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Abstract
This paper presents a synergistic parametric and non-parametric modeling study of short-term
plasticity (STP) in the Schaffer collateral to hippocampal CA1 pyramidal neuron (SC) synapse.
Parametric models in the form of sets of differential and algebraic equations have been proposed on
the basis of the current understanding of biological mechanisms active within the system. Non-
parametric Poisson–Volterra models are obtained herein from broadband experimental input–output
data. The non-parametric model is shown to provide better prediction of the experimental output than
a parametric model with a single set of facilitation/depression (FD) process. The parametric model
is then validated in terms of its input–output transformational properties using the non-parametric
model since the latter constitutes a canonical and more complete representation of the synaptic
nonlinear dynamics. Furthermore, discrepancies between the experimentally-derived non-parametric
model and the equivalent non-parametric model of the parametric model suggest the presence of
multiple FD processes in the SC synapses. Inclusion of an additional set of FD process in the
parametric model makes it replicate better the characteristics of the experimentally-derived non-
parametric model. This improved parametric model in turn provides the requisite biological
interpretability that the non-parametric model lacks.
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1 Introduction
Synaptic transmission is a nonlinear dynamic process that plays a critical role in signal
transmission and information processing in the nervous system (Zucker and Regehr 2002). The
term “dynamic” implies that the causal effects of a presynaptic event spread into the future
values of the postsynaptic events and are not limited to the present time. The term “nonlinear”
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means that the combined effect of two or more presynaptic events is different from the simple
concatenation of the postsynaptic events that would have been caused by each of the
presynaptic events separately. Thus, the process of synaptic transmission can also be viewed
as a nonlinear dynamic input–output transformation of a sequence of presynaptic events into
postsynaptic events in a manner that is use-dependent (i.e., depends on the specific temporal
pattern of presynaptic events) and is also termed short-term plasticity (STP).

STP can be modeled parametrically or non-parametrically for different aims (see Introduction
of the companion paper). Parametric models are often developed to explain the underlying
biological mechanisms and thus have a predictive power in terms of how the biological
processes determine the systems behavior, e.g., input–output transformational property of the
system (Dittman et al. 2000). By contrast, non-parametric models are built to quantitatively
describe such input–output transformational property in a model-free manner (Krausz and
Friesen 1977; Marmarelis and Marmarelis 1978; Berger et al. 1988a,b; Sclabassi et al. 1988;
Berger et al. 1994; Bishop 1995; Marmarelis 2004). The advantages of a non-parametric model
for such aim are the following: in terms of model configuration, a non-parametric model takes
a general model form that is applicable to almost all causal systems, thus avoids potential errors
in the postulation of the model structure. In terms of parameter estimation, a non-parametric
model is estimated from input–output data collected under broadband condition and inherently
valid for such condition.

The main aim of this study is to combine both parametric and non-parametric modeling
methods in a synergistic manner to study STP in CNS synapses. In the first half of this study
(see companion paper), non-parametric models of synaptic STP are estimated from input–
output data simulated with several parametric STP models. Results show that non-parametric
model (in the form of Poisson–Volterra kernels) can accurately and efficiently capture the
nonlinear dynamics defined by those parametric models. Volterra kernels provide a general
and quantitative representation of the synaptic STP. Furthermore, by relating the kernel shapes
of the non-parametric model to the key parameters of the parametric model, many insights are
gained on how the biological processes (represented by the parameters) shape the input–output
functional properties (described by the kernels) of the synapse.

The non-parametric model constitutes a canonical and complete representation of the system
(nonlinear) dynamics that is derived directly from the broadband data. Thus, the obtained model
is not restricted by any prior assumptions and can be used as the “ground truth” to evaluate the
parametric models of the system in terms of its input–output transformational property. In this
paper, we estimate the non-parametric Poisson–Volterra kernel (PV) models of the Schaffer
collateral to hippocampal CA1 pyramidal neuron (SC) synapse under two extracellular calcium
conditions. Results show that the PV models more accurately capture the synaptic nonlinear
dynamics than a parametric facilitation/depression (FD) model under both conditions. On the
other hand, since these non-parametric models are descriptive representations of synaptic
nonlinear dynamics, they can accurately predict the synaptic output under each condition but
lack the ability to explain the obtained synaptic nonlinear dynamics in a physiologically-
interpretable manner. To get better understanding to the underlying mechanism, we combine
the parametric and non-parametric models again—we validate and modify the parametric
FD model using the non-parametric PV model. Several significant discrepancies between the
experimentally-derived non-parametric model and the equivalent non-parametric model of the
parametric model are found in the PV kernels. These discrepancies suggest the presence of
multiple FD processes in the SC synapses. Inclusion of an additional FD process in the
parametric model makes it replicate better the characteristics of the experimentally-derived
non-parametric model. The modified parametric model provides in turn the requisite biological
interpretability of the model components—whereby the advocated synergistic use of the two
modeling approaches.
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2 Materials and methods
2.1 Experimental procedures

2.1.1 Slice preparation—Hippocampal slices were prepared from young adult male
Sprague–Dawley rats (80–200 g). Animals first were anesthetized with 5% halothane, and then
were decapitated and the hippocampi were rapidly dissected. Both hippocampi were sectioned
into blocks while being washed with cold, oxygenated medium and slices of tissue (350 μm
thick) then were cut perpendicular to the longitudinal axis using a vibratome (VT-100S; Leica).
Slices were incubated with medium consisted of (in mM): 128 NaCl; 2.5 KCl; 1.25
NaH2PO4; 26 NaHCO3; 10 glucose; 2 CaCl2; 3.0 MgSO4, aerated with 95% O2/5% CO2.
Hippocampal slices were maintained at 32°C for 30 min and then at room temperature
throughout the entire experiments. During the recording session, slices were transferred to the
recording chamber and perfused at flow rates of 2–3 ml/min; the perfusion medium was
changed according to the experimental purposes.

2.1.2 Stimulation procedures—A bipolar stimulating electrode (a pair of twisted,
insulated nichrome wires) were placed in the Schaffer collateral to orthodromically activate
CA1 pyramidal cells. A cut was made between the CA3 and CA1 regions to prevent
epileptiform activity in the CA3 region from affecting the recording in CA1. Biphasic current
impulses (200 μs in duration) controlled by a stimulator (Master-8; AMPI) were delivered to
the tissue via stimulation isolation units (ISO-Flex; AMPI). The stimulation intensity varied
from 100 to 700 μA. Since the cells were under voltage-clamp and the synapses could be taken
to be independent current sources, the strict control of stimulation intensity was relaxed. Instead
of using stimulation/response function (I/O curve), stimulation intensities were chosen to elicit
roughly constant EPSC amplitudes reflecting approximately the same number of activated
synapses. Under 2 mM [Ca2+]o condition, the baseline EPSC amplitudes were in the range of
150–600 pA; under 1 mM [Ca2+]o condition, the baseline EPSC amplitudes were in the range
of 80–300 pA. Too small responses tended to have large variations and too big responses might
cause imperfect voltage clamp and spurious EPSCs.

Poisson random impulse trains were generated with an STG 1002 stimulator (MultiChannel
Systems) and then sent to Master-8. The inter-impulse intervals were determined offline by a
Poisson distribution with a mean interval of 500 ms and a range of 6–5,000 ms. The minimal
inter-impulse interval (6 ms) is longer than the reported refractory period of the Schaffer
collaterals (Stevens and Wang 1995; Dobrunz et al. 1997). Fixed-interval impulse trains with
four frequencies (10, 20, 30 and 40 Hz) were generated with Master-8. Each train was
comprised of ten impulses.

2.1.3 Electrophysiological recording procedures—Whole-cell recordings of EPSC
were performed with an HEKA EPC-9 patch-clamp amplifier from CA1 pyramidal cells
visually identified with an infrared microscope (Olympus BX50WI). The glass micropipette
was filled with internal solutions containing (in mM): 95 caesium gluconate, 20 TEACl, 10
NaCl, 5 QX-314, 4 Mg-ATP, 0.4 Na-GTP, 0.1 EGTA and 10 HEPES (pH 7.0, titrated with
gluconic acid). Some of the experiments were performed with a reduced formula containing
(in mM): 130 caesium gluconate, 5 CsCl, 0.1 CaCl2, 1 BAPTA and 10 HEPES (pH 7.0, titrated
with gluconic acid). Most of the cells were voltage-clamped at a holding potential of −70 mV.
Some cells were held at −90 or −120 mV. Glass pipettes were pulled using a horizontal puller
(Model P-80 PC; Sutter Instrument Co.). They had a resistance of 2–4 MΩ and were not
polished or coated. The serial resistance varied between 5 and 30 MΩ. The input resistance of
the cells was higher than 1.0G Ω (on-cell mode). Responses were sampled at 10 or 20 kHz
with pulse data acquisition software (HEKA). Recorded data were exported in ASCII format
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and then imported to pClamp 9.0 (Axon Instruments) and Matlab (The MathWorks, Inc.) for
further analysis.

Both fixed-interval and random-interval impulse trains were applied to each cell. In fixed-
interval train experiments, each train was repeated 16 times and then averaged. Totally 640
input–output pairs were recorded. In random-interval train experiments, 1,200–3,600 input/
output pairs were collected.

2.1.4 Pharmacological manipulations—In addition to cutting the CA3-CA1 connection,
high concentration of Mg2+ (3 mM) was used in the incubating and recording mediums to
minimize multi-synaptic activity (Mody et al. 1987). The Ca2+ concentration was altered to
manipulate the release probability of the synapses (1 or 2 mM). To simplify postsynaptic
mechanisms and get more reliable measurements to the presynaptic release, NMDA receptors
and GABAA receptors were blocked with DAP-V (25 μM) and picrotoxin (100 μM),
respectively. In some experiments, GABAB receptors were blocked by CGP55845a (2 μM).
AMPA receptor desensitization blocker cyclothiazide (CTZ) was made daily as a 10 mM stock
in dimethyl sulfoxide (DMSO) and diluted to 100 μM final concentration in the perfusion
medium immediately prior to application.

Note that, although synaptic transmission involves both presynaptic and postsynaptic
mechanisms, most STP studies to date focus on the presynaptic mechanism (Zucker and Regehr
2002). However, since the neurotransmitter release (which is the real output of the presynaptic
region) is difficult to measure, researchers typically use the postsynaptically recorded signal
(e.g., EPSC) to infer the strengths of synaptic release. In order to do this, it is necessary to
simplify the postsynaptic mechanisms by voltage-clamping in the postsynaptic region and by
removing postsynaptic voltage-dependent channels (e.g. NMDA). These pharmacological
manipulations were used to isolate the presynaptic mechanisms and, therefore, the study of the
STP process refers to the presynaptic transformation of a sequence of action potentials arriving
at the bouton (input) to the EPSCs (output) recorded from the soma.

2.2 Modeling procedures
2.2.1 Estimation of presynaptic release—As indicated above, STP is primarily caused
by presynaptic mechanisms. All-or-none action potentials elicit transmitter releases with
varying strengths in the presynaptic terminal which open ionic channels on the postsynaptic
membrane. The transmitter release has been shown to have a short duration (Clements et al.
1992) and thus the output signal of the presynaptic terminal can be adequately modeled as a
variable-amplitude point-process. Because of the extremely narrow synapse cleft and technical
difficulties in direct measurement of transmitter release, the postsynaptic signal (i.e. the
sequence of EPSCs) is used to estimate the release strength through deconvolution with a single
typical EPSC waveform (Fig. 1). The resulting discrete values, instead of the EPSC peak
amplitudes, are used as estimates of the amounts of transmitter release. This method excludes
the effect of EPSC temporal summation in the event of overlap and allows almost perfect
reconstruction of the continuous EPSC waveforms. In this paper, without further specification,
EPSC amplitude refers to the deconvolved amplitude, not the peak amplitude of EPSC. These
two amplitudes are the same when there is no temporal summation of overlapping EPSCs.

2.2.2 Estimation of the non-parametric model—The employed form of non-parametric
model is the reduced form of the discrete-time Poisson–Volterra (PV) model (Marmarelis and
Berger 2005) where the PV kernels are estimated using Laguerre expansions (Marmarelis
1993). The mathematical form of the PV model is:
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(1)

where k1, k2, and k3 are the 1st, 2nd, and 3rd order PV kernels of the system. The summations
in Eq. (1) take place over all input event times within a past epoch M (termed the “system
memory”) prior to ti. The 1st-order PV kernel, k1, represents the amplitude of the EPSC
attributed to each stimulus impulse alone (i.e., baseline EPSC amplitude). The 2nd-order PV
kernel, k2(τ), represents the change in the present EPSC amplitude contributed by the 2nd-order
interaction between the present impulse and a preceding impulse, as a function of their time
interval τ. The 3rd-order PV kernel, k3(τ1, τ2), represents the change in the present EPSC
amplitude contributed by the 3rd-order interaction between the present impulse and two
preceding impulses, as a function of their time intervals τ1 and τ2. The 2nd term in Eq. (1)
represents the total 2nd-order contribution from all preceding impulses within the system
memory M. The 3rd term represents the total 3rd -order contribution from all preceding
impulses within M.

The model order is determined by means of the predictive accuracy of PV models of ascending
order (1st, 2nd, 3rd and 4th), which is quantified by the normalized root-mean-square error
(NRMSE) of the output prediction for Poisson RIT inputs. The 3rd-order model is found
consistently to be adequate for capturing the dynamic nonlinearities of the system as reflected
on the broadband input–output data (i.e., the obtained 4th-order model decreased NRMSE only
marginally (<1%) that does not justify the inclusion in the model of the 4th-order kernel). This
is in agreement with the results of the companion computational study (Part I).

All PV kernels for this synapse are estimated with a system memory of 2,000ms and a sampling
interval of 1ms. The number of Laguerre basis functions is chosen to be 4, which is the value
allowing the most accurate prediction without overfitting, as determined by the model-order
selection criterion for Volterra-type models (Marmarelis 2004). The expansion coefficients of
the kernels are estimated through ordinary least-squares using singular value decomposition.
The optimal value of the Laguerre parameter α was searched in the range from 0 to 0.999 and
the average value was found to be 0.920 over the available input–output datasets.

To facilitate interpretation, the “response descriptors” (RD) that are based on the PV kernels
are used to describe the system characteristics (see companion paper). The set of RDs for a
given system is mathematically equivalent with the PV kernels, as indicated by the defining
relations for the 3rd-order model:

(2)

(3)

(4)

These defining relations indicate that the 1st-order RD, r1, is equal to the baseline EPSC
amplitude; the 2nd-order RD, r2(τ), represents the total change (including both 2nd and 3rd-
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order) in the present EPSC amplitude caused by a single preceding impulse, as a function of
their time interval τ; the 3rd-order RD, r3(τ1, τ2), represents the joint effect (exclusive of their
individual effects described by r2(τ1) and r2(τ2)) of two preceding impulses on the present
EPSC amplitude, as a function of their time intervals τ1 and τ2. Without loss of generality, both
r2 and r3 are normalized with r1.

2.2.3 Estimation of the parametric model—As a parametric model of the SC synapse,
we consider the widely accepted residual calcium-based facilitation/depression (FD) model
(Dittman et al. 2000). In this model, the EPSC is calculated as the product of facilitation and
depression factors (F and D). The residual calcium is assumed to be a linear dynamic process.
The facilitation and depression factors are calculated on the basis of the residual calcium
concentration, using first-order linear differential equations and nonlinear algebraic functions
(see Method of the companion paper for more details). The key parameters of this FD model
are: the initial release probability (F1), the maximum paired-pulse facilitation ratio (ρ), the
minimum and maximum recovery rates (k0 and kmax) and the time constants of residual calcium
(τF and τD). These key parameters are estimated using the constrained Quasi-Newton
optimization technique (Matlab 6.5; MathWorks, Inc.). Optimal values for τF and τD were
searched in the range of 10–200 ms with a 10 ms step length. Mean values and standard errors
of the estimated parameter values calculated over all experiments are reported in Tables 1 and
2. Sensitivity analysis shows that the systems input–output transformation is insensitive to the
other model parameters.

Most importantly, it is found through comparison with the non-parametric model that this
parametric model must be augmented to include a second FD process (with different dynamic
characteristics) in order to explain adequately the broadband experimental data. The equation
for the total transmitter release of this double-process FD model takes the form:

(5)

where R is the total release and N denotes the weights for each synaptic process (distinguished
by the subscripts f for “fast” and s for “slow”). Without loss of generality, the sum of the two
weights is set to unity. Each process is described by a similar FD model with its own set of
parameters (Table 3). Since the double-process FD model involves more free parameters, it is
more difficult to optimize for each individual cell than the single-process FD model. For this
reason, all parameters are optimized with respect to the averaged nonlinearities (i.e. the
parameter values are determined through a search that seeks the most accurate replicas of
average experimentally constrained kernels), and there is no standard error reported in Table
3.

3 Results
3.1 Experimental exploration of STP in the SC synapse

The experimental data were collected under two different [Ca2+]o conditions (2 and 1 mM).
Under each condition, both fixed-interval trains (FIT) and random-interval trains (RIT) of
stimuli were applied. EPSC amplitudes were extracted using the deconvolution technique
described in Section 2. Third-order Poisson–Volterra (PV) models of STP in SC synapses were
estimated from the RIT datasets that contain PV kernels from which the RDs were computed
in order to study the input–output transformatrion characteristics of the SC synapse.

3.1.1 High [Ca2+]o condition (2mM)—First, we examine experimentally the STP
characteristics of SC synapses with the conventional FIT stimulation protocol. Four input
frequencies are used (10, 20, 30 and 40 Hz) and each FIT comprises ten impulses. Under the
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2 mM [Ca2+]o condition, the EPSCs peak at the second response and then decline in the rest
of the responses (Figs. 2 and 3). The ratios of the second responses to the corresponding first
responses are 120 ± 9%, 132 ± 10%, 140 ± 15% and 129 ± 10% (mean ± SE; n = 7) and the
ratios of the third responses to the first responses are 112 ± 11%, 126 ± 12%, 141 ± 14% and
122 ± 13%, in the 10, 20, 30, and 40 Hz FIT, respectively. This pattern is consistent with the
previous reports (Dittman et al. 2000) despite the relatively smaller magnitudes.

EPSC trains elicited by RIT stimuli with Poisson distribution were then recorded, and 3rd-
order PV models were estimated from these input–output datasets that fully characterize the
synaptic dynamics with respect to arbitrary inter-impulse intervals (IPIs). The 2nd-order and
3rd-order RDs, r2 and r3, are computed from the estimated PV kernels using the expressions
in Eqs. (2)–(4) and are shown in the top row of Fig. 4. The 1st-order RD, r1, is equal to the
baseline EPSC recorded from each cell and it is controlled experimentally to be in the range
of 150–600pA by adjusting the stimulation intensity. The RDs, r2 and r3, are normalized with
the corresponding r1 and then averaged across all nine cells used in this study.

In the high-calcium condition (shown in the first row of Fig. 4), the computed r2 rapidly
increases to the peak value of 27 ± 9% in the short IPI range of 6–40 ms; while in the
intermediate IPI range of 40–440 ms, r2 decreases from the peak to a minimum value of −9 ±
2%, crossing into negative values for an IPI around 200 ms. In the long IPI range beyond 440
ms, r2 returns asymptotically to zero, practically vanishing after an IPI of approximately 1,600
ms. The computed r3 is primarily negative, reflecting the dominant 3rd-order suppressing
effects of pairs of preceding impulses, especially for IPIs shorter than 200 ms, as it is evident
in the diagonal slice of r3 which exhibits a fast initial exponential phase with approximate time
constant of 11 ms and a slower phase that can be approximated by the difference of two
exponentials with the time constant being approximately 87 ms. These results suggest that the
STP dynamics in the SC synapse involve at least two processes with different time constants.

3.1.2 Low [Ca2+]o condition (1mM)—The biphasic form of the computed r2 and the
negative monophasic form of the computed r3 under the high-calcium condition indicate that
the SC synapses have both facilitative and depressive processes. To explore further the
transmission characteristics and the underlying mechanisms of SC synapses, the experiments
were repeated with lower [Ca2+]o (1 mM). Under low-calcium conditions, the initial release
probability of the synapse is suppressed and the synaptic depression caused by vesicle depletion
is consequently decreased (Rahamimoff 1968; Creager et al. 1980). The response dynamics
are expected to be dominated by the facilitation processes.

Indeed, this dominant facilitation is evident in the FIT responses. As shown in Fig. 3, the EPSC
amplitudes increase more in the first four responses (relative to the first response) and then
form a broad summit (resembling almost a plateau) over the subsequent responses. The
observed ratios of the second responses to the corresponding first responses are 125 ± 8%, 138
± 4%, 150 ± 25% and 148 ± 18%; and the ratios of the third responses to the corresponding
first responses are 142 ± 8%, 171 ± 10%, 204 ± 23% and 197 ± 17%, for the 10, 20, 30, and
40Hz trains, respectively (n = 5).

In the case of RIT stimulation, the computed RDs (Fig. 4, bottom row) indicate that r2 remains
positive for all IPI values and practically vanishes beyond an IPI value of 500 ms (n = 8). A
fast rate of decline is observed in the IPI range up to 100ms, where r2 decays from 178 ± 13%
to 126 ± 3% (corresponding to an approximate exponential time-constant of 21 ms), while the
rate of decline in the subsequent IPI range of 100–500 ms is much slower (corresponding to
an approximate exponential time constant of 197 ms). This result suggests the presence of (at
least) two processes of facilitation in the STP dynamics of SC synapses. We also observe in
the bottom row of Fig. 4 that r3 is triphasic and remains negative for most IPI values (i.e., it is
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slightly positive only for IPI values between 30 and 100 ms). Comparing the absolute values
of r2 and r3, we observe that the latter is much smaller and has shorter duration. The results
show that under the low-calcium condition, the synaptic nonlinearity is primarily a 2nd-order
facilitation (Fig. 4, bottom row)—unlike the high-calcium condition where the synaptic
nonlinearity appears to be primarily a 3rd-order depression (Fig. 4, top row).

3.1.3 AMPA desensitization does not change the pattern of STP—In this study,
several strategies were used to isolate the presynaptic mechanisms of STP: postsynaptic active
membrane conductances were voltage-clamped; nonlinear NMDA receptors were blocked by
D-APV and high Mg2+ in addition to voltage-clamp; GABAA receptors were blocked by
picrotoxin; temporal summations of EPSCs were eliminated by the deconvolution procedure,
etc. The purpose is to leave only the AMPA receptors and use them to infer the amounts of
presynaptic transmitter releases. However, it is known that the AMPA receptors are subject to
desensitization that could potentially influence the estimation of presynaptic release, especially
in the short IPIs (Trussell and Fischbach 1989). To eliminate the contribution of AMPA
receptor desensitization, a potent AMPA receptor desensitization inhibitor, cyclothiazide
(CTZ, 100 μM), was used (Yamada and Tang 1993). After the aforementioned FIT and RIT
experiments, CTZ was applied to the perfusion medium and the experiments were repeated
after 20 min.

Under CTZ condition, the single EPSC profile is dramatically changed. In a representative cell
shown in Fig. 5, the time-to-peak of the EPSC becomes 14.6 ms during CTZ application,
compared to 8.7 ms in the previous experiments (control condition). The extent of EPSC is
also broadened, e.g., the area of the EPSC is increased by 77% during CTZ application after
normalizing the peak amplitudes. Due to the slower kinetics of desensitized AMPA receptors,
the effect of temporal summations of EPSCs in a train is greater than the control condition due
to the larger overlap. For example, in the 40 Hz train (Fig. 5, bottom row), the ratios of the
second to the first EPSC peak amplitudes are 2.2 with CTZ and 1.6 in control; the ratios of the
third to the first EPSC peak amplitudes are 3.1 with CTZ and 1.9 in control. However, the
values of the deconvolved EPSC amplitudes are not significantly changed. In the same 40 Hz
train, the ratios of the second to the first deconvolved amplitudes are 1.5 with CTZ and 1.4 in
control; the ratios of the third to the first deconvolved amplitudes are 1.7 with CTZ and 1.6 in
control. These results demonstrate that AMPA desensitization has strong effects on the EPSC
waveforms but not on the deconvolved amplitudes of estimated transmitter release.

Consistent with the FIT results, the RDs (r2 and r3) are not significantly changed by CTZ
application, as illustrated in the middle row of Fig. 4 (n = 4). This result of negligible CTZ
effect on the STP dynamics of SC synapses under 2 mM [Ca2+]o condition indicates that the
observed STP dynamics are almost exclusively due to presynaptic mechanisms.

3.1.4 Prediction of random EPSC trains with 3rd-order non-parametric models
—One of the major strengths of the non-parametric model is that it is estimated directly from
broadband experimental data (representing a broad repertoire of possible inputs) and retains
predictive capability to a broad range of input patterns. The obtained kernels can be used not
only to characterize the input–output properties of the system, but also to accurately predict
the system output for a given input. For each cell/experiment, the 3rd-order PV model is
estimated with random input–output data of 800–3,200 event pairs, and then used to predict
the output for a different random input dataset of 400–1,600 events. To evaluate the predictive
capability of the estimated model, the NRMSE of the model prediction is calculated based on
the predicted outputs and the respective recorded outputs. Our results show that under both
high and low [Ca2+]o conditions, the 3rd-order PV models are able to predict accurately the
EPSC amplitudes (see Fig. 6). For high [Ca2+]o condition, the NRMSE was 23 ± 2% (n = 9),
and for low [Ca2+]o condition, the NRMSE was 24 ± 3% (n = 8).
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3.2 Parametric vs. non-parametric modeling of STP dynamics in the SC synapse
3.2.1 Inadequacy of the current parametric FD model—In order to test the adequacy
of the parametric FD model (Dittman et al. 2000) for Poisson RIT inputs (i.e., a broad repertoire
of operating conditions—and not simply periodic inputs), we estimate the 3rd-order PV models
of the SC synapse using two types of broadband input–output data: (1) the data resulting from
the simulation of the parametric FD model for a Poisson RIT input, and (2) the experimental
data collected from the actual synapse for the same input. Comparison of the obtained PV
kernels for the two cases allows rigorous and quantitative assessment of the adequacy of the
parametric FD model, since the kernels constitute a canonical (i.e., general and complete)
representation of the system dynamics that can be considered “ground truth”.

Based on the respective RDs computed from the estimated kernels (Figs. 4 and 7), the two non-
parametric models (i.e., their respective kernels) are qualitatively consistent under high-
calcium conditions (i.e., the r2 is primarily positive and the r3 is primarily negative). However,
when one compares these results with higher quantitative standards, then it is evident that the
experimentally derived results (i.e. the “true” non-parametric model of the STP dynamics in
the SC synapse shown in Fig. 4) exhibit more complex patterns in both r2 and r3, with subtle
features that are not evident in the RDs obtained from the simulations of the parametric model.
In other words, the parametric model does not capture all aspects of the STP dynamics and
nonlinearities associated with the transmission characteristics of the SC synapse—both in terms
of the functional outcome (i.e. the prediction of the synaptic output as shown in the NRMSE
result) and the underlying biological mechanisms (which appear to comprise more processes
in reality than included in the parametric model). This observation suggests that the parametric
FD model oversimplifies the form of the STP dynamics in the SC synapse and a more complex
parametric model is needed to account for the experimentally observed data.

A note should be made about the intrinsic variations of the biological processes that subserve
synaptic transmission. Several studies have shown that central synapses are heterogeneous in
release probability, facilitation and depression (Dobrunz and Stevens 1997; Hanse and
Gustafsson 2001a). In this study, both the parametric FD model and the non-parametric PV
model are estimated with EPSCs derived from populations of SC synapses in which cross-
synapse variations are largely averaged. More importantly, to eliminate the effect of the
remaining variations on the comparison of performance between parametric models and non-
parametric models, both types of models are estimated using the same input–output datasets
that are recorded from the same cell.

It is also interesting to examine the effect of the utilized input on the parameter estimates. To
explore this, the parameters of the parametric FD model are estimated with both types of input–
output data: FIT and RIT datasets, for each cell under each [Ca2+]o condition. This results in
two sets of parameter estimates (denoted as FIT-FD and RIT-FD estimates) that are reported
in Tables 1 and 2. Considerable differences exist in most of the key parameter estimates. It is
also evident that the NMRSE of the parametric model prediction for a Poisson RIT input is
lower when the RIT-FD parameter estimates are used, since the RIT input contains a broader
repertoire of stimulation patterns and thus yields more accurate parameter estimates (Tables 1
and 2).

In order to illustrate further the effect of the utilized input on the obtained models, we show in
Fig. 7 the RDs of the 3rd-order PV models obtained by use of the synthetic input–output data
of the parametric FD models with parameters estimated from both the FIT and RIT datasets.
These two non-parametric models quantitatively and intuitively represent the functional input–
output properties of the two parametric FD models (FIT-FD and RIT-FD). Significant
differences are evident for both RDs (r2 and r3) under the low-calcium condition, but the
differences are subtle for the high-calcium condition.
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Most importantly, we wish to compare the RDs of the non-parametric models estimated from
the FD model (shown in Fig. 7) and from the experimental data (shown in Fig. 4) for the same
RIT input under the two calcium conditions. The results indicate that both FIT-FD and RIT-
FD RDs have significant differences from the RDs of the experimentally-derived non-
parametric model.

Specifically, under 2 mM [Ca2+]o condition, the r2 values of the experimentally-derived non-
parametric model (i.e., the true r2) shows peak paired-pulse facilitation at about 40ms IPI (Fig.
4, top row), but this peak is not captured by the r2 values of either the FIT-FD or the RIT-
FD model, which are both monotonically decaying in the IPI range up to 400 ms (Fig. 7). The
FIT-FD results also overestimate the paired-pulse facilitation for short IPIs more than the RIT-
FD results, relative to the results of the experimentally-derived non-parametric model. The
latter peak value is 27 ± 9%, while the peak values for the FIT-FD and RIT-FD models are 39
± 12% and 30 ± 9% respectively. The more severe overestimation of the FIT-FD model is
probably due to the fact that the FIT inputs lack IPIs shorter than 25 ms, where the synapses
exhibit weak paired-pulse facilitation (as shown in Fig. 4). Another difference is evident in the
values of the negative (depressive) phase of r2 for IPIs around 400 ms, where the parametric
models exhibit less depressive characteristics. Significant differences are also observed in the
3rd-order RDs, where the diagonal slice of the true r3 shows a more complex shape that can
be fit in the early part (short IPIs) by an exponential with time constant of 11ms and in the late
part (IPIs from 300 to 500 ms) by an exponential with a time constant of 87 ms, while the
diagonal slice of r3 of the FD models can be fit by a single exponential function with time
constant of 69 ms for the FIT-FD model and 56 ms for the RIT-FD model. Notably, the
magnitude of 3rd-order depression is much larger in the results of the experimentally-derived
non-parametric model. Differences are also evident at the off-diagonal values of r3. These
results suggest that more than one FD processes may be active in the actual SC synapse.

Under 1mM [Ca2+]o condition, the r2 values of the experimentally-derived non-parametric
model exhibit a complex shape that contains at least two exponentials (Fig. 4, bottom row),
while the r2 values for the FIT-FD and RIT-FD models exhibit single exponential shapes (with
comparable time constants of 107 and 103 ms, respectively). This result again suggests that
the parametric FD model oversimplifies the facilitation process. In terms of the 3rd-order RD,
the r3 values of the experimentally-derived non-parametric model are much stronger and
exhibit a more complex shape than its FD-model counterparts. The diagonal slice of r3 exhibits
a triphasic form with strong depression for short IPIs and weak depression for long IPIs, while
both FD-model counterparts have a single exponential shape with negligible depression at short
IPIs (notably the RIT-FD model exhibits very small values for all IPIs).

In order to compare quantitatively the predictive capability of the various models, we compute
the NRMSE of the output prediction for Poisson RIT inputs. Results show that, under both
[Ca2+]o conditions, the predictions of the experimentally-derived non-parametric models are
significantly more accurate than the corresponding FD models (paired t-test, P < 0.01), and
the RIT-FD models are more accurate than the corresponding FIT-FD models (paired t-test,
P<0.01). Since the RIT-FD models and the experimentally-derived non-parametric models are
estimated from the same input–output datasets, their difference in NRMSE is solely due to
their different model configurations. The FIT-FD models have the same model configuration
with the RIT-FD models but different parameter values that were estimated from the FIT input–
output datasets, thus the fact that the RIT-FD model performs better than the FIT-FD model
is a result of the greater “richness” of the RIT datasets that contain a vastly broader variety of
input (and consequently output) patterns.

It is evident from these results that the current parametric FD model cannot account for all the
nonlinear dynamics captured by the 3rd-order non-parametric model for RIT inputs.
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3.2.2 Modification of the parametric FD model—Based on the above experimental and
simulation results, it appears necessary to augment the parametric FD model by including a
second FD process with different residual calcium time constants (τF and τD). The resulting
“double-process FD model” of the STP dynamics in SC synapses incorporates two sets of
facilitation/depression mechanisms that are driven by two different residual calcium dynamics
(fast-decaying calcium and slow-decaying calcium). The FD process with fast calcium
dynamics is denoted as “fast FD process”, while the other is named “slow FD process”. Note
fast/slow residual calcium dynamics do not necessary result in fast/slow FD dynamics, since
the latter are mainly determined by the other key model parameters. These key parameters
(e.g., the initial release probabilities and recovery rates) are estimated and shown in Table 3.
As shown in Eq. (5), the total release probability can be represented as the weighted linear
summation of the release probabilities of the two processes.

Results show that the 2nd and 3rd-order RDs of the double-process FD model of SC synapse
are closer to their counterparts of the experimentally-derived non-parametric model (which are
considered to represent the “ground truth”) under both high and low [Ca2+]o conditions (see
Figs. 8 and 9).

The computed 2nd and 3rd-order RDs of the slow and fast FD processes of the double-process
FD model under 2mM [Ca2+]o condition are shown in Fig. 8. It is evident that the negative
phase of r2 is mostly due to the fast process, which has a fairly high release probability (0.51).
In this process, the first impulse causes the release of more than half of the available vesicles;
the maximum paired-pulse ratio cannot exceed one by definition and r2 is primarily negative.
For very short IPIs, the release is enhanced by residual Ca2+ accumulation and the paired-pulse
ratio (0.90) is close to its maximum possible value. The r2 values for this process are close to
zero in this IPI range. For longer IPIs, the release is less facilitated and the recovery of
depression is less accelerated due to the decay of residual Ca2+. The r2 values show strong
paired-pulse depression. When the IPI is further increased, all parameters recover to their
original values and the values of r2 return back to zero. Due to these reasons, the form of r2
for the fast process becomes U-shaped and causes the negative phase in the r2 of the overall
model. The fast FD process also shows strong depression in r3. This is not surprising since its
release probability is so high that there are only very few vesicles available after two
consecutive releases, even with the facilitatory effect of the residual Ca2+.

The slow process has a relatively lower release probability (0.32), which allows paired-pulse
facilitation. This process is the main contributor of facilitation in the r2 of the overall model
(Fig. 8). Also, the form of r2 for the slow process is bell-shaped for short IPIs and the peak of
facilitation is properly lagged by 40 ms (as in the experimentally-derived non-parametric
model) instead of happening at the shortest IPI which is the case for the single-process FD
model. This can be explained by its high recovery rate and the fact that the number of releasable
vesicles is increasing over time, although the facilitation effect is declining. This tradeoff
between facilitatory and depressive mechanisms makes the r2 bell-shaped instead of
monotonically decreasing. The results shown in the third row of Fig. 8 (that include both the
fast and the slow process) are nearly identical to the experimentally-derived non-parametric
model (Fig. 4, top row).

The results under 1 mM [Ca2+]o condition are shown in Fig. 9. The initial release probabilities
of the two processes are relatively low, while the paired-pulse facilitation ratios are high. For
both processes, depletion plays a smaller role than under 2 mM [Ca2+]o condition. The values
of r2 are big and the values of r3 are relatively small. The difference in the shape of r2 for the
fast FD process between the high and low [Ca2+]o condition is caused by at least two reasons:
(1) the initial release probability is decreased from 0.51 to 0.18, leading to smaller depletion
of the releasable vesicle pool and weaker depression, and (2) the recovery rate is higher in low
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rather than in high [Ca2+]o condition. The second reason is seemingly contradictory to the
residual calcium-dependent recovery hypothesis, which suggests that the recovery from
depletion is positively correlated to the residual calcium concentration–lower [Ca2+]o then
should cause slower, instead of faster, recovery rate. However, it must be noted that these two
recovery rates are estimated with different initial release probabilities that may have different
levels of the “energy barrier” between the depleted and resting states (i.e., it is likely that the
low initial release probability state is easier to recover from the depleted state than the high
initial release probabilities state). The slow FD process has a positive slow-decaying r2 and a
negative but relatively small r3 due to the enhanced recovery rate. The high recovery rate
prevents the values of r3 from having a slow and negative component, which is indeed not
observed in the experimental data. The overall r2 caused by these two FD processes (Fig. 9,
third row) shows a shape similar to its non-parametric counterpart (Fig. 4, bottom row), while
the overall r3 values still retain some differences between the non-parametric model and the
parametric double-process FD model.

4 Discussion
In this study, the nonlinear dynamics of STP in hippocampal SC synapses are characterized
using a non-parametric Poisson–Volterra (PV) model obtained directly from experimental
input–output data collected during Poisson random-interval train (RIT) stimulation. The model
provides better prediction of the output data than a parametric facilitation/depression (FD)
model. The implication of this finding is that the experimentally-derived non-parametric model
captures better the nonlinear dynamic characteristics of synaptic transmission and constitutes
a more complete functional description of the biological processes involved. Consequently,
we used this non-parametric model as the “ground truth” for assessing quantitatively the
adequacy of the aforementioned parametric model and to explore ways of improving the
parametric model by including additional terms/parameters that represent additional biological
processes involved in synaptic transmission. This task was achieved by estimating and
evaluating the non-parametric surrogates of the parametric model. Evaluation of the surrogates
using the experimentally-derived non-parametric model suggested a double-process
mechanism of STP in SC synapse comprising a fast-calcium FD process and a slow-calcium
FD process.

Both the low (1 mM) and high (2 mM) [Ca2+]o condition results suggest such double-process
mechanism. As we know, STP is determined by facilitation and depression: facilitation is the
synaptic enhancement caused by the action of calcium remaining in the presynaptic terminal
after preceding action potential(s); depression is simply caused by the depletion of the pool of
release-ready transmitter vesicles. With low [Ca2+]o and the subsequent small initial release
probability, only a small portion of the transmitter vesicles are released after a stimulus. The
size of the release-ready vesicle pool remains relatively constant and the effect of the depletion-
dependent depression was weak. STP under this condition thus primarily reflects the dynamics
of facilitation. This is verified by the prominent positive r2 and small negative r3 in the PV
model under low [Ca2+]o condition. The double-exponential shape r2 suggests that there are
two distinct processes of facilitation.

When the [Ca2+]o is elevated, the initial release probability of synapses is increased; depletion
mechanism is more involved and the PV model reflects the interplay of both facilitation and
depression. Both r2 and r3 under high [Ca2+]o condition show patterns distinct from those under
low [Ca2+]o condition. Interestingly, the two processes show different levels of sensitivity to
the [Ca2+]o elevation: in the short inter-impulse intervals where the fast process is involved,
r2 is almost reversed and shows very weak facilitation in the high [Ca2+]o condition; r3 become
significant and shows strong depression. By contrast, in the longer inter-impulse intervals
where the slow process is more involved, r2 and r3 are not dramatically changed. These results
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suggest that the fast FD process is more sensitive to the [Ca2+]o elevation than the slow FD
process.

Double-process facilitation in STP has been reported in a variety of synapses from different
species (Eccles et al. 1941; Zengel et al. 1980; Gage and Murphy 1981; Zengel and Magleby
1982). To our knowledge, this study is the first to suggest its existence in hippocampal synapses
of the rat. There are several reasons why this mechanism may have been overlooked by previous
studies with traditional paired-pulse or fixed-interval stimulation protocols, but not by this one.
First, instead of directly measuring the paired-pulse facilitation as a function of inter-impulse
interval, in this study, the 2nd-order RD, r2, (which is equivalent to the paired-pulse
modification function) is computed from the estimated PV kernels of the non-parametric model
that is obtained from broadband RIT data where the intervals between impulses are randomly
varying, while the traditional paired-pulse or fixed-interval train protocols only include a small
subset of possible input patterns. RIT allows to capture the fine details of the STP pattern.
Secondly, the STP dynamics of SC synapses are investigated under two calcium conditions in
this study, making the differences between the two processes more visible by comparing the
results under these two conditions. Lastly, when the STP dynamics are studied using paired-
pulse or fixed-interval train protocols, some transient mechanisms may have been mixed with
facilitation and depression due to the non-stationary nature of these protocols. By contrast, in
the non-parametric approach the model was estimated with RIT data that do not alter the
stationarity of the system.

There could be multiple ways of modifying the parametric FD model to better fit the
experimentally-identified nonlinear dynamics. We propose the double-process FD model for
the following two reasons: First, the double-process FD model introduces minimal extension
of the FD model in terms of the modeled mechanisms and dynamic processes (but not minimal
number of extra open parameters). Additional model parameters can be readily explained using
the existing residual calcium-facilitation/depression framework, which is supported by many
other independent studies. Second, there are experimental evidences suggesting the existence
of two types of synapses. Using minimal stimulation protocol, Hanse and Gustafsson recorded
single CA1 synapses and showed their heterogeneity in initial release probability (Hanse and
Gustafsson 2001b). Furthermore, the distribution of initial release probability had two peaks,
which is consistent with our double-process FD model. Despite these reasons, however, it
should be pointed out that, although the double-process FD model accurately replicates the
experimentally-identified STP nonlinear dynamics under two calcium conditions, it still should
not be considered as a conclusive representation of the CA1 synapse. For example, this study
does not rule out the possibility of having a more complex residual calcium dynamics and/or
different types of active zones in a single synapse (as opposed to different types of synapses),
since it is carried out at the synaptic population EPSC level. Instead, as a parametric model,
our double-process FD model provides new mechanistic predictions/hypotheses, e.g., the
relations between initial release probability, paired-pulse facilitation ratio, and recovery rate
(Table 3), that can be tested with further studies, e.g., recording and modeling of single
synapses.

Besides transmitter vesicle depletion, another mechanism that can cause use-dependent
depression of synaptic strength is the desensitization of postsynaptic receptors (Jones and
Westbrook 1996; Wadiche and Jahr 2001). Consecutive exposure of ligand-gated channels to
their agonist can lead some of the channels to the non-responsive desensitized state. However,
consistent with other reports (Hjelmstad et al. 1997; Hashimoto and Kano 1998; Silver et al.
1998), this study showed that AMPA receptor desensitization does not play significant role in
STP. The negative-going component in r2 under high [Ca2+]o condition was not blocked by
the AMPA receptor desensitization blocker CTZ. This component was more likely due to the
nonlinear dynamics in the presynaptic regions. Previous experiments have shown that profound
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desensitization of AMPA receptor occurred on miniature excitatory postsynaptic currents
(mEPSC) elicited by brief pulses of glutamate (Trussell and Fischbach 1989). Paired-pulse
responses in these studies revealed that desensitization can reduce the amplitude of the second
mEPSC to less than 30% of the amplitude of the first mEPSC with a 6 s inter-impulse interval.
The time course of recovery of the second mEPSC in a pair could be fitted by a simple
exponential curve with a time constant of 9.2 ms. However, such strong depression was not
reflected in the estimated PV kernels or RDs of our non-parametric model. This apparent
discrepancy could be reconciled by taking into account the stochastic nature of transmitter
release. Hippocampal SC synapses, as well as other central synapses, tend to have
extraordinarily low release probabilities. The average initial release probability was estimated
to be around 0.3. This means that the probability of postsynaptic AMPA receptors being
exposed to consecutive transmitter releases is very small (the probability of release over two
consecutive pulses is 0.09). This situation is distinct from the paired glutamate pulse
experiment in which desensitization always occurs (Fig. 10).

Previous studies also showed the existence of depletion-independent mechanisms of
depression in the synaptic STP (Hsu et al. 1996; Dobrunz et al. 1997; Kraushaar and Jonas
2000; Waldeck et al. 2000; Gover et al. 2002; Kirischuk et al. 2002; Pedroarena and Schwarz
2003; Fuhrmann et al. 2004). These forms of depression mechanisms are not included in the
present parametric modeling, but potentially can be added to better explain the obtained STP
dynamics. For example, the double-process FD model still underestimates the paired-pulse
depression in short IPIs under high [Ca2+]o condition (Fig. 8, bottom-left), compared to the
experimental data (Fig. 4, top-left). This discrepancy is likely to be caused by the lack of such
mechanisms (e.g., inactivation of presynaptic N-type Ca2+ channels shown by Dobrunz et al.)
in the parametric model. Indeed, the proposed combined parametric/non-parametric modeling
strategy should be used iteratively for the discoveries and characterizations of new underlying
mechanisms.

In summary, the main result of this study is the corroborated proposition that an experimentally-
derived non-parametric model constitutes a rigorous quantitative tool for assessing the input–
output property of any proposed model and provides the quantitative means to guide the manner
in which possible improvements of a parametric model can be achieved by inclusion of
additional terms/parameters (representing additional biological processes). This issue was
examined here in the context of synaptic transmission in the hippocampus but has broad
applicability to all neuronal systems. Therefore, this study may serve as an experimental/
modeling paradigm for other applications in the context of systems neuroscience.

Acknowledgments
This research was supported by the NSF ERC (BMES), DARPA (HAND), ONR, NSF (BITS), and NIH/NIBIB
(BMSR). We thank the two anonymous reviewers for their insightful comments on this manuscript.

References
Berger TW, Chauvet G, Sclabassi RJ. A biological based model of functional properties of the

hippocampus. Neural Networks 1994;7:1031–1064.
Berger TW, Eriksson JL, Ciarolla DA, Sclabassi RJ. Nonlinear systems analysis of the hippocampal

perforant path-dentate projection. II. Effects of random impulse train stimulation. Journal of
Neurophysiology 1988a;60:1076–1094. [PubMed: 3171657]

Berger TW, Eriksson JL, Ciarolla DA, Sclabassi RJ. Nonlinear systems analysis of the hippocampal
perforant path-dentate projection. III. Comparison of random train and paired impulse stimulation.
Journal of Neurophysiology 1988b;60:1095–1109. [PubMed: 3171658]

Bishop, CM. Neural networks for pattern recognition. Oxford: Oxford University Press; 1995.

Song et al. Page 14

J Comput Neurosci. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL. The time course of glutamate in the synaptic
cleft. Science 1992;258:1498–1501. [PubMed: 1359647]

Creager R, Dunwiddie T, Lynch G. Paired-pulse and frequency facilitation in the CA1 region of the in
vitro rat hippocampus. Journal of Physiology 1980;299:409–424. [PubMed: 7381775]

Dittman JS, Kreitzer AC, Regehr WG. Interplay between facilitation, depression, and residual calcium
at three presynaptic terminals. Journal of Neuroscience 2000;20:1374–1385. [PubMed: 10662828]

Dobrunz LE, Huang EP, Stevens CF. Very short-term plasticity in hippocampal synapses. Proceedings
of the National Academy of Sciences of the United States of America 1997;94:14843–14847.
[PubMed: 9405701]

Dobrunz LE, Stevens CF. Heterogeneity of release probability, facilitation, and depletion at central
synapses. Neuron 1997;18:995–1008. [PubMed: 9208866]

Eccles JC, Katz B, Kuffler SW. Nature of the endplate potential in curarized muscle. Journal of
Neurophysiology 1941;4:362–387.

Fuhrmann G, Cowan A, Segev I, Tsodyks M, Stricker C. Multiple mechanisms govern the dynamics of
depression at neocortical synapses of young rats. Journal of Physiology 2004;557:415–438.
[PubMed: 15020700]

Gage PW, Murphy EC. Facilitation of acetylcholine secretion at a mouse neuromuscular junction. Brain
Research 1981;204:327–337. [PubMed: 6257326]

Gover TD, Jiang XY, Abrams TW. Persistent, exocytosis-independent silencing of release sites underlies
homosynaptic depression at sensory synapses in Aplysia. Journal of Neuroscience 2002;22:1942–
1955. [PubMed: 11880525]

Hanse E, Gustafsson B. Factors explaining heterogeneity in short-term synaptic dynamics of hippocampal
glutamatergic synapses in the neonatal rat. Journal of Physiology 2001a;537:141–149. [PubMed:
11711568]

Hanse E, Gustafsson B. Vesicle release probability and pre-primed pool at glutamatergic synapses in area
CA1 of the rat neonatal hippocampus. Journal of Physiology 2001b;531:481–493. [PubMed:
11230520]

Hashimoto K, Kano M. Presynaptic origin of paired-pulse depression at climbing fibre-Purkinje cell
synapses in the rat cerebellum. Journal of Physiology 1998;506:391–405. [PubMed: 9490867]

Hjelmstad GO, Nicoll RA, Malenka RC. Synaptic refractory period provides a measure of probability of
release in the hippocampus. Neuron 1997;19:1309–1318. [PubMed: 9427253]

Hsu SF, Augustine GJ, Jackson MB. Adaptation of Ca(2+)-triggered exocytosis in presynaptic terminals.
Neuron 1996;17:501–512. [PubMed: 8816713]

Jones MV, Westbrook GL. The impact of receptor desensitization on fast synaptic transmission. Trends
in Neurosciences 1996;19:96–101. [PubMed: 9054063]

Kirischuk S, Clements JD, Grantyn R. Presynaptic and postsynaptic mechanisms underlie paired pulse
depression at single GABAergic boutons in rat collicular cultures. Journal of Physiology
2002;543:99–116. [PubMed: 12181284]

Kraushaar U, Jonas P. Efficacy and stability of quantal GABA release at a hippocampal interneuron-
principal neuron synapse. Journal of Neuroscience 2000;20:5594–5607. [PubMed: 10908596]

Krausz HI, Friesen WO. The analysis of nonlinear synaptic transmission. Journal of General Physiology
1977;70:243–265. [PubMed: 197201]

Marmarelis VZ. Identification of nonlinear biological systems using Laguerre expansions of kernels.
Annals of Biomedical Engineering 1993;21:573–589. [PubMed: 8116911]

Marmarelis, VZ. Nonlinear dynamic modeling of physiological systems. Hoboken: Wiley; 2004.
Marmarelis VZ, Berger TW. General methodology for nonlinear modeling of neural systems with Poisson

point-process inputs. Mathematical Biosciences 2005;196:1–13. [PubMed: 15963534]
Marmarelis, VZ.; Marmarelis, PZ. Analysis of physiological systems: the white-noise approach. New

York: Plenum; 1978.
Mody I, Lambert JD, Heinemann U. Low extracellular magnesium induces epileptiform activity and

spreading depression in rat hippocampal slices. Journal of Neurophysiology 1987;57:869–888.
[PubMed: 3031235]

Song et al. Page 15

J Comput Neurosci. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Pedroarena CM, Schwarz C. Efficacy and short-term plasticity at GABAergic synapses between Purkinje
and cerebellar nuclei neurons. Journal of Neurophysiology 2003;89:704–715. [PubMed: 12574448]

Rahamimoff R. A dual effect of calcium ions on neuromuscular facilitation. Journal of Physiology
1968;195:471–480. [PubMed: 4296698]

Sclabassi RJ, Eriksson JL, Port RL, Robinson GB, Berger TW. Nonlinear systems analysis of the
hippocampal perforant path-dentate projection. I. Theoretical and interpretational considerations.
Journal of Neurophysiology 1988;60:1066–1076. [PubMed: 3171656]

Silver RA, Momiyama A, Cull-Candy SG. Locus of frequency-dependent depression identified with
multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses. Journal of
Physiology 1998;510:881–902. [PubMed: 9660900]

Stevens CF, Wang Y. Facilitation and depression at single central synapses. Neuron 1995;14:795–802.
[PubMed: 7718241]

Trussell LO, Fischbach GD. Glutamate receptor desensitization and its role in synaptic transmission.
Neuron 1989;3:209–218. [PubMed: 2576213]

Wadiche JI, Jahr CE. Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron
2001;32:301–313. [PubMed: 11683999]

Waldeck RF, Pereda A, Faber DS. Properties and plasticity of paired-pulse depression at a central synapse.
Journal of Neuroscience 2000;20:5312–5320. [PubMed: 10884315]

Yamada KA, Tang CM. Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance
glutamatergic synaptic currents. Journal of Neuroscience 1993;13:3904–3915. [PubMed: 8103555]

Zengel JE, Magleby KL. Augmentation and facilitation of transmitter release. A quantitative description
at the frog neuromuscular junction. Journal of General Physiology 1982;80:583–611. [PubMed:
6128372]

Zengel JE, Magleby KL, Horn JP, McAfee DA, Yarowsky PJ. Facilitation, augmentation, and
potentiation of synaptic transmission at the superior cervical ganglion of the rabbit. Journal of General
Physiology 1980;76:213–231. [PubMed: 6251156]

Zucker RS, Regehr WG. Short-term synaptic plasticity. Annual Review of Physiology 2002;64:355–405.

Song et al. Page 16

J Comput Neurosci. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Deconvolution of EPSC train. (a) EPSC train with temporal summations. (b) Typical EPSC
profile obtained as an average of isolated EPSCs. (c) the deconvolved discrete signal that
represents the sequence of presynaptic releases. (d) EPSC train reconstructed with (b) and
(c)
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Fig. 2.
Fixed-interval EPSC trains elicited with four different frequencies (10, 20, 30, 40 Hz) and
under two different [Ca2+]o conditions. Under 2 mM [Ca2+]o condition, the EPSC peaks at the
2nd response and then declines; while under 1 mM [Ca2+]o condition, the EPSC peaks later
and attains almost a steady-state value. Note that the second to the tenth EPSCs (white bars)
were normalized with the first EPSC (black bar). Bottom row: the 2nd (solid lines) and 3rd

(dashed lines) responses as a percentage of the 1st response
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Fig. 3.
Representative fixed-interval EPSC trains with four different frequencies and under two
[Ca2+]o conditions. Each EPSC train is the average of 16 sweeps. Bars in bottom row are the
deconvolved EPSC amplitudes representing the estimated transmitter release. Note the
difference between the deconvolved EPSC amplitudes and the peak EPSC amplitudes due to
the temporal summations in the EPSC train
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Fig. 4.
The 2nd and 3rd order response descriptors (RDs), r2 and r3, of the 3rd-order Poisson–Volterra
models of the SC synaptic dynamics obtained from broadband experimental data for different
[Ca2+]o and CTZ conditions. Top row inset: the r2 values for short inter-impulse intervals
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Fig. 5.
Representative fixed-interval EPSC trains before and during CTZ application. The bars in
bottom row denote the deconvolved EPSC amplitudes, which are not significantly affected by
CTZ despite the dramatic changes in the corresponding EPSC waveforms
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Fig. 6.
Prediction of the deconvolved EPSC trains elicited by Poisson random-interval stimulation
using the 3rd-order Poisson–Volterra models for the two calcium conditions
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Fig. 7.
RDs of the 3rd-order Poisson–Volterra models obtained by use of the simulated input–output
data of the parametric FD models with parameters estimated from the fixed-interval and
random-interval datasets under the two calcium conditions
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Fig. 8.
The computed 2nd and 3rd order RDs of the parametric double-process FD model of the SC
synapse with parameters estimated from the random-interval input–output experimental data
under 2 mM [Ca2+]o condition
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Fig. 9.
The computed 2nd and 3rd order RDs of the parametric double-process FD model of the SC
synapse with parameters estimated from the random-interval input–output experimental data
under 1 mM [Ca2+]o condition

Song et al. Page 25

J Comput Neurosci. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
Simulated experiment showing that the paired-pulse depression caused by AMPA receptor
desensitization is attenuated by the probabilistic releases. (A) mEPSCs and EPSCs elicited by
pairs of electrical pulses. a, b, c and d are the four possible patterns of mEPSCs. Desensitization
only occurs in d. (B) mEPSCs and EPSCs elicited by pairs of glutamate pulses. Desensitization
always occurs. In both (A) and (B), the second EPSCs were normalized by the amplitude of
the first EPSC. Note the different levels of depression caused by desensitization
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Table 1
Parameter estimates of the FD model obtained from fixed-interval and random-interval datasets under 2 mM [Ca2+]o
condition, and the resulting prediction NMRSE of the two parametric models

FIT-FD estimates RIT-FD estimates

F1 0.19±0.03 0.26±0.03

ρ 1.42±0.14 1.27±0.08

K0 (s−1) 2.5±0.9 1.2±0.2

kmax (s−1) 13.2±1.4 20.4±2.5

τF (ms) 90 90

τD (ms) 50 50

NRMSE (%) 33±2 28±1
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Table 2
Parameter estimates of the FD model obtained from fixed-interval and random-interval datasets under 1 mM [Ca2+]o
condition, and the resulting prediction NMRSE of the two parametric models

FIT-FD estimates RIT-FD estimates

F1 0.0048±0.0023 0.0027±0.0011

ρ 1.52±0.18 1.91±0.10

K0 (s−1) 385±177 668±34

kmax (s−1) 436±147 309±19

τF (ms) 120 120

τD (ms) 50 50

NRMSE (%) 39±4 29±3
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Table 3
Parameter estimates of the double-process FD model

1 mM [Ca2+]o 2 mM [Ca2+]o

Fast Slow Fast Slow

N 0.4 0.6 0.4 0.6

F1 0.18 0.15 0.51 0.32

ρ 2.5 1.5 0.90 1.2

K0 (s−1) 20 120 1 20

kmax (s−1) 60 130 40 90

τF (ms) 20 200 30 100

τD (ms) 20 50 20 50
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