J Comput Neurosci (2010) 29:127-148
DOI 10.1007/s10827-009-0163-5

An online spike detection and spike classification algorithm
capable of instantaneous resolution of overlapping spikes

Felix Franke - Michal Natora - Clemens Boucsein -
Matthias H. J. Munk - Klaus Obermayer

Received: 22 December 2008 / Revised: 25 March 2009 / Accepted: 30 April 2009 / Published online: 5 June 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract For the analysis of neuronal cooperativ-
ity, simultaneously recorded extracellular signals from
neighboring neurons need to be sorted reliably by a
spike sorting method. Many algorithms have been de-
veloped to this end, however, to date, none of them
manages to fulfill a set of demanding requirements. In
particular, it is desirable to have an algorithm that oper-
ates online, detects and classifies overlapping spikes in
real time, and that adapts to non-stationary data. Here,
we present a combined spike detection and classifica-
tion algorithm, which explicitly addresses these issues.
Our approach makes use of linear filters to find a new
representation of the data and to optimally enhance

Action Editor: Eberhard Fetz

F. Franke (X)) - K. Obermayer

Bernstein Center for Computational Neuroscience,
Berlin, 10099, Germany

e-mail: ff@cs.tu-berlin.de

K. Obermayer
e-mail: oby@cs.tu-berlin.de

M. Natora

Institute for Software Engineering and Theoretical
Computer Science, Berlin Institute of Technology,
Berlin, 10587, Germany

e-mail: natora@cs.tu-berlin.de

C. Boucsein

Bernstein Center for Computational Neuroscience,
Freiburg, 79104, Germany

e-mail: boucsein@biologie.uni-freiburg.de

M. H. J. Munk

Max Planck Institute for Biological Cybernetics,
Tiibingen, 72076, Germany

e-mail: matthias.munk@tuebingen.mpg.de

the signal-to-noise ratio. We introduce a method called
“Deconfusion” which de-correlates the filter outputs
and provides source separation. Finally, a set of well-
defined thresholds is applied and leads to simultaneous
spike detection and spike classification. By incorpo-
rating a direct feedback, the algorithm adapts to non-
stationary data and is, therefore, well suited for acute
recordings. We evaluate our method on simulated and
experimental data, including simultaneous intra/extra-
cellular recordings made in slices of a rat cortex and
recordings from the prefrontal cortex of awake be-
having macaques. We compare the results to existing
spike detection as well as spike sorting methods. We
conclude that our algorithm meets all of the mentioned
requirements and outperforms other methods under
realistic signal-to-noise ratios and in the presence of
overlapping spikes.

Keywords Realtime spike sorting - Extracellular multi
electrode recordings - Tetrode recordings -
FIR filters - Deconfusion

1 Introduction

In order to understand higher brain functions and the
interactions between single neurons, an analysis of the
simultaneous activity of a large number of individual
neurons is essential. One common way to acquire the
necessary amount of neuronal activity data is to use
simultaneous extracellular recordings, either with sin-
gle electrodes or, more recently, with multi electrodes
like tetrodes (O’Keefe and Recce 1993). However, the
recorded data does not directly provide the isolated
activity of single neurons, but a mixture of neuronal

@ Springer

128

J Comput Neurosci (2010) 29:127-148

activity from many neurons additionally corrupted by
noise. The task of so called “spike sorting” algorithms
is to reconstruct the single neuron signals (i.e. spike
trains) from these recordings. Many approaches for
analyzing the data after acquisition, i.e. offline spike
sorting algorithms, have been developed in the last
years; see for example Vargas-Irwin and Donoghue
(2007), Delescluse and Pouzat (2006), Pouzat et al.
(2004), Kim and Kim (2003), Takahashi et al. (2003),
Shoham et al. (2003), Hulata et al. (2002), Lewicki
(1998), Fee et al. (1996a). Although more methods are
available in this category, there are several reasons to
favor methods which provide results already during the
recordings, termed realtime online sorting algorithms.
For example, realtime online spike sorting techniques
are indispensable for conducting “closed-loop” exper-
iments and for brain-machine interfaces (Rutishauser
et al. 2006; Obeid and Wolf 2004). The few existing
approaches to realtime online sorting (Thakur et al.
2007; Rutishauser et al. 2006; Aksenova et al. 2003) are
clustering based and have at least one of the following
drawbacks: 1) They are not explicitly formulated for
data acquired from multi electrodes, 2) they do not
resolve overlapping spikes, 3) they do not perform well
on data with a low signal-to-noise ratio 4) they are not
able to adapt to non-stationarities of the data as caused
by tissue drifts. We discuss the reasons and importance
of these issues in the following:

1) Multi electrodes (e.g. tetrodes) provide signifi-
cantly more information about the local neuronal
population than single electrodes (Harris et al.
2000; Rebrik et al. 1999). Having several record-
ing electrodes closely spaced instead of one, the
same action potential is present on more than one
recording channel. The so called stereo-effect—
a neuron specific amplitude distribution among
the recording channels—allows for a better dis-
crimination between action potentials from dif-
ferent neurons (Gray et al. 1995). This allows
also for more a reliable resolution of overlapping
spikes.

2) With tetrodes recording an increased number of
neurons compared to high impedance single elec-
trodes, overlapping spikes are more likely to oc-
cur. Also, studies stress the relevance of ensemble
coding, which translates into local synchronized
firing and hence a raised occurrence frequency of
overlapping spikes (Sakurai and Takahashi 2006).
To identify such a code, the resolution of overlap-
ping spikes is crucial and efforts have been made
addressing this issue (Ding and Yuan 2008; Wang
et al. 2006; Zhang et al. 2004; McGill 2002; Chandra

@ Springer

and Optican 1997). However, the cited approaches
are all computationally very expensive, making a
realtime online implementation difficult. One of
the reasons for this computational complexity is
the implementation of separate sub-routines for
the processing of overlapping spikes, which, ad-
ditionally, are more complex than the processing
steps for non-overlapping spikes.

3) Most of the spike sorting approaches use a stand-
alone standard spike detection technique (see for
example Choi et al. 2006; Obeid and Wolf 2004;
Rebrik et al. 1999 for commonly used spike de-
tection techniques), and a separate classification
procedure. Neither the shape of the waveforms
nor their change over time or their amplitude dis-
tribution across the recording channels is taken
into account by the spike detection method. This
leads to a poor detection performance, in partic-
ular when the signal-to-noise ratio (SNR) is low.
Further, the spikes are cut and aligned on some
feature (e.g., peak position) as a preprocessing to
the classification algorithm. However, overlapping
spikes, which severely alter the spike waveform,
are not identified as such. This leads to wrong
alignments and false classifications by the sorting
procedure.

4) There are two general approaches to extracellu-
lar recording with electrodes, namely acute and
chronic recording methods. In acute recordings,
individual electrodes are advanced into tissue at
the beginning of each recording session anew,
causing a compression of the tissue (Cham et al.
2005). During the experiment the tissue relaxes and
the distances between the electrodes and neurons
change; an effect called tissue drift (Branchaud
et al. 2006). As a consequence, the shape of
the measured waveforms and the characteristic of
the background noise changes. Sorting algorithms
which do not take into account such variations will
perform poorly on data from acute recordings.

An approach based on blind source separation (BSS)
techniques and addressing primarily problems 1) and
4) was presented in Takahashi et al. (2002), in which
independent component analysis (ICA) was applied to
multichannel data recorded by tetrodes (4 channels).
Later, the method was adopted to data recorded by
dodecatrodes (12 channels) (Takahashi and Sakurai
2005). However, both approaches had to deal with
several new problems: Amongst others, time delays
between the channels were not considered, biologically
meaningless independent components had to be dis-
carded manually, and different neuronal signals with

J Comput Neurosci (2010) 29:127-148

129

similar channel distributions could not be classified cor-
rectly. Furthermore, the methods can only be applied to
data recorded with certain electrode types (i.e. tetrodes,
dodecatrodes). The most severe problem, though, is the
fact that the method cannot deal with data containing
neuronal activity from a greater number of neurons
than recording channels (over-completeness).

In this work, we present a realtime online spike
sorting method based on the BSS idea, which explicitly
addresses the four issues 1)-4), but also avoids the
drawbacks of the method in Takahashi et al. (2002) and
Takahashi and Sakurai (2005). In sum, a spike sorting
algorithm for multi electrode data, which detects and
resolves overlapping spikes with the same computa-
tional cost as non-overlapping spikes, is formulated.
The method makes optimal use of an arbitrary number
of simultaneously recorded channels and can even run
on single channel data. Moreover, since spike detection,
spike alignment, and spike classification are not sepa-
rate parts, but are combined into a single algorithm,
our method performs well on data with low SNR and
containing many overlapping spikes. By incorporating
a direct feedback, the algorithm adapts to varying spike
shapes and to non-stationary noise characteristics. The
algorithm is fully automatic and due to its linear and
parallel computation steps it is ideally suited for re-
altime applications (see Fig. 4 for a summary of our
method).

This paper is organized as follows: In Section 2 we
present our method step by step. First, we briefly in-
troduce linear filters. These filters were used in radar
applications (Turin 1960), geophysics (Robinson and
Treitel 1980) as well as for spike detection (Thakur
et al. 2007; Vollgraf et al. 2005), but to our knowledge
have not been applied to spike sorting yet. Moreover,
in contrast to those studies, we do not directly apply a
threshold to the filter outputs, but consider them as a
new representation of the data. In this representation
the spike sorting task can be handled as a well defined
BSS problem, which we solve with a un-mixing tech-
nique we will refer to as “Deconfusion”.

The evaluation of our method is done on two dif-
ferent datasets from real recordings and also on sim-
ulated data. The experimental setup, used equipment
and the characteristic of recorded data are described in
Section 3. The advantages and abilities of the method
are demonstrated in Section 4. Evaluations of the spike
detection performance are done using data from si-
multaneous intra- and extracellular recordings made in
slices of rat visual cortex, and show that the proposed
algorithm is superior to conventional spike detection
methods. The noise robustness and the ability to suc-
cessfully resolve overlapping spikes is evaluated sys-

tematically on synthetic data. Finally, the method is ap-
plied to data from extracellular recordings made in the
prefrontal cortex of awake behaving macaques. This
data is particularly challenging, because the tetrodes
are not implanted chronically, but inserted before every
experiment anew, leading to tissue drifts. We conclude
that our method adopts to non-stationarities and also
successfully resolves overlapping spikes in real data. A
summary and a discussion of further improvements is
given in Section 5.

2 Methods
2.1 Glossary of mathematical notation

We use a notation in which symbols for scalar quan-
tities are represented by lower case letters, vectorial
quantities are represented by bold lower case letters,
and operators or matrices are represented by bold up-
per case letters. Matrices representing several vectorial
quantities, but not linear transformations, are labeled
with an additional bar. In Table 1 all important quan-
tities are listed. The corresponding vectorial quantities
are defined by concatenating all channel-wise defined
vectors. As an example the vectorial template & of
neuron / is given by

S GRS P o o

where the superscript ' means transpose. The vectors
v', x, fi are defined in the same way. Analogously,

Table 1 Definitions of important quantities and their meaning

M Number of neurons

N Number of recording channels (N = 4 for tetrodes)

T Period of time during which the templates are constant

Ty Length of the filters and templates in samples on one
channel

Xk, Measured signal on recording channel k at time ¢

X Data matrix, (‘_X)k,t = Xp,y

Intrinsic signal of neuron i at time ¢

&, Multichannel template (i.e. mean waveform) of neuron i on
channel k attimet,i=1,..,.M,t=1,...Tp,k=1,.., N

sf{ L =D u,i_réli .» noiseless, extracellular signal of neuron i
! Filter (designed to detect template i) on channel k at time ¢
k.t g p

y =X« fl= D kox Xkt fli,z’ filter output of filter f*

Y Matrix whose i-th rowis y; "

Z Output of filter f! after Deconfusion
Z Matrix whose i-th row is z; |

H! Covariance matrix of s

Nk, Multivariate zero mean Gaussian noise
C Noise covariance matrix

R Data covariance matrix

@ Springer

130

J Comput Neurosci (2010) 29:127-148

covariance matrices, e.g, the data covariance matrix R,
are defined as

R]_] RI,N
R:= Dot
RN,1 RN,N

with (R)i, := Cov(Xky,, X11,). R is a symmetric N -
Tr by N - T Toeplitz matrix. Alternatively, it can be
expressed as

R=) H+C. 1)

1

2.2 Generative model

We assume an explicit model for the neuronal data
recorded extracellularly. The underlying assumptions
are:

1. Each neuron generates a unique spike waveform
&' (called template), which is constant over a time
period of length 7.

2. All time series v of spike times of neuron i (called
spike trains) are statistically independent of the
noise 5. Furthermore, these quantities sum up
linearly.

3. The noise statistic is entirely captured by a covari-
ance matrix C.

As discussed extensively in Pouzat et al. (2002), these
assumptions are reasonable and are used explicitly
or implicitly in most spike sorting techniques. Conse-
quently the measured data x can be expressed as

Xkt = Z Z Uffr";:/i_r + Nk = Zs;@l + Nkt 2
i T i

The measured data are a convolution of the mean
waveforms with the corresponding intrinsic spike
trains corrupted by colored Gaussian noise (see also

Fig. 1(a)—(c)).
2.3 Calculation of linear filters

Spike sorting is achieved when the intrinsic spike trains
v’ are reconstructed from the measured data X. Since,
according to the model assumptions, the data were
generated by a convolution of intrinsic spike trains with
fixed waveforms, the most straightforward procedure
would be to apply a deconvolution on X in order to
retrieve v’. For an exact deconvolution a filter with an
infinite impulse response is necessary. In general, such
a filter is not stable and would amplify noise (Robinson
and Treitel 1980). Nevertheless, a noise robust approxi-
mation for an exact deconvolution can be achieved with

@ Springer

X1t ﬂ A I W

Tot

(d)l WWWMMWWWWWM

Fig. 1 Sketch of the generative model (a—¢) and the processing
stages of the algorithm (d-e). (a) Spike trains of two neurons.
(b) Simulated waveforms of each neuron on a hypothetical multi
electrode (two recording channels, without noise). (¢) Simulated
data of a multi electrode recording. The signals of the two neu-
rons and the noise are mixed linearly. (d) Filter output of two
optimal linear filters. (e) Output after Deconfusion; for details
see text

finite impulse response filters, to which we will refer as
linear filter.

Let us briefly summarize the idea of these filters: The
goal is to construct a set of filters {f',..., fM} such
that each filter f' has a well defined response of 1 to
its matching template & at shift 0 (i.e. & - fi = 1), but
minimal response to the rest of the data. This means
that the spikes of neuron i are the signal for filter f7 to
detect but will be treated as noise by filter f/#.

Incorporating these conditions leads to a constrained
optimization problem

f = argmin Var (X » f') subjectto & - fi=1 (3)
f[

J Comput Neurosci (2010) 29:127-148

131

to which the solution are the desired filters (see
Appendix A for a more detailed derivation). A major
advantage is the fact that the mentioned optimization
problem can be solved analytically. In particular, the
filters are given by the following expression:

Rflgi

f= i=1,..M 4
S = rE i=1,...)
where R is the data covariance matrix defined in
Section 2.1. Linear filters maximize the signal-to-noise
ratio and minimize the sum of false negative and false
positive detections, and are, therefore, optimal in this

sense (Melvin 2004).

2.4 Filtering the data

Once the filters are calculated, they are cross-correlated
with the measured signal,i.e.)" Xk fi , =: yi. Note
that we do not have to pre-process the data with a
whitening filter, but the filters can be applied directly
to X. This is because the noise statistics is already
captured in the matrix R.

From a different point of view, the filtering just
changes the representation of the templates. While in
the original space the template i was represented by
&', its representation in the filter output space is given
by the vectors &' » f/, j=1, ..., M, where (& x f/), :=
Y k& e fiL» see also Fig. 2. This interpretation of
filtering will be useful in the next section.

2.5 Deconfusion

The linear filters derived in Section 2.3 should suppress
all signal components except their corresponding tem-
plate with zero shift. Thus, the filter response to all
templates (and their shifted variants) has to be minimal.
This already leads to (27; — 1) - M minimization con-
straints; a number which is normally greater than the
number of free variables of a filter which is 7y - N. In
addition, if the SNR is low, the noise covariance matrix
C dominates Eq. (1).

The lower the SNR, the less spikes from other neu-
rons a filter will suppress. Thresholding of every filter
output y' individually will, thus, lead to false positive
detections. The idea is to de-correlated the filter output
in order to achieve an improved spike detection and
classification.

We have seen in the previous section that each
template &' can be represented in the filter output by
M vectors & x f/, j=1, ..., M. Since the detection and
classification of the spikes is based on the detection
of high positive peak values in the filter output (by

construction), all values below zero in the filter output
are irrelevant, and thus, can be discarded. As a result,
we ignore all values below zero by applying a half-wave
rectification /(x) to the filter output Y, where

x>0

X
I(x):=1" 5
(x) {O, <0 (5)

The next step is to consider / (Y) as a linear mixture
of different sources, where every source is the intrinsic
spike train v’ of a neuron. Since there are as many filters
as neurons, the dimension of the filter output space
is equal to the number of neurons, and therefore, the
detection and classification problem can be considered
as a complete BSS problem. However, it is not guar-
anteed that the maximal response of filter f to spikes
from neuron j will be at a shift of 0, i.e., when the
filter and the template overlap entirely. This leads to
the following model for the rectified filter output:

1()’;) = Z (A)i,j Ut];F‘L'Lj (6)
J

with A being the mixture matrix, and 7; ; being the shifts
between the maximal response of filter f/ to template
gie.,
(A);; = max {(§« f) }

T, = argmax{(gi*fj)r} (7

where (A);; =1 and 7;; =0 Vi by construction. We
want to reconstruct the sources v’ by solving the cor-
responding inverse problem:

ViR =Y (W) (e, (8)
J

with W = A~!. Here, the relation to ICA becomes
clear, since this is a similar inverse problem ICA solves.
In contrast to ICA, we do not have to estimate W
and t; ; from the data, but can calculate them directly
from the responses (i.e. cross-correlation functions) of
all filters to all templates, as illustrated in Fig. 2.

All steps of these procedure are summarized under
the term “Deconfusion” (see also Fig. 1(d)-(e) for
a schematic illustration). After Deconfusion the false
responses of the filters to non-matching templates are
suppressed (see Fig. 3). In principle, it is possible that
the inverse problem in Eq. (8) is not exactly solvable,
if the shifts are not consistent. Consistent shifts have to
satisfy the following equation:

Vi, ji, jo. k €

A derivation is given in Appendix B. For arbitrary
templates and data covariance structures, Eq. (9) can

ik = Tjii = Tk — Thi

@ Springer

132 J Comput Neurosci (2010) 29:127-148
51 52 53
ﬁ/—'—x_
_—— _— —’_\/‘_’_x
0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5
time in ms
f1 s & M- (& *), (& * fhH,
1
N/ 0.5 WAM
0 — N\
-0.5
r? . €). (& 1), (& *)~
o~ 1 T32
= D | -
-0.5
£? s & *), (& %), (&% f*),
~ o~ . '1 T23
e N N JAs Mﬂw
0 0.5 1 1.5 _0'5—50 0 50 -50 0 50 -50 0 50

time in ms

Fig. 2 This figure exemplary illustrates the representation of
the templates in the filter output space and the calculation of
the Deconfusion parameters. In this example, three templates
(&', €2, &3, top row of the figure) originating from tetrode record-
ings are used. The corresponding linear filters are calculated by
Eq. (4) and are shown on the left. The 9 plots show the responses
of the linear filters to the templates, i.e. the cross-correlations
&« fl i, j=1,2,3. The template & is now represented by the
three vectors & » f/, j= 1,2, 3. Although filter f’ has a maximal

in principle be violated. However, with templates from
real experiments we did not observe this to be a
problem.

2.6 Spike detection and classification

In the final step, thresholding is applied to every row i of
Z. Again, by construction we have only to consider pos-
itive peaks. All local maxima after a threshold crossing
are identified as spiking times of neuron /. In this sense,
spike detection and spike classification is performed
simultaneously.

The threshold is set for each row of Z individually
such that the total error of false negative and false
positive detections is minimal. Amongst others, the
threshold depends on the variance of the noise, on
the Deconfusion output, and on the firing frequen-
cies of the neurons. A detailed derivation is given in
Appendix C.

@ Springer

T in samples

response of 1 to template £, the filters do not provide an exact
deconvolution, as the responses of filters f/# to template & are
not equal to zero. However, since every template is represented
on all filter output channels, the problem of extracting the signal
from neuron i can be viewed as a source separation problem.
The entry at position , j of the mixing matrix A is given by the
maximal peak value of & « f/; exemplary (A), 3 and (A)s, are
shown. The shift indicates the position at which this maximal
values occur; as an example the shifts 72 3 and 13 » are shown

2.7 Artifact detection

Artifacts were removed from our data in two ways.
First, all periods during which the animal had to per-
form a physical task (e.g., pressing a button) were
not considered for further analysis. Secondly, for each
period of length 10 ms the number of zero-crossings
on each data channel was counted and summed up.
All periods, in which this number was below 10% of
the maximal number of possible zero crossings, were
not considered for further analysis. This second type of
heuristic removal aims at eliminating artifacts caused
by oscillations of the electrode shaft inside the guiding
tube (e.g., caused by movement of the animal).

2.8 Noise estimation

The noise covariance matrix C is determined by calcu-
lating the auto- and cross correlation functions of every
channel. Only data points which were not part of any
spike nor any artifact period, were used for the calcu-

J Comput Neurosci (2010) 29:127-148

133

é‘l 52 é’?
; :
flos
0 AL
;
fos
0 (WA
]
Fos
0 A [\
50 0 50-50 0 50-50 0 50

7 in samples

Fig. 3 The figure shows the effect of Deconfusion on the filter
outputs. The input for Deconfusion were the filter responses &
f1.i, j=1,2,3 shown in Fig. 2. After Deconfusion the signal of
neuron i is mainly present on the output channel i

lation. The noise covariance matrix is needed for the
initialization phase, see Section 2.10, and for evaluation
of the sorting result on real data, see Section 4.2.3.

2.9 Adaptation

Due to tissue relaxations the measured waveforms
change over time as the relative distance between the
multi electrode and the neurons change. In order to
track these changes we re-estimate the templates as
well as the data covariance matrix after every time
period of length 7. Each template & is re-estimated
as the mean of the last 350 spikes (see Section 5 for
a discussion of this value) detected from neuron i
whereas the spikes of neuron i are aligned on the
maximal peak of the response of filter f. For the re-
estimation only spikes which were classified by our
method as non-overlapping spikes are used. The data
covariance matrix is re-estimated from the last 30 s of
the recordings and the linear filters are re-calculated.
Consequently, the Deconfusion and the thresholds are
re-computed as well. In Section 4.2.3 we show that we
can indeed track drifts with this approach.

Templates whose SNR decreases over time might be
a concern. By constantly adapting the template, finally,
there is a risk of getting a template which is very close
to the noise signature, and the corresponding filter will
detect pure noise. This can be prevented by removing
filters at the appropriate moment. Consequently, we
stop tracking templates whose SNR drops below 0.65.
This value proved to be appropriate during simulations
(see Section 4.2.2).

2.10 Initialization phase

Most of the analysis done in the precedent sections was
based on the assumption of known initial templates.
Hence, before applying our method, one needs an ini-
tialization phase during which the templates are found.
In principle, any supervised or unsupervised learning
method can be applied.

We want to emphasize that the initialization phase is
only necessary at the beginning of a recording session
(Fig. 4): Once the initial templates are estimated, the
main algorithm runs online. Furthermore, because of
the feedback described in Section 2.9, the initialization
does not have to be very accurate, as the templates
are re-estimated after every period of length 7. Usu-
ally we used an initialization phase of about 30 s in
our real recordings (Section 3.3). This time window is
short enough so that the templates change only very
slightly in time and can, therefore, be clustered reliably,
but long enough to acquire enough spikes to estimate
robustly the mean waveforms.

2.10.1 Initial spike detection and initial spike alignment

During the initialization phase spike detection can be
done with any conventional technique. We used an
energy based approach, since it usually delivers a better
performance than other methods (Mtetwa and Smith
2006; Obeid and Wolf 2004).

In particular, we applied the MTEO detector (see
Section 4.1 for definition) with k-values [1, 3, 5] to each
recording channel separately and set the threshold to
3.5 times the median of its output. Spike periods were
defined as intervals of length 1.5 ms, in which the output
of the MTEO detector exceeded the threshold value at
least once.

Correct spike alignment is crucial for a good cluster-
ing result. While in many studies an alignment based
on the maximal and/or minimal peak value of a spike
is used, again, methods based on the energy of a spike
usually yield better results (Fee et al. 1996a). After
cutting out all spikes around the peak of the detector,
we used the following algorithm for alignment:

1. Calculate the average template over all spikes

2. Minimize the energy difference between every
spike and the template by shifting the spikes

3. Repeat until convergence or a maximal number of
iterations is reached

In our experiments described in Section 3.3 the average
number of spikes in the first 30 s of recordings is
around 2500 and convergence is obtained after 15 to 20
iterations.

@ Springer

134

J Comput Neurosci (2010) 29:127-148

Initialization

O
o
=
=

Main algorithm

Templates

e

I Conv. spike :

Calculation of
AT

detection

I_
1
1
1
il
1
il
1
>
il
1
il
1
il
1
1
\ 4

Linear filters

Estimation of R

1
}
Bandpass filter !
}
1

v

Half-wave
rectification

Data 1

Artifact

_______r________
—>

detection

Sorted spikes [€

Fig. 4 Schematic illustration of the way data is processed: The
data is bandpass filtered and periods containing artifacts are ex-
cluded from further analysis (Section 2.7). During the initializa-
tion phase a conventional spike detection and clustering method
is used to determine initial templates (Section 2.10). The data
covariance matrix R is estimated and for every template the cor-
responding linear filter is calculated as described in Section 2.3.
The data are filtered and all values in the filter output below zero

2.10.2 Initial clustering

Although a broad range of sophisticated clustering al-
gorithms is available, we used a standard approach,
since a very accurate initialization is not crucial for
our method. The aligned spikes are whitened (e.g., see
Pouzat et al. 2002) and projected into the space of
the first 6 principle components. The clustering consists
of a Gaussian mixture model in combination with the
Expectation-Maximization algorithm (Xu and Wunsch
2005). For every number of cluster means between 1
and 15 the clustering procedure is executed 3 times
with random initial means. The covariance matrices are
fixed to 2.5 times the identity matrix. The run and the
number of means with the highest score according to
the Bayesian inference criterion (Xu and Wunsch 2005)
are selected as initialization for the main algorithm.

2.11 Signal-to-noise ratio (SNR)

The SNR is a scalar value which is an indicator for
the difficulty of detecting a signal in noisy data. In this
sense, the SNR definition should be dependent on the
method used for signal detection. Several definitions
of the SNR are used in the spike sorting literature. A
very common one is to define the SNR by some max-
imal value, e.g., the maximal amplitude, the maximal
difference in amplitudes (peak to peak distance), or

@ Springer

are set to zero (half-wave rectification). From all filter responses
to all templates the un-mixing transformation is determined and
applied to the processed data (Section 2.5). A threshold is applied
to the Deconfusion output resulting in simultaneous spike detec-
tion and classification. The newly found spikes are used to re-
estimated the templates. Also the covariance matrix of the data
is re-calculated after regular time intervals (Section 2.9)

the maximum of the absolute value of the amplitude,
divided by the variance of noise o2, i.e.,

(Extremum value of &)*
2

SNR,, (§) := \/

o

(e.g. see Choi et al. 2006). Another current definition
for the SNR is based on the energy of a signal, i.e.,

§2
SR @ = V7,2

(e.g. see Rutishauser et al. 2006). We introduce a de-
finition of SNR which is based on the Mahalanobis
distance of a template & to zero:

£'C g

SNR,, (8) = | %5 T

(10)

In the special case of single electrode data and of 1-
dimensional templates (7y = 1), all SNR definitions
are equivalent. To show that SNR,, is an appropriate
SNR definition for the linear filters, while the other de-
finitions are in contradiction with the meaning of signal-
to-noise ratio, we simulated datasets containing a single
neuron, which fired according to a Poisson statistic, and

J Comput Neurosci (2010) 29:127-148

a noise covariance matrix C («) :== (1 —a) - 14+« - (f:;”,
where 1 denotes the identity matrix, and C,,, is a
noise covariance matrix from one of the experiments
described in Section 3.1, with (Cexl’)i,i = ¢? for all i.
The used template was extracted from the same exper-
iment. We simulated datasets for ten different « values
between 0 and 1. The SNR,, decreased with increas-
ing «, and consistently the detection performance of
our method decreased, see Fig. 5. Note that SNR, =
SNR, =1 for all « values, which means that those
definitions are inappropriate for the proposed method.
Nevertheless, we always provide values for all three
definitions of SNR in order to allow comparisons with

other publications.

3 Experiments and datasets

For the performance evaluation of our method, three
different datasets were used. All experiments were
performed in accordance with German law for the
protection of experimental animals, approved by the
local authorities (“Regierungsprasidium”), and are in
full compliance with the guidelines of the European
Community (EUVD 86/609/EEC) for the care and use
of laboratory animals.

3.1 Simultaneous intra/extra-cellular recordings

The experiments were done in acute brain slices
from Long Evans rats (P17-P25). In every experi-
ment a pyramidal cell from visual cortex, Layer 3
or 5 depending on the experiment, was simultane-
ously recorded intracellularly and extracellularly. Ex-
tracellular spike waveforms were recorded using a
4-core-Multifiber Electrode (Tetrode) from Thomas
RECORDING GmbH, Germany. The cell was intra-
cellularly stimulated by a current injection (varying
from experiment to experiment between 80 pA and
350 pA). Extracellular recordings were sampled at
28 kHz and filtered with a bandpass FIR filter (300 Hz
to 5000 Hz).

The intracellularly recorded spikes were detected
using a manually set threshold on the membrane poten-
tial. The threshold crossings in the membrane potential
were used as triggers to cut out periods from the ex-
tracellular recordings (2 ms before and 5 ms after the
trigger). In total, data was recorded from 6 different
cells, which resulted in 9957 intracellularly detected
spikes. For analysis only the recording channel with the
highest SNR was considered. The SNR of the different
experiments varied from SNR,, = 0.20 (SNR, = 0.79,
SNR, = 0.39) to SNR,, = 2.37 (SNR,, = 7.09, SNR, =

135

(@ - (b)
c

§ 0 § 05
=

5, £ o
©

-3 -0.5

0 20 40 60 80
time in samples

o

20 40 60 80
time in samples

©),

SNR

0.3 L L L L L L L L L

(d)

100

90

80

70

—+— Squaring
MTEO [1,3,5,7,9]
—+— Mahalanobis distance
—+— Optimal filter
Our method

60

50 [

% FP+FN

40

30

Fig. 5 (a) Template £ (in arbitrary units) used for the simula-
tions. (b) Noise autocorrelation function of the same experiment
from which the template was extracted. This autocorrelation was
used to calculate C. (¢) Plot of SNR,, (§), of SNR, (§) and of
SNR,;, (§) in dependence of « (see text for definition). (d) Aver-
age detection performance of different spike detection methods
(described in Section 4.1) for different values of «. For each «
value the average was done over 5 datasets, each with a noise
covariance matrix C (@) (see text for definition)

3.64). A short period of recordings with a moder-
ate SNR (SNR,, = 1.16, SNR, = 4.3, SNR, = 1.97) is
shown in Fig. 6, top row.

@ Springer

J Comput Neurosci (2010) 29:127-148

136
o ‘ ‘ ‘ ‘
Intracell. >g)l\\)L\ J\<
Extracell.
0.4
Squarin
d & 0.1 mm
MTEO[135 1
0 4 Hmﬂ\\\hﬂ gt ﬂmwm "“MWM
Opt. filt 1
p N ’Pr 03 '\ Fl el i L Ll ‘ ‘
Our Method r ‘ |
0.1 ot s ade donede 1] el o uJAHM\ AL FYSNREI
50 100 150 200 250 300 350
time in ms

Fig. 6 A short piece (approx. 400 ms) of extracellularly recorded
data from slices of rat visual cortex is processed with different
spike detection techniques (rows 3-6). Data were recorded si-
multaneously intracellularly (first row) and extracellularly with
a tetrode. In this experiment the cell was repeatedly stimulated
with 30 ms pulses of 350 pA current injection to elicit action
potentials. Only the tetrode channel with the highest SNR was
used for further analysis (second row)

3.2 Simulated data

The artificially generated data simulates a single chan-
nel recording of 15 s length at a sample frequency of
32 kHz containing activity from three neurons. Every
dataset contained exactly 750 equidistantly distributed
spikes of every neuron, which corresponds to a firing
frequency of 50 Hz. The three used templates were
extracted from the recordings described in Section 3.1
and had a length of 2.1 ms. The noise was generated
by an ARMA model (Hayes 1996) approximating the
noise characteristic shown in Fig. 5(b).

3.2.1 Dataset with overlapping spikes

The relative number of overlapping spikes was sys-
tematically varied from 1% up to 50%. 75% of all
overlapping spikes consist of overlaps between two
templates (25% for each combination), and 25% of
all overlapping spikes consist of overlaps between all
three templates. The amount of overlap, i.e., how much
the templates overlap, is distributed according to a
uniform distribution on the interval [1/3, 1]. The SNR
was kept constant for all overlapping ratios, namely, all
three templates were scaled to an equal SNR, which
was SNR,,, = 1.2. This corresponds to SNR, = 5.42 and
SNR, = 2.12 (average values over the three templates).

@ Springer

3.2.2 Dataset with SNR variation

The SNR,, was systematically varied from 0.6 to 1.4
(which is equivalent to 2.71 to 6.32 average SNR, and
1.06 to 2.48 average SNR,). The amount of overlapping
spikes was constant and set to 7%, which is approxima-
tively the overlap ratio resulting by chance under the
assumption of independent spike trains.

The over-completeness, the equal SNR of all three
templates, and the presence of overlapping spikes make
these datasets particularly challenging.

3.3 Acute recordings

Tetrodes were placed in ventral prefrontal cortex for
individual recording sessions, sampling data from the
same region across experiments. Recordings were per-
formed simultaneously from up to 16 adjacent sites with
an array of individually movable fiber micro-tetrodes
(Eckhorn and Thomas 1993). Recording positions of
individual tetrodes were manually chosen to maximize
the recorded activity and the signal quality. Data were
sampled at 32 kHz and bandpass filtered between
0.5 kHz and 10 kHz.

Neuronal activity was recorded while 2 macaque
monkeys performed a visual short-term memory task.
The task required the monkeys to compare a test stim-
ulus to a sample stimulus presented after a 3 s long
delay and to decide by differential button press whether
both stimuli were the same or not. Stimuli consisted
of 20 different pictures of fruits and vegetables which
were presented for 0.5 s (test stimulus) or for 2 s
(sample stimulus). Correct responses were rewarded.
Match and non-match trials were randomly presented
with an equal probability. This experimental setup was
presented in Wu et al. (2008).

Approximately, the monkeys perform 2000 trials per
session, which is equivalent to almost 4 h of recording
time. For the evaluation of our algorithm only the first
5 s of every trial were processed, as the remaining data
might contain severe artifacts caused by the monkey’s
movement.

4 Results and discussion

The performance of a spike sorting method depends
on its capability to detect spikes and to assign every
spike to a putative neuron. As described in Section 2.6,
our method achieves both simultaneously. We evalu-
ated the performance of our approach, first, as a pure
detection method, and then, as a combined detection

J Comput Neurosci (2010) 29:127-148

137

and classification technique. In both categories we com-
pared it against techniques commonly used.

4.1 Spike detection performance

The evaluation was done on the in-vitro dataset de-
scribed in Section 3.1. Although the extracellular sig-
nal was recorded with a tetrode, we used only one
recording channel for further analysis, since most con-
ventional spike detection methods are only defined for
single channel data. The detectors used are:

1. Mahalanobis distance: This method is described
in Rebrik et al. (1999). In brief, periods having a
greater Mahalanobis distance to zero than a cer-
tain threshold are identified as spikes. The noise
covariance matrix was estimated from data pieces
in which the neuron was not stimulated. The size of
the matrix was chosen to match the observed length
of spikes in the experiment and was then applied
window-wise. Local maxima crossing the threshold
are identified as spike times.

2. Squaring: The raw data is squared and normalized.
Local maxima crossing the threshold are identified
as spike times. In case of an one-dimensional noise
covariance matrix, this method is equivalent to the
method “Mahalanobis distance”.

3. Squaring smoothed: A Savitzky-Golay filter of span
5 and order 2 is additionally applied to the output of
the method “squaring”. This method is very similar
to the one used in Rutishauser et al. (2006).

4. MTEO: This method is described in Choi et al.
(2006). In brief, the data is smoothed with a Ham-
ming window and a quantity (which depends on
parameters k) related to the energy of the signal
is computed. We used two parameter sets for this
method, one with k-values of [1, 3, 5] and one with
k-values of [1, 3, 5,7, 9].

5. Optimal filter: Since the occurrence of the spikes is
known (due to the intra-cellular recording), the op-
timal filter is calculated using the average waveform
of all spikes of the recorded neuron.

6. Our method: In the case of a single neuron, our
spike sorting method corresponds to a single “es-
timated filter” detector, i.e., the initial filter is cal-
culated using the average waveform of all spikes
found by the MTEO [1, 3, 5] with a threshold set to
3.5 times the median of its output.

A short piece of the recordings and some of the corre-
sponding detector outputs are shown in Fig. 6.

We compared the performance of the different spike
detection methods using receiver operating character-
istic (ROC) curves. For every detector the threshold

100

95 .

90 B

85

80

75

% TP

70

—— Squaring

—4— Squaring smoothed

=t MTEO [1 3 5]
MTEO[13579]

—— Mahalanobis distance
Our method

—— Optimal filter

65

60

55

50 I)
0 5 10 15 20 25 30

FP rate (Hz)

Fig. 7 ROC curves for different spike detection methods. In this
experiment SNR,, = 0.81, SNR, = 3.28, SNR, = 1.63

is systematically varied between 0, resulting in zero
false negative detections (FN), and the minimal value
which does not detect any spikes; i.e., zero true positive
detections (TP). For every threshold the percentage
of TP is plotted against the false positive (FP) rate.
Such a curve is shown for one exemplary experiment in
Fig. 7. The curve for the best possible detector (i.e. no
FP, but 100% TP detections) would pass through the
point (0, 100). The area under such a curve (AUC) is,
thus, a measure for the performance of a detector. The
normalized AUC values for the area up to 30 Hz of FPs
of all detectors averaged over all available datasets are
shown in Table 2. Although only the average perfor-
mance is presented, our method and the optimal linear
filter also achieved higher scores on every individual
dataset described in Section 3.1. In all experiments the
optimal filter was superior to the other detectors, while
our method scored second with a very similar perfor-
mance. This shows that taking into account the full

Table 2 Average normalized area under the curve for each
evaluated spike detection method

Method Average normalized AUC
Mahalanobis distance 0.70827
Squaring 0.76371
Squaring smoothed 0.77073
MTEO][1 3 5] 0.78501
MTEO[13579] 0.77255
Optimal filter 0.81957
Our method 0.80887

The averaging was done over all 6 datasets described in
Section 3.1. The AUC values were computed up to a FP fre-
quency of 30 Hz and normalized by 3000 which is the AUC of
a perfect detector

@ Springer

138

J Comput Neurosci (2010) 29:127-148

200 [

150 |

TP +FN

100 |

50

‘ |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
relative threshold

Fig. 8 Number of errors for each spike detection method in
respect to varying thresholds. The color coding is the same as
in Fig. 7. For each detection method the maximal threshold was
determined and normalized to 1. The maximal threshold is de-
fined as the smallest threshold so that no spikes are detected. The
total error is plotted in dependence of threshold values equally
sampled from the interval [0, maximal threshold]. The total error
for the linear filter increases slower than for the other methods,
when the threshold deviates from the optimal threshold. For this
evaluation a dataset from the recordings described in Section 3.1
was used with SNR;,, = 1.39, SNR, = 6.31, SNR, = 3.04

waveforms as well as the data statistic always greatly
improves the detection performance. The optimal lin-
ear filter was included into the evaluation to provide
an upper bound on the performance one can achieve
with our method. Our method offers another advantage
for the detection of spikes, namely a bigger robustness
to threshold variations, see Fig. 8. This means that a
deviation from the optimal threshold has a less drastic
impact on the total error (FP + FN) than for the other
methods.

4.2 Spike sorting performance
4.2.1 Resolution of overlapping spikes

We recall that the applied operations to the recorded
data could be summarized in Eq. (8). The cross-
correlation between the filters and the data is a lin-
ear operation. The following Deconfusion consists of
a half-wave rectification, which is a non-linear oper-
ation, but affects only noise and not the action po-
tentials (represented in the filter output), and the
un-mixing, which is linear again. Hence, one can expect
that if the superposition of spike waveforms is also
linear, overlaps should be resolved successfully. We
validated this assumption on the dataset described in
Section 3.2.1. The algorithm was executed in the same

@ Springer

Table 3 Average performance of the proposed method for non
overlapping and overlapping spikes

N A B C AB AC BC ABC
A 00 96.0 0.1 00 917 935 1.7 92.0
B 00 0.0 982 0.1 874 97 928 872
C 00 0.0 0.0 97.8 1.1 920 921 887

Each column represents the true category of events detected as

LI

spikes (e.g. “N” meaning “noise”, “AB” meaning an overlapping
spike of template A and template B, etc.), while each row repre-
sents the category to which they were assigned by our algorithm.
Each total number of classifications was divided by the number of
corresponding spike events, resulting in a percentage value. The
bold numbers represent the percentage of correct classifications.
The table shows the average performance over 10 datasets with
an overlap ratio of 40% (see Section 3.2.1). For a systematic
evaluation over different overlap ratios the absolute numbers of
the correct classifications were added and divided by the total
number of inserted spikes; see Fig. 9

way as described in Section 2. In order to allow the
method to adapt (Section 2.9), the method was iterated
5 times on the same dataset. We also compared the
performance of our method to those of two popular
clustering based offline methods, one of them being
the method described in Section 2.10.2, which will be
abbreviated as “GMM?”. Since this is also the method
which is used for initialization of our algorithm, the
comparison with GMM directly provides information
about the improvements in sorting when our method is
used.

The other algorithm, called “KlustaKwik”, was ex-
plicitly developed for clustering neuronal data and was

100 " . - ‘
95
90
85
o 80
'_
® 75
70
—}— Opt. filters
65 - Our method
—— GMM
60— KiustaKwik
55 1 1 1
0 10 20 30 40 50

% Overlap ratio

Fig. 9 Average performance of the different spike sorting meth-
ods over 10 simulations. The x-axis indicates the overlap ratio, i.e.
the relative number of overlapping spikes (see Section 3.2) while
the y-axis represents the correct classifications in percentage
(true positives divided by total number of spikes)

J Comput Neurosci (2010) 29:127-148

Table 4 Same evaluation as in Table 3, but for the method
“GMM?” described in Section 2.10

N A B C AB AC BC ABC
A 0 81.0 0.0 01 278 273 04 215
B 02 145 100.0 06 68.0 42 450 427
C 01 44 01 994 47 69.0 532 417

The method sorts non overlapping spikes well, but has difficulties
in resolving overlapping spikes

first introduced in Harris et al. (2000). The cluster-
ing parameters were set to their default values. Spike
detection and alignment was done in the same way
as described in Section 2.10.1. To provide an upper
bound on the performance our approach could achieve,
we included the evaluation with the optimal filters
calculated directly from the real templates. Note that
other existing, purely clustering-based sorting methods,
either in the PCA space or in the original data space,
would perform similarly to GMM and KlustaKwik.

For the evaluation the relative number of TP was
counted (Tables 3 and 4).

The simulations show that our method indeed re-
solves overlapping spikes and outperforms the cluster-
ing based methods; see Fig. 9. Our method works even
for datasets with a large amount of overlapping spikes,
and the performance is close to the theoretical bound of
this approach. On the other hand, the performance of
the purely clustering based methods rapidly decreases
with an increasing amount of overlapping spikes. Over-
lapping spikes are mostly detected as single events by
conventional spike detection techniques, which leads
to a high FN rate. Furthermore, since the waveforms
of overlapping spikes are distorted, their distances to
the corresponding cluster means are large, making it
difficult to assign them to a neuron. This results in a
low TP score for clustering based methods.

4.2.2 Performance for various SNR

The evaluation on the dataset with a varying SNR
(see Section 3.2.2) was done in the same way as in
the previous section. The results are shown in Fig. 10.
The performance of the clustering based methods is
severely affected by a low SNR. The performance of
the proposed method follows the one of the GMM
algorithm, since it relies on its output for initializa-
tion. Nevertheless, our method is always superior to it.
Because of the rapid decrease in performance from a
SNR level of 0.7 to an SNR level of 0.6, we stopped
the algorithm from detecting spikes for templates with
a lower SNR than 0.65 in real recordings by deleting
the corresponding templates and filters. In contrast, the

100 T T T A -

90

80

70

60

% TP

50 [y

e Opt. filters
Our method

—f— GMM
e KlustaKwik

| | | | | |
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
SNR

m

Fig. 10 Average performance of the different spike sorting meth-
ods over 10 simulations in respect to various SNR levels. Note
that the performance of the proposed method degrades with
the performance of the GMM algorithm. This is because the
output of the GMM is used as the initialization for our method.
However, the our method is always superior to it. Low SNRs do
not severely affect the performance of the optimal filter

optimal filter method is only slightly affected by a low
SNR level, indicating that a more elaborate initializa-
tion would increase the performance of the proposed
method on datasets with very low SNRs.

4.2.3 Performance on experimental data

We applied our method to data recorded in the pre-
frontal cortex of monkeys performing a short-term
memory task as described in Section 3.3. For illustrative
purposes, we show the results obtained by processing
data from one tetrode, since the qualitative outcomes
from processing other tetrodes and different recording
sessions are similar.

For the initialization phase we used the first 7 trials of
the recording. The initial spike detection and clustering
was done as described in Section 2.10, resulting in a
total of 3219 detected spikes, which were assigned to 8
clusters. This basic clustering was used as an initializa-
tion for the main algorithm, which was executed in the
same way and with the same parameters as described
in Section 2 (see also Fig. 4 for a summarization). The 7
trials used for initialization were also processed with the
main method in order to improve the sorting quality.

The templates after the first 90 trials are shown in
Fig. 11, and seem to be reasonable by visual inspection
of an expert. In total, our method found almost 200000
spikes (57111, 18060, 50724, 51709, 3974, 7057, 444,
10915 for each template). Two well-established tests

@ Springer

140

J Comput Neurosci (2010) 29:127-148

(@)

SNR channel 1 channel 2 channel 3 channel 4
m 50
138 _gof ~/ - °
50
1.52 _gol \/ \/ \/ s
50
242 _go " m‘
50 J——
1.32 —SOW_ \f g
50
160 _goN = s °
50
1.80 —50f \S
50 R
1.85 —50»‘\/\ e’ \~ [
50 I
132 5oV Ve
0 1 2 3 4 5 6
time in ms
(C) 1vs. 2 D=26.0 2vs.3D=41.6
0.4
0.2 m ‘ h
0
-10 0 10 20 -20 0 20
5vs. 6 D=33.4 6vs. 7 D=37.0
0.4
0.2
0 4
-20 -10 0 10 20 -20 -10 0 10 20

Fig. 11 (a) Plot of the concatenated templates and their standard
deviation. For the averaging all detected spikes from trial 50
to trial 90 were used. The vertical lines indicate the concate-
nation points, while the colored dots on the right serve as a
label. On the left, the SNR,, value is shown, the channel length
of the template being Ty =47 and N = 4. The corresponding
SNR,, are (10.06,13.28,21.82,11.57,13.12, 13.32, 14.27, 10.34),
and the SNR, are (1.84,3.73,4.22,2.91,2.90, 3.45, 2.99, 2.53), re-
spectively. (b) Histograms of the inter-spike interval distributions

to quantitatively asses the sorting quality of a method
performing on real data are the inter spike interval
distribution and the projection test (Rutishauser et al.
2006; Pouzat et al. 2002); the evaluation of our sort-
ing with both tests is shown in Fig. 11. The relative
number of spikes during the first 3 ms is smaller than
1.5% for all neurons, implying that the refractory pe-
riod is respected. On the other hand, the projection
test verifies that the spikes of a single neuron have
not been artificially split by the sorting algorithm into
multiple clusters or that spikes from multiple neurons

@ Springer

(b)

%3ms

2000
0.42 1000 'I.II.I" ()
0
200
0
2000
0.38 1000 °
iy v—
1000
0.05 500 |l.ll.|l.|.||
0
50
0.73 'I'llﬂll. it bilal o
0
200
0.21 100
A S
5
0.00 il HI'“'IIIIIIJ |II| | I| |.
0
200
1.31 108 o ®
0 20 40 60 80 100
ISlin ms
3vs. 4 D=387 4vs.5D=31.0
-30 20 .10 0 10 20 -10 0 10 20
7 vs. 8 D=12.1

AL

with a bin size of 1 ms. The numbers on the left represent the
percentage of spikes with an inter-spike interval of less than 3 ms.
(¢) Projection test of the found clusters. The fit (solid line) rep-
resents a Gaussian distribution whose mean is the corresponding
template and with variance 1. The D value indicates the distance
in standard deviations between the means. Note that in case of
acute recordings, the waveforms change over time and thus the
projection test is only meaningful for short time intervals; see also
Fig. 13. For the projection test the same spikes as in (a) were used

are assigned to the same cluster. The sorting of our
method also passes the projection test since the clus-
ter distributions do not overlap and are close to the
theoretical prediction of a normal distribution with a
variance 1. In sum, the good results of these two tests
imply that the found clusters are well separated and
indeed correspond to single neurons, as well as that the
assumptions made in Section 2.2 are justified.

Since we inserted the tetrodes before every exper-
iment anew, our algorithm has to deal with the vari-
ability in the data caused by tissue drifts. The adaption

J Comput Neurosci (2010) 29:127-148

141

Tetrode channel: 1

100

Peak Amplitude

-100

200 400 600 800 1000 1200 1400 1600 1800 2000

Tetrode channel: 3
100

50

Peak Amplitude

-100

200

400 600 800 1000 1200 1400 1600 1800 2000

Trials

Fig. 12 Effects of tissue drift on the amplitudes of all tem-
plates over the whole experiment. For every recording channel
of the tetrode and for every trial a peak amplitude histogram
was calculated. In every trial the number of local extrema of
50 samples width and a certain amplitude interval was counted
for positive and negative peaks independently and normalized
by the trial length, giving an estimate for the rate of spikes of
that amplitude. Shown is the logarithm of that count, where
light pixels correspond to high counts. Small amplitude peaks

procedure described in Section 2.9 was executed after
every trial and adapted the algorithm correspondingly.
The time period over which the templates were as-
sumed to be constant was set to 7 =5 s.! As a re-
sult, 2 neurons could be tracked from the beginning
to the very end of the experiment, see Fig. 12. The
other templates were deleted earlier, since their SNR,,
dropped below 0.65. The importance of taking tempo-
ral variations for sorting into account is demonstrated
in Fig. 13. If the drift is not accounted for, the clusters
are elongated and their spread is larger, making any
classification more difficult.

IThe value of T was set to 5 s just for convenience of implemen-
tation, since the first 5 s of each trial were processed.

Tetrode channel: 2

100

50

200 400 600 800 1000 1200 1400 1600 1800 2000

Tetrode channel: 4
100

50

200

400 600 800 1000 1200 1400 1600 1800 2000

Trials

were ignored because these are strongly effected by noise. A
neuron with a high SNR should be visible as two light horizontal
bands, one with a high positive amplitude and one with a high
negative amplitude, respectively. Superimposed are the minimal
and maximal amplitudes of the found templates in every trial.
The color code is the same as in Fig. 11. The plot reveals that
the amplitudes of the spikes change drastically over time. Due to
the feedback described in Section 2.9 the algorithm adapts to this
changes and successfully tracks the neurons

The disappearance of neurons from the recording
volume is a common phenomenon in our recordings.
However, the opposite, i.e., the appearance of new
neurons during recordings, is rarely observed. This
might be explained by the fact, that at the beginning of
the experiments, the tetrodes are explicitly placed at a
position where a lot of neuronal activity is measured.
Therefore, it is more probable that during the tissue
drifts the high activity population of neurons disappears
than that new, highly active neurons appear. We discuss
this problem also in Section 4.4.

In Section 4.2.1 we have already demonstrated on
simulated data the ability of our method to resolve
overlapping spikes instantaneously. This is also the
case for real data, see Fig. 14. The same figure also
shows, that it would be very difficult to classify correctly
these overlapping spikes with a purely clustering based
algorithm.

@ Springer

142

J Comput Neurosci (2010) 29:127-148

(a)

Trial
50}
50 e —
_50N~V\ﬁ/\+ ~ ﬂ " N\ T
50
1000 % V\%/_\/_ﬁk _df_,—_wﬁﬁ o~
50}
2001 | —\f\—~/~+ k ——
0 2 4 6 0 2 4 6 0 2 4 6
(b)
Trials . °
10 ‘.” ° 0.4
% o oy (O
120 o L ¥
e v e 02
-10 ", R
—20 . ’”‘. ‘ 0 L
10
. 0.4
[}
1000-1040 © . *s’
-10% | T 0.2
@2 .
o i L
oL e L L O -
10t .
Y2 g % .
Of = “was ‘W 0.4
1-2001 N_10, ° .". L% °
8 'f‘., e 0.2
—20r1 .‘-....0‘-‘. .
-301 ‘
. P . . . 0
20 -10 0 10 20 30 20 -10 0 10 20 30 30 20 -10 0 10 20

Fig. 13 Effects of tissue drift on templates and cluster distribu-
tions in the PCA space. (a) For three filters which detected spikes
nearly throughout the whole experiment, the corresponding tem-
plates of the initialization and at trials 50, 1000 and 2001 are
shown. The color code is the same as in Fig. 11. Note that the
middle template was deleted by the algorithm during trials 1000
and 2001 (compare Fig. 12). (b) The projections of the whitened
spikes on the first two principle components (left column) and the

The evaluation in Fig. 11 and Fig. 13 shows that
the clustered spikes, although whitened, are not per-
fectly Gaussian distributed. This deviation is caused by
overlapping spikes, but it is also due to an intrinsic
waveform variability, as it is observed for example
during bursts (Fee et al. 1996b). In this sense, the
generative model assumed in Section 2.2 is not strictly
valid anymore. Nevertheless, our method achieves a
good performance, even for datasets containing burst-
ing neurons identified by visual inspection. This can be
explained by the fact that the scaling of the waveform
during burst is close to linear (Rutishauser et al. 2006).

@ Springer

projection test for three selected templates (middle and right col-
umn) are shown during three different periods. Note that during
the two short periods (upper two rows) the whitened spikes of
every neuron are nearly standard normal distributed. However,
if the spikes are collected over a longer period (bottom row),
the clusters are elongated and overlapping, making a clustering
difficult. For sake of clarity only every 100th trial was plotted for
the 1-2001 period

Because of the linear character of our method (e.g.
see Section 4.2.1), the response to a linearly scaled
waveform will also only be scaled by the same factor.
Hence, the algorithm classifies spikes from bursting
neurons correctly as long as the amplitude degradation
of the spikes is not too strong.

4.3 Limitations of our method
We have shown that our method is of great poten-

tial for spike detection and classification applications.
However, there is a principle limitation: Since the fil-

J Comput Neurosci (2010) 29:127-148

143

(b)

Fig. 14 Ability of our algorithm to resolve overlapping spikes in
real data. (a): Projection of all detected and whitened spikes from
the trials 50-90 into the space of the first two principle compo-
nents (the solid bars correspond to 3 standard deviations each).
Spikes were detected and classified with the proposed method
(color scheme is the same as in Fig. 11). For the additionally
letter labeled spikes, the corresponding sections in the original
recorded data are shown in (b)—(e), indicating that these spikes
are overlapping spikes (the solid bar corresponds to 1 ms). In (b)-
(e) all detected spikes are shown but only those participating in
an overlap are labeled in (a). The plots right next to the original
recordings show the same data after subtracting the templates of

tering and the Deconfusion are linear operations, it is
impossible to discriminate waveforms which are strictly
linear dependent, i.e., when the spike waveform of
one neuron is a multiple of the waveform of another
neuron. A possible way to solve this problem is to sort
the templates according to their SNR. Spikes with the
highest SNR are detected first. Whenever a spike is
found, the corresponding template is subtracted from
the data and all other filter outputs are re-calculated
for the affected period. This procedure is repeated for
templates with a lower SNR. Further, if the sum of the
waveforms of two different neurons with a certain shift
is nearly identical to another neurons spike waveform,
it is impossible to judge whether a spike is an overlap or

the neurons to which the spikes were assigned. The residual is
similar to the noise signature, suggesting that our sorting was in-
deed correct. Note that the templates were not scaled to account
for the amplitude variability of the spikes. This would reduce the
residual. An example for a putative overlapping spike is labeled
“d1” and would probably be detected as a single spike event by
a standard spike detection. Furthermore its misclassification by a
purely clustering based algorithm is likely, because its distance to
the corresponding cluster means is large. Also spikes like “b1” or
“b2” would have been probably classified as outliers by standard
sorting methods

not. Only probabilistic methods or soft clustering could
give a hint at where the waveform came from.

4.4 Newly appearing neurons

We have not addressed the problem of neurons
which are not detected during the initialization phase.
As we observe spikes from neurons whose SNR de-
creases due to tissue drifts, and finally disappear com-
pletely from the recorded data, the opposite might also
happen; i.e., neurons, previously undetected, slowly
appear in the recording volume. A possible solution
would be to run a conventional spike detection method
in parallel to our method. All spikes detected by the

@ Springer

144

J Comput Neurosci (2010) 29:127-148

conventional spike detection technique, but not by our
method, could be collected, aligned and clustered. Re-
specting the newly found clusters, corresponding filters
could be initialized and the Deconfusion procedure
adapted accordingly.

4.5 Implementation and computational complexity

Especially for a real-time implementation the runtime
of an algorithm is crucial. After the initialization phase,
the proposed method consists mainly of linear opera-
tions. The adaptation of the covariance matrix, of the
templates and of the Deconfusion parameters need
only to be computed every few seconds. Therefore,
the computational burden lies in the application of the
linear filters and the Deconfusion to a new sample
of recorded (multichannel) data. The current imple-
mentation was done in Matlab, however the source
code is not ready for publication yet. We will make
the method available e.g. on ModelDB as soon as the
implementation is finished.

4.5.1 Runtime analysis

If a new multichannel sample of data is recorded,
first the cross-correlation between the filters and the
data has to be calculated and afterwards Deconfusion
is applied. The number of operations needed for the
cross-correlation of a filter (the number of filters equals
the number of neurons M) and the data is directly
proportional to the product of the length of the filter
T and the number of recording channels N. The De-
confusion procedure consists of a half-wave rectifica-
tion, which is just a sample wise trivial non-linearity,
and a matrix-vector multiplication between the square
matrix W of dimension M x M and the shifted and half-
wave rectified filter outputs. To sum up, the computa-
tional complexity for a newly arriving data sample is
OMNTy) + O(M?). Since we can assume the number
of filters to be higher than the number of recording
channels, the resulting complexity is O(M*Ty). This
means the runtime complexity mainly depends on the
number of filters and the filter length.?

2In principle, the cross-correlation can be calculated with the help
of the fast Fourier transform more efficiently. However, this pays
off for long data pieces only, and thus would require to buffer the
data first, spoiling the real-time idea.

@ Springer

4.5.2 Parallel computing

It is important to note that the cross-correlation for
every filter—even for every channel of every filter—are
independent of each other and can, thus, be computed
in parallel as simple vector-matrix multiplications. For
a so called vector processor such a multiplication would
be one single operation only. E.g this could be im-
plemented on a modern consumer computer-graphics
hardware or on programmable digital signal processors.

5 Conclusion and outlook

An automatic method for simultaneous spike detec-
tion and spike classification was presented, having sev-
eral advantages which were demonstrated on various
datasets. Explicitly, the method makes use of the ad-
ditional information provided by multi electrodes and
has no constraints concerning the number of record-
ing channels or the number of neurons present in the
data. It resolves overlapping spikes instantaneously,
performs well on datasets with a low SNR, and it adapts
to non-stationarities present in the data. Moreover, the
method operates online and is well suited for a realtime
implementation.

In the first step of our algorithm, optimal linear filters
were used to enhance the SNR. Linear filters, being an
approximation to an exact deconvolution, account for
the noise statistics as well as for the full, multi-channel
template, and are, therefore, superior to other methods
in detecting spikes of a specific neuron. An evaluation
on simultaneous intra/extra-cellular recordings in slices
of rat visual cortex and on realistic synthetic data shows
that the difference in performance is considerable.

Further, we used the output of the linear filters as a
new representation of the data. The advantage of the
filter output space is that its dimension is equal to the
number of neurons, whereas this was not the case in the
original data space. This allowed us to treat the spike
sorting problem as a well defined source separation
problem and solve it by Deconfusion.

In the final step, a channel specific threshold was ap-
plied providing simultaneous spike detection and classi-
fication. Unlike in many other methods, the thresholds
need not to be set manually by a human supervisor but
are determined automatically in an optimal way. The
advantage of a combined spike detection and classifi-
cation, in contrast to existing spike sorting methods,
was demonstrated on simulated datasets. Especially
in the presence of overlapping spike and low SNR,
our method achieved better performances. We showed

J Comput Neurosci (2010) 29:127-148

145

that, in the case of linear filters, a proper definition of
the signal-to-noise ratio is based on the Mahalanobis
distance, whereas other commonly used definitions do
not reflect the difficulty in detecting the signal.

By iteratively updating all quantities, namely the lin-
ear filters, the Deconfusion parameters, and the thresh-
olds, the algorithm adopts to non-stationarities present
in the data. As such, the method is also suitable for
recordings made in acute experiments in which the
multi electrodes are inserted each time anew. The num-
ber of spikes detected by a filter which were used for the
calculation of the template, was set manually to a fixed
value, equal for all filters. Instead, one could develop a
model for the tissue drift and derive an optimal value
which depends on the estimated drifting velocity, the
firing rate of the neurons, on the SNR, and on the error
tolerance. This is the aim of a future study.

Two drawbacks of the proposed method were
discussed, namely the incapability to detect newly ap-
pearing neurons and the problem of strictly linear
dependent templates. However, for both problems a
possible solution was sketched. The detailed study and
realization of these solutions will be the scope a future
study.

By qualitative arguments, systematic runs on real-
istically simulated data and on real data from awake
behaving macaques, we have shown that the algorithm
is capable of resolving overlapping spikes; without addi-
tional computing time. However, for the acute record-
ings in awake behaving monkeys we cannot proof that
the found solution is correct, since the ground truth
is unknown. Only massive simultaneous intra- and ex-
tracellular recordings in vivo could be used to asses
the quality of the sorting in real experiments. Due to
technical limitations, such a dataset is currently not
available.

The algorithm mainly consist of linear, independent
operations, which can be executed in parallel and im-
plemented in hardware. Therefore, the algorithm can
be used for realtime implementations, making it an
potential spike sorting method for brain-machine inter-
faces and for the execution of closed-loop experiments.

Acknowledgements This research was supported by the Fed-
eral Ministry of Education and Research (BMBF) with the grants
01GQO0743 and 01GQ0410. We thank Sven Déhne for technical
support.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

Appendix A: Derivation of optimal linear filters

Filter f’ should respond with a peak to its matching
template &, but should have minimal response to the
rest of the data. In particular, one demands that the
response to the matching template is 1, i.e. &' - fi = 1.
The response of the filter to the data is X f/, where
(X * f1), =>4 %4 fi . Using the third assump-
tion of Section 2.2 the response of a filter to X will
be small (and therefore well distinguishable from the
peak response of 1 to the matching template) if the
variance of the filter output is small, i.e., one has to
minimize Var (X « f?). In summary, the constrained
minimization problem is stated as

Sf'=argmin{Var (X « f')} subject to EiT fi=1

fi
(11)
A short calculation shows that
Var (X« f)y=-f" R f. (12)

Thus, the Lagrangian L of this minimization problem is
given by

il i it g
L=f" R fl4n(g f-1) (13)
where A is the Lagrange multiplier. Since the objective
function is convex in f?, there exists a single minimum,

which can be found by solving Vi , L = 0. In fact, the
minimum is attained at

R—lgi

f= EiTR—IEi' (14)

Often, linear filters are derived in the frequency domain
instead, but linear filter defined in the time domain
have several advantages, see Vollgraf and Obermayer
(20006).

Appendix B: Derivation of Deconfusion

I(y') can be expressed as a linear combination of the
sources v/ at shifts 7; ;:

109 =Y (A Ve, (15)
j
We show that

2=y (W) 100, (16)
j

@ Springer

146

J Comput Neurosci (2010) 29:127-148

with W = A~! is the corresponding inverse problem.
By inserting the expression in Eq. (15) into Eq. (16) one
obtains

G =20 W 3 (A vk,
j k

= W) (A) s Ve,

Jk
=D Wi (A)j Ve e+) (W) (A) v o,
J Jok#L
=i+ Y W) (A) Vo, 17)
ki
Hence,

d=v = Y W) (A) vl ., =0 Vjki#k
ki
(18)

This is true, if

Tjik = Tjpi = Tk — Tpi Vi jas i k. (19)

Note that this condition is always satisfied for k = i.

Appendix C: Derivation of the optimal threshold

If we assume that the noise in the Deconfusion output
is still a mixture of Gaussians (as an approximation
for a mixture of truncated Gaussians), it follows for its
variance

ot == Var (Z")

= Var Z Wi - y’lfky[>

i

I
Mz

Z Cov (wk,iy"rkj, wk,jya.)

1 j=I1

M M
(wk,i)z Var (y"rk)I) +2 Z Z W, Wk, |

1 i=1 j>i

x Cov (yirk‘,, yik_])

I

4

I
™=

(wii)” f* Cfl'i‘zzzwktwk]f

1 =1 j>i

X CITk,j—Tk,iIfj (20)

i

@ Springer

where Cyy -, are shifted covariance matrices, i.e.
taking temporal correlations into account of order 7' +
ITh,j — Tk.il-

The optimal threshold for the detection and classi-
fication of spikes from neuron k is chosen such that
the overlap between the distribution of the spikes from
neuron k and the distribution of the other spikes (from
neurons j, j=1,..., M, j# k) is minimal. We assume
the distributions to be Gaussian, with means p; ; and
variance 0. The juy ; are given by the maximal re-
sponse values of filter j to template k after Deconfu-
sion, i.e.

(e er)| e

whereas the variance is given by Eq. (20). One has
only to consider the maximal false response and not
the whole response, because the refractory period is in
general longer than the length of the template. Thus the
optimal threshold ¢ is given by

€ argmln{l Pr erfc <6k_ 1)
k= -5
€k ka

—i—Z—erf < fgk])

J#k

where er fc denotes the complementary error function,
and g, is a normalized weight proportional to the firing
frequency of neuron j in order to minimize the total
error. Note that the threshold must lie in the interval
[0, 1], hence this minimization problem can be solved
numerically with a line search algorithm, for example
using the “fminbnd” command of MATLAB.

References

Aksenova, T. I., Chibirova, O. K., Dryga, O. A., Tetko, I. V.,
Benabid, A. L., & Villa, A. E. P. (2003). An unsupervised
automatic method for sorting neuronal spike waveforms in
awake and freely moving animals. Methods, 30(2), 178-187.

Branchaud, E., Burdick, J., & Andersen, R. (2006). An algorithm
for autonomous isolation of neurons in extracellular record-
ings. In Proc. first IEEE/RAS-EMBS international confer-
ence on biomedical robotics and biomechatronics BioRob
2006 (pp- 939-945). doi:10.1109/BIOROB.2006.1639212.

Cham, J. G., Branchaud, E. A., Nenadic, Z., Greger, B.,
Andersen, R. A., & Burdick, J. W. (2005). Semi-chronic mo-
torized microdrive and control algorithm for autonomously
isolating and maintaining optimal extracellular action
potentials. Journal of Neurophysiology, 93(1), 570-579.
doi:10.1152/jn.00369.2004.

Chandra, R., & Optican, L. M. (1997). Detection, classification,
and superposition resolution of action potentials in multiunit
single-channel recordings by an on-line real-time neural net-

http://dx.doi.org/10.1109/BIOROB.2006.1639212
http://dx.doi.org/10.1152/jn.00369.2004

J Comput Neurosci (2010) 29:127-148

147

work. IEEE Transactions on Biomedical Engineering, 44(5),
403-412. doi:10.1109/10.568916.

Choi, J. H., Jung, H. K., & Kim, T. (2006). A new ac-
tion potential detector using the mteo and its effects on
spike sorting systems at low signal-to-noise ratios. /[EEE
Transactions on Biomedical Engineering, 53(4), 738-746.
doi:10.1109/TBME.2006.870239.

Delescluse, M., & Pouzat, C. (2006). Efficient spike-sorting
of multi-state neurons using inter-spike intervals infor-
mation. Journal of Neuroscience Methods, 150(1), 16-29.
doi:10.1016/j.jneumeth.2005.05.023.

Ding, W., & Yuan, J. (2008). Spike sorting based on multi-class
support vector machine with superposition resolution. Med-
ical and Biological Engineering and Computing, 46(2), 139—
145. doi:10.1007/s11517-007-0248-0.

Eckhorn, R., & Thomas, U. (1993). A new method for the inser-
tion of multiple microprobes into neural and muscular tissue,
including fiber electrodes, fine wires, needles and microsen-
sors. Journal of Neuroscience Methods, 49(3), 175-179.

Fee, M. S., Mitra. P. P., & Kleinfeld, D. (1996a). Auto-
matic sorting of multiple unit neuronal signals in the
presence of anisotropic and non-gaussian variability. Jour-
nal of Neuroscience Methods, 69(2), 175-188. doi:10.1016/
S0165-0270(96)00050-7.

Fee, M. S., Mitra, P. P., & Kleinfeld, D. (1996b). Variability of
extracellular spike waveforms of cortical neurons. Journal of
Neurophysiology, 76(6), 3823-3833.

Gray, C. M., Maldonado, P. E., Wilson, M., & McNaughton, B.
(1995). Tetrodes markedly improve the reliability and yield
of multiple single-unit isolation from multi-unit recordings in
cat striate cortex. Journal of Neuroscience Methods, 63(1-2),
43-54.

Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., & Buzsiki,
G. (2000). Accuracy of tetrode spike separation as deter-
mined by simultaneous intracellular and extracellular mea-
surements. Journal of Neurophysiology, 84(1), 401-414.

Hayes, M. H. (1996). Statistical digital signal processing and mod-
eling. New York: Wiley.

Hulata, E., Segev, R., Ben-Jacob, E. (2002). A method for spike
sorting and detection based on wavelet packets and shan-
non’s mutual information. Journal of Neuroscience Methods,
117(1), 1-12.

Kim, K. H., & Kim, S. J. (2003). Method for unsupervised clas-
sification of multiunit neural signal recording under low
signal-to-noise ratio. [EEE Transactions on Biomed-
ical Engineering, 50(4), 421-431. doi:10.1109/TBME.2003.
809503.

Lewicki, M. (1998). A review of methods for spike sorting: The
detection and classification of neural action potentials. Net-
work: Computation in Neural Systems, 9(4), 53-78.

McGill, K. C. (2002). Optimal resolution of superimposed action
potentials. IEEE Transactions on Biomedical Engineering,
49(7), 640-650. doi:10.1109/TBME.2002.1010847.

Melvin, W. (2004). A stap overview. IEEE Aerospace and
Electronic Systems Magazine, 19(1), 19-35. doi:10.1109/
MAES.2004.1263229.

Mtetwa, N., & Smith, L. (2006). Smoothing and thresholding in
neuronal spike detection. Neurocomputing, 69(10-12), 1366~
1370.

Obeid, 1., & Wolf, P. D. (2004). Evaluation of spike-detection
algorithms for a brain-machine interface application. /[EEE
Transactions on Biomedical Engineering, 51(6), 905-911.
doi:10.1109/TBME.2004.826683.

O’Keefe, J., & Recce, M. L. (1993). Phase relationship
between hippocampal place units and the eeg theta

rhythm. Hippocampus, 3(3), 317-330. doi:10.1002/hipo.
450030307.

Pouzat, C., Mazor, O., & Laurent, G. (2002). Using noise signa-
ture to optimize spike-sorting and to assess neuronal classifi-
cation quality. Journal of Neuroscience, 122(1), 43-57.

Pouzat, C., Delescluse, M., Viot, P., & Diebolt, J. (2004). Im-
proved spike-sorting by modeling firing statistics and burst-
dependent spike amplitude attenuation: A markov chain
monte carlo approach. Journal of Neurophysiology, 91(6),
2910-2928. doi:10.1152/jn.00227.2003.

Rebrik, S., Wright, B., Emondi, A., & Miller, K. D. (1999) Cross-
channel correlations in tetrode recordings: Implications for
spike-sorting. Neurocomputing, 2627, 1033-1038.

Robinson, E. A., & Treitel, S. (1980). Geophysical signal analysis.
Englewood Cliffs: Prentice Hall

Rutishauser, U., Schuman, E. M., & Mamelak, A. N. (2006).
Online detection and sorting of extracellularly recorded ac-
tion potentials in human medial temporal lobe recordings, in
vivo. Journal of Neuroscience Methods, 154(1-2), 204-224.
doi:10.1016/j.jneumeth.2005.12.033.

Sakurai, Y., & Takahashi, S. (2006). Dynamic synchrony of
firing in the monkey prefrontal cortex during working-
memory tasks. Journal of Neuroscience, 26(40), 10141-
10153. doi:10.1523/JNEUROSCI.2423-06.2006.

Shoham, S., Fellows, M. R., & Normann, R. A. (2003). Robust,
automatic spike sorting using mixtures of multivariate t-
distributions. Journal of Neuroscience Methods, 127(2), 111-
122.

Takahashi, S., Anzai, Y., & Sakurai, Y. (2003). Automatic sort-
ing for multi-neuronal activity recorded with tetrodes in the
presence of overlapping spikes. Journal of Neurophysiology,
89(4), 2245-2258. doi:10.1152/jn.00827.2002.

Takahashi, S., & Sakurai, Y. (2005). Real-time and automatic
sorting of multi-neuronal activity for sub-millisecond inter-
actions in vivo. Neuroscience, 134(1), 301-315. doi:10.1016/
j.neuroscience.2005.03.031.

Takahashi, S., Sakurai, Y., Tsukuda, M., & Anzai, Y. (2002).
Classification of neural activities using independent compo-
nent analysis. Neurocomputing, 49, 289-298.

Thakur, P. H., Lu, H., Hsiao, S. S., & Johnson, K. O.
(2007). Automated optimal detection and classification of
neural action potentials in extra-cellular recordings. Jour-
nal of Neuroscience Methods, 162(1-2), 364-376. doi:10.
1016/j.jneumeth.2007.01.023.

Turin, G. (1960). An introduction to matched filters. IRE Trans-
actions on Information Theory, 6(3), 311-329. doi:10.1109/
TIT.1960.1057571.

Vargas-Irwin, C., & Donoghue, J. P. (2007). Automated spike
sorting using density grid contour clustering and subtractive
waveform decomposition. Journal of Neuroscience Methods,
164(1), 1-18. doi:10.1016/j.jneumeth.2007.03.025.

Vollgraf, R., Munk, M., Obermayer, K. (2005). Optimal filtering
for spike sorting of multi-site electrode recordings. Network,
16(1), 85-113.

Vollgraf, R., & Obermayer, K. (2006). Improved optimal linear
filters for the discrimination of multichannel waveform tem-
plates for spike-sorting applications. [EEFE Signal Processing
Letters, 13(3), 121-124. doi:10.1109/LSP.2005.862621.

Wang, G. L., Zhou, Y., Chen, A. H., Zhang, P. M., &
Liang, P. J. (2006). A robust method for spike sort-
ing with automatic overlap decomposition. /EEE Transac-
tions on Biomedical Engineering, 53(6), 1195-1198. doi:10.
1109/TBME.2006.873397.

Wu, W., Wheeler, D. W., Staedtler, E. S., Munk, M. H. J., &
Pipa, G. (2008). Behavioral performance modulates spike

@ Springer

http://dx.doi.org/10.1109/10.568916
http://dx.doi.org/10.1109/TBME.2006.870239
http://dx.doi.org/10.1016/j.jneumeth.2005.05.023
http://dx.doi.org/10.1007/s11517-007-0248-0
http://dx.doi.org/10.1016/S0165-0270(96)00050-7
http://dx.doi.org/10.1016/S0165-0270(96)00050-7
http://dx.doi.org/10.1109/TBME.2003.809503
http://dx.doi.org/10.1109/TBME.2003.809503
http://dx.doi.org/10.1109/TBME.2002.1010847
http://dx.doi.org/10.1109/MAES.2004.1263229
http://dx.doi.org/10.1109/MAES.2004.1263229
http://dx.doi.org/10.1109/TBME.2004.826683
http://dx.doi.org/10.1002/hipo.450030307
http://dx.doi.org/10.1002/hipo.450030307
http://dx.doi.org/10.1152/jn.00227.2003
http://dx.doi.org/10.1016/j.jneumeth.2005.12.033
http://dx.doi.org/10.1523/JNEUROSCI.2423-06.2006
http://dx.doi.org/10.1152/jn.00827.2002
http://dx.doi.org/10.1016/j.neuroscience.2005.03.031
http://dx.doi.org/10.1016/j.neuroscience.2005.03.031
http://dx.doi.org/10.1016/j.jneumeth.2007.01.023
http://dx.doi.org/10.1016/j.jneumeth.2007.01.023
http://dx.doi.org/10.1109/TIT.1960.1057571
http://dx.doi.org/10.1109/TIT.1960.1057571
http://dx.doi.org/10.1016/j.jneumeth.2007.03.025
http://dx.doi.org/10.1109/LSP.2005.862621
http://dx.doi.org/10.1109/TBME.2006.873397
http://dx.doi.org/10.1109/TBME.2006.873397

148

J Comput Neurosci (2010) 29:127-148

field coherence in monkey prefrontal cortex. Neuroreport,
19(2),235-238. doi:10.1097/WNR.0b013e3282f49b29.

Xu, R., Wunsch, I. D. (2005). Survey of clustering algorithms.
IEEE Transactions on Neural Networks, 16(3), 645-678.
doi:10.1109/TNN.2005.845141.

@ Springer

Zhang, P. M., Wu, J. Y., Zhou, Y., Liang, P. J., Yuan, J. Q.
(2004). Spike sorting based on automatic template recon-
struction with a partial solution to the overlapping prob-
lem. Journal of Neuroscience Methods, 135(1-2), 55-65.
doi:10.1016/j.jneumeth.2003.12.001.

http://dx.doi.org/10.1097/WNR.0b013e3282f49b29
http://dx.doi.org/10.1109/TNN.2005.845141
http://dx.doi.org/10.1016/j.jneumeth.2003.12.001

	An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes
	Abstract
	Introduction
	Methods
	Glossary of mathematical notation
	Generative model
	Calculation of linear filters
	Filtering the data
	Deconfusion
	Spike detection and classification
	Artifact detection
	Noise estimation
	Adaptation
	Initialization phase
	Initial spike detection and initial spike alignment
	Initial clustering

	Signal-to-noise ratio (SNR)

	Experiments and datasets
	Simultaneous intra/extra-cellular recordings
	Simulated data
	Dataset with overlapping spikes
	Dataset with SNR variation

	Acute recordings

	Results and discussion
	Spike detection performance
	Spike sorting performance
	Resolution of overlapping spikes
	Performance for various SNR
	Performance on experimental data

	Limitations of our method
	Newly appearing neurons
	Implementation and computational complexity
	Runtime analysis
	Parallel computing

	Conclusion and outlook
	Appendix A: Derivation of optimal linear filters
	Appendix B: Derivation of Deconfusion
	Appendix C: Derivation of the optimal threshold
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

