in the linear model. These gains can then be compared
with the results of van der Helm et al. (2002) and
Schouten et al. (2003).

In the study of van der Helm et al. (2002) a linear
model is developed to describe the joint admittance
(see Fig. 5). The muscle visco-elasticity (including co-
contraction) and the limb mass are described by a mass-
spring-damper system, Hint(s):

Hint(s) = 1

ms2 + bs + k
(13)

D(s) X(s)+

-

Hact(s) Href(s)

Hint(s)

Hnms(s)

Fig. 5 Block scheme of the linear arm model of which the trans-
fer function Hnms(s) is derived. D(s): external force disturbance;
X(s): skeletal bone endpoint position; Hint(s): intrinsic (muscle)
dynamics; Href (s): reflexive dynamics; Hact(s): muscle activation
dynamics

with mass m, intrinsic damping b , and intrinsic stiffness
k. The Laplace operator s equals λ + j2π f where λ = 0
because the initial transient response in the first second
of simulation is removed from the recordings. The
reflexive feedback is described by feedback gains for
position kp, velocity kv , and acceleration ka in series
with a single neural time delay τd, equal to the round-
trip delay of the Ia afferent.

Href (s) = (kas2 + kvs + kp)e−τds (14)

The muscle activation dynamics are modelled as a first
order process Hact(s) with activation time constant τa.

Hact(s) = 1

τas + 1
(15)

Combining above equations gives the complete linear
arm model, Hnms(s):

Hnms(s) = X(s)
D(s)

= Hint(s)
1 + Hint(s)Href (s)Hact(s)

= 1

ms2 + bs + k + (
kas2 + kvs + kp

) e−τds

τas+1

(16)

In this study the values for the intrinsic properties,
neural time delay and activation dynamics are taken
from the simulation model, and are thus a priori known.
The reflex gains (ka, kv , kp) are estimated by fitting the
linear arm model Hnms [Eq. (16)] on the FRF of
the joint admittance Ĥnms(s) [Eq. (11)], while keeping
the intrinsic parameters, neural time delay and time
constants fixed (m = 2 kg, b = 40 Ns/m, k = 800 N/m,
τd = 25 ms, τa = 30 ms). To fit the linear model on
the measured data, the following criterion function is
minimized:

L(p) =
∑

k

γ̂ 2( fk)

∣∣∣ln Ĥnms( fk) − ln Hnms( fk, p)

∣∣∣
2

(17)

where k indexes the frequency vector fk, and p is the
parameter vector (kp, kv , ka). The criterion function is
evaluated over the bandwidth of the disturbance signal
(0.6–20 Hz). Because the FRFs have a large range of
gain the logarithmic difference is better suited for the
criterion function (Pintelon et al. 1994).

2.2.4 Linear model validation

The variance accounted for (VAF) is calculated to give
an indication of the goodness of the model fit, where the
maximum VAF score of 1 indicates that the observed
behavior is completely described by the linear model.

VAF = 1 −
∑n

i=1

∣∣x(ti) − x̂(ti)
∣∣2

∑n

i=1
|x(ti)|2

(18)
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where i indexes the sampled time vector. x(ti) is the
simulated output of the NMS model. x̂(ti) is the forward
simulated skeletal endpoint position using the original
disturbance signals, the linear arm model and the esti-
mated feedback parameters.

2.3 Model sensitivity

As described previously, the behavior of the BNN,
determined by neuronal, synaptic and sensory para-
meters, is captured in the parameters of the lumped
feedback model. It needs to be checked if this severely
reduced model remains valid for changing BNN pa-
rameters. Furthermore, the sensitivity analysis should
give insight in the effect of each BNN parameter on the
arm dynamics.

The 55 parameters included in the analysis were:
synaptic strengths (24), afferent and efferent delays
(3), muscle activation time constant (1), sensory organ
constants (7), tonic descending excitation rate (1), and
single neuron model parameters (19). Since the intrinsic
properties of the musculoskeletal model are linear in
their parameters [Eq. (1)], they were not included in
the sensitivity analysis. Each of the 55 parameters was
varied by subsequently multiplying its default value
with each of the seven factors 1

2 , 1√
2
, 10

11 , 1, 11
10 ,

√
2, 2.

For each of these settings, the BNN was run and the
lumped parameter model was fitted on the results. To
determine the validity of the lumped model, the vari-
ance accounted for (VAF) was determined for each fit,
giving a measure of the goodness-of-fit of the output
behavior of the lumped model with respect to the BNN.
Finally, a sensitivity measure S was determined for
each parameter, which represents the amount of change
that the variation has caused in the dynamics of the
model.

S =

∑
m

(
max

∣∣H j
nms( fm)

∣∣ − min
∣∣H j

nms( fm)
∣∣)

∑
m

∣∣Hnms,default( fm)
∣∣ (19)

where H j
nms, j = 1 . . . 7 are the estimated transfer func-

tions for the seven parameter variations, m indexes the
frequency vector and Hnms,default is the estimated trans-
fer function when all parameters have their nominal
value. The sensitivity is evaluated over the frequencies
with disturbance power. So sensitivity measure S is the
normalized area, spanned by the gains of the seven
transfer functions H j

nms and represents the amount of
spread that the variation has caused in the dynamics
of the model. In a future study, these effects be stud-
ied in more detail by determining sensitivity measures

between the BNN parameters and each separate reflex
gain kp, kv and ka.

2.4 Case studies

In this study the application of the model is demon-
strated in two cases, where the model is compared with
experimental findings for healthy subjects and CRPS
patients. First, the developed BNN model was used to
elucidate mechanisms involved in the setting of nega-
tive feedback gains, as experimentally found in van der
Helm et al. (2002). And second, dysfunction of such
mechanisms could give insight into the pathophysiology
of CRPS (Schouten et al. 2003).

2.4.1 Reflex modulation

Depending on the conditions healthy subjects modulate
the magnitude of their reflexes (van der Helm et al.
2002). For specific conditions even negative feedback
gains were found. Negative feedback gains (i.e. positive
feedback: negative feedback gains in a negative feed-
back loop) can only be achieved by either an inhibitory
effect of agonistic afferents on the agonistic muscle
or an excitatory effect of the antagonist muscle. Stein
and Capaday (1988), amongst others, suggested that
presynaptic inhibition is the main neural mechanism to
modulate the strength of the stretch reflex. In this study
the model will be used to describe experimental finding
of human posture control (van der Helm et al. 2002) by
simulating presynaptic inhibition to modulate the reflex
strength. It will be investigated if negative lumped feed-
back gains can be obtained with presynaptic inhibition.
In the BNN of the present study, the effect of presy-
naptic inhibition is simulated by directly modulating
the strength of the synapse of the monosynaptic stretch
reflex (see Fig. 3, synapse e5). Increased presynaptic
inhibition is modeled by lowering the synaptic strength
of synapse e5 and vice versa. In the simulations, this
synaptic strength is varied within a range of 0 to 3 times
its default value.

2.4.2 Pathological case

Complex regional pain syndrome (CRPS), also known
as reflex sympathetic dystrophy, is a painful condition
typically following a minor injury to a limb. The symp-
toms may include movement disorders (Van Hilten
et al. 2001), of which the most common form in pa-
tients with CRPS is tonic dystonia (Bhatia et al. 1993;
Schwartzman and Kerrigan 1990). Dystonia is charac-
terized by involuntary muscle contractions forcing the
affected limbs into abnormal postures. The mechanisms
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responsible for tonic dystonia are still unknown, but
involvement of inhibitory synapses in the spinal cord
was suggested (Van Hilten et al. 2000).

Quantification of reflex gains in CRPS patients with
tonic dystonia revealed their inability to achieve neg-
ative gains, although modulation of positive gains was
still possible (Schouten et al. 2003). Presynaptic inhibi-
tion on its own can not cause negative feedback gains,
but it can prevent the monosynaptic stretch reflex from
being dominant over other paths within the BNN. To
investigate whether neurotransmitter deficiencies can
prevent the setting of negative feedback gains (Van
Hilten et al. 2000; Jankowska and Hammar 2002), all
present mono-, di- and trisynaptic paths were identified
(see Table 2), and classified as either having a positive
or negative result. A candidate synapse was selected for
its ability to disable some, but not all, di- or trisynaptic
feedback paths. It was clear that the main paths with a
negative result all pass the inhibitory interneurons (IN),
and thereby the synapse between these interneurons
and the motoneurons (synapse i3 in Fig. 3). Although
other synapses convey negatively stimulating feedback,
none are both disynaptic and coming from the Ia af-
ferent channel. These last two conditions are important
because: (a) in this network model every synaptic con-
nection a path has to cross dilutes the information with
information coming from other paths, and (b) the Ia af-
ferent information has a stronger amplitude compared
to the two other afferent channels (see Fig. 7). The
synapse connecting the inhibitory interneurons to the
motoneurons fitted the profile, as this synapse mediates
all di-synaptic pathways and two out of six tri-synaptic
pathways with a negative result (Table 2) which is
essential for the generation of the negative feedback
gains. While synapse i3 is disabled the monosynaptic
stretch reflex synapse e5 (i.e. reducing the presynaptic
inhibition) is increased again from 0 to 3 times the
default strength in steps of 0.25 to mimic reflex strength
modulation .

2.5 Tools and languages

The NMS model was developed using Matlab (© The
MathWorks). All Fortran code in the SYSTM22 pro-
gram (MacGregor 1987) was translated to Matlab code,
as were the proprioceptor models. Simulating a single
run of the NMS model took roughly 3.5 times the
simulation length on a 1.8 GHz Windows (© Microsoft)
machine with 1 GB of internal memory, so a 9 s simula-
tion run took 31 s in real time. Note that each neural
network set-up was simulated eight times, therefore
taking 4 min to complete.

3 Results

Typical neuron activity during the default BNN setting
is given in Fig. 6. The number of firing neurons is rep-
resentative for the signal strength in the neuron pool.
Similarly, typical muscle stretch, stretch velocity and
muscle force signals together with the resulting II, Ia
and Ib afferent activity are given in Fig. 7. In Fig. 7 it can
be seen that the number of firing II afferents correlates
to the muscle length, Ia afferents to the combination of
muscle length and contracting velocity, and Ib afferents
to the muscle force.

3.1 Model sensitivity

Figure 8 shows the 15 most sensitive synaptic and
sensory parameters. Generally, VAF is high (mean
above 0.9), indicating that the linear lumped reflex
model fits the simulated BNN data well and this linear
approximation method is valid. There are three dis-
tinct outliers in the three most sensitive parameters.
The first two directly affect the level of muscle co-
contraction and the low VAFs are due to large arm
deviations caused by reduced co-contraction, the third
is due to the strong non-linear effect of the exponential
pv2 in the velocity term of the muscle spindle model
[Eq. (3)]. The sensitivity measure S shows some dis-
tinct grouping in its outcome. The two most dominant
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Fig. 6 Typical neuron activity for the six agonistic neuron pop-
ulations. Left y-axis: number of neurons firing a spike; right y-
axis: related spiking frequency, averaged over the population.
The grey horizontal lines indicate the number of neurons firing
a spike and the spiking frequency, averaged over the entire
simulation run. The signals were recorded on the flexor side of
the BNN during a single simulation with the default BNN setting.
To improve readability, only a single second of the simulation is
plotted
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Fig. 7 Typical muscle stretch, stretch velocity and muscle force
signals (left plots) and the resulting II, Ia and Ib afferent activity
(right plots). Dashed line indicates the average signal. The signals
were recorded on the flexor side of the BNN during a single
simulation with the default BNN setting. To improve readability,
only a single second of the simulation is plotted

parameters represent co-contraction through tonic de-
scending excitation. The following three parameters
are the velocity dependent Ia-afferent parameters (pv1

and pv2), together with the synaptic strength of the
monosynaptic stretch reflex. Next, after the muscle
activation time constant and afferent conduction de-
lay, come two parameters related to force feedback
through the Ib afferent. Finally, after the efferent time
delay, there is a group of Ia-related parameters related
to background spindle activity and position-dependent
information (pm and pp). These results suggest that
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Fig. 8 The 15 most sensitive synaptic and sensory parameters.
Top: sensitivity measure S together with the parameter descrip-
tion; bottom: VAF of the lumped parameter model (mean ± SD
over the seven variations factors)

arm admittance (Hnms), as commonly acknowledged, is
dominated by co-contraction and Ia-afferent feedback,
while force feedback play a lesser, though not negligible
role. Furthermore, time delays and the activation time
constant have a strong effect on the arm dynamics.
The group II-afferent plays a remarkably small role
in the model. The most dominant II-afferent related
parameter (at rank 26) has a sensitivity that is only one
third of that of the least sensitive Ia-afferent related
parameter.

Figure 9 shows the 15 most sensitive neuronal para-
meters. The three most sensitive neuronal parameters
(the equilibrium potential of a short time constant ex-
citatory synapse, the amount of threshold accommoda-
tion in the motoneurons and the resting threshold of all
neurons) have strong effect on VAF. The low values
here could all be explained by the motoneuron pools
completely falling silent in one or more parameter
settings. Three out of the six most sensitive parameters
are motoneuron related. This makes sense, since all
neuronal activity has to pass through the motoneurons
before having any effect on the dynamics. The results
further show that sensitivity of the neuronal parameters
is generally higher than those of the synaptic and sen-
sory parameters, while they are hard to get an accurate
(experimental) value for.

3.2 Reflex modulation

By increasing the connection strength of the monosy-
naptic stretch reflex synapse (synapse e5), a decrease
of presynaptic inhibition on this synapse was simulated.
This is the main modulation mechanism for the velocity
and position feedback information. Figure 10 gives the
input force disturbance and output endpoint position
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of the lumped parameter model (bottom)
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Fig. 10 Force disturbance (above) and endpoint position dis-
placement (below) of three different simulation runs. Monosy-
naptic stretch reflex synaptic strengths of 0 (dotted), 1.5 (solid)
and 3 (dashed) times the default synaptic strength, simulating
decreasing presynaptic inhibition on this synapse. To improve
readability, only 4 s of a simulation are plotted

deviation of three presynaptic inhibition settings (0, 1.5,
and 3 times default strength). With increasing synaptic
strength (decreasing synaptic inhibition) the position
deviations decrease as a result of increased position and
velocity feedback.

Figure 11 gives the FRF for the joint admittance
(effect of force perturbation on position deviation)
and the coherence for the same three settings. In-
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Fig. 11 Gain (above), phase (middle) of the joint admittance,
and the coherence γ̂ 2( f ) (below). Monosynaptic stretch reflex
synaptic strengths of 0 (dots), 1.5 (pluses) and 3 (‘x’-marks) times
the default synaptic strength, simulating decreasing presynaptic
inhibition on this synapse. Solid line: simulation; dotted line:
linear model fit; and dashed line: simulation without afferent
feedback

creasing synaptic strength decreases the admittance at
low frequencies (increased position feedback resem-
bles stiffness, if the neural time-delays are neglected),
while a peak in the gain at the eigenfrequency appears
(oscillations).

Plotting the results for the thirteen presynaptic in-
hibition settings displays a clear rising trend for all
three feedback gains (Fig. 12, black lines), with negative
gains for low synaptic strengths (high presynaptic inhi-
bition). This plot shows that modulation of the reflexive
feedback gains is possible by the presynaptic inhibition
mechanism, and even negative gains are achievable.
Furthermore, all three feedback gains increase simulta-
neously with the strength of the monosynaptic stretch
reflex.

3.3 Pathological case

To verify the importance of feedback paths of the
BNN for achieving negative feedback gains as absent
with CRPS, the procedure of simulating presynaptic
inhibition on the monosynaptic stretch reflex synapse
was repeated. The main supplier of negative stimu-
lation, the synapse between the inhibitory interneu-
ron and the motoneuron (synapse i3), was disabled.
Plotting for the presynaptic inhibition settings again
displays a clear rising trend for all three feedback gain
types (Fig. 12, grey lines). However, the negative feed-
back gains have disappeared, even at high presynaptic
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reflex synapse strength, a decreasing presynaptic inhibition is sim-
ulated; for maximum presynaptic inhibition, the monosynaptic
stretch reflex synapse strength is 0. Black lines: normal situation;
grey lines: pathological situation, synapse i3 was disabled
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inhibition, while feedback modulation by the presynap-
tic inhibition mechanism is still possible.

4 Discussion

The NMS model of this study is the first attempt to
explain the modulation of lumped reflexive feedback
parameters with a physiologically based model of the
spinal neural network. The model is an integration of a
BNN based on Bashor (1998) with a one-DOF muscu-
loskeletal model derived from human shoulder studies
(Stroeve 1999; van der Helm et al. 2002; Schouten et al.
2003). Muscle proprioceptors obtained from the com-
parative studies of Prochazka and Gorassini (1998a,b)
and Crago et al. (1982) provide the neural network
with muscle length, velocity and force feedback from
the musculoskeletal model. As a result, the parameters
in the model (synapse strength, spike rates, etc) are
physically interpretable, and might in the future be
compared with measurements in order to validate the
model.

The parameters in the BNN, such as distribu-
tion, number and strength of synaptic connections,
have been adopted from Bashor (1998). Without any
further adaptation of these parameters, i.e. without
training the BNN, the neural network results of ex-
periments with human subjects could be reproduced.
One might assume that the neural network model struc-
ture and parameters are already optimized, since they
are derived from direct neuro-anatomical observations.
Bashor (1998) derived these parameters mainly from
cat studies, assuming similarities between humans and
cat. This study is based on the same assumption.

The main additions to the work of Bashor (1998) of
this study are the connection of the BNN to a one-DOF
musculoskeletal model with proprioceptive feedback,
and the use of experimental results to compare the
model behavior. Applications of the model lay in the
field of motor control and movement disorders. In this
study the model gives insight into the mechanisms be-
hind the negative position and velocity feedback gains
as identified in human posture control (van der Helm
et al. 2002; Schouten et al. 2003).

4.1 Limitations

There are still many limitations to the present model,
as it is a first attempt. The BNN uses only a small sub-
set of neurons and connections present in the human
spinal cord, the muscle model is a simple describing
model based on human identification instead of a more

biologically realistic model, and models and parameters
of the proprioceptors are mainly based on cat data and
further assumptions.

The BNN does include the major and well-known
spinal connections and interneurons, representing a
minimal set necessary for reflex modeling. However,
the model used here did not explicitly include group
II interneurons (Jankowska and Hammar 2002) and Ib
excitory pathways (Prochazka et al. 1997), the number
of neurons is barely sufficient to use distribution func-
tions for neuron pools and interneuronal connections
and does not reflect the vast amount of interneurons in
the spinal cord. The model neglects the connections to
other parts of the central nervous system, as well as the
recurrent intra-populational connections to prevent ar-
tificial mass-synchronization. Finally, the neuron model
is relatively simple and is merely descriptive about the
processes involved in spike generation.

The linear visco-elastic muscle model used here in-
stead of a Hill-type muscle models due to their poor
representation of the muscle visco-elasticity (van der
Helm et al. 2002), might in future be replaced by a more
realistic, but more complicated, cross-bridge model. To
improve simplicity and reduce the numerical burden
the elasticity of the tendon is not incorporated in both
the NMS model and the reflex gain model (Fellows and
Rack 1987).

The sensor models of the muscle spindle and GTO
have been based on animal experiments published in
literature (Prochazka and Gorassini 1998a,b). These
sensor models do not account for modulation through
γ -motor neuron activity, and one might discuss if the
experimental results for animals are representative for
human experiments, in which the task instruction and
perception have a dominant role for the feedback mod-
ulation (van der Helm et al. 2002). Secondly, other
receptors like in the skin or joint are not included due
to lack of available data.

However, taking all this into account, the integration
of these separate components into the NMS model does
result in a increased understanding of their interactions
and the overall system performance. Nevertheless, it is
currently investigated how to best increase the biologi-
cal realism of the model.

4.2 Model verifications

Validating the NMS was restricted by the unavailability
of (human) biological data for the components. The ap-
proach used here was to keep all parameters within bio-
logical supposed correct boundaries while verifying the
components in black-box simulations where possible
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and analysis of the sensitivity of the model behavior on
the neuronal, synaptic and sensory parameters.

Bashor (1998) summarized that his large-scale spinal
segmental model, mainly based on cat data, pro-
duced predictable reflex responses when compared
with stretch and Golgi tendon organ reflexes studies,
and behaviors such as agonist excitation and recipro-
cal inhibition were both predicted and observed. The
proprioceptors derived from the comparative analysis
in Prochazka and Gorassini (1998a,b) were reported to
give a good prediction of the firing characteristics of
muscle spindle primary afferents recorded chronically
during normal stepping in cats, with the key variable
in achieving good predictions being muscle velocity.
The problem of whether the above studies are valid
for a human model was addressed by Jankowska and
Hammar (2002). Their general impression arising from
results of studies on human and cat reflex interneuronal
systems was that these systems have more features in
common than differing. They hypothesized that not
only the properties investigated so far, but also other
basic properties of human spinal interneurons, such
as their membrane properties and their sensitivity to
various chemical compounds, are comparable to those
found in the cat.

The available black-box verifications for this NMS
model and the sensitivity analysis do not suggest any
abnormalities. Figures 6 and 7 show that neuron firing
rates stay within biological plausible boundaries, and
changing parameters in the BNN mechanisms produces
many wanted or unwanted states, but with counter-
parts as observed in human subjects. The presumption
that feedback gains can be controlled by presynaptic
inhibition on the monosynaptic stretch reflex synapse
(Stein and Capaday 1988) was corroborated with the
results for the normal situation in Fig. 12. So, although
the model is not validated, and possible differences
between cat and human cannot be excluded, it is consid-
ered reliable for a mechanistic study as presented in this
article. Nevertheless, the current model should be used
for suggesting or hypothesizing rather than claiming
cause-and-effect relations between neural mechanisms
and motor behavior.

In the sensitivity analysis, focus was on the effect
of the BNN model parameters to the overall system
dynamics. Although the analysis has shown that un-
certainties in parameter values (especially those of the
individual neurons) can have a strong effect on motor
output, the linear lumped reflex gain model can be fit-
ted with a high VAF under large parametric variation.
This means that, although exact biologically realistic
values are hard to obtain for each separate model
element, trends in model behavior can be reliably

expressed in terms of reflex gain changes. Using the ex-
act same methods, the effect on the individual lumped
parameters will be determined in a future study. That
means that changes in lumped parameters can be linked
to the BNN parameters, which have actual physiologi-
cal meaning.

4.3 Applications

In this study the BNN-based NMS model was compared
with two experimental cases: reflex strength modula-
tion and a pathological case (CRPS).

During normal human postural control, humans
modulate the strength of the reflex path depend-
ing on the conditions, where the reflex strength can
even become negative (van der Helm et al. 2002).
Figure 12 shows that to achieve negative feedback gains
for position and velocity information, a high presynap-
tic inhibition of the monosynaptic stretch reflex synapse
(synapse e5 in Fig. 3) is required, disabling the transfer
from the Ia afferents to the motoneurons. The weaker
this connection, the lower the feedback gains and vice
versa. In effect, the high presynaptic inhibition disables
the dominant monosynaptic stretch reflex path and al-
lows negatively stimulating paths in the BNN to achieve
the negative feedback gains.

Schouten et al. (2003) observed the inability of CRPS
patients with dystonia to set negative feedback gains
even though optimal posture control dictates these
gains as desirable (Schouten et al. 2001; De Vlugt
et al. 2001). However, the patients were still able to
modulate the positive feedback gains. Suggestions that
the inability to set negative gains is due to neuro-
transmitter deficiencies of inhibitory interneurons in
the spinal neural network (Van Hilten et al. 2000;
Jankowska and Hammar 2002) were investigated in
this study. Analysis of all possible feedback paths in
the BNN suggested the synaptic connections of the in-
hibitory interneurons to the motoneurons are essential
to achieve negative feedback gains. Figure 12 shows
that when the synaptic connections of the inhibitory
interneurons to the motoneurons are disabled, even
maximum presynaptic inhibition on the Ia afferent con-
nection to the motoneuron cannot cause the identi-
fied position and velocity feedback gains to become
negative. Modulation of the positive feedback gains is
still possible by the regular control of this presynaptic
inhibition on the monosynaptic stretch reflex synapse.
Therefore, it is concluded that dysfunctional inhibitory
synapses in important negative feedback paths, likely
the result of a neurotransmitter deficiency, can pre-
vent the setting of negative feedback gains and might
shed light on "the problem of the relative importance
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of the deficient inhibition of α-motoneurons as one
of the main causes of the hyperexcitability of these
[motoneurons]" (Jankowska and Hammar 2002).

4.4 Conclusion

In the NMS model of this study, a BNN of the spinal
neural network was integrated with a musculoskele-
tal model, including proprioceptive feedback. In other
studies modeling the complete human NMS system,
the spinal network is simply neglected or extremely
simplified, although a few models exist on animal NMS
systems (e.g. Ekeberg and Grillner 1999; Ivashko et al.
2003). On the other hand, studies on biological realistic
neural network behavior tend to focus on the network
and lack closed loop interaction with a realistic system,
like the musculoskeletal system. Applications of the
current NMS model lay in the fields of motor control
and neurological disorders, where hypotheses on motor
dysfunction can be tested, like spasticity, clonus, and
tremor.

To demonstrate the potential use of the model two
applications were investigated. It was shown that (a) in
the present model the combined actions of the monosy-
naptic stretch reflex synapse and the synapse between
the inhibitory interneuron and the motoneuron play an
important role in obtaining negative feedback gains, as
experimentally found during human postural control
(van der Helm et al. 2002) and (b) disabling the synapse
between the inhibitory interneurons and the motoneu-
rons could account for the previously unexplained non-
negative feedback gains in CRPS patients (Schouten
et al. 2003).
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