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Abstract
The large number of variables involved in many biophysical models can conceal potentially simple
dynamical mechanisms governing the properties of its solutions and the transitions between them as
parameters are varied. To address this issue, we extend a novel model reduction method, based on
“scales of dominance,” to multi-compartment models. We use this method to systematically reduce
the dimension of a two-compartment conductance-based model of a crustacean pyloric dilator (PD)
neuron that exhibits distinct modes of oscillation—tonic spiking, intermediate bursting and strong
bursting. A cursory analysis of the scales of dominance in a trajectory of this sixteen-variable model
leads to a globally-reduced, nine-variable model. In a finer analysis we divide the trajectory into
intervals dominated by a smaller number of variables, resulting in a locally-reduced hybrid model
whose dimension varies between two and six in different temporal regimes. Both reduced models
exhibit the same modes of oscillation as the sixteen-dimensional model over a comparable parameter
range. The reduced models highlight low-dimensional organizing structure in the dynamics of the
PD neuron, and the dependence of its oscillations on parameters such as the maximal conductances
of calcium currents. Our technique could be used to build hybrid low-dimensional models from any
large multi-compartment conductance-based model in order to analyze the interactions between
different modes of activity.
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Introduction
A major challenge in contemporary computational neuroscience is the analysis of high-
dimensional, biophysically realistic models. Mathematical approaches in computational
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neuroscience have progressed from analysis of abstract neural systems at steady state (Wilson
and Cowan, 1972 Wilson and Cowan, 1991) to more biologically realistic situations in which
systems are in rhythmic or chaotic states (Terman, 1991; Kopell and LeMasson, 1994). A
further increase in the biophysical sophistication of neural models has been driven by the
availability of increasingly detailed electrophysiological and anatomical data about neuronal
dynamics. Bifurcation theory (Guckenheimer and Holmes, 1983; Strogatz, 2001) is particularly
helpful in understanding the qualitative change in the behavior of dynamical systems models
as parameters are varied. However, the direct application of bifurcation theory becomes
prohibitively difficult as the complexity of the model increases beyond a few dynamical
variables, and heuristic arguments are commonly used to justify restricting analysis to smaller,
approximate models (Fitzhugh, 1961; Meunier, 1992; Chow and Kopell, 2000).

In this study, we have two aims. The first is to show how a novel reduction technique (Clewley
et al., 2005) can be extended to apply to multi-compartment biophysical neuron models. The
second is to demonstrate that the technique is useful in the analysis of a real neural system that
shows different qualitative behaviors in different parameter regimes. We focus on spiking and
bursting behavior in a conductance-based model of the pyloric dilator (PD) neuron, a member
of the pacemaker ensemble of the pyloric network in the well-characterized crustacean
stomatogastric nervous system (Nusbaum and Beenhakker, 2002; Marder and Bucher, 2007).
The PD neuron typically spikes tonically when it is synaptically isolated from the network but,
in some preparations, is also capable of producing rhythmic bursts of action potentials and can
thus be considered a conditional burster (Miller and Selverston, 1982; Marder, 1984).

A recent modeling study by Soto-Treviño et al. (2005) produced a biophysically-realistic multi-
compartment model of the PD neuron and its electrically-coupled counterpart, the anterior
burster (AB) neuron. We use the mathematical technique of “dominant scales,” developed by
Clewley et al. (2005), to analyze this PD neuron model and systematically identify a critical
time interval within the inter-spike interval, in which the dynamics of only a subset of ionic
currents govern whether the neuron transitions from tonic spiking to bursting activity.
Subsequently, we analyze the interactions among this select subset of ionic currents to
characterize the differences in tonic and bursting activity. Our analysis elucidates the biological
mechanisms underlying the change in qualitative behavior of the PD neuron model by
determining local and low-dimensional approximations to a high-dimensional biophysical
model. This methodology also serves as a case study in the context of a multitude of similar
transitions in neuronal outputs from other models that could be investigated in a similar fashion.

Methods
The model PD neuron involves two compartments to provide a spatial segregation of spike
production from other ionic properties. These compartments will be referred to as the axonal
and the soma/neurite (S/N) compartments. The system of ordinary differential equations
(ODEs) describing the dynamics of the PD neuron are given in the Appendix, and their full
description can be found in Soto-Treviño et al. (2005). Unless otherwise stated, all numerical
solutions to the ODEs were calculated using the software package PyDSTool
(http://pydstool.sourceforge.net).

Full details of the dominant scale method and its implementation in software is given in Clewley
et al. (2005). We summarize it briefly here, and highlight its extension to multi-compartment
neural models. The method applies to any variable of interest in the system, and measures the
influence of “input” variables on it along a given trajectory. In the present work we focus on
the membrane potential V of the S/N compartment and define its “inputs” to be those variables
on which the differential equation for V directly depends. The current balance ODE for V takes
the form
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(1)

where Cm is the membrane capacitance, Iext is an externally-applied direct current, Ii are the
ionic currents, and Iaxial is the axial current. The current due to an ion channel type i is calculated
a conductance multiplied by a driving force: , where Ei denotes the
reversal potential of the current. For the purposes of this investigation we found it sufficient
to base our analysis only on the activity of activation variables. As a result, it is notationally
convenient to re-write the conductance gsp as an activation variable s, raised to a power p, and
any inactivation variables are absorbed within the maximal conductance to create a non-
constant factor g. (Note that the method itself does not preclude explicit analysis of inactivation
variables.) There are no associated activation or inactivation variables for terms representing
electrical coupling. Instead, the membrane potential of the coupled compartment can be treated
as the input variable, and thus provides the basis for extending the dominant scale method to
multi-compartment models.

All 16 ODEs describing the model PD neuron can be written in the form

(2)

The equations for the compartmental membrane potentials take this form after a simple
algebraic rearrangement described in Appendix B, which reflects the conditional linearity of
the equations in the Hodgkin-Huxley formalism and of first-order kinetic equations in general.
This view of the ODEs permits an intuitive comparison of the instantaneous target value
x∞(t) and time scale τx(t) for each variable, which may depend on the state variables.

For the voltage equation, V∞(t) will be referred to as the “instantaneous target voltage” (dotted
curve in Fig. 1; defined in Appendix B). V∞(t) provides structural and organizational
information about the vector field, playing a similar role to a slowly varying steady state. The
channel conductances play the role of non-constant eigenvalue-like quantities that measure the
rates of attraction toward V∞(t). This can be appreciated by supposing that all inputs to the
differential equation for V are held constant. Then, by definition, V∞(t) ≡ V∞ = const. and
τV(t) ≡ τV = const., so that Eq. (2) for the V variable is an autonomous first-order linear equation
with a steady state at V∞, with which there is associated a single (negative) eigenvalue −1/τV.

Our definition of influence is the sensitivity of V∞ with respect to an input variable s, given by

(3)

This measures how strongly the inputs influence the local structure of the vector field, and
provides predictive information about the response of a compartment to a perturbation. For
conductance-based neuron models, the sensitivity can be defined explicitly (Appendix B). This
definition of influence extends to input terms in Eq. (1) arising from electrical coupling between
compartments.
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The dominant scale method is applied to one or more known trajectories of the model system,
which is typically calculated by numerical integration. The influences of input variables on a
variable of focus (here, V) are computed over a trajectory. These values are ranked and
normalized, and those that are larger than some small positive parameter ε ∈ (0,1) at each
moment in time are classified as inputs that are active; the remaining inputs are considered
inactive. This is shown schematically in Figure 1 (bottom row). The time interval within which
the set of active variables stays the same is defined to be an “epoch” (a, b and c in Fig. 1).
Changes in the set of active inputs through time define epoch boundaries (where changes in
ranking within a set are ignored). Additionally, active variables are marked “fast” or “slow”
relative to V over the duration of an epoch, according to a small time-scale parameter γ ∈
(0,1): variables whose time scales are smaller than γτV are considered fast whereas those that
are larger than τV/γ are considered slow. In summary, lower-dimensional reduced models
approximate the full dynamics over the duration of an epoch, where the reduced model is a
projection of the full system onto the space of the active variables.

The dominant scale method has been implemented in an open-source Matlab code known as
DSSRT (Dominant Scale System Reduction Tool), available at
http://www.cam.cornell.edu/~rclewley/DSSRT.html. DSSRT requires details of the ODEs, the
parameter values and a numerically computed trajectory of the system on which the analysis
is performed. DSSRT does not fully automate the analysis, and relies on input from the user
in order to obtain optimal results. In particular, it requires appropriate values for ε and γ. The
heuristic that we use for choosing the values is that they should lead to a decomposition of the
inputs into as few epochs as possible over the course of the trajectory. Additionally, small
changes in the values should not make a large qualitative difference to the pattern of epochs.
DSSRT provides information about the relative influence strengths and time scales of variables
along a trajectory that can aid in the optimal selection of these values. For the current study
we chose the values ε =1/5 and γ = 2/7, which robustly distinguished the most dominant scales
of influence and time along the trajectories considered. Other values of ε and γ with the same
order of magnitude produced similar qualitative results.

The present version of DSSRT (v1.32) is unable to analyze differential equations for the
calcium-dependent ion kinetics, although the trajectory used is calculated using the full set of
equations. As a result, in our analysis of the model PD neuron two variables have to be
approximated by constants. These are (1) the reversal potential ECa and (2) the calcium
dependence of the steady-state activation of IKCa. These approximations are not disruptive
because the constants can be chosen differently for the analysis of different sub-regimes of the
dynamics within which the true values remain approximately constant. By comparison to
simulations of the full 16-dimensional model we will demonstrate that these approximations
do not affect the validity of the qualitative low-dimensional models.

The number of epochs that are automatically determined by DSSRT may be large and involve
distinctions in the dynamics that are too fine-grained for our purposes. However, to elucidate
the analysis of the dynamics most intuitively, DSSRT supports a heuristic amalgamation of
certain epochs into what we will call “sub-regimes.”

Results
The two-compartment model of the PD neuron described above will be referred to as the full
model (F). We use DSSRT to reduce this model to a sequence of low-dimensional sub-regimes
that can be thought of as a piecewise-local model (L). Our methodological goal will be
demonstrated by the successful reproduction of the distinct tonic spiking and bursting behaviors
by model L. Our scientific goal is to identify the significant factors that contribute to these
intrinsic output modes. We examine the dynamics in the different states of L to elucidate the
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details of interactions between the variables of F. We will also compare the performance and
complexity of L to make a single, global reduction of the model (G)—this being the traditional
form of model reduction.

The left column in Figure 2 shows experimental evidence of distinct activity patterns from
synaptically-isolated biological PD neurons, indicating that this neuron can produce a variety
of outputs including tonic spiking (top), weak (middle) or strong (bottom) bursting. These
behaviors are captured by the model PD (Fig. 2, right column) as described in Soto-Treviño et
al. (2005). For both the biological and model PD neurons a DC current injection cannot induce
a bursting state from a tonically spiking state. However, Figure 2 illustrates that the model PD
can produce regular bursting when the maximal conductance of the calcium currents is
increased, for example, by exogenous neuromodulators (Johnson et al., 2003). To uncover the
differences in the spiking and bursting mechanisms in the model PD we will make use of the
dominant scale method (Clewley et al., 2005) and extend it to situations involving two
compartments.

The proper activity of the PD model neuron, both in isolation and as part of the network, is
crucially based on the fact that ionic currents responsible for spike production are spatially
segregated from other voltage-gated ionic currents. This conductance-based full model consists
of 16 ODEs (see Appendix A) that describe two compartments, one representing the axon, and
the other the soma/primary neurite (S/N). We denote by Vaxon and V the membrane potential
of the respective compartments. The axonal compartment is responsible for spike generation
via the usual fast sodium and potassium currents, INa and IKd, and corresponds to a specific
parameter regime of a standard Hodgkin-Huxley compartment. As the interactions between
the variables within such a compartment are already well understood (Suckley and Biktashev,
2003; Clewley et al., 2005), we will focus on reducing only the S/N compartment.

In the absence of coupling to the axonal compartment the membrane potential of the S/N
compartment produces large-amplitude (approx. 50mV) slow oscillations, which are generated
by three outward currents, four inward currents and a leak current IL. The outward currents are
a delayed-rectified potassium current IKd, a calcium-dependent potassium current IKCa and a
transient potassium current IA. Two of the inward currents are carried by calcium: ICaT and
ICaS; the other two are a hyperpolarization-activated IH current and a persistent sodium current
INaP. We denote the total calcium current ICaS + ICaT as ICa. The axonal and S/N compartments
are intrinsically very different from each other; they interact via an axial current Iaxial with
maximal conductance gaxial. Unless otherwise stated, the values of the calcium current maximal
conductances gCaT and gCaS that were used for setting the neuron in a tonic spiking regime are
60 and 22.5 μS, respectively. These will be referred to as the “reference values” for these
parameters. We increased these by 54% (to 92 and 35 μS) in order to set the neuron in a bursting
regime.

Characterizing the changing roles in the critical sub-regime
In this section we examine the key quantities that are used by the DSSRT software in its analysis
of the S/N compartment: the instantaneous target voltage V∞(t) (Fig. 1) of the membrane
voltage V and its characteristic time scale τV(t). Figure 3 shows these quantities, together with
Vaxon, over one cycle of the periodic orbits for the tonic spiking (Fig. 3(a)) and bursting (Fig.
3(b)) regimes. In contrast to its behavior during spiking, τV can be seen to drop from
approximately 10 ms to almost zero during a burst, corresponding to the neuron entering a
“high-conductance regime” (Shelley et al., 2002) in which V is strongly slaved to V∞ (Fig. 3
(b), bottom panel).

DSSRT computes the influence strengths Ψs, defined in Eq. (3), over a tonic spiking or bursting
trajectory, using Eq. (1). We note that, due to the strongly dissipative nature of the equations,
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we need only analyze a single periodic orbit for each regime, as qualitatively equivalent orbits
will exhibit the same pattern of changing influences. Here, the inputs s correspond to the
activation variables of the currents in the S/N compartment and the voltage of the axon
compartment, Vaxon. Values of Ψs larger than the small positive parameter ε = 1/5 at each
moment in time correspond to inputs that are considered “active.”

Figure 4 compares the Ψs values, for the currents CaS, CaT, Kd and the axial current flowing
between the S/N and Axon compartments, with the corresponding current magnitudes. In both
the tonic spiking and bursting regimes the influence strengths for all other inputs were at all
times smaller than ε times the largest influence strength. The figure is suggestive of the different
roles being played by the inputs to the S/N compartment. For instance, in the tonic regime (Fig.
4(a)), the current magnitudes show that axonal spikes are important for generating large
instantaneous rates of change in V. In contrast, the corresponding influence strength Ψaxial is
relatively small so that V∞ is insensitive to the axial current during most of the cycle. This
indicates that axial spikes have a very localized impact on the net change to V over a cycle,
whereas the calcium and the delayed rectifier potassium currents ICa and IKd dominate the
position of V∞ for most of the cycle. In the bursting regime (Fig. 4(b)), we observe that ICa and
IKd do not fully reset after the first spike (Fig. 4(b)III, middle panel), and quickly build up to
large levels (with opposite signs). Ψaxial becomes smaller compared to the calcium and
rectifying potassium inputs as the burst progresses (Fig. 4(b)II, middle panel), reflected in the
plateau nature of V despite receiving strong spikes from the axon compartment. As Ψaxial
becomes smaller during a burst, we see that V exhibits smaller excursions (Fig. 4(b)II, compare
top and bottom panels). In the tonic regime, we also note that IKCa remains negligible in size.
Only in the later part of a burst does this current become significant to both the rate of change
of V and the control of V∞.

The second aspect to the dominant scale method considers the characteristic time scales τs of
the inputs s to the S/N compartment. In Figure 5 we compare the time evolution of these in
periodic orbits of the full model. Three time scales, which have much larger values, are not
shown in the figure: the activation of IH (τH ~ 1000 ms), the inactivation of INaP (τNaP,h ~ 550
ms), and the inactivation of ICaT (τCaT,h ~ 200 ms). DSSRT defines three time-scale groups
using the comparative scaling parameter γ = 2/7 (Fig. 5(a), left of the panels). During tonic
spiking, the slow group of variables contains K(Ca) and H, whose time scales are larger than
τV/γ ≈ 35 ms. The fast group only exists during a spike event (it consists only of the axon
membrane potential) during which τVaxon < γτV ≈ 2.8 ms. The intermediate group includes the
remaining currents and the axon membrane potential between spike events (Fig. 5(a)). We
classify channels that include inactivation variables according to the faster of the two associated
time scales. In the bursting regime (Fig. 5(b)) the groupings are the same except during the
active phase of the burst, when the two membrane potentials become comparably fast during
spikes and everything else is much slower (Fig. 5(b)II). This shift is due to the influence of the
large conductances of CaT and CaS currents that develop during the burst (Fig. 4(b)II, middle
panel).

A globally reduced approximate model
We begin by determining a global reduction (G) of the PD neuron model F. The passive leak
term was not classified as an influential input at the chosen value of ε. We performed
comparative simulations (not shown) that demonstrated that the leak current has a subtle
modulatory effect on the dynamics during the recovery from a burst. We chose to retain the
leak term in G because it helped match the qualitative behavior to F without contributing to
model complexity or computational cost.

IH has a negligible influence during spiking and the active phase of bursting, but plays a role
in the recovery of the cell between bursts and thus cannot be omitted. However, as noted earlier,
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the influence of the A and NaP currents remain smaller than ε throughout tonic spiking and
bursting. Thus, we removed their associated activation (m) and inactivation (h) variables mA,
hA, mNaP, and hNaP. Additionally, the observed slow time scale of hCaT and its minimal
fluctuation over the tonic and bursting cycles (not shown) leads us to approximate it to a
constant value of 0.65.

The “lumping” of similar variables into a single dynamic variable is a common reduction
technique, and may require appropriate rescalings to be calculated. However, for a single model
to reproduce different qualitative behaviors a globally appropriate lumping may not be
possible. Figure 6(a) summarizes the most important part of the global reduction by showing
the most dominant activation variables (mCaT, mCaS, and nKd) versus V for one cycle of the
tonic spiking (left column) and bursting (right column) regimes, comparing F (top row) and G
(bottom row). The dashed line in these figures indicates an effective excitability threshold (θ
= 0.14, defined below). Below this threshold, the three crucial currents evolve almost
identically in F, so that the CaS, CaT and Kd currents remain in balance. This situation applies
to the whole of the tonic spiking regime, and for the inter-burst interval in the bursting regime
(including the first spike of a burst). As was seen in Figure 4, the K(Ca) current is substantially
more dominant than the CaS, CaT or Kd currents at the end of a burst, and so it is the up-sweep
of the trajectories of mCaT, mCaS, and nKd that is more important to match to the full model
than the down-sweep.

The similarity in the bursting regime is different and requires rescaling of the variables. To
explore this, we plotted the steady-state activation curves m∞,CaT, m∞,CaS, and n∞,Kd (Fig. 6
(b), left panel) as a function of the S/N compartment’s membrane potential, V. These steady-
state activations are comparable in size when V remains in the tonic regime as indicated by the
white region. In the bursting regime these targets diverge as V depolarizes (left panel, gray
region) as do the time scales (Fig. 6(b), right panel). It is clear that a single lumped variable
will not suffice for both regimes, but as part of our hand-tuned reduction using conventional
methods we made two state-dependent forms of lumping in the model as described below.

We lump mCaT, mCaS, and nKd together into a single variable x depending on whether x is above
or below the threshold of “nonlinear activation scaling,” chosen at θ = 0.14 as the observed
excitability threshold: the point where the steady state activations begin to diverge as V is
increased (Fig. 6(b), dashed line in the left panel). Note that our analysis is not sensitive to the
precise value of this threshold. When x <θ, the rescaling is linear and x is described by the
equation for mCaT, the most dominant variable for that regime (although mCaS also works
satisfactorily). Above this threshold, mCaT and nKd are nonlinear rescalings of x according to
a curve-fitting method (described in Appendix C). In this range, x is described by the equation
for mCaS (which is now most dominant). The result of these reductions is a set of equations
with nine dynamic variables. Although this model is technically “hybrid,” in that its definition
involves a discrete change to the vector field as a function of the state (Van Der Schaft and
Schumacher, 2000), this change is minor and does not modify the dimension of the system.
We contrast this with the more aggressive reduction we perform in the next section.

We examined whether the simplified set of currents is adequate to exhibit the transition from
tonic spiking to bursting. In particular, in the high activation state, can the three activation
variables with similar kinetics be safely approximated by nonlinearly scaled versions of a
single, lumped variable? We evaluated this by comparing qualitative properties of simulated
trajectories from models F and G. Although our parameter choices do not produce an exact fit
to F, they are sufficient for G to exhibit the same types of behaviors (Figure 7(a)). Furthermore,
we measured the spiking and bursting periods for G as gCaT and gcas were varied, and found
a progression from quiescence to tonic spiking to bursting similar to that for F (Fig. 7(b)).
Notably, the intermediate form of bursting (shown in Figure 2) is also found in G, where the
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spike in [Ca2+] only reaches approximately 8 μM, as compared to approximately 4 or 43 μM,
respectively, during tonic spiking or a full burst. In both F and G this intermediate form of
bursting is found in a narrow parameter range shortly after the transition from spiking to
bursting (Fig. 7(b)).

A piecewise locally-reduced model
The analysis using DSSRT provides detailed temporal information about the changing
influence of variables in the dynamics of the neural model. We used this information to build
the locally reduced hybrid model L by considering the epochs involved in the tonic spiking
and bursting regimes. In the tonic regime, DSSRT determined six epochs over one spiking
period as marked in Figure 8(a). The six epochs were condensed further into two “sub-regimes”
based on the methods described in Clewley et al. (2005). The first sub-regime consisted of the
first two epochs, for which influence from Vaxon is negligible and the S/N compartment is
effectively uncoupled from the axonal compartment. The second sub-regime corresponds to
the last four epochs in which the S/N compartment receives significant input from the axonal
compartment (except in epochs 4 and 5, which are very short in duration and not
mechanistically significant). For sub-regime 2, the input from the calcium current ICaT is the
least dominant of the four inputs during epochs 5 and 6, and simulations (not shown) indicated
that the threshold ε could be increased in this sub-regime to eliminate mCaT and hCaT with no
loss of qualitative accuracy in computed trajectories. The two sub-regimes associated with
tonic spiking are shown in Fig. 9(a) (left panel).

For the bursting regime we performed a similar analysis to obtain four sub-regimes, the first
two of which were identical to those of tonic spiking because they involved the same active
variables. The remaining sub-regimes were drawn from epochs 7–15 in Figure 8(b) according
to the following criterion: the exact pattern of active variables need not be reproduced perfectly
by the sub-regimes, but a minimal number of sub-regimes were desired. The following
observations guided this choice. In epochs 7–15 the intracellular calcium concentration
[Ca2+] is in its high state (not shown). IKCa becomes active in epochs 12–15, but its slow time
scale of activation means that it builds up slowly only when the high state of [Ca2+] is reached.
(Note the dominance of ΨKCa at the end of the burst and during the interburst interval as shown
in Fig. 4(b) I & II, bottom panels.) This suggests that mKCa should be included in all the
remaining sub-regimes in order that it can become a dominant variable at the right time during
a burst, avoiding what can be loosely called a “shadowing error” (Clewley et al., 2005). Despite
the fact that epochs 7 and 8, respectively, have the same active inputs as epochs 1 and 2, the
high state of [Ca2+] implies that the dynamics for the CaS and CaT activations are not the same
as in epochs 1 and 2. This suggests making a sub-regime that is a high- [Ca2+] analog of the
first sub-regime. Thus, we chose sub-regime 3 to have the variables present in sub-regime 1
and also mKCa and [Ca2+].

The pattern of active variables in epochs 7–12 roughly follows that of epochs 1–6 except
without the axial input. Although the influence of the axial input is not large enough to be
considered dominant in epochs 7–12, it plays a modulatory role in creating the small S/N
voltage spikes. We chose sub-regime 4 to be a high- [Ca2+] analog of sub-regime 2, in
symmetry with the pattern of epochs condensed into sub-regimes 1 and 2. As we are primarily
interested in the differences between tonic spiking to bursting, and in the interest of simplicity,
we chose not to create a separate sub-regime for the K(Ca)-dominated epochs 13–15, or for
the remainder of the bursting trajectory. The sub-regimes associated with bursting are shown
in Fig. 9(a) (right panel).

The four sub-regimes that constitute model L are formally defined in Appendix D.
Computationally, they are treated as four smooth vector fields connected by discrete events.
In each sub-regime, the dynamics of the model PD neuron is dominated by a different subset
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of the variables. Fig, 9(b) depicts model L as a state transition diagram, in the form of a 2×2
grid where each of the four states represents one sub-regime of the vector field. The
arrangement on the grid reflects the suggestion that states 3 and 4 are versions of states 1 and
2 (respectively) except with high levels of ICa/IKCa activation. As such, states 3 and 4 require
explicit dynamics for [Ca2+] whereas, for states 1 and 2, DSSRT suggests that [Ca2+] can set
to be a constant low value. The value was set at 3.8 μM, the maximum value of [Ca2+] in the
tonic regime and the minimum in the burst regime. The columns of the grid provide a division
whereby states 1 and 3 represent the dynamics between axonal spikes, and states 2 and 4
represent the dynamics during axonal spiking and the subsequent refractory period.

From the output of DSSRT it can be observed that the transitions to sub-regimes 2 and 4 from
sub-regimes 1 and 3 (respectively) occur when Vaxon depolarizes to approximately 5 mV above
V. This provides a convenient way to define the transition event in the hybrid system
specification. In the opposite direction, the transitions back to sub-regimes 1 or 3 occur after
the spike refractory when V and Vaxon return to within 5 mV of each other. This choice of
transition events reflects the intuition that the axial coupling is most influential when the
difference |V − Vaxon| is sufficiently large. The validity of these transition choices is critical to
extending our method to models with two or more compartments. During the rapid changes in
Vaxon during spiking, dominant scale analysis of the axonal compartment shows that it is
effectively independent of the S/N compartment and therefore can be treated temporarily as
an autonomous input (Clewley et al., 2005). This guarantees that after sodium currents become
dominant in the axon, the spike will occur and we will transition from sub-regime 1 to 2 or
from 3 to 4 and back as described.

Based on observations of model G, the transitions from 1 to 3 and from 2 to 4 are determined
by the increasing of mCaT through θ. In states 3 and 4 (high ICa/IKCa activation), ICa increases
significantly in a positive feedback loop with V. When the S/N compartment becomes
persistently depolarized there is a steady increase in [Ca2+] and consequently the slow IKCa
becomes fully activated. This terminates the burst, returning the system to state 1. The return
to low ICa/IKCa activation occurs when mKCa decreases below the threshold θKCa = 0.1, which
happens later than the fall of mCaT below θ because mKCa decays more slowly. Therefore,
mKCa is the more accurate indicator for the return to low ICa/IKCa activation. Note however
that the qualitative dynamics of L are insensitive to the precise choices of the event transition
thresholds.

Model L successfully reproduces both the tonic and bursting behaviors seen in experiments
using different patterns of state (i.e. sub-regime) transitions (Fig. 9(b)) without need for the
hand-tuned curve fitting (as in model G). We observe that while tonic spiking, states 3 or 4 are
never entered. In contrast, the bursting regime begins in the same way as the tonic regime but
at some point enters state 4 (from states 1 and 2) and continues to oscillate between states 3
and 4 until it reverts to state 1 from state 3. As expected, neither the spike nor burst periods
were accurately reproduced as these are influenced by NaP, A and H currents that were
removed. Model L also produces intermediate bursts when gCaT and gCaS were set to 120%
their reference values (inset of Figure 7). The intermediate bursts involved [Ca2+] peaks
between 8 and 13 μM that were comparable to those in F and G.

Phase plane analysis of the transition from tonic spiking to bursting
Phase plane diagrams for analysis of high-dimensional systems have limited usefulness
because the diagrams only represent projections of trajectories and cross-sections of the null-
surfaces at individual time points. In general, this makes it nullclines intersections of the
nullcline (cross-sectional) curves in a non-autonomous phase plane do not correspond to actual
equilibria. Nevertheless, one can obtain useful information about transient dynamics from such
diagrams with careful consideration for the fine structure of the dynamics at different time
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points along a trajectory. We will demonstrate the use of phase-plane analysis in model L to
characterize the transition to bursting in the PD neuron by comparing hybrid states 2 and 4.
The precisely defined domains of analysis for the sub-regimes of model L and the lower
dimensionality compared to models F or G allow greater confidence in the interpretation of
the phase planes. In particular, they enable us to neglect the effect of dynamics in the remainder
of the system.

The top panels in Figure 10 show plots of V and Vaxon over the duration of hybrid states 2 and
4 for the tonic (a) and bursting (a) regimes. The instants labeled t0, t1 and t2 respectively
correspond to the beginning of the state, the peak of the V spike and the end of the state. The
bottom panels of Figure 10 show the dynamics in the (mCaS, V) phase plane for the V trajectories
shown in the top panels. The course of the trajectory in this phase plane requires careful
interpretation, as the V nullcline changes at each instant (marked 0, 1 and 2 for t0, t1 and t2).
The V∞ value for a given instant along a trajectory corresponds to the value of the V nullcline
at that time. The quasi-steady fixed points of the system are given by the intersection of the V
nullclines and the nullcline m∞,,CaS (V) (closed circles if attracting, open circles if repelling).

In the tonic regime (Figure 10(a)), Iaxial(t) depolarizes V quickly from V(t0) to V(t1) but this
depolarization is not enough for mCaS to cross its activation threshold θ = 0.14 (dotted line)
before Iaxial(t) hyperpolarizes V to V(t2). In contrast, for state 2 in the bursting case (Fig. 14
(b1)), the higher value of gCaS modifies the shape of the V nullclines, and therefore the location
of the V∞ values. Together with a decrease in τCaS (V), the axonal compartment spike still acts
to depolarize V, allowing mCaS to increase and cross θ. This leads to an early exit from state 2
into state 4. In state 4 of the burst regime (Fig. 14(b2)), the V nullclines now additionally depend
on nKd, which distorts their shape compared to state 2. In particular, the V nullclines have two
crossings with the mCaS nullcline, and the upper one is repelling. The axonal compartment
spike no longer restores V∞ to a hyperpolarized value. Instead, there is a net increase in V∞
during the spike, seen by the V nullcline increasing to the right, and V continues to rise as the
state is exited.

The main difference between states 2 and 4 through the transition to bursting is that the effect
of Iaxial is diminished as ICa builds up (see Fig. 4(b)II). The fact that mCaS has a slower time
scale than the Vaxon spike rise time means that Iaxial (t) has an asymmetric effect: for every
Vaxon spike up-sweep, V quickly depolarizes by an amount roughly controlled by the initial
value of mCaS (i.e., through ICa), but when the V spike down-sweep starts to hyperpolarize as
a response to the Vaxon spike down-sweep, the slower ICa has increased and counters the
remainder of the Iaxial(t) peak. This process repeats over each axonal compartment spike, with
the V spike getting smaller each time because of the increasing level of ICa (a phenomenon
often referred to as spike block).

Discussion
In the past few years there has been an explosion in the number of detailed biophysical models
of neurons and networks (Hines et al., 2004). Due to the large number of variables involved
in most biophysical models, a mathematical analysis of the dynamics of the solutions or the
transitions between different modes of activity is prohibitively difficult. As a result, such
models are often analyzed by simulating the model at various parameter values. This provides
an understanding of the roles of different components but produces little insight into how these
components interact to produce specific dynamical outputs. Our focus on local parameter
variation and bifurcation is complementary to the broader search for parameter ranges in which
these behavioral regimes can be found (Prinz et al., 2004a).
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We have shown that the dominant scales method (Clewley et al., 2005) can be extended to
multi-compartment models. We applied the method to the study of tonic spiking and bursting
in the two-compartment model PD neuron of Soto-Treviño et al. (2005) (model F), in order to
discover the low-dimensional dominant dynamics in each of the two mechanisms. Guided by
the output of the software tool DSSRT, we first derived a single, globally reduced, model G
that qualitatively captured the tonic and bursting regimes of F. This was intended as a “best
effort” to use conventional reduction techniques for comparison with our method. For instance,
in attempting to minimize the number of dimensions in G, ad hoc approximations were made
that involved hand-fitted rescaling functions. The success of model G affirms the presence of
an effective activation threshold separating low and high [Ca2+] states – corresponding to the
tonic and bursting regimes, respectively. We then derived a piecewise low-dimensional
description of the dynamical system (model L) by more systematically analyzing the changing
patterns of influence between the variables in the full dynamics. This derivation did not require
the curve fitting of any functional relationships.

Simulation of model L showed that it was capable of reproducing the various behaviors seen
in F despite requiring integration of only 6 to 9 variables. The number or variables can be
decreased by taking into account the results of a prior dominant scale reduction of the 4-
dimensional axonal compartment in Clewley et al. (2005), which have been omitted here.

The analysis suggests that it is functionally equivalent to a 1-dimensional integrate-and-fire
compartment. Simulations of such a further reduced model are almost indistinguishable to the
trajectories of L (not shown), and involve integrating only between 3 and 6 variables.
Furthermore, an increase in gCaT and gCaS in F led to a transition from spiking to bursting via
an intermediate form of bursting. Model L could also reproduce this transitional behavior with
similar spike levels in [Ca2+] to those observed in F and G, despite the fact that its derivation
did not involve analysis of an intermediate bursting trajectory. These results indicate that our
characterization of the tonic and bursting regimes was rich enough to support additional
qualitative states present in the full system.

For a dynamical system near a bifurcation point, asymptotic analysis or other rigorous methods
may be used to derive an optimal normal form representation of the local dynamics. Although
we have not established rigorous theory for our method, the correspondence in the results of
dominant scale analysis applied to the original Hodgkin-Huxley model with those of
asymptotic analysis performed by Suckley and Biktashev (2003) suggests that our method
focuses on mathematically-significant features in the dynamics and yields parsimonious and
appropriate local models. Our method identifies temporal intervals in the dynamics of the full
system within which local reductions are derived. Although much faster than doing traditional
asymptotic analysis by hand, the cost of our method lies in the need to compute trajectories for
hybrid dynamical systems, which involves accurate determination of zero-crossings of “test
functions” that define the state transition events between the individual vector fields. The
changes in the pattern of hybrid states strongly suggest the presence of one or more bifurcations
in the dynamics of the full system, although a rigorous bifurcation analysis is beyond the scope
of this work. We fully expect that studying the hybrid model representation further could
characterize other aspects of the original model PD neuron’s dynamics but we did not attempt
this in this study.

The role of the axon in the transition to bursting
The changing pattern of dominant inputs to the two compartments over the course of a spike
shows that axial coupling has a subtler role than to promote synchronized activity. Between
spikes the S/N compartment restores the axonal compartment towards its spike threshold via
this coupling. Without axial coupling the axonal compartment remains quiescent and the
depolarizing currents of the S/N compartment can build up without the axonal spikes to counter
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their effect. Thus, the high ICa/IKCa state is inevitably entered, and the membrane potential V
in F follows a trajectory that resembles the envelope of a burst without spikes. On the other
hand, if the axial coupling is so strong that the two compartments are effectively unified, the
cell only exhibits bursting (Soto-Treviño et al., 2005, Fig. 6).

The finding that axial coupling plays changing roles in the PD neuron supports the view that
current flowing between neural compartments acts in a more complex manner than merely as
a co-promoter of activity or as a drive towards synchrony (Sherman and Rinzel, 1992; Chow
and Kopell, 2000; Medvedev and Kopell, 2001). For instance, it has been shown that the switch
from spiking to bursting in pancreatic β-cells can be controlled by the strength of coupling
between two electrically-coupled cells having similar currents but different parameters (de
Vries and Sherman, 2001): stronger coupling led to spiking whereas weaker coupling led to
bursting. As shown in Soto-Treviño et al. (2005), the PD neuron activity (model F), despite
involving two very different compartments, can also switch from bursting to spiking as the
strength of the axial coupling is increased. In light of the results described above, this transition
can be interpreted as follows: the increase in axial conductance increases the influence of the
axial current into the S/N compartment. The timing of the axonal spikes is such that it prevents
the activation of the calcium currents from reaching the excitability threshold θ, which has the
resetting effect on the S/N membrane potential, as described as state 2 of model L.

Our results and interpretations are also consistent with the description of the soma-dendritic
“ping-pong” mechanism for the Pinksy-Rinzel model of bursting given by Bose and Booth
(2005). The ping-pong mechanism relies on a separation of time scales between the two
electrotonically-coupled compartments, and a “proper balance in strength or timing of
interaction” between them. In their analysis of a piecewise reduced model of a two-
compartment neuron, Bose and Booth determined that the activation of ICa during the active
phase of the burst ultimately causes spike block and disrupts the ping-pong pattern, leading to
a transition to the silent phase of the burst.

Relation to other approaches
Our method of dominant scales extends the principles of quasi-steady state approximation that
is popularly used in modeling chemical kinetics (Murray, 1989). While the quasi-state method
focuses on separations in time scale only, our method also incorporates information about
multiple scales in terms of a measure of influence of variables over each other. This method
strives to bring greater objectivity to the process of model reduction through the use of an
algorithmic process. However, as it is the case in other reduction methods and in the process
of model development and analysis, interpretative steps may still be necessary in determining
an efficient representation for a reduced model.

Kepler et al. (1992) describe a complementary method of systematic reduction known as
“equivalent potentials,” which they apply globally to reduce the number of differential
equations representing a system of ODEs. Golomb et al. (1993) applied a variant of this method
to their reduction of an STG model, which took into account calcium dependence and also the
significant separation of time scales in the activation variables. Their reduced model showed
qualitatively similar dynamics and bifurcation structure. The mathematical nature of lumping
using equivalent potentials is rigorously determined in comparison to the hand-tuned curve
fitting used for deriving model G. However, here we attempt to objectively measure which
variables are dominant in a particular sub-regime before lumping any together, and we retain
the original units for all the variables. As observed by Golomb et al., activation variables whose
time constants were significantly dissimilar over the critical range of membrane potential
values could not be lumped together. It was for this reason we pursued the locally reduced,
hybrid model L, which makes the use of lumping more powerful. Model L included lumped
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variables in sub-regimes 1 and 2 where their time constants were similar, while the other sub-
regimes used individual representations for those variables.

Butera et al. (1996) used a similar technique in their study of low-order reductions of an 11-
dimensional bursting model neuron based on a multiple time scale analysis. Their reductions
were most powerful when a heuristically determined interaction between the fast and slow sub-
systems was included, making the model effectively hybrid. We also note that our separation
of time scales in the reduced analysis of bursting is equivalent to the “effective leak” method
of Guckenheimer et al. (2005).

Experimental tests
The hypothesis that the maximal conductance parameters gCaT and gCaS can control a transition
from spiking to bursting (or vice-versa) could be tested by applying neuromodulators that have
a specific impact on these conductances, or by using a dynamic clamp protocol (Prinz et al.,
2004b) to add or remove calcium conductances. We have explored the variation of other
parameters in order to control similar transitions, and have found qualitatively similar
dynamics. In this study, we focused on calcium conductances in the S/N compartment, but
changes that affect the effective structure of the axon compartment can also modify the behavior
of both biological and model PD neurons. This would be consistent with experimental results
which show that antidromic spiking activity in the axon can disrupt bursting in the de-afferented
PD soma (Bucher et al., 2003), and switch it to tonic activity.
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Appendix

Appendices

A. Differential equations describing the PD neuron model
In each compartment the membrane potential, V, is given by the current balance equation

, where . The exponents pi, qi are
integers between 0 and 4; the capacitance C, maximal conductances gi and reversal potentials
Ei are given in the tables below. Each activation mi, or inactivation variable hi varies according

to the equation , with x = mi or hi. The voltage-dependent functions τx(V)
and x∞(V) are described in Tables 1 and 2.

B. Definitions for the dominant scale method
Using the convenient algebraic form of the Hodgkin-Huxley equations, we re-write the
differential equation for the membrane potential as

(4)

where

(5)

and

(6)

The differential equation for the intra-cellular calcium concentration can also be put in this
form:

(7)

The differential equations for the activation and inactivation variables of all the ionic membrane
channels are already in this form.

The definition of the influence strength in Eq. (3) for an input variable s to Eq. (1) can be
expanded in the case of the Hodgkin-Huxley formalism to give
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(8)

where gmax is the input’s maximal conductance, Es its reversal potential (Erev = Vaxon for the
coupling term to the axon compartment), and p and q are the powers on the conductance’s
activation and inactivation variables s and h, respectively. q is zero if there is no inactivation
variable for this input, and we treat the inactivation variable as secondary to the activation
variable by formally absorbing it into a non-constant maximal conductance defined by g(t) =
gmaxh(t)q. We focus the sensitivity analysis on the variable V, so that the inputs s are the
activations for the CaT, CaS, Kd, NaP, H, K(Ca), A, leak, axial coupling conductances and the
external bias current.

C. Nonlinear scaling of activations in the globally reduced model
In the globally reduced model neuron (G), rescaled versions of a single activation variable x
(based on mCaT) replaced the dynamics of three other activation variables in model F. In a low
calcium activation state the activation variables are treated as identical (Fig. 6(a)). However,
when a threshold θ is reached the relationship between them becomes nonlinear (Fig. 6(b)).
This suggests fitting a simple power law to describe all three variables using just one. The
activation re-scalings are given by

(9)

where the values for c, p are set, respectively to (1.25, 1) for mCaT, (1.2, 1.2) for mCaS, and
(0.85, 1.2) for nKd. The time constant and activation curve of x is switched from that of mCaT
to mCaS at the threshold θ =0.14, when an ad hoc factor of 0.7 on τCaS is also introduced that
provides a better fit to the duration of the burst envelope observed in model F.

D. Definition of the hybrid system for the S/N compartment
Model L consists of the definition of the vector fields and the discrete events for transitioning
between them, according to the following rules:

1. Each current is determined by the same equations as for the full model. The axonal
compartment is the same as in F.

2. The ICaT inactivation variable hCaT is set to the constant value of 0.7.

3. The passive leak current is retained only in the axonal compartment.

4. Currents that are missing in some states are held constant.

5. [Ca2+] is held constant at 3.8 μM for states 1 and 2.

In addition to V, the following variables were active in different states:

State 1: mCaS = nkd = x ≡ mCaT

State 2: nKd = y ≡ mCaS, axial coupling.

State 3: CaT, CaS, Kd, K(Ca), [Ca2+].
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State 4: CaS, Kd, K(Ca), [Ca2+], axial coupling.

Different states have different sets of lumped or un-lumped variables. Therefore, when a state
transition was made some of these variables required initialization from the available activation
values of the previous state. Transition event from state 1 to 2 and from 3 to 4: Vaxon − V ≥ E
(“axonal spike threshold”) assuming initially that Vaxon −V < E. Transition event from state 2
to 1 and from 4 to 3: V − Vaxon ≤ E (“recovery threshold”) assuming initially that V
−Vaxon>E. Notice that the left-hand sides of these inequalities are not absolute values, and
therefore these two conditions are not inverses of each other. The first condition is met when
Vaxon becomes more depolarized than V by at least an amount equal to E. The second condition
is met when Vaxon depolarizes to become close to V, by an amount less than E. We used E = 5
mV. Transition event from state 1 to 3 and from 2 to 4: x ≥ θ. Transition event from state 3 to
1 and from 4 to 2: mKCa < θKCa, where θKC = 0.10.
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Figure 1.
Schematic diagram exemplifying a hypothetical dominant scale analysis with respect to four
time-varying input terms, I1–I4. The top panel shows V(t) (solid) and its associated asymptotic
target state V∞(t) (dashed). Three snapshots of the dynamics are taken at representative times
a, b, and c. Arrows on the solid vertical lines at these times indicate the instantaneous direction
of flow of the variable towards its target. Three time intervals are distinguished, each containing
one of the snapshots; a gray box shows the second interval. Each interval corresponds to an
“epoch” of the dynamics. The bottom panel indicates hypothetical relative scales of influence
of the four inputs. The input with largest influence at a moment in time is considered at a scale
of magnitude 1. Compared to the most dominant input, those inputs whose relative scale of
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influence is above a pre-defined threshold ε are considered active while the remaining inputs
are considered inactive. In this example, the second input is most dominant in the two epochs
that contain snapshots (a) and (b). In epoch (a) I1 shares the same scale of influence and, so
does I3 in epoch (b). In epoch (c), I3 and I4 are most dominant instead. The dynamics show
different qualitative trends in each epoch.
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Figure 2.
Three types of activity in the isolated PD neuron. Left: experimental measurements of somatic
membrane potential from different isolated PD cells with intact descending modulatory inputs,
and no current injection. From the top to the bottom trace these behaviors are referred to as
(top) tonic spiking, (middle) intermediate bursting, and (bottom) bursting. (Recordings from
P. Rabbah and F. Nadim) Right: Full model F in (Soto-Treviño et al., 2005) with different
values for the maximal conductances of the calcium currents, gCaT and gCaS. From top to
bottom in μS: (gCaT, gCaS) = (60, 22.5), (61.8, 23.18) and (92, 35). All other parameters are as
in Table 2.
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Figure 3.
Plots over one cycle period of (a) tonic spiking, and (b) bursting activity of the axonal
compartment membrane potential Vaxon, the voltage V and its target voltage V∞, and the time
scale for V (from top to bottom). Insets show the variables during the burst (both in the same
time interval of 960 to 1060 m). The inset in the second panel of (b) shows the increasing
control of the large currents on V, as V∞ becomes an increasingly better approximation of V
over the time range of 960 to 1060 ms. τV falls to almost zero as the slaving of V to V∞ develops
during a burst.
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Figure 4.
Comparative measures of influence of the most influential variables for (a) the tonic and (b)
the bursting regimes. The regions shown in gray boxes in (b)I are expanded in II; they show
activity during the active phase of a burst (with a time range 960 to 1100 ms). Similarly, gray
boxes in (b)II are expanded in III to show the first two spikes of the active phase in the same
scale as (a). Variables were considered non-significant if their current magnitudes and Ψ values
were at least a factor of ε =1/5 smaller than the largest. Top panels: S/N voltage traces for
reference. Middle panels: current magnitudes over one cycle. Bottom panels: Ψ values over
one cycle.
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Figure 5.
The time evolution of the characteristic time scales for the most significant variables, during
the (a) tonic spiking and (b) bursting regimes. The gray box in (b)I is expanded in II. Three
time scale groups are identified: fast, intermediate, and slow. τA, τNaP, τCaS, τCaT, τKd and
τKCa refer to the time scales of the associated activations, and τA,h refers to that of the
inactivation hA.
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Figure 6.
Lumped variables describing the global reduction. (a) Activation levels of crucial currents
plotted versus S/N compartment V simulated for model F (upper panels) and G (lower panels),
for one cycle of tonic (left column), and bursting regime (right column). The direction of motion
around the limit cycles is shown by the arrows. The steady-state activation curves for the three
currents are shown for F as dotted lines (see (b) also). The threshold of nonlinear activation
scaling θ = 0.14 is shown as a dashed line (approximate for F and exact for G). The gray boxes
in the right column indicate the axis ranges of the plots in the left column. The three activation
trajectories for G in (a) are identical. (b) Time scales of activation and steady-state activation
curves for the CaS, CaT and Kd conductances as a function of the S/N compartment voltage,
showing regions in which they are approximately the same (white) and a region in which they
diverge (gray). The regions are determined by the choice of the threshold for nonlinear
activation scaling θ = 0.14.

Clewley et al. Page 24

J Comput Neurosci. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
The globally reduced model produces the same qualitative outputs as the full model. (a) Voltage
traces for models F and G show that the spike timing and qualitative form is similar in both
tonic (left panel), and bursting (right panel) parameter regimes. The inset in the right panel is
over the time range 700–800 ms. In the tonic regime the threshold θ = 0.14 is never crossed.
(b) Period of spiking (lower traces) and bursting (higher traces) as a function of gCaT and
gCaS, which were varied together as a percentage of their reference values: model F (open
markers) and G (filled markers). Both models show no activity below 90% of the reference
maximal conductances. The gray boxes show time courses V for representative “intermediate
bursting” behavior (between tonic spiking and full bursting) at the parameter values indicated.
A plot of the intermeduate bursting for model L (described later) is shown in the inset for
comparison, at 120% of the reference maximal conductances.
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Figure 8.
Time epochs as defined by DSSRT. The time epochs marked to indicate each subset of
dominant variables on the S/N compartment for tonic spiking (a) and bursting (b). Each table
shows the dominant variables present in the epoch starting at time t0.
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Figure 9.
Four sub-regimes defined using the epochs determined by DSSRT. (a) The sub-regimes 1–4
marked for tonic spiking and bursting in model L. (b) State transition diagram for L. Each state
corresponds to one sub-regime of the vector field. The effective dimension of each state is
shown in the center of the diagram. The rows indicate that states 3 and 4 are high –[Ca2+] (and
ICa/IKCa activation) versions of states 1 and 2. The columns indicate that states 1 and 3 represent
dynamics between axonal spikes (when the axial communication is mainly from S/N to the
axon) whereas states 2 and 4 represent dynamics during axonal spikes, when there is feedback
from the axon compartment and the input from the transient calcium current is removed. The
horizontal dotted line indicates the nonlinear activation threshold θ (when transitioning from
states 1 and 2 to 3 and 4) or the threshold θKCa (in the opposite direction). The vertical dotted
line indicates the axonal spike threshold (from states 1 and 3 to 2 and 4), or the recovery
threshold (in the opposite direction).
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Figure 10.
Phase plane analysis for sub-regimes 2 and 4 of model L. Top panels: Voltage traces over the
duration of hybrid states 2 and 4 are shown for reference for the tonic and bursting regime.
Bottom panels: Non-autonomous phase plane projections in (mCaS, V) showing dynamics
through hybrid state 2 in the tonic regime and states 2 and 4 in the bursting regime, where the
axial input can be treated as an autonomous external input signal. Three snapshots of the
nullclines are highlighted during the motion through each state (the gray mCaS nullcline remains
the same): at t0, the onset of the state; t1, at the peak of the spike in V; and t2, when the state
ends. Black curves show the projected trajectory and arrow indicates the direction of motion.
Colored marks on the trajectory correspond to times ti. During states 2 and 4 the V nullcline
(colored and numbered according to ti) is controlled predominantly by the axial input. (a) In
state 2 of the tonic regime mCaS does not pass above the threshold of nonlinear activation
scaling, θ = 0.14 (dotted line). (t1 − t0 ≈ 2.03 ms, t2−t1≈9.85 ms). (b1) In state 2 of the bursting
regime the higher value of gCaS allows mCaS to increase above θ while the axial spike is
depolarizing V. This leads to an early exit from state 2 into state 4. (t1−t0 ≈ 2.25 ms, t2−t1≈0.7
ms). (b2) In state 4 of the bursting regime the upper crossing of the nullclines is repelling, and
remains above θ. (t1−t0 ≈ 0.9 ms, t2−t1 ≈ 6.5 ms).
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Table 1
Voltage and calcium dependence for the steady-state activation m and inactivation h of the ionic currents.

mp,hq x∞ τx (ms)

INa m3
1

1 + exp ( − (V + 24.7) / 5.29) 1.32 − 1.26
1 + exp ( − (V + 120) / 25)

h 1
1 + exp ((V + 48.9) / 5.18) ( 0.67

1 + exp ( − (V + 62.9) / 10) ) ∗ (1.5 + 1
1 + exp ((V + 34.9) / 3.6) )

ICaT m3
1

1 + exp ( − (V + 25) / 7.2) 55 − 49.5
1 + exp ( − (V + 58) / 17)

h 1
1 + exp ((V + 36) / 7) 350 − 300

1 + exp ( − (V + 50) / 16.9)

ICaS m3
1

1 + exp ( − (V + 22) / 8.5) 16 − 13.1
1 + exp ( − (V + 25.1) / 26.4)

INap m3
1

1 + exp ( − (V + 26.8) / 8.2) 19.8 − 10.7
1 + exp ( − (V + 26.5) / 8.6)

h 1
1 + exp ((V + 48.5) / 4.8) 666 − 379

1 + exp ( − (V + 33.6) / 11.7)

Ih m 1
1 + exp ((V + 70) / 6) 272 + 1499

1 + exp ( − (V + 42.2) / 8.73)

IK m4
1

1 + exp ( − (V + 14.2) / 11.8) 7.2 − 6.4
1 + exp ( − (V + 28.3) / 8.73)

IKCa m4

( Ca 2+

Ca 2+ + 30
) 1

1 + exp ( − (V + 51) / 8)
90.3 − 75.9

1 + exp ( − (V + 46) / 22.7)

IA m3
1

1 + exp ( − (V + 27) / 8.7) 11.6 − 10.4
1 + exp ( − (V + 32.9) / 15.2)

h 1
1 + exp ((V + 56.9) / 4.9) 38.6 − 29.2

1 + exp ( − (V + 38.9) / 26.5)
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Table 2
Parameter values of the full PD model F.

gi (μS) Erev (mV)

AXON INa 1110 50

IK 150 −80

IL 0.00081 −55

C 6.0 nF

SOMA ICaT 22.5 Nernst potential with an extracellular [Ca2+] of 13mM

ICaS 60

INap 4.38 50

Ih 0.219 −20

IK 1576.8 −80

IKCa 251.85 −80

IA 39.42 −80

IL 0.105 −55

C 12.0 nF

[Ca2+]

τCa = d Ca 2+

dt = − F ICa − Ca 2+ + Co, τca = 300 ms, F=0.515 μ M/nA, Co=0.5 μ M

Iaxial gaxial =1.05 μS
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