
Journal of Computational Neuroscience manuscript No.

(will be inserted by the editor)

Efficient computation of the maximum a posteriori path

and parameter estimation in integrate-and-fire and more

general state-space models

Shinsuke Koyama · Liam Paninski

Received: March 10, 2009/ Accepted: date

Abstract A number of important data analysis problems in neuroscience can be solved

using state-space models. In this article, we describe fast methods for computing the

exact maximum a posteriori (MAP) path of the hidden state variable in these mod-

els, given spike train observations. If the state transition density is log-concave and

the observation model satisfies certain standard assumptions, then the optimization

problem is strictly concave and can be solved rapidly with Newton-Raphson methods,

because the Hessian of the loglikelihood is block tridiagonal. We can further exploit

this block-tridiagonal structure to develop efficient parameter estimation methods for

these models. We describe applications of this approach to neural decoding problems,

with a focus on the classic integrate-and-fire model as a key example.

Keywords Tridiagonal Newton-Raphson method · Laplace approximation · State-

space models · Point processes

1 Introduction

A number of important models in neuroscience may be described in “state-space” form

with point-process observations: a hidden state variable evolves according to some

continuous Markovian dynamics, and the rate of the observed spike trains is some

function of this underlying hidden state. Examples include the integrate-and-fire model

[1] and models used in a number of spike train decoding applications [2–5]; see [6] for

a recent review.

It is of significant interest to compute the maximum a posteriori (MAP) path that

the hidden state variable traversed on a given trial, given the observed spike trains;

S. Koyama
Department of Statistics and Center for the Neural Basis of Cognition, Carnegie Mellon Uni-
versity
Pittsburgh, PA, USA
E-mail: koyama@stat.cmu.edu

L. Paninski
Department of Statistics and Center for Theoretical Neuroscience, Columbia University
New York, NY, USA
E-mail: liam@stat.columbia.edu

2

this MAP path is essential both for decoding the dynamics of the hidden state given

the spike train observations, and also for parameter estimation in this hidden Markov

setting, and allows us to address a wide variety of biological problems such as inferring

presynaptic inputs given postsynaptic voltage recording, detecting the location of a

synapse given noisy voltage observations, and tracking nonstationary neural tuning

properties. For reviews of these applications, see [6] and references therein.

The point-process filter algorithm introduced in [2] (adapted from earlier contribu-

tions in the statistical literature [7]) computes an approximation to this MAP path, but

this approximation is rigorously accurate only in certain special limiting cases. More

recently, [8] discussed methods for computing the MAP path exactly (without relying

on the state-space framework), but without further assumptions these methods have

computational complexity of O(N3), where N is the trial length, and are therefore

inapplicable for long trials.

Here we develop O(N) methods for computing the exact MAP path. In the case

of linear Gaussian state space dynamics, the MAP path in continuous time satisfies

a second-order nonlinear ordinary differential equation [9,10]. This equation may be

solved numerically via standard relaxation or shooting methods [11]. More generally,

if the dynamics are linear and driven by innovations with a log-concave density, and

the point-process observations satisfy certain standard assumptions, then the optimiza-

tion problem is strictly concave (guaranteeing a unique MAP path), and the Newton-

Raphson algorithm may be applied; each Newton update here requires just O(N) time,

because the Hessian of the loglikelihood is block tridiagonal [7,12,13]. In the case of

the integrate-and-fire neuron with a hard voltage threshold, barrier methods may be

applied to solve the resulting constrained optimization problem [14].

In section 2, we develop the tridiagonal Newton-Raphson method for computing the

MAP path of the hidden state in O(N) time. Two other methods for state estimation,

the point process filter/smoother and the expectation-propagation (EP) algorithm [15],

are then described for comparison. In section 3, we show that the MAP path can be

used for learning model parameters; maximizing the marginal likelihood function via

Laplace approximation can again be done again in O(N) time. We also discuss the

relation of this method to approximate expectation-maximization (EM) algorithms for

this model [16,3]. In section 4, we illustrate the application of these methods to the

problem of predicting the subthreshold voltage trace from spike train data, and to

inferring an unknown filter applied to the input current. We close with summary and

discussion in section 5.

2 Inferring the MAP path

2.1 State-space model and the MAP path

We will first describe the class of models to be considered. Let x(t) denote a (scalar-

or vector-valued) diffusion process which is the solution of the following stochastic

differential equation:

dx(t) = h(x(t))dt + σdB(t), (1)

where B(t) is the standard Brownian motion. The state process x(t) is not directly

observable, but we observe a variable y(t), which is related to x(t), through a noisy

process. This observation process is modeled by a probability density of y(t) given the

3

state x(t) at time t, denoted by p(y(t)|x(t)). This model class covers a wide range of

state-space models, including linear and nonlinear state-space models [17] and dynamic

generalized linear models [18,7]. In this article, we are especially interested in models

with point process observations [19], in which the observation variable is taken to be a

sequence of event times, {ti}:

y(t) =
X

i

δ(t − ti), (2)

where δ(t) denotes the Dirac delta function.

The stochastic integrate-and-fire (IF) model is an important special case of a state-

space model with point process observations. It is the simplest model of neurons’ spiking

mechanism which consists of the membrane voltage dynamics and spiking threshold,

and has been widely used for modeling neural dynamics as well as for data analytical

purposes ([1] and references therein). The stochastic voltage process x(t) of the simplest

leaky IF model follows the linear stochastic dynamics,

dx(t) = −gx(t)dt + σdB(t). (3)

The probability with which a spike is observed in a small interval is written as

Pr{a spike in [t, t + dt)} = f(x(t))dt, (4)

where f(x) is a nonnegative intensity function [19]. In the hard-threshold case, in

which an observed spike is modeled as the first passage time of the voltage process x(t)

through the threshold voltage xth, f(x) is given by a step-function which takes the

value zero for x < xth and jumps to ∞ at x = xth. In the soft-threshold case, there

is no explicit threshold, but f(x) is given by a monotonically increasing continuous

function.

Another example for multi-dimensional state-space models is a two-compartment

leaky IF model which accounts for soma-dendric dynamics. Let x1(t) and x2(t) be the

voltage at the soma and apical dendrite, respectively, and imagine that these variables

follow the simple two-compartment stochastic dynamics

dx1(t) = [−g1x1(t) + a(x2(t) − x1(t))]dt + σ1dB1(t) (5)

dx2(t) = [−g2x2(t) + a(x1(t) − x2(t))]dt + σ2dB2(t), (6)

where B1(t) and B2(t) denote standard Brownian motions which are independent of

each other. Here a is an intercompartmental coupling strength and gi denotes the mem-

brane leakiness of compartment i. Introducing the state vector x(t) = (x1(t), x2(t))
T ,

with (.)T denoting the transpose, the state dynamics is written in the same form as

(1),

dx(t) = Ax(t)dt + ΣdB(t), (7)

where B(t) is the two-dimensional standard Brownian motion, and

A =

„

−g1 − a a

a −g2 − a

«

, Σ =

„

σ1 0

0 σ2

«

. (8)

The spike observation model is given by Pr{a spike in [t, t + dt)} = f(x1(t))dt. Of

course, further multicompartmental generalizations are possible [20]; in addition, this

state-space framework includes other types of IF neuron such as the resonate-and-fire

4

and the quadratic IF models [21], although our focus here will be on models in which

the dynamics h(x(t)) are linear, for simplicity.

We wish to compute the MAP estimate of the state variable x(t) given observations

of the full spike train {y(t)|0 ≤ t ≤ T}. Let p({x(t)}) be the probability distribution

of {x(t)} ≡ {x(t)|0 ≤ t ≤ T} which is induced by the Brownian {B(t)|0 ≤ t ≤ T},
and p({y(t)}|{x(t)}) the conditional probability distribution of {y(t)|0 ≤ t ≤ T} given

{x(t)}. From Bayes’ theorem, the log-posterior distribution of {x(t)} is obtained as

log p({x(t)}|{y(t)}) = log p({y(t)}|{x(t)}) + log p({x(t)}) + const. (9)

The MAP path of {x(t)} is computed by maximizing the log-posterior distribution

with respect to {x(t)},

{x̂(t)} = arg max
{x(t)}

˘

log p({y(t)}|{x(t)}) + log p({x(t)})
¯

. (10)

In the following section, we describe efficient numerical algorithms to compute the

MAP path. We will illustrate these methods with an application to the LIF model; the

extension to vector-valued state-space models is straightforward.

2.2 Euler-Lagrange approach

We first review a previous continuous-time approach proposed for the computation of

the MAP path. All the details are available in the previous papers [9,10,22,23]. The

log-posterior distribution of {x(t)} of the state-space model can be written as

log p({y(t)}|{x(t)}) + log p({x(t)}) =

Z T

0
L(x, ẋ, t)dt + const. (11)

where L(x, ẋ, t) is defined as an appropriate Lagrangian, a functional of x, ẋ and t.

By applying the variational method, the MAP path x̂(t) is found to satisfy the Euler-

Lagrange equation under an appropriate boundary condition,

d

dt

„

∂L

∂ẋ

«

−
∂L

∂x
= 0. (12)

For example, if we apply the standard point-process loglikelihood formula [19], it is

easy to see that the Lagrangian for the soft-threshold leaky IF model (3) is given by

L(x, ẋ) =
X

i

δ(t − ti) log f(x) − f(x) −
1

2σ2
(ẋ + gx)2. (13)

Thus the Euler-Lagrange equation is computed as

ẍ(t) = g2x(t) + σ2
»

f ′(x(t)) −
X

i

δ(t − ti)
f ′(x(ti))

f(x(ti))

–

, (14)

with boundary conditions: ẋ(0) = −gx(0) and ẋ(T) = −gx(T). The MAP path may

now be obtained by solving this differential equation via standard numerical techniques,

e.g. relaxation or shooting methods [11].

5

2.3 Computing the MAP path via block-tridiagonal Newton-Raphson optimization

The numerical method we consider here for computing the MAP path works by directly

maximizing the posterior density of the state, rather than solving the Euler-Lagrange

equation. As we will discuss further below, this optimization approach turns out to be

exactly equivalent to the standard “relaxation” method for solving the Euler-Lagrange

differential equation discussed above; however, we will see that there are a few advan-

tages in treating the optimization problem directly (not least is that we can track the

convergence to the optimal solution by directly monitoring our objective function).

We first switch from continuous to discrete time, for concreteness. In a discrete-

time setting, we partition the observation interval into a discrete set of times, {ti : 0 ≤
t0 < t1 < · · · < tN ≤ T}, where ti − ti−1 = ∆ for i = 0, 1, . . . , N . All pertinent model

components, such as the state and observation values, are then defined at these specified

times. For convenience, we write xi for x(ti) and yi for y(ti). For the point process

observation model, yi is taken to be a binary variable of {0, 1}, letting 1 indicate that a

spike has occurred within the corresponding time interval. The derivative, dx/dt, in (1)

is replaced by (xi+1 − xi)/∆. Applying the discretization to the original continuous-

time state-space model yields the state transition density p(yi|xi) and the observation

probability p(xi|xi−1). Because of the Markov properties of the model, the log posterior

density of {xi} is written as

log p({xi}|{yi}) = log p(x0) +
N
X

i=1

log p(xi|xi−1) +
N
X

i=1

log p(yi|xi) + const. (15)

If the state transition density p(xi|xi−1) is log-concave in xi and xi−1, the initial

state density p(x0) is log-concave, and the observation density p(yi|xi) is also log-

concave in xi, it is then easy to see that the log-posterior distribution (15) is also

log-concave in {xi} (since addition preserves concavity), and therefore computing the

MAP path is a concave optimization problem. Furthermore, if log p(x0), log p(xi|xi−1)

and log p(yi|xi) are all smooth functions of {xi}, we may apply the standard Newton-

Raphson method to solve this optimization problem [11].

To describe the algorithm, let x = (x1, x2, . . . , xN)T and y = (y1, y2, . . . , yN)T ,

and x0 be given as a boundary condition. Let

S(x) =
N
X

i=1

log p(yi|xi) +
N
X

i=1

log p(xi|xi−1), (16)

where we omit the initial distribution, p(x0), since we assume that it is given as a

boundary condition. Now the key idea is that because of the Markov structure of the

state-space model, the Hessian matrix, J = ∇∇xS(x), becomes a tridiagonal matrix:

J =

0

B

B

B

B

B

B

B

B

B

B

B

@

D1 B1,2 0 · · · 0

BT
1,2 D2 B2,3 0

...

0 BT
2,3 D3 B3,4

. . .

...
. . .

. . .
. . . 0

BT
N−2,N−1 DN−1 BN−1,N

0 · · · 0 BT
N−1,N DN

1

C

C

C

C

C

C

C

C

C

C

C

A

(17)

6

where

Di =
∂2

∂x2
i

log p(yi|xi) +
∂2

∂x2
i

log p(xi|xi−1) +
∂2

∂x2
i

log p(xi+1|xi) (18)

(where we apply the appropriate boundary conditions for i = 1 and N), and

Bi,i+1 =
∂2

∂xi∂xi+1
log p(xi+1|xi). (19)

(For d-dimensional state-space models, Di and Bi,i+1 are d× d-matrices, and hence J

becomes a block-tridiagonal matrix with blocks of size d.) Thus, in the Newton step:

x̂
(m+1) = x̂

(m) − δ, (20)

where δ is obtained by solving the linear equation, Jδ = ∇xS(x̂(m)), the search direc-

tion δ can be computed in O(d3N) time (via the block-tridiagonal Thomas algorithm,

which is a simplified form of Gaussian elimination) instead of the usual O((dN)3) re-

quired to solve a problem of size dim(x) = dN . In Matlab, a linear equation Jx = b is

efficiently solved using the notation x = J\b; if J is sparse and block-tridiagonal, the

O(N) algorithm is used automatically.

We have introduced the above methods in the context of fully-observed spiking

data {yi}, but these techniques may be applied just as easily in the case that only a

subset of the spike train is observed: we simply set the observation terms log p(yi|xi)

to zero at times i where no data were observed (since in this case yi is independent

of xi, so p(yi|xi) is constant in xi, and we may choose this constant to be one, for

convenience). This preserves the concave and block-tridiagonal nature of the MAP

optimization problem, so we may still obtain the solution in O(T) time. For example, we

can quickly compute the MAP path of x given an observation of a single spike. [24] and

[25] emphasized that the spike-triggered average (STA) may be well-approximated by

this MAP path in the low-noise limit; the Euler-Lagrange equations used to characterize

the STA in these earlier papers may be considered the continuous-time limits of our

block-tridiagonal solutions here (recall section 2.2).

Finally, we should emphasize that this block-tridiagonal form of the Hessian J in

the state-space setting is well-known in the statistics literature [7,26,12,13]. Below

we give some simple applications to the integrate-and-fire model, and discuss how to

extend the method in the hard-threshold case, where the observation term log p(yi|xi)

is discontinuous and therefore the Newton-Raphson method can not be applied directly.

2.3.1 Example 1: Leaky IF neuron with soft-threshold

For the soft-threshold IF neuron with the state equation (3) and intensity function

f(x), (16) is given by

S(x) = l(x) −
1

2
x

T C−1
x +

N

2
log(2πσ2∆), (21)

where

l(x) =
N
X

i=1

log p(yi|xi) =
N
X

i=1

ˆ

yi log f(xi) − f(xi)∆
˜

(22)

7

is the discretized point-process observation log-likelihood, and C is the prior covariance

matrix of the state vector whose inverse is given by

C−1 =
1

σ2∆

0

B

B

B

B

B

B

@

1 + α2 −α 0 · · · 0

−α 1 + α2 −α · · · 0
...

. . .
. . .

. . .
...

0 −α 1 + α2 −α

0 · · · 0 −α 1

1

C

C

C

C

C

C

A

, (23)

where we define α = 1−g∆. Here, we assume that x0 is given as a boundary condition

and is excluded from the state vector x. The Hessian matrix for this model is then

obtained as J = ∇∇xl(x)−C−1, which is tridiagonal since ∇∇xl(x) is a diagonal ma-

trix. The log-likelihood l(x) is concave, and therefore the log-posterior S(x) is concave

as well, when the function f(.) is convex and log-concave [27]. Then our tridiagonal

Newton-Raphson method can be applied to compute the MAP path in O(N) time.

2.3.2 Example 2: Leaky IF neuron with hard-threshold

In the hard-threshold leaky IF model, a spike is evoked when x(t) ≥ xth, and x(t) is re-

set to xres = 0 immediately after spiking. Because of this hard threshold, computation

of the MAP path should be treated as a constrained problem (specifically, a quadratic

programming problem [10]). Through this example, we illustrate how to compute the

MAP path under constraints by utilizing barrier (aka interior-point) methods [14].

Since the membrane potential is reset to xres after each spike, inter-spike intervals

are independent of each other, and can be treated independently [28]. Assuming that

the voltage starts at time i = 0 and a spike is evoked at i = N , the MAP path is

computed by maximizing (21) under the boundary conditions x0 = xres, and xN = xth,

and the constraint xi < xth for i = 1, 2, . . . , N −1. To handle this constrained problem

while exploiting the fast tridiagonal techniques, we can employ barrier methods. The

idea is to replace the constrained problem

x̂ = arg max
x:xi≤xth

S(x) (24)

with a sequence of unconstrained problems

x̂ǫ = arg max
x

(

S(x) + ǫ
X

i

log(xth − xi)

)

. (25)

Clearly, x̂ǫ satisfies the constraint xi ≤ xth, since
P

i log(xth−xi) → −∞ as xi → xth.

Furthermore, if x̂ is unique, then x̂ǫ converges to x̂ as ǫ → 0 [14]. Finally, the Hessian

of the objective function S(x) + ǫ
P

i log(xth − xi) retains the tridiagonal properties

of the original objective S(x); thus we can use our fast Newton iteration to obtain x̂ǫ

for any ǫ, and then sequentially decrease ǫ (in an outer loop) to obtain x̂.

We note that the barrier approach can be used more generally in multi-dimensional

settings, whenever we want to enforce a convex constraint on xi.

8

2.4 Point process filter and smoother

In section 4, we compare the performance of the MAP path algorithm described above

against two other methods that have been applied previously. The first method is the

point process filter and smoother [7,2,3], which is based on the Bayesian “forward-

backward” recursion familiar from the theory of discrete-time hidden Markov models

[29] or, in the case that both the transitions p(xi+1|xi) and observations p(yi|xi) are lin-

ear and Gaussian, the Kalman filter [30]. From the Markov properties of the state-space

models, the conditional probability distribution of xi given a sequence of observations

up to time-step i, y1:i ≡ {y1, . . . , yi} (the so-called “forward filter distribution”), may

be expressed recursively as

p(xi|y1:i) =
p(yi|xi)p(xi|y1:i−1)

R

p(yi|xi)p(xi|y1:i−1)dxi
, (26)

where

p(xi|y1:i−1) =

Z

p(xi|xi−1)p(xi−1|y1:i−1)dxi−1, (27)

is the one-step “predictive” distribution. Starting with an initial distribution p(x0),

the forward filter distribution p(xi|y1:i) and the predictive distribution p(xi|y1:i−1) for

i = 1, 2, . . . , N can be computed recursively by applying (26) and (27). Note that this

recursion computes the conditional distribution of xi given the observations only up to

the current time-step i. Once the filtered and predictive distributions in a whole time

interval (0, N) are obtained, the posterior (smoothed) distribution of xi given a whole

observation y1:N can be computed by recursing backwards:

p(xi|y1:N) = p(xi|y1:i)

Z

p(xi+1|y1:N)p(xi+1|xi)

p(xi+1|y1:i)
dxi+1. (28)

for i = N − 1, N − 2, . . . , 1.

Although the recursive equations (26), (27) and (28) can be solved by the well-

known Kalman filter for linear Gaussian state-space models, they are not analytically

tractable in general; in particular, in our case of point process observations, these re-

cursions must be solved approximately. The point process filter and smoother approx-

imates the filtered distribution (26) as a Gaussian, which provides a simple algorithm

that is computationally tractable. The algorithm is given in detail in Appendix A; see

also [7,2,5].

2.5 Expectation propagation algorithm

The second inference method to be compared is the expectation propagation (EP)

algortihm [15]. We briefly summarize the application of the EP algorithm to state-

space models, as previously discussed in [31–33]. The basic idea is to approximate the

full joint distribution p(x|y) as a weighted Gaussian:

p(x, y) = wN (x; µ, C), (29)

where N (x; µ, C) denotes a Gaussian density in x with mean µ and C. Of course, as we

have discussed above, this Gaussian approximation is exact in the case of the Kalman

filter; unfortunately, more generally, the integrals

w =

Z

p(x, y)dx, (30)

9

µi =

Z

p(x|y)xidx, (31)

and

Cij =

Z

p(x|y)(xi − µi)
T (xj − µj)dx (32)

that define w, µ, and C are not directly tractable when the observations {yi} are

given by a point-process. The EP algorithm approximates these quantities iteratively,

by incorporating the non-Gaussian terms p(yi|xi) one-by-one into our Gaussian ap-

proximation; each such iteration requires a one-dimensional numerical integral and a

rank-one update of the approximate covariance matrix C. See [15] for details in the

general case.

In the state-space case, we can cast the EP algorithm in terms of the one- and

two-slice marginal posterior state distributions p(xi|y1:N) and p(xi−1, xi|y1:N). These

distributions can be expressed in terms of forward and backward “messages,” αi(xi),

βi(xi), as

p(xi|y1:N) = αi(xi)βi(xi), (33)

and

p(xi−1, xi|y1:N) =
1

ci
αi−1(xi−1)p(yi|xi)p(xi|xi−1)βi(xi), (34)

where

ci = p(yi|y1:i−1), (35)

αi(xi) =
1

ci
p(yi|xi)

Z

p(xi|xi−1)αi−1(xi−1)dxi−1, (36)

and

βi−1(xi−1) =
1

ci

Z

p(yi|xi)p(xi|xi−1)βi(xi)dxi. (37)

The forward (36) and the backward (37) recursions for the messages correspond to

the standard forward-backward recursions in the discrete-time, discrete-space hidden

Markov model [29], and therefore are closely related to the recursive Bayesian equations

(26)-(28) introduced above; in particular, eqs. (36-37) are equivalent to the Kalman

filter and smoother when the state-space model is linear Gaussian.

To compute the messages {αi} and {βi} for general nonlinear and non-Gaussian

cases, these messages are typically approximated by an unnormalized Gaussian (or

more generally an exponential family density). These approximate messages are itera-

tively updated by matching the expected sufficient statistics of the marginal posterior

(33) with those of the two-slice marginal posterior (34). Although the convergence is

not guaranteed for EP, if it converges it ends up in a minimum of the Bethe free energy

[31]; in our experience the EP algorithm always converges here.

The updates are performed sequentially via multiple forward-backward passes. Dur-

ing the forward pass, the αt are updated while the βt are fixed,

αi(xi) =

Z

p(xi−1, xi|y1:N)dxi−1

.

βi(xi)

≈ qi(xi)
‹

βi(xi), (38)

where qi(xi) is a Gaussian approximation of
R

p(xi−1, xi|y1:N)dxi−1. The backward

pass proceeds similarly, where the βi are updated while the αi remain fixed,

βi−1(xi−1) =

Z

p(xi−1, xi|y1:N)dxi

.

αi−1(xi−1)

≈ qi−1(xi−1)
‹

αi−1(xi−1). (39)

10

The Gaussian approximation of the marginal density qs(xs) (s = i for the forward

path, and s = i − 1 for the backward path) is obtained by matching the first two mo-

ments (i.e., the mean and variance) of
R

p(xi−1, xi|y1:N)d\xs (where \xs is the other

of the two neighbours, i.e., xi or xi−1 respectively). Although the first two moments

cannot be computed analytically in general, they can be approximated using standard

one-dimensional numerical integration methods (See Appendix B). In the case of a

multidimensional state-space xi, the compuation of qi(xi) requires a multidimensional

integral, which in turn can be approximated by the standard EP algorithm, or alterna-

tively it is possible to incorporate the non-Gaussian data one element of xi at a time,

using partial Kalman sweeps; again, see [31–33] for details.

One forward and backward sweep of the EP algorithm costs O(N) time, and the

number of iterations for convergence does not scale with the simulation interval N , in

practice. Thus, the total computational time of the EP algorithm remains O(N), as

desired, although in practice EP is significantly slower than the other two approaches

described above (due to the repeated numerical integration calls).

3 Parameter estimation

3.1 Laplace approximation

While we have focused so far on inferring the state path under the assumption that the

correct model is known, in practice the state-space model includes unknown parameters

θ, and one would like to estimate these parameters from observations. In principle, one

could estimate the parameters by maximizing the marginal likelihood [12,34],

log p(y; θ) = log

Z

p(y|x; θ)p(x; θ)dx = log

Z N
Y

i=1

p(xi|xi−1; θ)p(yi|xi; θ)dx. (40)

However, in the non-Kalman case, it is intractable to compute the marginal likelihood

exactly, since (40) involves a high-dimensional non-Gaussian integral. Here we show

that the Laplace approximation centered by the MAP path can provide an efficient

(O(N)) marginal likelihood computation, along with the gradients of the marginal

likelihood.

We will illustrate our method in section 4.3 with the filtered-input IF model with

soft-threshold,

dx(t) = [−gx(t) +
X

i

aiui(t)]dt + σdB(t), (41)

where {ui(t)} are given inputs, and we wish to estimate the weights θ = {ai}; thus the

reader may find it helpful to keep this model in mind here. Note that the log marginal

likelihood is concave in {ai} under the usual convex and log-concave conditions on the

soft-threshold nonlinearity (see [35] for details); this encourages the use of the Laplace

approximation below.

11

To begin, recall the terminology introduced in section 2.3. The marginal likelihood

function can be approximated as

p(y; θ) =

Z

exp[S(x; θ)]dx

≈ exp[S(x̂; θ)]

Z

exp

»

1

2
(x − x̂)T J(x − x̂)

–

dx

= (2π)N/2 exp[S(x̂; θ)]|J |−1/2, (42)

where we have introduced the Taylor expansion of S(x; θ) at the MAP path x̂ up to

the second-order term (assuming that S(x; θ) is sufficiently smooth at x̂),

S(x; θ) ≈ S(x̂; θ) +
1

2
(x − x̂)T J(x − x̂), (43)

where J is the Hessian evaluated at the MAP path x̂,

J = ∇∇xl(x̂, θ) − C(θ)−1, (44)

with l(.) denoting the log-likelihood log p(y|x, θ) and C(θ) the prior covariance of x.

The first term in the Taylor expansion is zero here, by the definition of x̂. (Note that we

will suppress this dependence on θ below to keep the notation somewhat more legible.)

Taking logarithms, the marginal loglikelihood is thus approximated as

log p(y; θ) ≈ S(x̂; θ) −
1

2
log |J | + const.

= l(x̂, θ) −
1

2
x̂

T C−1
x̂ −

1

2
log |J | + const. (45)

To derive the partial derivative of the negative log likelihood function, note that x̂

is implicitly a function of θ. Thus,

∂ log p(y; θ)

∂θ
≈ [∇xS(x̂; θ)]T

∂x̂

∂θ
+

∂S(x̂; θ)

∂θ
−

1

2
tr

»

J−1 dJ

dθ

–

= [∇xl(x̂, θ)]T
∂x̂

∂θ
− x̂

T C−1 ∂x̂

∂θ
−

1

2
x̂

T ∂C−1

∂θ
x̂ −

1

2
tr

»

J−1 dJ

dθ

–

, (46)

where ∂x̂/∂θ is obtained by differentiating the equation ∇xS(x̂; θ) = 0:

∂

∂θ
[∇xS(x̂; θ)] = ∇∇xl(x̂, θ)

∂x̂

∂θ
−

∂C−1

∂θ
x̂ − C−1 ∂x̂

∂θ
= 0. (47)

Using (44), one obtains

∂x̂

∂θ
= J−1 ∂C−1

∂θ
x̂. (48)

Note also that J = J(x̂, θ) depends on θ directly and through x̂ implicitly; thus the

derivative of J in the trace in (46) is expressed as

dJ

dθ
= (∇xJ)

∂x̂

∂θ
+

∂J

∂θ

= (∇xJ)
∂x̂

∂θ
+

∂[∇∇xl(x̂, θ)]

∂θ
−

∂C−1

∂θ
, (49)

12

where ∇xJ here abbreviates ∇xJ(x)|x=x̂
. For example, in the soft-threshold LIF case

discussed in section 2.3.1, ∇xJ may be represented as a diagonal matrix involving the

third derivative of the link function f(.), since each element of x̂ only effects the single

corresponding diagonal element of J , which in turn includes terms depending on the

second derivative of f(.).

Three terms should be checked for computational cost: log |J | in (45), ∂x̂/∂θ in

(48), and the trace of the matrix in (46). Here the key in reducing computational cost

is, again, that the Hessian J is a block-tridiagonal matrix. First, we can compute log |J |
by

1

2
log |J | =

X

i

log
h

J1/2
i

ii
, (50)

where J1/2 is chosen to be the (triangular) Cholesky decomposition of J ; the Cholesky

decomposition may be computed here in O(N) time using the standard banded or

block-tridiagonal algorithm. (Note that the apparently simpler Matlab command“log(det(J))”

for computing log |J | is very prone to numerical overflow errors, due to the large dimen-

sionality of J , and is therefore not recommended.) Second, the linear equation (48) can

be solved in O(N) time, due to the block-tridiagonal nature of J , as discussed above.

Finally, to compute the diagonal elements in the trace in (46), only a band of width 3d

(where d = 1 for the leaky IF example) about the diagonal of J−1 is necessary because

dJ/dθ is (block-)tridiagonal, and thus the total cost for computing (46) remains O(N);

see, e.g., [36–38] for details. Thus, to summarize, the log likelihood function and its

derivative are computed in O(N) (O(Nd3) for d-dimensional state-space models), and

therefore parameter estimation via marginal likelihood optimization can be performed

quite tractably via by standard gradient-based algorithms.

We may go a bit further if we note that, in the limit of small noise σ2 ≪ 1, the first

two terms in (45) (which grow roughly linearly in σ2) dominate the third term (which

grows roughly logarithmically in σ2). To maximize the first two terms with respect to

θ together,

θ̂ = arg max
θ

»

l(x̂) −
1

2
x̂

T C−1
x̂

–

= arg max
θ

max
x

»

l(x) −
1

2
x

T C−1
x

–

, (51)

we just need to optimize S(x; θ) jointly in (x, θ). (See [39] for a somewhat related

physics-based optimization approach for fitting dynamical systems models.) In many

cases S(x; θ) is a jointly concave function of (x, θ); since S(x; θ) and its derivatives

may be computed quite easily, this significantly simplifies the computation of θ̂. The

required joint optimization in (x, θ) is tractable due to the special structure of the

Hessian matrix here. If we order the parameter vector as {θ, x}, the Hessian can be

written in block form:

J =

Jθθ JT
θx

Jθx
Jxx

!

, (52)

where Jxx is block-tridiagonal. We cannot directly apply our tridiagonal Newton meth-

ods to obtain θ̂, since J itself is not tridiagonal. However, since dim(θ) ≪ N , we can

take the Schur complement,

J−1 =

I 0

−J−1
xxJθx

I

!

(Jθθ − JT
θx

J−1
xxJθx

)−1 0

0 J−1
xx

!

I −J−1
xxJT

θx

0 I

!

, (53)

13

to establish that computing the Newton step here for simultaneously obtaining {θ̂, x̂}
requires just O(N) time. Since this optimization can be done much more quickly than

the full conjugate gradient ascent on the full objective function (45), this makes for a

very good initialization strategy.

We should also note, in passing, that it is possible to exploit these Schur complement

ideas to develop O(N) EP algorithms for approximating the marginal likelihood and

the posterior mean of θ given the observed data {y(t)}, but we will not pursue this

strategy further here.

Finally, it is worth establishing some connections between this direct optimization

strategy for estimating θ and the so-called augmented filter algorithm discussed by

[5]. In the augmented filter algorithm, the unknown parameters θ are incorporated

into the state space as ui = (xi, θ)
T . We then simply run the forward filter (i.e.,

the point process filter) to obtain p(uN |y1:N), from which we can easily extract the

Gaussian likelihood p(θ|y1:N) by marginalizing p(uN |y1:N) with respect to xN . In the

direct optimization approach, we set up a joint optimization on (x, θ) and use the

Schur decomposition to perform this optimization efficiently. Our direct optimization

approach has three major advantages here: first, our inference is based on the exact

MAP path, instead of the approximate forward filter path computed by the augmented

filter algorithm. Second, the augmented filter algorithm assumes that the posterior

distribution of θ is approximately Gaussian, which may be a crude approximation in

many cases, particularly when S(x, θ) is not jointly strictly concave in (x, θ). Finally,

the Schur-based approach is faster in the case of a high-dimensional parameter vector

θ, since the Schur complement requires just a single inversion of a dim(θ) × dim(θ)

matrix, whereas the augmented filter algorithm requires that we compute the sufficient

statistics of the (d+dim(θ))-dimensional vector ui (and therefore invert a (d+dim(θ))×
(d + dim(θ)) matrix) on each time step.

3.2 EM algorithm

An alternative way to approximately maximize the marginal likelihood function (40)

is to use the expectation-maximization (EM) algorithm [16,3]. The procedure of the

EM algorithm consists of the following two steps:

E-step Given the current estimate θold of θ, compute the posterior expectation of the log

joint probability density,

Q(θ|θold) = Ex

h

log p(x, y|θ) | y, θold
i

. (54)

M-step Update the estimate θnew by

θnew = arg max
θ

Q(θ|θold).

These two steps are iterated until the estimation converges. When the complete data

distribution is of an exponential family, the E-step consists of finding the expected

values of certain sufficient statistics of the complete data. In our specific state-space

setting, these expectations (specifically, the first and second moments of the pairwise

conditional distributions p(xi, xi+1|y)) can be computed approximately, in O(N) time,

by the point process smoother, the EP algorithm, or by the direct Laplace approxima-

tion methods discussed above. For example, we may use the MAP path to approximate

14

the conditional expectations E(xi|y), and use the diagonal elements of the inverse Hes-

sian matrix J to approximate the second moments V ar(xi|y) (recall that these diagonal

elements of the inverse Hessian may be obtained in O(N) time, because the full matrix

inverse is not required [36–38]).

Although the EM algorithm is fairly standard, many authors have reported that

convergence tends to be unnecessarily slow ([40,41] and references therein). We have

seen similar effects here; in practice, we have found that directly optimizing the marginal

likelihood is much faster than iterating the EM algorithm to convergence. That said,

it is worth noting that the two methods are quite closely related; in particular, it is

well-known that the gradient of the marginal likelihood can be computed via the E-step

as
∂ log p(y; θ)

∂θ
=

∂Q(θ|θ̃)

∂θ

˛

˛

˛

˛

θ̃=θ

. (55)

Thus, the computation of the gradient of log marginal likelihood function can in general

be carried out via the E-step of the EM algorithm [16,40,41].

In our case, the gradient of the log-likelihood function (55) can be connected explic-

itly to the Laplace approximation (46). Expanding the log-joint probability distribution

in (54) around the MAP path x̂, Q(θ|θ̃) is approximated as

Q(θ|θ̃) =

Z

p(x|y; θ̃)S(x; θ)dx

≈

Z

p(x|y; θ̃)
h

S(x̂; θ) +
1

2
(x − x̂)T J(x − x̂)

i

dx

≈ S(x̂; θ) +
1

2

Z

N (x; x̂(θ̃),−J(θ̃)−1)(x − x̂)T J(x − x̂)dx. (56)

In the last equation, the posterior distribution in the integral is replaced by its Laplace

approximation. Taking the derivative of the second term in the right-hand-side of (56)

with respect to θ and evaluating at θ̃ = θ, we have

Z

N (x; x̂(θ̃),−J(θ̃)−1)
h

− 2J(x − x̂)
∂x̂

∂θ
+ (x − x̂)T

∂J

∂θ
(x − x̂)

i

dx

˛

˛

˛

˛

˛

θ̃=θ

=

Z

N (x; x̂,−J−1)(x − x̂)T
∂J

∂θ
(x − x̂)dx

= −tr

»

J−1 ∂J

∂θ

–

, (57)

which corresponds to the trace of the log-determinant term in (46), further clarifying

the connection between the gradients of the log-likelihood computed by the Laplace

approximation and the E-step. Eq. (57) also provides an interpretation for computing

the derivative of the log-determinant log |J | in terms of the E-step.

4 Applications

4.1 Leaky IF neuron with soft-threshold

We applied the three methods (the MAP method, the point process smoother and the

EP algorithm) to simulated spike trains generated from the soft-threshold leaky IF

15

neuron. The membrane dynamics was given by

dx(t) = [−50x(t) + I(t)]dt + σdB(t). (58)

The input I(t) was generated by sampling from an Ornstein-Uhlenbeck process whose

mean and covariance were E(I(t)) = 60 and Cov(t, t′) = 400e−10|t−t′|, respectively. We

assumed the input was known for simplicity here; in section 4.3 we discuss the somewhat

more realistic case in which we must infer an unknown pre-filter to accurately estimate

the input I(t). The state x(t) is reset to xres = 0 immediately after spiking, which

can be incorporated by imposing the boundary condition of x(t+i) = xres after each

spike. The soft-threshold function was set to f(x) = ex. We first simulated the model

in N = 1000 time-steps to generate a spike train, and the state was reconstructed from

the spike train by the three methods (Fig. 1). In each case, the true input current I(t)

was considered known, and was included in our inference (via the transition density

p(xi+1|xi)).

Fig. 2 shows the mean integrated squared error (MISE) between the true state x and

the inferred one as a function of σ. The EP approximation gives the best estimation,

followed by the MAP path and the point process smoother. When σ is small, the

three approximations are very similar since the posterior is close to Gaussian and the

posterior mode and mean are also close to each other (Fig. 1(a)). When σ is large,

however, the EP approximation is better than the others, because the actual posterior

distribution is far from Gaussian and the posterior mode is not close to the posterior

mean (Fig. 1(b)). In such a case, the posterior mean can of course provide a better

estimation under square error loss than the MAP estimate.

All three methods approximate the posterior distribution p(xi|y) as Gaussian. Un-

der this Gaussian approximation, the variable

zi =
xi − mi

ei
(59)

should be standard Gaussian, where xi is the true state variable at time i, mi is

the conditional mean we have inferred, and ei is the inferred conditional standard

deviation. We tested the quality of this approximation by constructing Q-Q plots of

zi against the standard Gaussian quantiles. Fig. 3 depicts the results for σ = 40, in

which the posterior mean is a better estimate than the MAP path. The Q-Q plot for

the EP method is closer to the 45-degree reference line than the other methods. The

Q-Q plots for the Laplace approximation centered by the MAP path and for the point

process smoother, on the other hand, deviate from the 45-degree reference line, again

indicating that the Laplace approximation of the posterior centered by the MAP path

is biased in this high-σ case.

4.2 Leaky IF neuron with hard-threshold

Next, we applied the methods to simulated spike trains generated from the leaky IF

neuron (58) with hard-threshold. The threshold and resting potential were taken to be

xth = 1 and xres = 0, and the known input I(t) was given by the Ornstein-Uhlenbeck

process whose mean and covariance were E(I(t)) = 5 and Cov(t, t′) = 250e−20|t−t′|,

respectively. The model was approximated in discrete-time with bin-size ∆ = 0.001,

in the same way as the soft-threshold case. We first simulated the model in N = 1000

16

−4

0

4

8

S
ta

te

−10

−5

0

5

10

S
ta

te

0.1 0.2 0.3 0.4 0.5

Time

0

0.1 0.2 0.3 0.4 0.5

Time

0

(a)

(b)

Fig. 1 Estimating the voltage path x(t) in a soft-threshold LIF model. Trajectory of inferred
state (colored solid lines) and approximate 95% Gaussian confidence interval (dotted lines). The
black line represents the true trajectory. Blue: MAP path, green: the point process smoother,
red: The EP algorithm. (a) results for σ = 20 and (b) for σ = 40. Note that the differences
between the three methods become larger as σ grows.

10 20 30 40
0

5

10

15

σ

M
IS

E

�

PPS

MAP

EP

Fig. 2 The MISE between the actual and inferred states in a soft-threshold LIF model, as a
function of σ. MAP, PPS and EP represent the MAP path, the point process smoother and the
EP algorithm, respectively. The mean and standard error were calculated with 10 repetitions.
The posterior expectation (as approximated by the EP algorithm) gives a better approximation
than the MAP when σ is large; conversely, as σ → 0, the Laplace approximation is accurate,
and the three methods give similar results.

time-steps to generate a spike train, and then the state was reconstructed from the

spike train. Results are shown in Fig. 4-6. Due to the hard threshold, the posterior

distribution is farther from Gaussian than in the soft-threshold case for large value of

σ (see further discussion in [25]), and thus the superiority of the EP algorithm against

the MAP method becomes clearer.

17

−4 −2 0 2 4
−6

−4

−2

0

2

4

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

−4 −2 0 2 4
−6

−4

−2

0

2

4

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

(a) (b)

−4 −2 0 2 4

Standard Normal Quantiles

−6

−4

−2

0

2

4

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

(c)MAP PPS EP

Fig. 3 Q-Q plots for the soft threshold LIF model with σ = 40. The Q-Q plots for the MAP
method and the point process smoother deviate from the 45-degree reference line, as compared
with the EP approximation, indicating a significant bias in the Laplace approximation at this
value of σ.

0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

1

Time

S
ta

te

0 0.1 0.2 0.3 0.4 0.5
−6

−4

−2

0

Time

S
ta

te

(a)

(b)

Fig. 4 Estimating the voltage path x(t) in a hard-threshold LIF model. Conventions as in
Fig. 1. (a) result for σ = 5, (b) result for σ = 20. Note that the conditional mean (EP path)
sags well below the MAP path, particularly for large σ, as discussed in [25].

5 10 15 20
0

1

2

3

4

σ

M
IS

E

MAP

EP

Fig. 5 The MISE between the actual and inferred states as a function of σ; results are similar
to those shown in Fig. 2.

18

−4 −2 0 2 4

Standard Normal Quantiles

(a) MAP

−4 −2 0 2 4

Standard Normal Quantiles

−2

0

2

4

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

−4

−2

0

2

4

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

−4

(b) EP

Fig. 6 Q-Q plots for the hard threshold LIF model with σ = 20. The Q-Q plot for the MAP
method is deviated from the 45-degree reference line compared with the other two methods.
Again, we see similar results as in the soft-threshold case (Fig. 3).

4.3 Inferring the input filter

The last example is to infer an unknown input filter, given a known input I(t) and

spike response. We took the intensity function in this simulation to be

f(x(t)) = exp

»

x(t) +
X

i

aiI(t − i)

–

, (60)

where ai represent the weights of an unknown temporal filter. We let the state variable

x follow the simple linear dynamics (3) here. In the simulation study, we inferred the

filter k by two methods: the full marginal likelihood solution (45), and the simpler,

faster initialization (i.e., dropping the log-determinant term (51)). First, we simulated

spike trains with (3) and (60) with the parameter values g = 50 and σ = 1. The input

I(t) was taken to be a Gaussian white noise with unit variance. We took the original

filter to be an α-function:

at = 0.05
t

τ
exp

“

−
t − τ

τ

”

. (61)

Here we set τ = 0.002. The model was then approximated in discrete-time with bin-

size ∆ = 0.001. Spike trains were simulated in N = 2000 time-steps, and the filter was

estimated by the two methods; about 250 spikes were used for inferring the filters in

each simulation. Fig. 7 shows the estimated filters by the two methods. We see that

these estimates agree quite well for this small value of σ.

5 Discussion

In this article, we investigated efficient computation of the MAP path in state-space

models and applied these methods to parameter estimation and prediction of the sub-

threshold voltage in the leaky IF neuron model. The key idea is that the Hessian matrix

of the log-posterior density becomes a block tridiagonal matrix because of the Markov

structure of the state-space model, which in turn allows us to exactly compute the

MAP path in O(Nd3) time [7,12,13]. We note that the efficient computation is made

possible by taking advantage of the banded nature of the Hessian, not explicitly the

19

0 0.005 0.01 0.015 0.02

0

0.01

0.02

0.03

0.04

0.05

True

Simple

Full

Time

Fig. 7 Estimating an unknown stimulus filter. The true filter ai (dashed line; eq. (60)) vs.
the estimated filters provided by the full marginal likelihood (solid line) and by the simplified
method (no log-determinant term; dotted line). The mean and standard error were calculated
with 5 samples. Note that the two solutions are similar in this low-σ setting.

tridiagonal structure. Hence our methods can be applied more generally whenever the

Hessian is banded [8].

An alternative method to compute the MAP path is to solve the Euler-Lagrange

equation (e.g., eq. (14)) numerically by a shooting method or a relaxation method. In

a shooting method, the problem is replaced by a search over the initial condition, to

find a solution of the Euler-Lagrange equation that satisfies the boundary conditions.

For the point process observation model, the spike observation is incorporated in the

Euler-Lagrange equation as a discontinuous perturbation, as in (14), and the solution

of the differential equation becomes unstable (in the sense that it is sensitive to the

initial conditions). The shooting method is inefficient in such cases [11]. The idea of

relaxation methods, on the other hand, is that the original differential equation is ap-

proximated to a finite difference equation, and then linearized about a guessed solution

to obtain a system of linear equations whose solution provides a modification of the

current solution. Since the Euler-Lagrange equation corresponds to the gradient of the

log-posterior distribution equated to zero, the relaxation method and the tridiagonal

Newton-Raphson method are in fact equivalent here. As we have seen here, the direct

optimization approach (and corresponding probabilistic Laplace approximation) leads

to a more general and flexible framework for this model.

The tridiagonal Newton-Raphson method has a helpful interpretation in terms of an

iterative Kalman filter which is worth noting here [7,12,13]. Consider a linear Gaussian

state-space model whose joint probability distributions of the state and observation

model are, respectively, given by

p(x) = N (x; µ, C), (62)

p(y|x) = N (y; x, H), (63)

where x = (x1, x2, . . . , xN)T is the state vector and y = (y1, y2, . . . , yN)T is the obser-

vation vector. It follows that the conditional mean of the state, E(x|y), is computed

as

E(x|y) = (C−1 + H−1)−1(H−1
y + C−1

µ). (64)

20

The Kalman filter and smoother compute the conditional mean in a recursive and

computationally efficient way for a linear Gaussian state space model.

On the other hand, the Newton-Raphson updating step for computing the MAP

path of a general state-space mode is given by

x̂
(l+1) = x̂

(l) − (A−1 + C−1)−1[∇x log p(y|x̂(l)) + ∇x log p(x̂(l))], (65)

where A = −[∇∇x log p(y|x̂(l))]−1 and C is the covariance matrix of p(x). Applying

the second-order approximation both to log p(y|x) about the current estimate x̂(l) and

log p(x), which corresponds to a linear Gaussian approximation, the Newton-Raphson

updating step becomes

x̂
(l+1) = (A−1 + C−1)−1(A−1

z + C−1
µ), (66)

where µ is the mean vector of p(x) and z = x̂(l) + A∇x log p(y|x̂(l)). Thus each

Newton iteration corresponds to the Kalman filter and smoother with y = z and

H = A in (64), where the coefficients of the Kalman model are updated once per

Newton iteration as we update the Hessian and gradient of log p(y|x) at x̂(l). Indeed,

in the case of very large Nd, we can use standard Kalman-smoother code to compute

our Newton-Raphson search direction in a memory-efficient way (since we do not need

to store A in memory explicitly). Of course, in the case of linear Gaussian observations

and transitions, the Newton-Raphson algorithm terminates after one step, since the

Hessian remains constant with each iteration in this case, and we are left with the

standard Kalman filter.

We compared the tridiagonal Newton-Raphson method with two other methods:

the point process filter/smoother and the expectation propagation method. The point

process filter is a nonlinear- and non-Gaussian recursive Bayesian filter, in which the

filtered distribution is approximated to a Gaussian at each recursion step. When the

state-transition density is linear Gaussian, all conditional densities become Gaussian,

and thus filtering and smoothing can be done by the standard Kalman procedure in

O(N). The main difference between the tridiagonal Newton-Raphson method and the

point process filter/smoother is that the former computes the exact MAP path, while

the latter approximates the MAP path (or posterior expectation), using iterative “lo-

cal” approximations at each time point t. These approximations are valid in two limiting

situations [42]: the “low-information” limit in the case of linear-Gaussian prior dynam-

ics, where the signal-to-noise of the spiking response is poor and the non-Gaussian

observation terms p(yi|xi) vary weakly as a function of xi, making the Gaussian prior

p(xi) dominant; and the “high-information” limit, where the posterior p(xi|y) becomes

very sharply peaked around the mode and a local Laplace approximation is valid.

In cases where this Laplace approximation is justified, the MAP path is a good

approximation of the posterior mean, since the mode and the mean of a Gaussian are

identical. Indeed, when the variance of the posterior is scaled by a parameter n−1 where

n is a large parameter indexing the informativeness of the observed data, the MAP

estimate provides the first-order approximation for the posterior mean with respect

to n−1 [43]. However, in cases where the posterior distribution is far from Gaussian,

the Laplace approximation can fail, resulting in a large average error in the MAP

estimate. In such a case, the posterior mean can provide a better estimate, since this is

the optimal Bayesian estimate under squared error loss. Indeed, in the numerical study

on the leaky IF model here, we saw that the EP approximation becomes better than

the MAP path especially when σ is large.

21

To summarize, we have decribed an efficient algorithm for computing the exact

MAP path and for estimating the parameters in state-space models. While we have

focused on the integrate-and-fire model here as a concrete example, these ideas can be

exploited in a wide variety of neural settings. We discuss a number of further examples

in [6].

A Point process filter and smoother

A simple version of the point process filter approximates the filtered distribution (26) to a
Gaussian centered by its mode [2]. Let xi|i and Vi|i be the (approximate) mode and covariance
matrix for the filtered distribution (26), and xi|i−1 and Vi|i−1 be the mode and covariance
matrix for the predictive distribution (27) at time i. Let l(xi) = log{p(yi|xi)p(xi|y1:i−1)}.
The filtered distribution is then approximated to a Gaussian whose mean and covariance are
xi|i = arg maxxi

l(xi) and Vi|i = −[∇∇xi
l(xi|i)]

−1, respectively. When the state-transition
density is linear Gaussian, p(xi|xi−1) = N (Fixi−1, Qi), the predictive distribution (27) is also
Gaussian, whose mean and covariance are computed as

xi|i−1 = Fixi−1|i−1, (67)

Vi|i−1 = FiVi−1|i−1F T

i + Qi. (68)

Since the filtered and predictive distributions are Gaussian, the smoothing distribution (28)
is also Gaussian, which can be computed by the standard Kalman smoother [3]. Let xi|N and
Vi|N be the mean and covariance the smoothing distribution at time i. The recursive smoothing
equation corresponding to (28) is given by

xi|N = xi|i + Vi|iFiV
−1

i+1|i
(xi+1|N − xi+1|i), (69)

Vi|N = Vi|i + Vi|iFiV
−1

i+1|i
(Vi+1|N − Vi+1|i)V

−1

i|i
F T

i Vi+1|i. (70)

There are now several versions of the point process filter depending on the choice of the
mean and variance of the approximate filtered distribution. In [5], the filtered distribution at
each time step i is approximated to a Gaussian by expanding its logarithm in a Taylor series
about xi|i−1 up to the second-order term, which results in a simpler algorithm. [44] proposed
a more sophisticated method by utilizing the fully exponential Laplace approximation [43],
which achieves second-order accuracy in approximating the posterior expectation.

For the leaky IF model with hard-threshold, the standard Taylor-series-based recursions
[2] do not apply (due to the discontinuity of log p(yi|xi)), and therefore we have not included
comparisons to the point-process smoother in Figs. 4- 6. However, it is worth noting that
in this case the filtered distribution (26) can be approximated recursively as a truncated
Gaussian defined on (−∞, xth], and hence the approximate mean and variance can be obtained
analytically; we found that this moment-matching method behaves similarly to the EP method
(this is unsurprising, since EP is also based on a moment-matching procedure; data not shown).

B Gaussian quadrature in EP algorithm

The expectation of a function of xi, f(xi), with respect to p(xi|y1:N) in (38) is expressed as

Ei[f(xi)] =

Z Z

f(xi)p(xi−1, xi|y1:N)dxi−1dxi

∝
Z

f(xi)p(yi|xi)βi(xi)

» Z

αi−1(xi−1)p(xi|xi−1)dxi−1

–

dxi

≡
Z

f(xi)p(yi|xi)βi(xi)g(xi)dxi, (71)

where

g(xi) =

Z

αi−1(xi−1)p(xi|xi−1)dxi−1 (72)

22

is Gaussian since αi−1(xi−1) and p(xi|xi−1) are also Gaussian. By introducing the Laplace
approximation, pL(xi) ≡ N (m, v) ≈ p(yi|xi)βi(xi)g(xi), as a proposal distribution, the ex-
pectation can be expressed as

Ei[f(xi)] ∝
Z

pL(xi)

»

f(xi)p(yi|xi)βi(xi)g(xi)

pL(xi)

–

dxi

≡
Z

pL(xi)F (xi)dxi. (73)

After a linear change of variable, xi =
√

vu + m, we have the standard form of the Gauss-
Hermite quadrature,

Ei[f(xi)] ∝
Z

e−
u
2

2 F (
√

vu + m)du

≈
n

X

l=1

wlF (
√

vul + m), (74)

where the weights wl and evaluation points ul are chosen according to a quadrature rule.
The advantages of this method is that it requires only an inner product once the weights and
evaluation points are calculated. (These only have to be computed once.) The expectation of
f(xi−1) with respect to p(xi−1|y1:N) in (39) can be computed in the same way.

For the leaky IF model with hard-threshold, the observation model is given by the step-
function, and thus the integral in (73) becomes

Z ∞

−∞
p(yi = 0|xi) . . . dxi =

Z

xth

−∞
. . . dxi. (75)

As a result, the expectation (73) is reduced to the integral over a truncated Gaussian, which
can be computed analytically.

Acknowledgements We thank Y. Ahmadian, R. Kass, M. Nikitchenko, K. Rahnama Rad,
M. Vidne and J. Vogelstein for helpful conversations and comments. SK is supported by NIH
grants R01 MH064537, R01 EB005847 and R01 NS050256. LP is supported by NIH grant R01
EY018003, an NSF CAREER award, and a McKnight Scholar award.

References

1. Paninski, L., Brown, E.N., Iyengar, S., Kass, R.E.: Stochastic Methods in Neuroscience,
chap. Statistical analysis of neuronal data via integrate-and-fire models. Oxford University
Press, Oxford (2008)

2. Brown, E.N., Frank, L.M., Tang, D., Quirk, M.C., Wilson, M.A.: A statistical paradigm
for neural spike train decoding applied to position prediction from ensemble firing patterns
of rat hippocampal place cells. Journal of Neuroscience 18, 7411–7425 (1998)

3. Smith, A.C., Brown, E.N.: Estimating a state-space model from point process observations.
Neural Computation 15, 965–991 (2003)

4. Brockwell, A.E., Rojas, A.L., Kass, R.E.: Recursive Bayesian decoding of motor cortical
signals by particle filtering. Journal of Neurophysiology 91, 1899–1907 (2004)

5. Eden, U.T., Frank, L.M., Barbieri, R., Solo, V., Brown, E.N.: Dynamic analyses of neural
encoding by point process adaptive filtering. Neural Computation 16, 971–998 (2004)

6. Paninski, L., Ahmadian, Y., Ferreira, D., Koyama, S., Rahnama, K., Vidne, M., Vogelstein,
J., Wu, W.: A new look at state-space models for neural data. Submitted (2009)

7. Fahrmeir, L., Kaufmann, H.: On Kalman filtering, posterior mode estimation and Fisher
scoring in dynamic exponential family regression. Metrika 38, 37–60 (1991)

8. Pillow, J., Ahmadian, Y., Paninski, L.: Model-based decoding, information estimation, and
change-point detection in multi-neuron spike trains. Under review, Neural Computation
(2008)

23

9. Koyama, S., Shinomoto, S.: Empirical Bayes interpretations for random point events. Jour-
nal of Physics A: Mathematical and General 38, L531–L537 (2005)

10. Paninski, L.: The most likely voltage path and large deviations approximations for
integrate-and-fire neurons. Journal of Computational Neuroscience 21, 71–87 (2006)

11. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C.
Cambridge University Press, Cambridge (1992)

12. Davis, R.A., Rodriguez-Yam, G.: Estimation for state-space models based on a likelihood
approximation. Statistica Sinica 15, 381–406 (2005)

13. Jungbacker, B., Koopman, S.J.: Monte Carlo estimation for nonlinear non-Gaussian state-
space models. Biometrika 94, 827–839 (2007)

14. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cam-
bridge (2004)

15. Minka, T.: Expectation propagation for approximate Bayesian inference. Uncertainty in
Artificial intelligence 17 (2001)

16. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society: B 79, 1–38 (1977)

17. Ahmed, N.U.: Linear and Nonlinear Filtering for Scientists and Engineers. World Scientific,
Singapore (1998)

18. West, M., Harrison, J.P., Migon, H.S.: Dynamic generalized linear models and Bayesian
forcasting. Journal of the American Statistical Association 80, 73–83 (1985)

19. Snyder, D.L.: Random Point Processes. John Wiley & Sons, Inc., New York (1975)
20. Huys, Q., Ahrens, M., Paninski, L.: Efficient estimation of detailed single-neuron models.

Journal of Neurophysiology 96, 872–890 (2006)
21. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and

Bursting. The MIT press, Cambridge (2007)
22. Moehlis, J., Shea-Brown, E., Rabitz, H.: Optimal inputs for phase models of spiking neu-

rons. ASME Journal of Computational and Nonlinear Dynamics 1, 358–367 (2006)
23. Koyama, S., Shimokawa, T., Shinomoto, S.: Phase transitions in the estimation of event

rate: a path integral analysis. Journal of Physics A: Mathematical and General 40, F383–
F390 (2007)

24. Badel, L., Richardson, M., Gerstner, W.: Dependence of the spike-triggered average voltage
on membrane response properties. Neurocomputing 69, 1062–1065 (2005)

25. Paninski, L.: The spike-triggered average of the integrate-and-fire cell driven by Gaussian
white noise. Neural Computation 18, 2592–2616 (2006)

26. Fahrmeir, L., Tutz, G.: Multivariate Statistical Modelling Based on Generalized Linear
Models. Springer (1994)

27. Paninski, L.: Maximum likelihood estimation of cascade point-process neural encoding
models. Network: Computation in Neural Systems 15, 243–262 (2004)

28. Paninski, L., Pillow, J., Simoncelli, E.: Maximum likelihood estimation of a stochastic
integrate-and-fire neural model. Neural Computation 16, 2533–2561 (2004)

29. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 77, 257–286 (1989)

30. Roweis, S., Ghahramani, Z.: A unifying review of linear Gaussian models. Neural Com-
putation 11, 305–345 (1999)

31. Heskes, T., Zoeter, O.: Expectation propagation for approximate inference in dynamic
Bayesian networks. In: A. Darwiche, N. Friedman (eds.) Uncertainty in Artificial In-
telligence: Proceedings of the Eighteenth Conference (UAI-2002), pp. 216–233. Morgan
Kaufmann Publishers, San Francisco, CA (2002)

32. Yu, B.M., Shenoy, K.V., Sahani, M.: Expectation propagation for inference in non-linear
dynamical models with Poisson observations. In: Proceedings of the Nonlinear Statistical
Signal Processing Workshop. IEEE (2006)

33. Ypma, A., Heskes, T.: Novel approximations for inference in nonlinear dynamical
systems using expectation propagation. Neurocomputing 69, 85–99 (2005). URL
http://dx.doi.org/10.1016/j.neucom.2005.02.020

34. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT
Press, Cambridge (2006)

35. Paninski, L.: Log-concavity results on Gaussian process methods for supervised and un-
supervised learning. Advances in Neural Information Processing Systems 17 (2005)

36. Rybicki, G., Hummer, D.: An accelerated lambda iteration method for multilevel radiative
transfer, appendix b: Fast solution for the diagonal elements of the inverse of a tridiagonal
matrix. Astronomy and Astrophysics 245, 171 (1991)

24

37. Rybicki, G.B., Press, W.H.: Class of fast methods for processing irregularly sampled or
otherwise inhomogeneous one-dimensional data. Phys. Rev. Lett. 74(7), 1060–1063 (1995).
DOI 10.1103/PhysRevLett.74.1060

38. Asif, A., Moura, J.: Block matrices with l-block banded inverse: Inversion algorithms.
IEEE Transactions on Signal Processing 53, 630–642 (2005)

39. Abarbanel, H., Creveling, D., Jeanne, J.: Estimation of parameters in nonlinear systems
using balanced synchronization. Phys. Rev. E 77, 016,208 (2008)

40. Salakhutdinov, R., Roweis, S.T., Ghahramani, Z.: Optimization with EM and expectation-
conjugate-gradient. International Conference on Machine Learning 20, 672–679 (2003)

41. Olsson, R.K., Petersen, K.B., Lehn-Schioler, T.: State-space models: from the EM algo-
rithm to a gradient approach. Neural Computation 19, 1097–1111 (2007)

42. Ahmadian, Y., Pillow, J., Paninski, L.: Efficient Markov Chain Monte Carlo methods for
decoding population spike trains. Under review, Neural Computation (2008)

43. Tierney, L., Kass, R.E., Kadane, J.B.: Fully exponential Laplace approximation to pos-
terior expectations and variances. Journal of the American Statistical Association 84,
710–716 (1989)

44. Koyama, S., Pérez-Bolde, L.C., Shalizi, C.R., Kass, R.E.: Approximate methods for state-
space models (2008). Under review

