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Abstract

The background activity of a cortical neural network is modeled by
a homogeneous integrate-and-fire network with unreliable inhibitory
synapses. Numerical and analytical calculations show that the net-
work relaxes into a stationary state of high attention. The majority
of the neurons has a membrane potential just below the threshold;
as a consequence the network can react immediately - on the time
scale of synaptic transmission- on external pulses. The neurons fire
with a low rate and with a broad distribution of interspike intervals.
Firing events of the total network are correlated over short time pe-
riods. The firing rate increases linearly with external stimuli. In the
limit of infinitely large networks, the synaptic noise decreases to zero.
Nevertheless, the distribution of interspike intervals remains broad.

1 Introduction

A neural network processes information by cooperating neurons, which
interact by exchanging spikes of action potentials. Numerous experi-
mental and theoretical findings suggest that a cortical neural network
has a background activity of neurons firing irregularly at low rates
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[1, 8]. On top of this noisy activity, information is processed. It is still
not known how a neural network codes, stores and processes informa-
tion. For instance, information in the cortex may be coded in patterns
of neuronal firing rates (Hebbian cell assemblies) or in spatiotemporal
patterns of spikes (synfire chains). But, evidently, all this occurs in
a state of noisy activity. Therefore it is important to understand the
properties of the background activity.

Quantitative estimates of the rate and size of the synaptic events in
the cortex suggest that the irregular background activity stems from a
balance between excitatory and inhibitory postsynaptic currents [13,
14]. Both of these currents are large, but they compensate and the
activity of the network is triggered by the fluctuations of the total
current. Recent model calculations showed how to integrate Hebbian
cell assemblies or synfire chains in a balanced network [3, 4].

However, experimental evidence for balanced synaptic input is still
not available and it is not understood whether and how a neural net-
work is able to compensate large synaptic currents of different direc-
tions [13, 17]. In addition, inhibitory pulses can shunt excitation very
effectively. Therefore I follow a different approach and investigate a
network with inhibitory synapses, only. At a first step, the investiga-
tions concentrate on one single mechanism: unreliable inhibition.

It is text book knowledge that synaptic transmission is a stochastic
process. In fact, experiments on single synapses indicate that synapses
transmit siganls with a probability which can be as low as a few per-
cent [1, 2]. Only if an incoming spike is repeated in a short time
interval, the transmission probability increases [12]. This indicates
that the background activity is driven by unreliable synapses whereas
for information processing teh network improves synaptic reliability.

In this paper I investigate how unreliable inhibition effects the
collective properties of the network, hence I do not consider any kind
of additional spatial or temporal noise, neither disorder in the synaptic
connections and thresholds nor noise in the external stimulus.

One of the simplest models to describe the cooperative properties
of interacting neurons is a network of integrate-and-fire (IF) units [8].
A single neuron is driven by an excitatory input and generates and
transmits spikes. The total network may have unexpected complex
properties which are not obvious from a single model neuron.

From a more general point of view, IF networks are networks of
pulse coupled oscillators, and a large amount of work has been de-
voted to the investigation of the dynamics of nonlinear oscillators [15].
Several interesting phenomena have been found for IF-networks, for
instance synchronization [10], phase locking, clustering [7], fast global
oscillations [6], stochastic resonance, deterministic and transient chaos
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[16, 19] and
In this paper I investigate the stationary state of a network of

inhibitory neurons. The effect of unreliable inhibitory synapses on
the global properties of the network is studied numerically as well
as analytically. A single synapse consists of stochastic components;
it transmits signals with a probability which can be as low as a few
percent [1, 2, 12]. Any other microscopic mechanisms are omitted in
the model, like synaptic delay, distribution of thresholds and synaptic
strengths. The effect of excitatory input is modeled by a constant
stimulus.

Neither the model nor the analytic methods of this paper are new.
Nevertheless, a new phenomenon is observed which, to my knowledge,
was not discussed before: A network with inhibitory couplings relaxes
to a stationary state of high attention. After a few spikes per neuron,
the distribution of membrane potentials is sharply peaked just below
threshold. As a consequence, the system is able to react immediately,
i.e. on the time scale of spike generation, to tiny external pulses.

In the model of this paper the synaptic noise disappears in the
limit of infinitely large networks. However, the system adjusts to a
stationary state where the distribution of interspike intervals remains
broad.

2 The model

In our model, each neuron is described by the following differential
equation for the membrane potential V (t) [8],

τ
dV

dt
= −V (t) + V∞ (1)

τ is the relaxation time for the membrane potential and the driving
potential V∞ models a constant excitatory stimulus. When the mem-
brane potential V (t) reaches the threshold value θ the neuron fires a
spike and resets its potential to the value Vr.

A homogenous network is studied where each neuron has the pa-
rameters τ = 10 ms, Vr = −70 mV, V∞ = −50 mV and θ = −51 mV.
Hence, without any interactions, each neuron would fire periodically
with the time period T = τ ln 20 ≃ 30 ms which corresponds to a
frequency of 33 Hz.

I consider a homogeneous network of N mutually coupled neurons.
If any neuron fires, it sends its spike to its synapses which are con-
nected to all other neurons. The synapse is unreliable, it transmits the
signal with a probability p, only. If a signal is transmitted, it reduces
the postsynaptic potential by an amount J . In our simulations, I use
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the parameters N = 10000, p = 0.5 and J = 0.002 mV. Hence, each
synapse is extremely weak; but the effective strength pJN = 10mV is
of the order of the difference between threshold and reset potentials.

Between two consecutive pulses in the total the network, each neu-
ron follows Eq. (1) which is easily solved. The time needed to increase
the potential V (t1) to a value V (t2) is given by

t2 − t1 = τ ln
V∞ − V (t1)

V∞ − V (t2)
(2)

This equation allows a simple numerical simulation of the total net-
work without solving any differential equation. At each computational
step, the algorithm searches for the neuron with the maximal values
of V (t), calculates the time this neuron needs to reach the threshold
θ and resets its potential to the value Vr. Then the potentials of all
other neurons are calculated from Eq.(2) and, with probability p, their
values are reduced by the amount of J . This process is iterated until
the system has reached a stationary state. Then the distributions of
potentials and interspike intervals are recorded.

3 Results of the simulations

The homogeneous network of IF-neurons with the parameters given
before has been simulated numerically. I start from a flat distribution
of potentials between reset and threshold value. After a few spikes
per neuron the network has lost the memory to its initial state and
has relaxed to a stationary state. Note that our model is stochastic,
hence I have to discuss distributions of quantities of interest.

In the following I show results for the distribution of membrane
potentials and interspike intervals, both of which are accessible for real
neurons. Fig.1 shows the membrane potential of one single neuron as
a function of time. Since the network is homogeneous all neurons have
identical properties. Between two spikes, each neuron receives about
5000 pulses from the 9999 other neurons of the network. Each pulse
reduces its potential by the amount of J = 0.002 mV.

I see that a typical neuron increases its potential exponentially
fast to a kind of plateau immediately below threshold. The stochastic
input leads to fluctuations of the membrane potential. Whenever this
potential exceeds the threshold value the neuron fires. Note that the
average spike interval increases from 30 ms without couplings to about
100 ms. Obviously, the inhibitory pulses reduce the firing rate. But
less obvious, most of the neurons have a membrane potential close
to the threshold value. This is shown in Fig. 2. The distribution of
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Figure 1: Membrane Potential V (t) as a function of time for a network of
10000 inhibitory neurons with unreliable synapses. As soon as the potential
reaches the threshold value θ = −51mV the neuron emits a spike and resets
its potential to the value Vr = −70mV. Between two spikes,the potential is
reduced about 5000 times by the value of J = 0.002mV

membrane potentials has a peak which is only 0.05 mV below thresh-
old.

Note that the initial distribution was flat between -70 mV and -50
mV. After a short time the system has relaxed to a stationary where
most of the neurons have a potential immediately below threshold. As
a consequence, a large fraction of neurons can react immediately to
tiny pulses of the order of a fraction of millivolts. In Fig 3 the fraction
of neurons is shown which fires immediately after a excitatory pulse of
a given strength Jex. For comparison, I have included the correspond-
ing curve for the initial state. Fig. 4 shows the corresponding spike
pattern for Jex = 0.5mV. All of the neurons which have responded to
the pulse excitation remain quiet for at least 50 ms, see Fig 5. These
results show that the network has relaxed to a state of high attention
and can react to incoming small pulses on the time scale of synaptic
transmission.

The distribution of interspike intervals T is shown in Fig. 5. There
are no intervals below 50 ms and the distribution decays exponentially
fast for large values of T . Its mean value is < T >= 97.6 ms and its
standard deviation σ = 29.0ms, which gives a CV-value of 0.3. Since
the network has identical neurons, the average time s between two
consecutive spikes in the total network is < s >=< T > /N ≃ 0.01
ms. Usually one assumes that the spikes arriving at a single neuron
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Figure 2: Histogram of the membrane potentials of the network at some
specified time. Initially, the distribution was flat between -70mV and -51
mV. In the stationary state, shown here, most of the neurons have a po-
tential immediately below threshold threshold. The inset shows the same
distribution close to threshold.

are uncorrelated, which would yield a Poisson, i.e. an exponential
distribution of the intervals s between synaptic events. Fig. 6 shows
that this is not true. Although small values of s are more frequent than
larger ones, the distribution is not Poissonian indicating correlations
between events. In fact, the inset of Fig. 6 shows the correlations
between consecutive spikes. The spike intervals of the total network
are ordered, (s1, s2, s3, ...sj , ..), and Fig. 6 shows the cross correlation

C(k) =
< sj+ksj > − < sj >

2

< s2j > − < sj >2
(3)

Correlations can also be observed from the statistics of spike counts.
For instance, the Fano factor F is defined as the ratio of the variance
divided by the average number of spikes observed in some time inter-
val ∆T . For a Poisson process one has F = 1 independent of ∆T . I
have recorded the number of network events for ∆T = 1ms and find
a much smaller Fano factor of F = 0.15. Hence the distribution of
the number of spikes is much smaller than the corresponding one for
uncorrelated synaptic inputs.

In the context of pulse coupled oscillators the phase φ of an oscil-
lator is of interest. When a reference neuron fires at time t the phase
is defined as φk = t− tk where neuron k has fired at at previous time
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Figure 3: The fraction of neurons which fires immediately after an excitatory
pulse of a given value Jex. The network with stochastic synapses (lower val-
ues) is compared with a corresponding deterministic network (upper values).
The dotted line shows the corresponding fraction of neurons for the initial
state with a flat distribution of potentials.

tk. The distribution of phases is shown in Fig. 7. The distribution
of a deterministic network which is flat between 0 and 100 ms (see
below) is rounded due to synaptic noise.

It may be interesting to compare the properties of our stochastic
model with the corresponding deterministic one, i.e. with the model
with parameters p = 1 and J = 0.5. The effective strength pJN = 10
mV is identical but the synapses function completely reliable. Our
simulations show that the deterministic model relaxes to a periodic
state with a flat distribution of phases. Each neuron fires periodically
with the period T = 100.04 ms. The time s between events of the
total network is constant, s = T/N = 0.10004 ms. Hence, both of the
distributions of interspike as well as interevent intervals have a sharp
peak at a single value. This property of the deterministic network is
definitely at variance with the behavior of real neural networks.

Nevertheless, the distribution of membrane potentials is similar to
the one of the corresponding stochastic network, Fig. 2. Only very
close to threshold one observes deviations. Note that a flat distri-
bution of phases transforms to a distribution of potentials which is
proportional to 1/(µ−u) with a cutoff above the value θ. The param-
eter µ is slightly larger than the value θ and will be calculated in the
following section.
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Figure 4: Spike patterns of one hundred neurons (out of 10000). At time
t = 400ms, an excitatory pulse is applied which increases all postsynaptic
potentials by the amount of 0.5 mV. According to the previous figure 3,
about 60% of the neurons fire immediately.

4 Analytic approximations

Although our model is rather simple it cannot be calculated analyt-
ically. Even two neurons with unreliable synapses yield a complex
multifractal distribution of interspike intervals which can only be cal-
culated numerically [11]. But analytic approximations are possible
and help to understand the influence of the model parameters on the
behavior of the network.

It is well known that a stochastic network may be approximated
by a diffusion process of the membrane potential [18, 8, 5]. Assum-
ing uncorrelated synaptic input one can describe the time dependent
distribution of potentials by a Fokker-Planck equation for an Ornstein-
Uhlenbeck process. Spike intervals correspond to first passage times.
Although, even for this approximation, there is no closed expression
for the distribution of spike intervals, one can calculate its mean value
from the solution of an ordinary differential equation.

Two parameters enter this approximation: The mean value and the
variance of the synaptic input. Let us first ignore the fluctuations and
consider the membrane potential, Eq.(1), averaged over the stochastic
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Figure 5: Histogram of the intervals between spikes of a single neuron.

synaptic input. Each spike in the network adds a pulse pJ to the
potential of every neuron. The average time between two pulses is
given by < s >=< T > /N , hence I obtain the following equation

τ
dV

dt
= −V (t) + V∞ −

τpJN

< T >
(4)

The mean value of the membrane potential moves exponentially fast
to the value

µ = V∞ −

τJgN

< T >
(5)

until it crosses the threshold. If I would neglect fluctuations, the spike
interval would follow from Eq.(2), which yields

< T >

τ
= ln

V∞ −
τpJN
<T>

− Vr

V∞ −
τpJN
<T>

− θ
(6)

This self-consistent equation for the interspike interval is exact for the
deterministic model in the limit of a large network, N → ∞ with
JN =const. Note that in this case, the system relaxes to a periodic
state with only one single spike interval T . If the effective synaptic
strength JN is large, i.e. if the spike interval T is much large than τ ,
the denominator of Eq.(6) approaches zero and one obtains

< T >

τ
=

pJN

V∞ − θ
(7)

For a given value of J , the spike interval is proportional to the size
of the network and its inverse, the spike rate, is proportional to the
difference between stimulus and threshold potential.
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Figure 6: Histogram of the intervals between spikes of the total network.
The inset shows the corresponding cross correlation of consecutive spikes.

Our numerical simulations showed that the deterministic network
relaxes to a state with a flat distribution of phases (times after firing).
Using this fact, one immediately derives the distribution of membrane
potentials from Eq.(1) with the result

p(V ) =
τN

T

1

µ− V
for Vr < V < θ (8)

In the limit of infinitely large networks the potential µ approaches the
threshold, hence in this limit almost all neurons have a potential very
close to threshold. In fact, Eqs.(6,7) give the fraction P (ε) of neurons
which have a membrane potential in the interval [θ − ε, θ],

P (ε) =
ln(µ− θ + ε)− ln(µ− θ)

ln(µ− Vr)− ln(µ− θ)
(9)

This fraction approaches P (ε) = 1 with µ → θ.
For the stochastic version of the model, the simulations of the pre-

vious section yielded a broad distribution of spike intervals T which is
caused by the fluctuations of synaptic inputs. Therefore, in the ana-
lytic approximation, fluctuations of the synaptic input are included by
adding noise to Eq.(1) with mean value µ and variance σ2. The value
of the mean µ is given by Eq.(5) and the variance can be estimated
by assuming a Poisson statistics, one finds [5]

µ = V∞ −

τJgN

< T >
, σ2 = J2 pNτ

< T >
(10)
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Figure 7: Histogram of the phases of the neurons.

The mean spike interval is obtained from the self-consistent equation

< T >

τ
=

∞
∫

0

du e−u2

[

e2yθu − e2yru

u

]

(11)

with

yθ =
θ − µ

σ
, yr =

Vr − µ

σ
(12)

If yθ is large, i.e. if the fluctuations of the potential are small compared
to the difference between the driving potential µ and the threshold θ,
then the mean first passage time can be approximated by

< T >

τ
≃ ey

2

θ (13)

For the parameters of our simulations of the previous section, Eqs.
(11,13) give < T >= 94.6 ms and < T >= 93.5 ms which is in rea-
sonable agreement with the mean spike interval of the simulations,
< T >= 97.6 ms. The effective average stimulus µ is only 0.05 mV
below the threshold potential θ, but this difference is still large com-
pared to the fluctuations, one finds yθ = 1.23.

Note that, contrary to the deterministic case, the mean potential
relaxes to a value µ below the threshold θ. The spikes are generated
by fluctuations which cross the threshold. Nevertheless, in both cases,
the value of µ is close to θ which almost gives an identical average
spike interval, Eq.(6). In particular, the spike rate increases linearly
with the stimulus V∞.
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It might be interesting to consider the limit of large networks,
N → ∞ with constant JN = C. Inserting the average spike interval,
Eq.(6), into Eq.(13) yields

(

θ − µ

σ

)2

= ln
pC

V∞ − θ
(14)

σ2 =
C

N
(V∞ − θ) (15)

(θ − µ)2 =
C

N
(V∞ − θ) ln

pC

V∞ − θ
(16)

Hence the fluctuations of the synaptic noise show an unusual be-
haviour in this limit: Its variance decreases with increasing system
size N . However, the fluctuations relative to the difference between
driving potential µ and threshold θ remain constant, yielding a con-
stant mean spike interval < T >. The fluctuations do not disappear
in the thermodynamic limit N → ∞.

5 Discussion

A homogeneous neural network with purely inhibitory synapses re-
laxes to a state of high attention. A large fraction of neurons have a
membrane potential which is just below threshold. Hence the network
can immediately - on the time scale of synaptic transmission - react
on external excitatory pulses.

Although, at any time, the majority of the neurons accumulate
closely below threshold, each single neuron fires irregularly with a low
rate. In our model the broad distribution of spike intervals stems
from synaptic unreliability; a synapse transmits the incoming spike
with some probability, only. The numerical simulations show that the
spiking events of the total network are correlated in time. Uncorre-
lated synaptic noise still leads to correlated spike intervals, even for
infinite-range models.

For our model, in the thermodynamic limit any neuron receives
an infinite number of synaptic inputs. Usually, one argues that, in
this limit, the fluctuations of the synaptic input can be ignored. Our
model, however, shows that even for an infinite number of inhibitory
inputs the fluctuations of the membrane potential have a large effect.
The network adjusts itself such that there remains a broad distribution
of spike intervals in this limit.

The stationary state of the network is a pool of neurons firing
irregularly with a low rate. The firing rate increases linearly with
a global external stimulus. The network can immediately react to
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external pulses. Our model contains unreliable inhibitory synapses,
only. Hence a network does not need to balance large excitatory and
inhibitory synaptic currents to achieve these properties.

Our investigations concentrated on a very simple model: Integrate-
and-fire neurons with unreliable inhibitory synapses which couple all
neurons. Each neuron has identical parameters. One may wonder
whether and how the properties of the network change when the model
is extended to other mechanisms. In fact, much is known about IF-
networks. For instance, synaptic delay leads to clusters of synchro-
nized activity [7] and to oscillating firing rates [6]. A distribution
of the number of short-range synaptic contacts increases the correla-
tions between consecutive spike intervals [9]. Excitatory synapses can
produce synfire chains, i.e. waves of synchronized activities moving
through the network [1, 3]. When the excitation is too strong, the
neurons synchronously fire at a high rate [5]. A distribution of thresh-
old values obviously leads to a distribution of firing rates. In fact, I
find that in this case, the stationary state of the network contains a
fraction of neurons which never fire.

All these extensions modify the properties of state of irregularly
firing neurons. However, one of the main questions remains unsolved:
How does the network process information on top of this background
activity?
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