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Abstract Randomly-connected networks of integrate-angl4ntroduction
fire (IF) neurons are known to display asynchronous ir-
regular (Al) activity states, which resemble the discharge

activity recorded in the cerebral cortex of awake animalg, awake animals, the activity of single cortical neurons
However, it is not clear whether such activity states atgnsist of seemingly noisy activity, with very irregulasdi
specific to simple IF models, or if they also exist in nefcharges at frequencies of 1-20 Hz and considerable fluctu-
works where neurons are endowed with complex intrinsigions at the level of the membrane potential{\(Mat-
properties similar to electrophysiological measurementymara et al., 1988; Steriade et al., 2001; Destexhe et al.,
Here, we investigate the occurrence of Al states in netpo3; Lee etal., 2006). Model networks of leaky integrate-
works of nonlinear IF neurons, such as the adaptive expghd-fire (IF) neurons can display activity states similar to
nential IF (Brette-Gerstner-Izhikevich) model. This mbdghe irregular spike discharge seen in awake cortex. These
can display intrinsic properties such as low-thresholkespiso-called “asynchronous irregular” (Al) states contraighw
(LTS), regular spiking (RS) or fast-spiking (FS). We suahe “synchronous regular” (SR) states, or with oscillatory
cessively investigate the oscillatory and Al dynamics @ftates (Brunel, 2000). Al states have been observed more
thalamic, cortical and thalamocortical networks usindsugecently as a self-sustained activity in more realisticéEn
m_odels. Al states can be found_ln each case, sometif@srks with conductance-based synapses (Vogels and Ab-
with surprisingly small network size of the order of a fewyott, 2005). Such Al states typically require large network
tens of neurons. We show that the presence of LTS neur@figes, of the order of a few thousand neurons, to display

in cortex or in thalamus, explains the robust emergencedfaracteristics consistent with experimental data (ElsBou
Al states for relatively small network sizes. Finally, weanj et al., 2007; Kumar et al., 2008).

investigate the role of spike-frequency adaptation (SFA).

In cortical networks with strong SFA in RS cells, the Al reality, neurons do not behave as leaky IF models, but
state Is tran3|_ent, but when SFA IS TEdUCEd, Al Sf[ates Calther d|Sp|ay Comp|ex intrinsic propertiesi such as adap_
be self-sustained for long times. In thalamocortical nefation or bursting, and these intrinsic properties may be
works, Al states are found when the cortex is itself in &fmportant for neuronal function (Llinas, 1988). However,
Al state, but with strong SFA, the thalamocortical networi is not clear to what extent Al states also appear in net-
displays Up and Down state transitions, similar to intrggorks of more realistic neurons. Similarly, the genesis of
cellular recordings during slow-wave sleep or anesthesjg. states has never been investigated in the thalamocorti-
Self-sustained Up and Down states could also be gengsi system. Recent efforts have been devoted to model in-
ated by two-layer cortical networks with LTS cells. Thesginsic neuronal properties using variants of the IF model
models suggest that intrinsic properties such as adaptatigmith et al., 2000; Izhikevich, 2004; Brette and Gerstner,
and low-threshold bursting activity are crucial for the gerpoos). In the present paper, we use such models to analyze
esis and control of Al states in thalamocortical networksghe genesis of Al states in cortical, thalamic and thalamo-
cortical networks of neurons expressing complex intrinsic
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network models, as well as the methods used to quant{fyonnors and Gutnick, 1990). The latter will be used to
network activity. model cortical inhibitory interneurons in the present mode

2.1 Single-cell models

A B C
To capture the intrinsic properties of central neuronshsuc RS cell RS el FS cell
as the rebound bursting capabilities of thalamic cells and (b=0.09) (6=0.005)
the spike-frequency adaptation in cortex, we considered
the adaptive exponential IF (aelF) model. This model con-
sists of the two-variable IF model proposed by Izhike-
vich (2004), which was modified to include an exponential
non-linearity around spike threshold, based on the expo- s
nential IF model of Fourcaud-Trocme et al. (2003). These
two models were combined by Brette and Gerstner (2005),D tscell  E Tcel T RE cel
leading to the following set of equations:

Cm(jT\t/ =—g. (V—EL) + g A exp(V—Vr)/A] —w/S (1)

dw 1
a1, [a(V—EL)—w|,

whereCp,, = 1 uF/cn? is the specific membrane capaci-

tanceg = 0.0_SmS/cmz I.S the resm.]g (Iea!<) CpnductanceFig' 1 Classes of neurons with different intrinsic neuronal prepe
EL =-60 mV is the resting potential (thh is also equales as modeled by the adaptive exponential integratefiemciodel.
to the reset value after spik&),= 2.5 mV is the steepnessA. Regular-spiking (RS) neuron with strong adaptation. B.ieu-
of the exponential approach to threshdlg,= -50 mV is ron with weak adaptation. C. Fast-spiking (FS) cell with ligigle
the spike threshold, ar8i= 20 OOOumZ is the membrane adaptation. D. Low-threshold spike (LTS) cell. E. Thalaorical

' ' o . TC) neuron. F. Thalamic reticular (RE) neuron. In all casles re-
area. WherV reaches threshold, a spike is emitted anghonse to a depolarizing current pulse of 0.25 nA is showropn t
V is instantaneously reset and clamped to the reset vakée D-F, the bottom curves show the response to a hyperpiigri
during a refractory period of 2.5 ms« is an adaptation current pulse of -0.25 nA. The units of paramdién A-C are nA.
variable, with time constarnt, = 600 ms, and the dynam-
ics of adaptation is given by parametefin uS). At each
spike,w is incremented by a valug(in nA), which regu-
lates the strength of adaptation, as analyzed in more detalil
in the next section.

I Y

Increasing the parametafeads to bursting activity (Izhike-
vich, 2004). If we consider a moderate valuaef0.02uS,
the model neuron also displays spike-frequency adapta-
2.2 Single-cell intrinsic properties tion, even withb = 0 (Fig.[AD, top). However, this model
also generates a rebound burst in response to hyperpolar-
izing pulses, while the conventional spike threshold is un-
The Brette-Gerstner-lzhikevich model was reported to dishanged (Fid.J1D, bottom). This behavior is similar to the
play a wide range of intrinsic neuronal properties (Izhikesortical low-threshold spike (LTS) cells (de la Pefia and
vich, 2004; Brette and Gerstner, 2005). We focus here orBeijo-Barrientos, 1996).
on a few cell types commonly encountered in the thalam-
ocortical system. Cortical neurons were modeled as “re§§-further increase of parameterleads to more robust
ular spiking” (RS) cells with spike-frequency adaptatiobursting activity and weaker spike-frequency adaptation,
(Connors and Gutnick, 1990), which corresponds to tipeoducing patterns of responses with moderate adaptation
parametersa = 0.001 uS andb = 0.04 nA in the aelF and strong rebound bursts (Fij. 1E). This behavior was ob-
model (Fig[1A). The strength of adaptation can be mothined fora = 0.04 uS andb = 0. With larger valuesh =
ulated by varying the parameteywith b = 0.005 nA for 0.08 uS anda = 0.03 nA, the model generated bursting
weakly adapting cells (Fif] 1B). This parameter was estetivity in response to both depolarizing and hyperpolar-
mated heuristically based on Hodgkin-Huxley type modtzing stimuli (Fig.[1F), similar to thalamic reticular (RE)
els and RS cells found in different preparations (Pospischieurons (Destexhe and Sejnowski, 2003).
et al., 2008). Fob = 0, the model generated responses
with a negligible level of adaptation (Figl 1C), similar tdSimilar intrinsic properties as well as other types of behav
the “fast-spiking” (FS) cells encountered in cortex, anidr could be generated by other combinations of parame-
which corresponds mostly to cortical inhibitory neuronters (see Izhikevich, 2004), but were not considered here.



2.3 Network models All equations were solved using the NEURON simulation
environment (Hines and Carnevale, 1997).

Network models were constructed based on this aelF model,
according to the following equations:

v 2.4 Connectivity
Cge = ~0L (M —Ev) + 00 4 expl(V — Vi) /) — wi/S

- > 9 (i—Ej) @) In all cases, the connectivity was random, but respected
dva 1 : the anatomical and morphological constraints about the
— = & (i—E)—w], connection probability between the different cell types, a
dt Tw described below for thalamus, cortex and thalamocortical

relations.

whereV, is the membrane potential of neurgnand all

parameters are as in Eq3s. 1, but were indexed to allow

variations according to cell type (see Results). The ter, Y 1 Thal
¥i9ji (Vi —Ej) accounts for synaptic interactions, wheré"™ alamus
gji is the conductance of the synapse from neyrtmneu-

roni (and which can be zero), aid is the reversal poten- The structure of the thalamus was approximated by a two

tial of the synapsek; =0 mV for excitatory synapses an aver network of randomly connected cells, including one

-80 mV for inhibitory synapses). Synaptic conductan :
time courses were exponential; once the presynaptic yer O.f thalgmocortlcal (TC) relay cells and one !ayer of
alamic reticular (RE) cells. In a number of species such

fired, a fixed increment was assigned to the correspo as rodents, some thalamic nuclei are devoid of interneu-

Ing gji (ge andg; for excitatory and inhibitory Synapses'rons (Jone's 1985). There is also evidence that thalamic

respectively), after whicly;; decays exponentially with a . ’ : . . . .
nterneurons do not play a major role in the genesis of in-

fixed time constant (5 ms for excitation and 10 ms for i ernal dynamics, for example in oscillations (Steriade et
hibition). Different synaptic strengthgg andg; were con- 1985: von Krosigk et al., 1993). Thus, thalamic in-

sidered depending on the network type (see Results). NO 4 L
synaptic delays were considered. erneurons were not incorporated for simplicity. The tha-

lamic network had 10 times less neurons compared to the

- tical network, which corresponds to morphological es-
Note that because only small networks are considered hﬁ%ates (Sherman and Guillery, 2001). Based on anatomi-

(of the order of tens to a few thousand neurons), synap | data showind that | broiecti ithin the thal

strengths need necessarily to be large compared to phy&%— ata showing that axonal projections within the tha a.—

logical values. Typical values agg = 6 nS andy = 67 NS mic circuitry are local but sparse (FitzGibbon et al., 1995;
. - | -

(Vogels and Abbott, 2005), which correspond to postsé—ones’ 1985; Minderhoud, 1971), the excitatory projection

; . - om TC to RE cells had a connection probability of 2%,
naptic potential sizes of 11 mV and 8.5 mV, respectivel 'S in cortex, while the RE to TC inhibitory projection was

at -70 mV and at rest. The amplitude of postsynaptic p

tentials will be vastly different in an active network, wit iI(i)treo?‘e;bSc?ugggp e}ﬁé‘ 's;?g)deanns?tW\?vzgzrssgrnigrf?gg
typical values around 0.5 mV, respectively (El Boustati y - y

et al., 2007). Such a large difference is of course a pro'ﬁ'—h'b'tory connections between RE cells.

erty only seen in conductance-based models. It was shmﬁ%n
0

that large networks (10,000 to over 100,000 neurons), i Is connectivity scheme corresponds to thalamic networks
large n%mbers of syna(pses per neuro}1500), are neé:— sizeN=100. When comparing networks of different size,

essary to achieve configurations with plausible synapﬂ'&e connection probability was rescaled inversely to net-

conductance values (El Boustani et al, 2007; Kumar et _ork size, such t_hat the numt_)er of synapses received by
2008) ’ ' e neurons was invariant to size.

To initiate activity, a number of randomly-chosen neurons

(from 2% to 10% of the network) were stimulated by rar2.4.2 Cortex

dom excitatory inputs during the first 50 ms of the sim-

ulation. The mean frequency of this random activity was

high enough (200-400 Hz) to evoke random firing in thin area 5 of cat cerebral cortex, axon collaterals from pyra-
recipient neurons. In cases where self-sustained activitydal cells are profuse and dense but remain localized
appeared to be unstable, different parameters of thiginitiithin a few hundreds of microns (Avendafio et al., 1988).
stimulation were tested. It is important to note that aft@ihe connection densities of cells in the cortical network
this initial period of 50 ms, no input was given to the netwere organized such that each pyramidal cell (PY) or in-
work and thus the activity states described here are sé#rneuron (IN) projected to a small proportion of about 2%
sustained with no external input or added noise. The ordythe size of the network. The same connection probabil-
source of noise was the random connectivity (also termigwas also assumed for inhibitory connections. This con-
“quenched noise”.) nectivity was the same as that assumed in a previous model



of cortical Al states (Vogels and Abbott, 2005). These cosame type, independently of the size of the network. The
nection probabilities correspond to a cortical network afonnection probabilities are summarized in Table 1.
N=2000 neurons. As for thalamic networks, when differ-

ent cortical network size were compared, the connection

probability was rescaled inversely to network size to prppoggec_tjothype Connedig’; A)pmbab”ity Nb. UL /neuron
serve the number of connections per neuron. PY s IN 20 32
IN — PY 2% 8
IN —IN 2% 8
: : PY — TC 2% 32
2.4.3 Thalamocortical relations PY — RE 2% 32
TC - RE 2% 2
RE — TC 8 % 8
The thalamocortical and corticothalamic connections were RE — RE 8% 8

also random, and their densities were estimated from m@#ple 1 Connection probabilities between the different cell types
phological studies as follows. Ascending thalamocortica@he probability is calculated fautgoingsynapses, for example for
fibers give most of their synaptic contacts in layers I, [the TC — RE connection, the number indicated is the probabil-

and VI of cerebral cortex (White, 1986). Given that layd}y that a given TC cell connects one RE cell. In the last calum
! ’ an example of the average numberiméomingsynapses (afferent

VI pyramidal neurons constitute the major source of cordiynapses per neuron) is indicated for each type of conmeirtia
cothalamic fibers, these cells therefore mediate a monogytwork with 1600 PY, 400 IN, 100 TC and 100 RE neurons (TC

naptic excitatory feedback loop (thalamus-cortex-thalsnF thalamocortical neurons; RE = thalamic reticular neuréhs =
White and Hersch, 1982), which was modeled here. ngrtlcal excitatory neurons; IN = cortical inhibitory imteurons).
monosynaptic loop is also demonstrated by thalamically-
evoked antidromic and monosynaptic responses in the same,
deeply lying cortical cell (see Fig. 5 in Steriade et al.,
1993b). The model incorporated the fact that all thalamic-
projecting layer VI pyramidal cells connect TC cells whil@.4.4 Two-layer cortical model
leaving axon collaterals in the RE nucleus. However, lower
layer V pyramids also project to thalamic nuclei, but they
do not leave collaterals in the RE nucleus (Bourassa alfideriayer connectivity in cerebral cortex involves boxh e
Deschénes, 1995); the latter were not modeled. We did ségtory and inhibitory connections, but is predominantly
include either the influence of some thalamic intralamin&Kxcitatory, with a connection density specific to the lay-
nuclei that project diffusely to the cerebral cortex as we@lr's considered (Thomson and Bannister, 2003; Binzeg-
as receive projections from it (Jones, 1985). ger et al., 2004). Interlayer (vertical) connectivity is@l

in general less dense than intra-layer (horizontal) connec
Projections between thalamus and cortex are also logans. Two layers of cortical networks were modeled as
and sparse (Avendafio et al., 1985; Jones, 1985; Rob@gscribed above, with excitatory-only interlayer connec-
son and Cunningham, 1981; Updyke, 1981) but have mdhéty with a probability of 1%, which is twice less dense
divergence than intrathalamic or intracortical connewtio than intra-layer connectivity (2%; see Table 1).
(Bourassa and Deschénes, 1995; Freund et al., 1989; Landry
and Deschénes, 1981; Rausell and Jones, 1995). In the
model, each PY cell had some probability of connecting
to TC and RE cells, but due to the large number of corticgl
neurons, this corticothalamic connectivity was much more
extended than local thalamic connectivity, so that coktica

synapses were majoritary in thalamus (80% of SYNapS§anwork states were quantified according to two aspects:
in TC cells were from cortex), as demonstrated expeE

5 Quantification of network states

mentally (Sherman and Guillery, 2001). Similarly, eac egularity and synchrony. To quantify the degree of tem-

TC cell projected to PY and IN cells, using a conne joral regularity, we used the coefficient of variation (CV)

tion probability of 2%. In these conditions, cortical Conhgf[cv%;rl:[ersplke intervals (IS1), averaged over all cetis t

nectivity was still dominated by intracortical synapses, a

only about 6% of excitatory synapses were from thalamus, oS!

which corresponds well to estimates from morphologicalig, = <:> , (3)
estimates (Braitenberg and Shutz, 1998).

Thus, similar to a previous model (Destexhe et al., 1998yhere the bracket§ indicate an average over all neurons,
this thalamocortical model can be thought of representimgnile ISI; andai's' are respectively the mean and standard
cerebral cortex Layer VI, connected reciprocally with itdeviation of the ISIs of neuron The CVig, is expected
corresponding thalamic area. All axonal projections ofta take large valueg 1 for temporally irregular systems
given type were identical in extent from cell to cell andthe CV is 1 for a Poisson process). In this paper, we con-
all synaptic conductances were equal. The total synapsidered that a system is “irregular” if tli&Vjs) exceeds a
conductance on each neuron was the same for cells of Wadue of 1.



The degree of synchrony was quantified using the aver-

GABAL
aged pairwise cross-correlation between neurons in the net @\/@
|’ ‘lANPA

work:

_/Cov§,S)
ce= <a(s>o<sj>> ’ @

where the brackets indicate an average over a large num- e JL.LU\LU\MM
ber of disjoint pairs of neurons (in general 500 pairs were

used)Cov§,S;) is the covariance between two spike counts K

S.Sj, ando(S,j) is the standard deviation of each spike WWMV
count. Spike counts were computed by counting spikes in ©

successive time bins of fixed duration (5 ms; all results

were also checked using 2 ms). TBE is comprised be- c W/\i

tween -1 and 1, and takes high values only for synchronous Z00ms

Sta‘t‘es' Agiven net,\,/\{ork .State can reasonak_)ly be ConSIdeIE?g‘?Z Oscillatory behavior in simple circuits of thalamic neuson
as asyn?hrc_)nous i€C is low enough _(typlcally< 0.1).  Top scheme: minimal circuit for spindle oscillations, dstiag of
These criteria and methods were similar to that used pr@e TC and two RE cells interconnected with excitatory (ANPA
viously to characterize different states in network mode#gd inhibitory (GABA\) synapses as indicated. This circuit gener-

(Brunel, 2000; Kumar et al., 2008; El Boustani and De ted oscillations at a frequency around 12 Hz, and in whiclt®E
. ’ v ! ired at every cycle while TC cell fired sub-harmonically, erwery

texhe, 2009). two cycles. Synaptic conductance valugs= 30 nS,g; = 30 nS

3 Results
Small-size networks of TC and RE cells were considered

by considering more diffuse and random connectivity be-

We successively consider network models for thalamJ¥/€€n the two TC and RE layers, and weaker synaptic

cortex and the thalamocortical system, and analyze th¥#ights (see scheme in Fig. 3). In these conditioés20

dynamics as a function of their size and intrinsic propef€twork (10 TC and 10 RE cells) generated oscillatory
ties. ehavior, but in contrast to the small circuit considered
above, these oscillations appeared to be aperiodic, as seen
from both rasterplot and single cells in FId. 3. A phase
plot between two TC cells (Fifl]l 3B, inset), as well as the
high value of the coefficient of variatio€{js; = 1.36 in
3.1 Networks of thalamic neurons this case), confirmed the aperiodic character of the oscil-
lation. The raster plot also shows that there is little syn-
chrony in the firing of TC or RE cells, unlike the circuit
Interconnected thalamic TC and RE cells can generate o§+ig.[2. This was confirmed by the low value of the av-
cillations in the spindle (7-14 Hz) frequency range (reeraged cross-correlatio€C = 0.025). This state resem-
viewed in Destexhe and Sejnowski, 2003). We first verbles the “asynchronous regular” states described earlier
fied that the aelF models outlined above were capable(&runel, 2000). This behavior was robust to long integra-
replicating this oscillatory behavior. A small circuit of-i tion times (up to 100 sec were tested) without evidence for
terconnected TC and RE cells was built, where all celteriodic behavior, suggesting that this type of dynamics is
were interconnected, except for TC cells which do neelf-sustained and aperiodic. Note that there is a possibil
have interconnections (Fig. 2, scheme). As shown infTig.i®, that these regimes are periodic, but with a very long
this circuit generated self-sustained oscillations atea frperiod which grows exponentially with network size (Ces-
quency around 10 Hz, with RE cells firing in responssac, 2008; Cessac and Viéville, 2009; see also Crutchfield
to EPSPs from TC cells, and TC cells firing in reboundnd Kaneko, 1988; Tél and Lai, 2008).
to IPSPs from RE cells; the TC cells also generated sub-
harmonic firing. These features are typical of spindle obletworks comprising more thalamic neurons were con-
cillations (Steriade, 2003). This behavior is only possibkidered based on a similar connectivity scheme and the
by taking into account the intrinsic properties of thalssame synaptic weights as fd=20. By increasing the size
mic cells, and in particular the rebound bursting propsrtiécom N=40 to N=100 generated patterns of aperiodic os-
of TC cells (Destexhe and Sejnowski, 2003). As in moreillatory activity (Fig.[4). With larger sizes, the actiyit
complex models, the oscillation frequency was dependdigcame more and more similar to an “asynchronous irreg-
on the decay kinetics of synaptic currents, and the osdillar” state. For example, for ld=100 network (Figl#C),
lation was observed for a large range of synaptic weigttse irregularity was highG\is| = 1.47) and the synchrony
provided they were strong enough (not shown). was low CC = 0.016).



ol for inhibitory conductances). The firing rate tended to in-
. elolejolelgl crease with the level of inhibition, which is presumably
A s f” a consequence of the rebound properties of thalamic neu-
oo bl rons. There were also small differences betwse0 and

N=100 networks: the mean firing rate tended to be larger
for N = 100, while the averaged pairwise correlation was
lower (Fig.[B, bottom panels).

Cell nurmber
3

N=20 N=100

Mean firing rate (Hz)

o

Fig. 3 Irregular oscillatory activity states in networks of 20
randomly-connected thalamic neurons. Top: scheme of @binitg
between the two layers of TC and RE cells, which were randomly
connected. A. Raster plot of the spiking activity of the 2Qinoes.

B. Vpy activity of two cells of each type. Synaptic conductance val
ues:ge = 6 NS,g; = 67 nS. The connection probability was of 8 %
(from RE to TC, and RE to RE) and 2% (from TC to RE), as in Ta-
ble 1. The activity is shown after a transient time of 50 saset in

B: phase plot of the ¥ activity of cell 1 against that of cell 2, show-
ing the non-periodic character of this activity (1B¥ s was of 1.36
and theCC was of 0.025).

Cell number
Cell count
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AT Fig. 5 Domain of conductance parameters for self-sustained-irreg
iting rate (Hz) . . .
ular states in thalamic networkBop Panelsmean activity rate cal-
culated over the entire network, shown as a function of timaystic
conductance valuegd for excitation andy; for inhibition) for N=20
: (left) andN=100 (right).Middle panels: corresponding coefficients
s of variation CV\s calculated over all cells. Bottom panels: corre-
sponding mean pairwise correlation CC calculated ovef2Nis-
joint cell pairs in each networkThe irregular oscillations appeared
within a domain limited approximately e > 4 nS andy; > 40 nS.
Fge Transient oscillations that did not survive 10 sec simatatime are
not indicated.

Cell number
Cell count

O

N=100

Cell number
Cell count

3.2 Cortical networks

B 10 15 El
Firing rate (Hz)

Fig. 4 Irregular activity states in thalamic networks of varioizes. \We next considered the activity of cortical networks com-
ot hsvania Pa5ed of exclatory RS and initory FS cells, randomly
probabilities as in'Fid:Ia.el)‘/t peFl)nels:activity after a transient time anneaed' Unlike thalamic networks, cortical circuits of
of 50 sec. Th€\Wis; andCC were respectively of 1.45 and 0.027 forthis type do not generate self-sustained Al states unless
N=40, 1.35 and 0.02 fdi=60, and 1.47 and 0.016 fdl=100.Right large networks are considered (Vogels and Abbott, 2005;
panels:distribution of firing rates for the two cell types. Kumar et al., 2008). Compared to previous studies using
leaky IF models, the present model considers more com-
plex IF models, in particular for RS cells which display
This behavior was seen for a large domain of values fprominent spike-frequency adaptation. The cortical net-
the synaptic conductances. This aspect, and more gemesrk had 80% excitatory and 20% inhibitory cells, and
ally the robustness of irregular oscillations to synapticc was randomly connected (see scheme in[Hig. 6). In these
ductances, was quantified in more detail in Fiy. 5. Theonditions, the genesis of self-sustained Al states was pos
domain of oscillatory behavior was relatively large, prasible, but was highly dependent on the level of adaptation,
vided both conductances were above some threshold vadisdllustrated in Fid.l6. For strong to moderate adaptation,
(about 4 nS for excitatory conductance inputs and 40 ti$e network generated Al states but they were transient



and did not survive more than a few seconds (Hig. 6A). F A N=400
weak adaptation, the Al states could be sustained[(Fig. 6

hurrber of oells
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Fig. 6 Transient and self-sustained irregular states in randoml
connected networks of cortical neurons. Top: scheme of extiA
ity. A. Transient Al state in &=2000 network, when the RS neu-
rons had a significant adaptation. B. Self-sustained Akstathe
same network after diminishing the strength of adaptat@vis( = °
guga%ge;gizog ’nlgsgi t.:dés7tr|nbsu t'gﬂdozgrzlsgciiagﬁsgi,ost}g]bailfi)tgca(;oirr]]i:ig. 7 Self-sustained irregular states in small cortical netwavkh
Table 1. Note that in’ this case l’DY cells are all of RS type|enddi LTS ceIIs._ Th_e_network was composed of 80% excitatory (P ce
IN cells are of FS type ' and 20% inhibitory (IN) cells. 95% of PY cells were RS type &ftl
' were of LTS type, while all IN cells were of FS type. N=400 net-

work displaying self-sustained irregular activig\(s, = 2.84,CC =
0.05). B. Al state in &=500 network CVis| = 2.07,CC = 0.05). In
The situation was radically different in the presence efich case, the raster is shown on the left, with a few exanetite c
LTS cells. Networks of relatively small size=400 (Fig[7AP" the right, together with the firing rate distribution irs@ts. Same

G, o aptic conductances and connection probabilities agif6FLTS
or N=500 (F_|gD’B), could generate self-sustained Al statg§, ;e indicated in red *).
if a proportion of LTS cells was present (LTS cells were
connected identically as for RS cells). F¢r400, the sys-
tem exhibited intermittent-like dynamics (Fid. 7A), which

was typical of the transition between self-sustained escil

GCell number

lations, and Al type behavior. In this intermittency, thé-ne s oM RS_FS
work switches between SR and Al states, while for larger B 06 LTS—FS
networks, the dynamics remain in the Al state without in- £
termittency (Figll7B). 7 op2

o
To further characterize the role of LTS cells, the cross- O poti- l
correlation between LTS cells and inhibitory FS cells was | | N | A
calculated and compared with the cross-correlation betwee -2?%)\@/ "0 \Aod T 200
RS and RS cells (Fi@l 8). Because the firing FS cells leads _001L  Time lag (ms)

On,ly to |nh|b|ft|pn of RS cells, the_cross-correlatlon IS ne_q:ig. 8 Sign of rebound activity in LTS cells from cross-correlato
ative for positive values of t.he time lag (F 8, arrow irtross-correlations between RS and FS cells (black), asaseiie-
black curve). Itis also negative for negative time lags; preveen LTS and FS cells (red) were computed fronNa= 500
sumably due to the inhibition between FS cells. Howevé}etWOH)( (Tsﬁme SlmU|atl0|ntaS in Figl 7B|, blutt v(\;nfh a total tinfe o
; ; sec). The cross-correlations were calculated from ritasteous
W.hen correlatmg .LTS.Ce”S with FS Ce"S.’ .the pattem.w tes (spiking activity in successive 5 ms bins), and wesraned
different for positive time lags, and positive correlaBonhetween 400 non-overlapping pairs of cells for each type.arow
appeared (Fid.18, arrow in red curve). This indicates thettows that around 70 ms, a positive peak appears for LTS-f&-co
FS cells tend to excite LTS cells after some delay of abdations, presumably due to the post-inhibitory rebound s [cells.

70 ms, which seems to correspond to the post-inhibitoﬁi iﬁﬁ’g;’ﬁ&%'ncgfrg*'sag‘r’]gﬁ%a'geeﬁsaéQgggg"ge‘ﬂ‘;'.ammg the

rebound because LTS and RS cells had the same connéc-
tivity. This positive value was also observed for other net-
work configurations with LTS cells (not shown).

These results suggest that, through their post-inhibiry

bound property, the presence of LTS cells increases the egaled that the minimal size needed to sustain Al states
citability of the network, enabling the genesis of Al statewas highly reduced in the presence of LTS cells (Elg. 9).
with relatively small network sizes. Indeed, by simulatMoreover, the minimal size was inversely related to the
ing different network size, with and without LTS cells, reproportion of LTS cells (from 0% to 20%; see Hig. 9).
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Fig. 9 Minimal size for sustaining irregular states in corticat-ne 5 —
works. Simulations similar to FidL] 7 were performed for elifint :
network sizes (from 80 to 2000 neurons), and for differeoippr- w0 g ok
tions of LTS cells (from 020correlation coefficier€, right) are I
plotted as a function of network size and proportion of LTHscéll
self-sustained states had higWl and lowCC, as indicated@Vis; =0
andCC = 0 indicate states with no self-sustained activity. Theimin
mal size for displaying Al states was much reduced if LT Ssosttre
present. It was of 1800, 800, 300, 200 and 100 neurons, risggc
for 0, 2.5, 5, 10 and 20% of LTS cells.

Tire (e

Fig. 10 Self-sustained irregular and Up/Down states in thalamocor
3.3 Thalamocortical networks tical networks. Top: Scheme of connectivity of the thalaottical
network. The network had 4 layers of cortical pyramidal (POr-
tical interneurons (IN), thalamic reticular (RE) and thatortical
. . (TC) relay cells. Each cell is represented by a filled cirdierk gray
The behavior of a thalamocortical network connected asxcitatory cells; light gray = inhibitory cells), and sy con-

schematized in Figjo (top) also depends on the |levlctions are schematized by arrows. Bottom panels: From B, to

; ; ; ; ; he same model was used (2200 cells total, 1600 PY, 400 INT000
of adaptation in cortical cells. With strong adaptatior tHand 100 RE cells). but with different strengths of adaptaticom

net\_Nork displayed alternating dynamics of active and S'IEH_;O.O4 nA in Atob=0.005 nAin D). In all rasters, only 10% of cells
periods (Up/Down states; see Higl 10A). Progressively dire shown for each cell type, and the 4 layers of célls areatek
minishing adaptation (Fi§._10B-C) led to dynamics whermn the right. For the Al state in D, cortical neurons were ahter-
the silent periods (Down states) were diminished while tt#ed by @ mean firing rate of 44 Hz, a coefficient of variatio®ufs
active (Up) states were longer. For weak adaptation, thé#> 2nd & painvise correlation 6C = 0.004.
network displayed self-sustained Al states with no silent
period (continuous Up state; Fig.]10D). This latter state
qualifies as an Al state, witBVjs| = 2.45 andCC=0.004. 3.4 Two-layer cortical networks
The corresponding cellular activities are shown in Eig. 11.
Note that the firing rate of the model (around 40 Hz on av-
erage) is larger than experimental data, for both up stafeése above mechanism for Up/Down states relies on the
and Al states. This is due to the relatively small size of tHact that the thalamus displays self-sustained Al states.
network, as only networks of large size can self-sustain Al the present section, we present a similar mechanism
states at low rates (El Boustani and Destexhe, 2009). but internal to cortex, in better agreement with experi-
ments which reported self-sustained Up/Down state dy-
Because neuromodulatory substances, such as acetykhmimics in cortical slices (Sanchez-Vives and McCormick,
or noradrenaline, block the ®Kconductances responsible2000; Cossart et al., 2003). To this end, the results from
for adaptation (McCormick, 1992), the transition from Upreceding sections were combined into a “two layer” cor-
& Down states to self-sustained active states in[Eig). 10 kigal network in which one layer consisted of RS and FS
reducing spike-frequency adaptation reminds the brain aells, as described above (Fig. 6A), while a second layer
tivation process. Experimentally, a transition from Upidowas a smaller network of RS and FS cells, with some
state dynamics to self-sustained activated states can-bemiportion of LTS cells, as in Fid.] 7B. These two net-
tained by electrical stimulation of the brain stem, indgcinworks were referred as “Layer A’ and “Layer B”, respec-
a cascade of cholinergic actions in thalamus and cortiixely (see scheme in Fig._113). When reciprocally con-
(Fig.[I2A,; Steriade et al., 1993a; Rudolph et al., 2005)ected with excitatory synapses, this 2-layer system exhib
One of the most prominent of these actions is a reductidad Up/Down state dynamics with a mechanism similar to
in spike-frequency adaptation (McCormick, 1992). A verthat described in the preceding section for thalamocdrtica
similar transition can be obtained in the model when thetworks. In the present case, the Layer B network gener-
adaptationis reduced (frob¥0.02 nAin Atob=0.005 nA; ated self-sustained activity, which served to ignite astiv
see Fig[IPB). inthe Layer A (see raster in Fig.113, bottom). Interestingly
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in thalamocortical networks. The top graphs indicate thetainta-

neous mean spike rate of cortical cells (in successive 1 ms),bi

while the bottom traces display they\activity of two cells of each s

type as indicated. A. Up/Down state transitions (same sitran as

in Fig.[IOB). The largest Down states are indicated in graygis- Fig. 12 Experiments and model of the transition from Up/Down

tained active state (same simulation as in Fig. 10D). Theeszeiis  to activated states. A. Transition from Up/Down state dyizano

are indicated for each simulation. The inset shows a rebbunst an activated state, evoked by stimulation of the pedonpalttine

in a TC cell at 10 times higher temporal resolution. tegmentum (PPT) in an anesthetized cat. The two tracesatdsgyg
show the EEG and intracellular activity recorded in patieta-

tex. B. Similar transition obtained by changing the valué éfom

this simulation shows that a network displaying transief{02 NA t 0.005 nA (gray line). All other parameters werentiteal
dynamics (Fig[J6A) connected with a network displaying) Fig [10. Panel A modified from Rudolph et al., 2005,
Al states (Fig[VB) yields a system displaying a different
type of activity, Up and Down states in this case. This dy-
namics was entirely self-sustained and coexisted withnatworks can self-sustain Up/Down states solely from in-
stable resting state (Fig.113, arrow). All of these behaviotrinsic dynamics.
are indissociable from the particular intrinsic propeiaé
the neurons present in the system. These numerical observations suggest that spike-freguenc
adaptation acts against the genesis of Al states, and tends
to silence the network (Fi@] 6). Adaptation diminishes ex-
citability, and several neuromodulators increase cdrtica
4 Discussion excitability by blocking the slow K conductances respon-
sible for adaptation (McCormick, 1992). Neuromodula-
tion has also strong effects on leak conductances, in par-
In this paper, we have shown that networks of neurons digular in the thalamus (McCormick, 1992). We did not
playing complex intrinsic properties can display variouattempt to incorporate such effects in this model, but the
type of Al states. The main finding were that (a) thalamjgrecise modeling of neuromodulation, and possible tran-
networks, where neurons are endowed with rebound bursitions from Al to various types of oscillatory behavior,
ing capabilities, can display Al states for remarkably dmatonstitutes a possible extension of the model.
size (N~100). (b) Cortical networks display Al states, as
reported previously (Brunel 2000, Vogels and Abbott, 200%)e presence of LTS neurons tends to greatly favor Al
but when adaptation is included in excitatory neurons, c@tates. This is consistent with the genesis of Al states in
tical networks generate Al states only for weak adaptatiorery small thalamic networks (N100; Fig.[4), where all
(c) Including a small proportion of LTS cells in corticalneurons display LTS. In cortex, inclusion of a small pro-
networks greatly reduces the minimal size needed to ggmortion of LTS cells (as observed experimentally; see de la
erate Al states. (d) thalamocortical networks can displ&ena and Geijo-Barrientos, 1996; Destexhe et al., 2001),
Al states or Up/Down state dynamics, depending on tigeeatly reduces the minimal size to display Al states. The
level of adaptation in cortical cells. (e) Two-layer coalic probable mechanismsisthat LTS cells renders the network

Fig. 11 Cellular and averaged activity during self-sustainedestat ’ |




10

ROl L slow-wave sleep (Steriade, 2003), or can be induced by
-~ @@ @@@@@@/@ Ll A2 2 B stimulation of the ascending neuromodulatory systems (Ste
wne @%m" Y riade et al, 1993a; Fif._12A), and can be mimicked by the
00 b%fgo POCOC-N thalamocortical model by a reduction of the adaptation pa-
rameterb (Fig.[I2B). This is consistent with the action of

neuromodulators, such as acetylcholine, to block or reduce
-8 OQPO D n K* conductances responsible for spike-frequency adapta-

s L i tion (McCormick, 1992).
- GOPE6EE0H -

Cortest-LayerB In this paper, there was no attempt to reproduce the cor-
rect cellular conductance patterns of the different networ
states. Experimental measurements show that the input re-
sistance of cortical neuroria vivo is reduced by 3 to 5
times compared to quiescent states, in both anesthetized
animals (Contreras et al., 1996; Borg-Graham et al., 1998;
Pare et al., 1998; Destexhe and Pare, 1999) and awake an-
imals (Baranyi et al., 1993a, 1993b; Steriade et al., 2001;
reviewed in Destexhe et al., 2003; Destexhe, 2007). The
excitatory and inhibitory synaptic conductances were also
y measured in anesthetized (Borg-Graham et al., 1998; Riadolp
\ I T \ T \ etal., 2005) and awake preparations (Rudolph et al., 2007).

0 10200 004000 8000 Reproducing the correct conductance state in individual

rmes{nsy neurons requires large network sizes (El Boustani et al.,

Fi% 13”SU%/J%0\év2hsgr?]t§ (()jfyggrrmgit:citg gg?\k//g; r::()ﬂr/\t/gxnrgt(\)/\(/ioerlk\évig%\?07; Kumar et al., 2008), and was not attempted here.
LTS cells. Top: e rather focused on the minimal size necessary to obtain
N=2000 (Layer A) andN=500 (Layer B) neurons. Layer B had 10% P . . -
LTS cells( ar)lld Wa).S capable EJf gispla)ying self-sus)t/ained Alest Al states in dlﬁergnt network conf!guratlons, but (.)btamln
Bottom: Raster of the activity during 5 seconds (LTS cells showftates fully consistent with experimental data will requir
in red). The stimulation of the network starteda250 ms (arrow), Substantial computational resources to simulate large net

and switched the stable resting state to self-sustaineDavpi state  orks of aelF neurons, and constitutes a logical follow-up
dynamics CVis| = 2.49,CC = 0.069). Parameters for the Layer A j¢ ipiq study.

network were identical to Fig.] 6A, and Layer B was identical a
Fig.[1B, with 10% of LTS cells. The interlayer connectivitgsonly . . . . .
excitatory and had a connection probability of 1%. Itis also interesting to note that this thalamocortical elod

is different than previous models of Up/Down states in

cortical networks (Timofeev et al., 2000; Compte et al.,
insensitive to “gaps” of firing, caused by occasional sy2003; Parga and Abbott, 2007). Previous models have con-
chronized inhibition, and which usually stops the activitpidered additional mechanisms to initiate Up states, which
These gaps are followed by rebound bursts in a minorigynounts to have some cortical neurons spontaneously fir-
of LTS cells if they are present, and thus renders the nétg or external noise. In contrast, Up/Down state dynam-
work less vulnerable to such gaps. This also suggests tigatarise here entirely from self-sustained activity. Ie th
LTS cells could be indicative of networks that generate Ahalamocortical model, the cortex is in a state generating
type of activity. It would be interesting to investigate iriransient dynamics (as in Figl 6A), while the thalamus is
more detail, and perhaps theoretically, the contrasting #f an Al state. The system generates a transient Up state,
fects of adaptation and LTS on the genesis of Al statében the activity stops, leading to a Down state. The activ-
Inclusion of other types of bursting cells, such as intririty restarts due to the firing of TC cells which triggers a
sically bursting neurons (Connors and Gutnick, 1990) 8ew Up state, and the cycle restarts. This model therefore
inhibitory LTS cells (Xiang et al., 1998), also constituges does not generate Up/Down state dynamics in the cortex
possible extension of this study. alone, contrary to observations of Up/Down states in corti-

cal slices (Sanchez-Vives and McCormick, 2000; Cossart
In the thalamocortical system, the association of thalétal., 2003) or in cortical organotypic cultures (Plenz and
mic networks and cortical networks generates a variety #ertsen, 1996). It nevertheless accounts for the fact that
states, including Al states and different forms of Up/Dowithe thalamus ignites the Up states in the intact thalamocor-
state dynamics, for different levels of adaptation in @atti tical systenin vivo(Contreras and Steriade, 1995; Grenier
excitatory cells. Reducing adaptation, mimicking the aét al., 1998).
tion of some neuromodulators such as acetylcholine, may
induce a transition from Up/Down state dynamics to su§!milar Up/Down state dynamics were also observed in
tained Al states. This transition is similar to the actigati @ more sophisticated model of the cortex allowing lay-
of the brain by neuromodulators, which also can produceged connectivity, in which a small sub-network played
transition between slow-wave activity with Up/Down statéhe role of Al state generator, while the rest of the net-
dynamics, to the so-called “desynchronized” EEG actiwork was passive and generated transient dynamics, as
ity. This transition naturally occurs upon awakening frorin Fig.[BA. The interconnections between two such net-

2500 —

2000 —

1500 —

1000 —

MNeuron nurntzer

500 —

4
= |
: |

¥




11
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