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Abstract
We combine bifurcation analysis with the theory of canard-induced mixed mode oscillations to
investigate the dynamics of a novel form of bursting. This bursting oscillation, which arises from a
model of the electrical activity of a pituitary cell, is characterized by small impulses or spikes
riding on top of an elevated voltage plateau. Oscillations with these characteristics have been
called “pseudo-plateau bursting”. Unlike standard bursting, the subsystem of fast variables does
not posses a stable branch of periodic spiking solutions, and in the case studied here the standard
fast/slow analysis provides little information about the underlying dynamics. We demonstrate that
the bursting is actually a canard-induced mixed mode oscillation, and use canard theory to
characterize the dynamics of the oscillation. We also use bifurcation analysis of the full system of
equations to extend the results of the singular analysis to the physiological regime. This
demonstrates that the combination of these two analysis techniques can be a powerful tool for
understanding the pseudo-plateau bursting oscillations that arise in electrically excitable pituitary
cells and isolated pancreatic β-cells.

2 Introduction
Electrical bursting is characterized by episodes of electrical impulses followed by periods of
quiescence during which the cell is repolarized. These oscillations are often observed in
nerve and endocrine cells, and have been the focus of mathematical modeling and analysis.
Many hormone-secreting cells in the anterior pituitary gland, such as lactotrophs,
somatotrophs, and corticotrophs, exhibit fast bursting with small spikes arising from an
elevated or depolarized voltage (Kuryshev et al., 1996; Van Goor et al., 2001). Single
pancreatic β-cells, isolated from islets, exhibit a similar type of bursting pattern (Kinard et
al., 1999). Figure 1A shows an example from a pituitary lactotroph cell line (GH4 cell).
Mathematical models for bursting in lactotrophs (Tabak et al., 2007; Toporikova et al.,
2008), somatotrophs (Tsaneva-Atanasova et al., 2007), corticotrophs (LeBeau et al., 1998;
Shorten et al., 2000), and single β-cells (Zhang et al., 2003) have been developed and
analyzed. This type of bursting, called “pseudo-plateau” bursting, is quite different from that
of most neurons and neuron models, as discussed in Stern et al. (2008).

We recently described a model that is unlike other models of pseudo-plateau bursting in that
the bursting persists almost unaltered when the variable for the intracellular Ca2+
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concentration is fixed or eliminated (Toporikova et al., 2008). This is unusual, since the
slow variation of the intracellular Ca2+ concentration is typically responsible for clustering
impulses into periodic episodes of activity. Previously, we analyzed some of the properties
of this unusal form of bursting (Toporikova et al., 2008). In the current article we extend this
in two ways. First, we show how the bursting is situated in parameter space relative to other
types of behaviors, and demonstrate how the number of spikes per burst varies in parameter
space. Second, we take advantage of the different time scales within this model to analyze
the mechanism for the bursting. We show that the bursting is actually a canard-induced
mixed mode oscillation (MMO) where a MMO pattern corresponds to a switching between
small-amplitude oscillations and relaxation oscillations. Using geometric singular
perturbation analysis (Fenichel, 1979; Jones, 1995; Wechselberger, 2005; Brons et al.,
2006), we demonstrate the origin of the MMO, identify the region in parameter space where
the MMO exists, and show how the number of small amplitude oscillations (or spikes)
varies in parameter space. In so doing, we identify the mechanism for this type of pseudo-
plateau bursting, and also perform analyses at the singular limit to explain behaviors seen
away from this limit. Mixed mode oscillations have been described previously for neural
models and data (Erchova and McGonigle, 2008; Wechselberger, 2005; Rubin and
Wechselberger, 2007; Rotstein et al., 2008; Ermentrout and Wechselberger, 2009; Drover et
al., 2005; Brons et al., 2008; Krupa et al., 2008; Guckenheimer et al., 1997), but this is the
first example where the MMOs form bursting oscillations.

3 The Mathematical Model
The model is a minimal description of the electrical activity and Ca2+ dynamics in a
pituitary lactotroph (Toporikova et al., 2008). This is based on another model (Tabak et al.,
2007), which produces bursting over a range of parameter values. For much of this range the
bursting is driven by slow activity-dependent variation in the Ca2+ concentration. However,
for a subset of this range the Ca2+ concentration can be clamped and bursting persists. In the
model by Toporikova et al. this latter form of bursting was examined, and the Ca2+ variable
removed, since variation in Ca2+ was not necessary to produce the bursting. This is the
model we use here.

The model includes variables for the membrane potential (V) of the cell, the fraction of
activated K+ channels of the delayed rectifier type (n), and the fraction of A-type K+

channels that are not inactivated (e). The differential equations are

(3.1)

(3.2)

(3.3)

where ICa is an inward Ca2+ current and all other currents are outward K+ currents. IK is a
delayed rectifier current, IA is an A-type current that inactivates when V is elevated, and IL is
a constant-conductance current that replaces the Ca2+-activated K+ current in the lactotroph
model of Tabak et al. (2007). The ionic currents are given by
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(3.4)

(3.5)

(3.6)

(3.7)

The activation of the Ca2+ current and the A-type K+ current is very fast, and is modeled as
instantaneous, with steady-state activation functions m∞(V) and a∞(V). Mathematically, this
can be justified by a center-manifold reduction (Rubin and Wechselberger, 2007). The
delayed rectifier current activates more slowly, with activation dynamics given by Eq. 3.3,
and the A-type current also inactivates relatively slowly, with inactivation dynamics given
by Eq. 3.2. Without IA this is just the well-known Morris-Lecar model (Morris and Lecar,
1981), a minimal biophysical model for membrane excitability that is capable of producing
impulses, but not bursts of impulses.

Steady state activation functions have the form

(3.8)

for x = m, n, a, while the inactivation function is

(3.9)

System parameters are: time constants (τn and τe), membrane capacitance C, current
conductances (gCa, gK, gA, gL), Nernst potentials (VCa and VK), and shape parameters for the
steady state functions (Vm, Vn, Va, Ve, sm, sn, sa, se). Values are given in Table 1.

Numerical simulations were performed with the fourth-order Runge-Kutta integration
method, as implemented in the XPPAUT software package (Ermentrout, 2002). Computer
codes are freely available online at www.math.fsu.edu/~bertram/software/pituitary.
Bifurcation diagrams and phase portraits of the singular perturbation analysis were also
computed using XPPAUT. All graphics were produced with the software package MAT-
LAB.

Figure 1B shows bursting oscillations produced by the model. Notice the small spikes that
occur on top of a depolarized voltage plateau, which is characteristic of the bursting that
often occurs in lactotrophs, somatotrophs, corticotrophs, and isolated β-cells. The bursting in
the GH4 cell is very noisy, which is typical of pituitary bursting. In contrast, the model is
deterministic, and thus the bursting is much more regular.
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The three model variables vary on different time scales. The time scale for variation in V
(τV) can be estimated by the ratio of the model cell capacitance C to the maximum ion
channel conductance, gmax = max{gCa, gK, gA, gL} (more precisely, one uses dimensional
analysis to identify the different time scales; see later). In most of our analysis and
simulations, C = 2 pF and gmax > 2 nS. Thus, τV = C/gmax < 1 ms. (The capacitance value
chosen is intermediate between the more common 5 pF of somatotrophs or 6 pF of
lactotrophs and the singular limit. We later vary C to investigate how the behavior changes
with changes in capacitance.) The time constants for the other variables are given explicitly
as model parameters: τe = 20 ms and τn = 40 ms. Thus, the V variable changes rapidly and
the e and n variables change on slower time scales. We take advantage of this separation of
time scales, and increase the disparity further by reducing C, when we apply geometric
singular perturbation analysis to the system.

4 Pseudo-Plateau Bursting Boundaries in Parameter Space
Our goals here are to determine how pseudo-plateau bursting relates to other states of the
system such as tonic firing (spiking) or an equilibrium state (either hyperpolarized or
depolarized) by changing three key model parameters, and to determine how the number of
spikes within a bursting pattern varies with parameters. The three parameters that we vary
are the maximum conductances of the delayed rectifier (gK) and A-type K+ currents (gA),
and the capacitance (C). The first parameter, gK, was chosen since it controls the number of
spikes per burst (as we discuss later). The second parameter, gA, was varied in our previous
analysis, where we showed that the A-type current is crucial for the bursting (Toporikova et
al., 2008). The third parameter, C, sets the time scale for voltage (τV = C/gmax), as discussed
in the previous section. Decreasing C reduces τV and widens the separation of time scales
between V and the slower variables n and e.

We begin by treating gK as the bifurcation parameter, keeping the other two parameters
fixed at gA = 2 nS and C = 2 pF. Figure 2A is a bifurcation diagram showing the asymptotic
behavior of the system for a range of values of gK. The black curve represents steady state
solutions, which could be stable (solid curve) or unstable (dashed). The red curves represent
the maximum and minimum voltages of periodic spiking solutions, which may be stable
(solid) or unstable (dashed). For small values of gK the steady state solutions are stable, and
at an elevated or depolarized voltage. They lose stability at a subcritical Hopf bifurcation
(HP1), giving rise to a branch of periodic spiking solutions. The steady state solutions regain
stability at another subcritical Hopf bifurcation (HP2).

The spiking solutions are stable for most of the range of gK for which they exist. However,
as highlighted in Fig. 2B, there is a small range of gK values where the spiking branch is
unstable. This is expected to the left of HP1 and to the right of HP2 because these Hopf
bifurcations are subcritical. However, there is a much larger region to the right of HP1 where
the periodic solutions are unstable, and this is surprising. The explanation is that the spiking
branch goes through a period doubling bifurcation (PD1) shortly after turning around at a
saddle-node of periodics (SNP, not labeled). The primary spiking branch regains stability
only after a second PD bifurcation occurs (PD2). Thus, between HP1 and PD2 the steady
state and regular spiking branches are both unstable. This is the region where bursting
occurs. We show later, by going to the singular limit C → 0, that this bursting is a canard-
induced mixed mode oscillation (see, e.g., Brons et al., 2006). The stable spiking solution
that occurs between the left SNP bifurcation and PD1 loses stability and is replaced by a
stable doublet spiking solution at PD1. We distinguish this from the bursting solution that
occurs between PD1 and PD2.
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We next determine how the bifurcation points in Fig. 2 vary when the conductance gA of the
IA current is changed. This is done since our prior analysis showed the importance of IA in
the production of bursting. We use a two-parameter (gK, gA) diagram to show the
dependence of the different bifurcations on the gK and gA parameters (Fig. 3A). The left
subcritical Hopf bifurcation of Fig. 2A is insensitive to gA, because the A-type current is
inactivated at depolarized voltages. Thus, the curve of bifurcation points of this type is
nearly vertical in Fig. 3A (left green curve). On the other hand, the right subcritical Hopf
bifurcation in Fig. 2A is very sensitive to gA because when gA is greater, less gK is needed to
destabilize the hyperpolarized steady state (right red curve in Fig. 3A). The left PD
bifurcation in Fig. 2B remains close to HP1 as gA is varied, so this bifurcation curve is
almost indistinguishable from the HP1 curve. Therefore, we only show a single curve in the
figure and denote it by HP1/PD1. The PD2 bifurcation in Fig. 2B is important as the right
boundary for the bursting. For small values of gA, PD2 moves to the right as gA is increased,
increasing the range over which bursting occurs. However, when gA becomes sufficiently
large the PD bifurcation becomes insensitive to further increases. As a result, the PD2 curve
in Fig. 3A first has a positive slope, but eventually becomes vertical. The HP1/PD1 and PD2
curves then form the left, right, and lower boundaries of the region of bursting (Fig. 3). The
lower boundary clearly shows that the IA current is necessary for bursting in this model
(independent of the strength of the delayed rectifier).

To see where the upper boundary of the bursting region (the SN1 branch) comes from, we
return to a 1-parameter bifurcation diagram, but this time with a larger gA conductance, gA =
15 nS (Fig. 4A). With this larger gA the stationary branch of solutions is folded, creating the
two knees or saddle-node (SN) bifurcations in Fig. 4A. The periodic spiking branch that
emerges from the Hopf bifurcation (HP1) goes through two PD bifurcations as before,
gaining stability at the right PD. The stabilized spiking branch now terminates at a
homoclinic saddle-node on invariant circle bifurcation (labeled HM in the figure). This
SNIC bifurcation comes about when HP2 from Figs. 2, 3 coalesces with the lower SN (SN1)
in Fig. 4A at a codimension-2 Takens-Bogdanov (TB) bifurcation.

When gA is increased further SN1 shifts leftward, eventually moving to the left of PD2. As
this happens, PD2 and HM move together, eliminating the stable branch of spiking solutions
(Fig. 4B). The interval of bursting solutions now terminates at SN1, rather than PD2, and the
termination is through a homoclinic bifurcation; the silent phase of the burst gets
progressively longer as gK approaches the SN1 bifurcation. When gA is increased even
further SN1 moves to the left of PD1, eliminating the interval of bursting solutions (Fig. 4C).
Thus the stable asymptotic structure of the system is a depolarized and/or a hyperpolarized
steady state, for the full range of gK.

The sequence of events described above is summarized in the two-parameter (gK, gA)
diagram (Fig. 3). The two branches of SN bifurcations (the left and right knees) are shown
in brown in panel A, coalescing at a codimension-2 cusp bifurcation. The HP2 bifurcation
coalesces with the SN1 bifurcation at the labeled TB point. For all gA values above this point
the spiking branch terminates at a homoclinic bifurcation (a SNIC bifurcation for lower gA
values and a saddle-loop bifurcation for higher gA values; see Fig. 4). The SN1 bifurcation
branch forms the upper boundary for the bursting, since for all gA values above this curve
the system is either globally stable with a hyperpolarized stationary attractor, or bistable
with hyperpolarized and depolarized stationary attractors. This loss of bursting oscillations
for sufficiently large gA was described previously (Toporikova et al., 2008), but not in terms
of the (gK, gA) bifurcation structure. This (gK, gA) diagram provides the curves that delimit
the various system behaviors which are given in bold text in Fig. 3.
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Varying the gA parameter, as was done above, varies the influence that the important A-type
K+ current has on the system. We next vary the membrane capacitance C, which changes the
time scale separation between V and the slower variables e and n. Making C larger makes V
slower, thereby decreasing the time scale separation. Figure 5A is a two-parameter
bifurcation diagram showing how the locations of the subcritical Hopf bifurcations vary
with C and gK. This is done for four different values of gA. In all cases, as C is increased the
HP bifurcations come together, eventually coalescing at a relatively high C value. Beyond
this value, the system is steady, exhibiting neither continuous spiking nor bursting
oscillations.

From Fig. 5A it is clear that the left branch of the HP curve is unaffected by changes in gA
over the range gA ∈ [1, 5] nS, so in the blowup figure in panel B the left branch of a single
HP curve is shown. Also shown, for four values of gA, are branches of PD bifurcations. For
each value of gA, bursting exists between the HP1 curve and the PD2 curve. Between the
PD1 branch and the HP1 curve a stable hyperpolarized stationary solution coexists with a
spike doublet solution (the doublet bifurcates further through a series of PD bifurcations,
leading ultimately to chaos). We see that the bursting region expands as gA is increased, at
least for gA up to 5 nS, and that the bursting region also expands as C decreases (except for a
minor decrease of the bursting regime in the limit C → 0 for gA bigger than 1 nS). We also
point out that, in the limit C → 0, the range of gK values for which bursting occurs extends
from HP1 to gK ≈ 6 nS for the larger values of gA. We show this again later in our analysis
of the mixed mode oscillations that underlie bursting in this system.

We next demonstrate how the number of spikes per burst varies. This is an important
biological feature, since this number (partly) determines the burst duration (active phase)
and hence the amount of Ca2+ influx, and thus the amount of hormone released from a cell.
We set gA = 4 nS and vary gK and C over a rectangular grid of values, with ΔgK = 0.1 nS
and ΔC = 1 pF. For each choice of parameters we solve the differential equations
numerically and count the number of spikes per burst. In Fig. 6 circles represent the number
of spikes in a burst. Large reddish circles represent bursts with many spikes (maximum of
62 for the largest circles), while small blue circles represent bursts with few spikes
(minimum of 2). We superimpose the PD curve for gA = 4 nS and the HP1 curve onto the
grid. To the right of PD2 the system exhibits continuous spiking, represented by small dark
circles. To the left and above the PD1 branch the system is at a steady state (represented by
points). Bursting or complex spiking (doublets, 4-spike patterns bifurcating off of the
doublets branch, etc.) occurs only within the two branches of the PD curve. Between the
PD1 and HP1 curves the system is bistable, with coexisting stable hyperpolarized steady
states and simple or complex spiking (the bistable region extends to the left of the PD1
bifurcation to the saddle node of periodics (SNP); see discussion of Fig. 2). Thus, in the
simulation grid this region is occupied by a mix of points (steady states) and circles (simple
or complex spiking). For some parameter values there are circles with points in the middle,
representing bistable solutions that were found by varying the initial conditions. In many
cases only one stable solution was found, which maybe be due to a small basin of attraction
of the other stable solution. The most important observation to make from Fig. 6 is that the
number of spikes per burst is greatest at the lower gK values. We show later that this is
predicted from the analysis of mixed mode oscillations in the C → 0 limit.

5 Geometric Singular Perturbation Analysis
We now show the origin of the spiking and bursting oscillations described in previous
sections. The bursting oscillations are not of the standard type, which are due to bistability
of the fast subsystem of variables between a hyperpolarized steady state and a periodic
(spiking) solution (Rinzel, 1987; Rinzel and Ermentrout, 1998). To understand the bursts
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produced by the current model we take advantage of the time-scale separation of the
variables that was pointed out in section 3.

To rigorously justify the time-scale separation in (Eqs. 3.1–3.3), we nondimensionalize the
system by introducing a dimensionless ‘voltage’ variable v = V/kv where we choose kv = 100
mV as a typical voltage scale, and a dimensionless ‘time’ variable τ = t/kt where kt = τe = 20
ms is a typical (slow) time scale of the system. This leads to the dimensionless form

(5.1)

where

(5.2)

and τv = C/gmax. Note that the overbar denotes a dimensionless parameter. The right hand
sides take the form of a scaling factor multiplied by some quantity which is O(1). With the
choice of the above scaling factors kv and kt, we see that the dynamics of the variables (n, e)
are of O(1) while the dynamics of the variable v is O(1/ε) where

(5.3)

In particular, decreasing the capacitance C decreases ε and hence increases the time scale
separation between the dynamics of the fast variable v and the slow variables (n, e).
Therefore, system (5.1) is a singularly perturbed system with two slow variables (n, e), one
fast variable (v) and singular perturbation parameter ε.

The dimensional analysis above demonstrates that the original system (Eqs. 3.1–3.3) already
has the correct factorization (although in dimensional form). Hence, for easier comparison
with the bifurcation analysis presented in section 3, we use this original system in our
analysis and treat V as a fast variable, (e, n) as slow variables and C as the singular
perturbation parameter.

We begin our geometric singular perturbation analysis by moving to the singular limit, C →
0, where V changes instantaneously and the slow variables evolve in (slow) time according
to (Eqs. 3.2–3.3). If we define the right hand side of Eq. 3.1 by

(5.4)

then f(V, e, n) = 0 defines the corresponding quasi-steady state condition due to the
instantaneous dynamics of V. The two slow variables (e, n) evolve in (slow) time so that this
condition is satisfied. That is, the phase point in ℝ3 travels along the critical manifold
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(5.5)

(except at discrete jumps from one sheet of the manifold to another which are controlled by
the layer problem, defined below). This slow evolution on S is called the reduced flow. The
implicit equation f = 0 can be solved explicitly for n (or for e, but not V), which enters into
IK (and f) linearly,

(5.6)

The critical manifold S is a folded surface, shown in Fig. 7A for one set of gK and gA values.
The bottom, middle, and top sheets of the surface are separated by fold curves (in red). Fold
curve L− separates the bottom and middle sheets, while fold curve L+ separates the middle
and top sheets. Note that this geometric structure of the critical manifold will not change
under the variation of gK (it is only a scaling factor).

Since the critical manifold Eq. 5.6 is a graph over the base (e, V), the dynamics on the
critical manifold, the reduced flow, can be described by the differential equation for e (Eq.
3.2) and by differentiating f(V, e, n) = 0 with respect to time to obtain a differential equation
for V. Thus,

(5.7)

yields

(5.8)

where n = n(e, V) and the reduced system projected onto the base (e, V) is given by

(5.9)

(5.10)

This system is singular along the fold curves L±, where . To remove this singularity we
rescale time with the transformation . With this transformation we obtain the
desingularized system:
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(5.11)

(5.12)

The phase portraits of the reduced system and the desingularized system are equivalent on
the top and bottom sheet of the critical manifold. Because of the time rescaling, the flow of
the desingularized system on the middle sheet, where , must be reversed to obtain the
equivalent reduced flow on the middle sheet. Thus the reduced flow can be obtained by
analyzing the desingularized system.

The reduced flow, calculated by numerically solving Eqs. 5.11, 5.12, is shown on the critical
manifold in Fig. 7A and its projection onto the e-V plane is shown in Fig. 7B (black curve,
single arrow). The trajectory moves along the bottom sheet until it reaches L−. At this point,
the reduced flow is singular ( ) and the solution ceases to exist due to finite time blow-
up. The quasi-steady state assumption f = 0 cannot hold anymore and we expect a rapid
motion away from the fold-curve L−. This rapid motion can be understood by switching to a
fast (dimensionless) time scale t1 = t/τv which transforms (Eqs. 3.1–3.3) to

(5.13)

(5.14)

(5.15)

Taking the singular limit C → 0 we obtain the layer problem

(5.16)

(5.17)

which describes the evolution of the fast variable V along one-dimensional fibers where (e,
n) are constant parameters. Note that the critical manifold is the manifold of equilibria for
the layer problem. The stability of these equilibria is determined by the sign of . It follows
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that the lower and upper sheets, which we denote by , are attracting ( ) while the
middle sheet, denoted by Sr, is repelling ( ).

Going back to Figure 7, we concatenate the trajectory of the reduced flow that reaches the
fold-curve L− with a fast fiber segment of (Eq. 5.16–5.17) which provides the rapid motion
from L− to the stable top sheet  (black curve, double arrow) at a point on P(L−). The curve
P(L−) denotes the projection of L− along fast fibers onto the stable top sheet , while L+ is
projected onto the stable bottom sheet  as P(L+) (blue curves). From here the trajectory
moves according to the reduced flow along the top sheet  until L+ is reached and the layer
problem is again solved for the rapid motion to the stable bottom sheet  at a point on
P(L+). Here, this concatenation of slow and fast segments leads to a singular periodic orbit.
Geometric singular perturbation theory (Szmolyan and Wechselberger, 2004) shows that this
orbit perturbs to a nearby periodic relaxation oscillation orbit of system (Eqs. 3.1–3.3) for
sufficiently small C ≠ 0. This relaxation oscillation orbit corresponds to a spiking solution
below the PD2 curve in Fig. 3. In the following, we apply geometric singular perturbation
techniques to uncover the genesis of the bursting mechanism in system (Eqs. 3.1–3.3).

6 Mixed Mode Oscillations
Mixed mode oscillations consist of small amplitude oscillations followed by large
relaxation-type excursions, repeated periodically. An understanding of possible mechanisms
for these oscillations using geometric singular perturbation theory has recently been
achieved (Wechselberger, 2005; Brons et al., 2006; Guckenheimer, 2008). One possibility is
the existence of folded node singularities of the reduced flow together with an appropriate
global return mechanism (see e.g., Brons et al., 2006).

A folded singularity of the reduced system (Eqs. 5.9–5.10) is an equilibrium of the
desingularized system (Eqs. 5.11–5.12) that occurs on a fold curve and satisfies

(6.1)

(6.2)

(6.3)

Generically, this is different from an ordinary singularity of the reduced flow (an
equilibrium), which is also an equilibrium of the desingularized flow but satisfies (equation
changed)

(6.4)

(6.5)
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(6.6)

Such an ordinary equilibrium of the reduced flow is positioned away from the fold-curves
L± and is also an equilibrium of the full system (Eqs. 3.1–3.3), i.e. (equation added)

(6.7)

(6.8)

(6.9)

These equilibria have been identified in the bifurcation diagrams of section 3.

Linear stability analysis of a folded singularity indicates whether it is a folded node (FN), a
folded saddle, or a folded focus. In the present case, and with parameter values gA = 4 nS, gK
= 4 nS, a folded node singularity exists on the fold curve L+ (shown in Fig. 8), since the
eigenvalues of the linearization at the equilibrium point of the desingularized flow are both
negative. Also, for this choice of parameter values the fold curves L+ and L− join and form a
cusp-like structure near e = 1. Compare with Fig. 7 (where gA = 0.2 nS and gK = 4 nS) which
also has a FN, but for which the fold curves do not form a cusp for e in the admissible range
of [0,1].

The reduced flow in the neighborhood of a folded node has very interesting properties.
Singular canards (Benoit, 1983; Szmolyan and Wechselberger, 2001) exist in the
neighborhood of a folded singularity. These trajectories enter the folded singularity, in our
case along the top attracting sheet  of the critical manifold, and move through the folded
node singularity in finite time, emerging on the repelling middle sheet Sr and traveling along
it for some time. For folded nodes, this implies that there is a whole sector of singular
canards, bounded below by L+ and above by the strong singular canard (SC in Figs. 7, 8)
associated with the unique trajectory which is tangent to the eigendirection of the strong
eigenvalue of the FN. This sector, the singular funnel, is shown in gray in Figs. 7, 8. In the
case of a folded saddle, only two such singular canards exist, while a folded focus has no
singular canards.

For canard-induced MMOs to exist, a singularly perturbed system has to fulfill two major
requirements (Brons et al., 2006):

• The reduced flow has to possess a folded node singularity.

• There is a singular periodic orbit formed from the concatenation of slow and fast
segments of the reduced and layer problems which starts with a fast fiber segment
at the folded node singularity. This automatically assures that the global return of
such a singular periodic orbit is within the singular funnel of the folded node.

If these two assumptions are fulfilled then canard theory implies that this singular periodic
orbit perturbs to a nearby MMO orbit for sufficiently small ε > 0 (C > 0). In the case shown
in Fig. 8, these assumptions are fulfilled; the singular periodic orbit starting at the FN indeed
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returns into the singular funnel. We therefore expect to find MMOs in system (Eqs. 3.1–3.3).
Furthermore, the theory predicts that the small amplitude oscillations of the MMO pattern
occur in a neighbourhood of the folded node and that the maximum amplitude of these small
oscillations is , i.e., the maximum amplitude grows proportional to the square root of
the capacitance C. This also implies that the amplitude of the small oscillations vanishes in
the singular limit ε → 0 (C → 0).

The small amplitude oscillations are due to a geometric property of invariant manifolds near
a folded node. According to Fenichel theory (Fenichel, 1979; Jones, 1995), the attracting
and repelling sheets of the critical manifold (  and Sr, respectively) away from the fold-
curves L± perturb smoothly to locally invariant slow manifolds (  and Sr,C, respectively)
for C sufficiently small, but non-zero. These perturbed slow manifolds are in an O(C)
neighbourhood of the unperturbed critical manifolds. Furthermore, the flow on these
perturbed slow manifolds is a smooth O(C) perturbation of the reduced flow on the
corresponding unperturbed manifolds. If one extends these perturbed slow manifolds by the
flow into the vicinity of a folded node singularity, then the intersection of the attracting and
repelling sheets is locally twisted (see Wechselberger, 2005 for details; the numerical
technique for computing twisted slow manifolds is described in (Desroches et al., 2008).)
Singular canards of the reduced flow perturb to actual canards of the original system. In our
case, these canards follow  toward the FN and Sr,c afterwards before jumping to .
Since  and Sr,c are twisted near the FN, the canards rotate and produce the small spikes
during the active phase of the burst.

Figure 9 confirms the predicted MMO result for gK = 4 and gA = 4. It illustrates the
emergence of small amplitude oscillations in the voltage time course as C is increased.
When C = 0.05 pF the (very) small amplitude oscillations are not yet visible. Projection of
this trajectory onto (e, V)-space (not shown here) closely follows the singular periodic orbit
in Fig. 8B. When C is increased by a factor of 40 to C = 2 pF small oscillations appear near
the end of the active phase; this is a bursting oscillation with small spikes (panel B). These
reflect the rotational properties near the FN that were undetectable near the singular limit.
When C is increased further to C = 6 pF the small oscillations are larger than before and
occur throughout the active phase (panel C). Notice that in all three time courses the
beginning of the active phase is characterized by a voltage peak. This is due to the shape of
the critical manifold and the direction of the reduced flow, and is not one of the small
oscillations associated with the folded node. For example, there are 8 small spikes associated
with the FN in Fig. 9C, preceded by an additional small spike. This additional oscillation
does not vanish in the singular limit C → 0, another indicator that it is not associated with
the folded node.

For MMOs to exist, it is crucial that the phase point returns to the singular funnel of the
folded node when entering the active phase of the oscillation. This will occur when the point
on P(L−), that the phase point jumps to when leaving L−, lies in the singular funnel of the
folded node. If this does not happen, then no small oscillations will be produced and the
trajectory will exhibit a relaxation oscillation. This is illustrated in Fig. 7, both on the critical
manifold and on its projection onto the (e, V)-plane. In this example, there also exists a
folded node, but since the projection curve P(L−) does not intersect the singular funnel (gray
shaded region in Fig. 7B) it follows that the return of the singular trajectory starting at the
folded node is outside the singular funnel of the folded node. Hence we do not expect a
MMO but a relaxation oscillation.

Whether or not the global return mechanism projects the phase point into the singular funnel
can be formalized as follows. Let δ denote the distance from the phase point on P(L−) of the
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singular periodic orbit to the strong canard SC with the convention that δ > 0 indicates that
the phase point is within the singular funnel. The condition δ = 0 corresponds to the border
between MMOs and relaxation oscillations and indicates that the segment of the singular
periodic orbit on  lies on the strong canard SC. For example, for fixed gK = 4 nS we have
δ = 0 for gA ≈ 0.27 nS. The δ is a continuous increasing function of gA, so δ < 0 when gA =
0.2 pS and relaxation oscillations are produced (Fig. 7) and δ > 0 when gA = 4 pS and
MMOs are produced (Fig. 8).

The choice of parameter values determines whether or not the singular periodic orbit enters
the singular funnel. The behaviors of these singular periodic orbits are summarized in Fig.
10 for the two parameters gK and gA. MMOs are predicted for all parameter combinations
within the region highlighted in gray. For any value 3.5 < gk < 6 nS (and independent of gA),
there exists a folded node singularity on L+, which is the first requirement for MMOs to
exist and explains the left and right boundary of the MMO regime. The second requirement
for MMOs, δ > 0, is fulfilled above the curve δ = 0 which explains the lower boundary of the
MMO region. The upper boundary of the MMO region is a curve of saddle-node
bifurcations SN1. Crossing this curve towards increased gA annihilates the MMO attractor
because a stable equilibrium attractor bifurcates. This is a stable hyperpolarized state of the
reduced system. There is also a stable depolarized state of the reduced system for gK < 3.5.

6.1 Comparison of bifurcation diagrams
The MMO region in Fig. 10 is very similar to the bursting region in Fig. 3B and explains the
genesis of the observed bursting region as the singular perturbation parameter C is
increased. In both cases the upper bound of the MMO/bursting region is a curve of saddle-
node bifurcations SN1 which indicates that the system is in a hyperpolarized steady state for
large conductance gA. To understand the relation of the left, right and lower boundaries in
both bifurcation diagrams in more detail, a bit more canard theory is required, as discussed
next.

For sufficiently small values of the perturbation parameter, C in this case, it is possible to
calculate the maximal number of small oscillations of a MMO pattern (Wechselberger,
2005). This number, smax, depends on the eigenvalues of the linearization of the
desingularized system at the FN. Let these eigenvalues be denoted by λ1 and λ2, where |λ1| <
|λ2|, and define the eigenvalue ratio

(6.10)

Then, since at a FN both eigenvalues have the same sign, 0 < μ < 1. The maximal number of
small oscillations in the MMO is then

(6.11)

the greatest integer less than or equal to . Thus, if s is the number of small oscillations
produced in the MMO for sufficiently small C, then s ≤ smax where smax is given by Eq.
6.11. Here sufficiently small C means that , where ε is given by Eq. 5.3. Otherwise
the system is too far from the singular limit and the bound becomes invalid.
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In the present case, μ depends on both gA and gK. However, the dependence on gA is very
weak, so that μ changes little if gK is held fixed and gA is varied (between the upper and
lower bounds of the MMO region). Thus, μ is (almost) constant, and so is smax, along the
vertical line segments shown in Fig. 10. When gk ≈ 3.5 nS, μ = 0 and for smaller gK values
there are no MMOs. When gK ≈ 6 nS, μ = 1 and for larger gK values there are no MMOs.
This explains the notation of the left and right borders in Fig. 10. Near the left border the
number of small oscillations in the MMO is large (since smax → ∞ as μ → 0); near the right
border the number of small oscillations is 1 (since smax → 1 as μ → 1). Note that this is in
addition to the initial spike that begins an active phase.

The left border μ = 0 denotes a folded saddle-node (type II) of the reduced flow. To be more
precise, we observe a transcritical bifurcation of a folded singularity and an ordinary
singularity. To the left of the border we have μ < 0 which corresponds to a folded saddle on
L+, with a stable node equilibrium on . If we increase gK (and therefore μ), this stable
equilibrium, the ordinary singularity, merges with the folded singularity for μ = 0 and
crosses over to the repelling branch Sr for μ > 0 where it becomes an (unstable) saddle
equilibrium. The folded singularity is now a folded node on L+ which explains the
transcritical nature of the folded saddle-node, type II. (A folded saddle-node, type I,
corresponds to a true saddle-node bifurcation of two folded singularities of the reduced flow,
which we do not observe here.)

Note that the stable node equilibrium for μ < 0 is on the attracting sheet . Thus it
corresponds to a stable equilibrium of the full system since all three eigenvalues (two from
the reduced problem and one from the layer problem) are negative. This corresponds to a
stable depolarized state because the delayed rectifier is too weak to repolarize the cell. When
gK is increased so that μ > 0, the equilibrium has bifurcated to the repelling sheet Sr, where it
is a saddle point in the reduced system. Hence, it corresponds to an unstable equilibrium of
the full system with two positive eigenvalues (one from the reduced problem and one from
the layer problem) and one negative eigenvalue (from the reduced problem). Therefore, the
real part of two eigenvalues changes sign as the bifurcation point is crossed. Exactly the
same happens when C > 0, as shown in the bifurcation diagram of Fig. 3. Here we observe a
Hopf bifurcation (HP1), i.e., two (complex conjugate) eigenvalues change their sign. Hence,
the singular limit (C → 0) representation of a Hopf bifurcation in a singularly perturbed
system is a folded saddle-node, type II, of the corresponding reduced problem. This
observation is also confirmed in Fig. 5 where the Hopf bifurcation HP1 converges to gK ≈
3.5 for C → 0 independent of gA. Subsequent bifurcations near a folded saddle-node, type II,
are currently under investigation with emphasis on the role of the nearby saddle equilibrium
on MMO patterns (Guckenheimer, 2008; Krupa and Wechselberger, 2008).

We next consider the right border, μ = 1, in Fig. 10 and relate it to Fig. 3B. This border of
the MMO regime corresponds for C = 0 to a degenerate folded node where two nonzero
eigenvalues merge. To the right of this border we have folded foci which possess no
canards. Hence we only observe relaxation oscillations as described in section 4. To the left
of the border we have folded nodes with eigenvalue ratio μ close to one which implies that
smax = 1. Hence we observe MMOs with one extra small-amplitude oscillation (Fig. 11B)
compared to a relaxation oscillation. In Fig. 3B the right border consists of period doubling
bifurcations (PD2). Near the PD 2 bifurcation the phase point in the depolarized state follows
the strong canard and alternately jumps up and jumps down, thus producing an oscillation
with doubled period (Fig. 11A). For smaller g A values, such as on the lower PD2 branch, the
phase point in the depolarized state travels along the strong canard and jumps down at
different locations, creating a period-two relaxation oscillation with slightly different
amplitudes. The other period doubling bifurcation (PD1) in Fig. 3B is a transition from
single spikes to doublets.
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A last piece of canard theory is required to compare bifurcation structures within the MMO
regime in Fig. 10 with Fig. 3B. For sufficently small values of the perturbation parameter C,
there exist (smax − 1) secondary canards which partition the funnel region of a folded node
into smax subsectors with different rotational properties (Wechselberger, 2005). The first
subsector is bounded by the strong canard SC and the first secondary canard; trajectories
within this subsector make one rotation. The second subsector is bounded by the first and
the second secondary canard; trajectories within this subsector make two rotations. The last
subsector is bounded by the (smax − 1) secondary canard and the fold curve L+; trajectories
in this last subsector make the maximal smax rotations. Hence, each subsector has a different
rotation number.

All secondary canards are within an O(ε(1−μ)/2) neighborhood of the strong canard SC which
implies that the size of the first (smax − 1) subsectors is of O(ε(1−μ)/2) since they are bordered
by secondary canards. The last subsector with maximal rotation number is of size O(1) since
it is bordered by the last secondary canard and the fold-curve. In the singular limit, all
secondary canards merge with the strong canard and hence only the maximal rotation
subsector survives. It follows that if the singular perturbation parameter is sufficiently small
compared to the distance δ > 0 of the singular periodic orbit from the SC, i.e., δ > ε(1−μ)/2

and hence the periodic orbit is within the last subsector, then the observed MMO has
maximal rotation number. As δ approaches zero, the periodic orbit moves through all the
different rotational sectors, finally reaching the first subsector with only one rotation. Thus,
the MMO pattern closest to the border δ = 0 has only one small oscillation.

For parameter values lying on or near the δ = 0 line segment in Fig. 10 the periodic orbit of
the singular flow (the concatenation of flow in the reduced system and from the layer
problem) enters the singular funnel on or near the SC curve, so for C > 0 (but sufficiently
small) there will be a single small oscillation associated with the FN. If one increases gA,
moving upward along a vertical line segment in the MMO region of Fig. 10, then the
periodic orbit of the singular flow enters further from the SC curve and closer to L+, so the δ
function increases from 0. Therefore, for C > 0 the periodic orbit enters the FN through a
sector in which s is closer to smax and thus more small oscillations are produced. For
example, moving upward along the yellow line segment in Fig. 10 by increasing gA will
result in s increasing from 1 up to 5. For sufficiently small C, this will result in bursting
oscillations with 2 spikes (for small gA) up to 6 spikes (for gA near the upper bursting
boundary).

For C > 0, but small, this will result in bursting oscillations with 2 spikes for gA small up to
6 small oscillations for gA near the upper bursting boundary.

In summary, the eigenvalue ratio for the FN in the singular system, μ, determines the
maximum number of small oscillations (smax) that can occur during the MMO oscillation.
This parameter is adjusted through the biophysical parameter gK. Increasing gKdecreases
smax. The distance from the strong canard at which the singular periodic orbit enters the
singular funnel, δ, determines how close the actual number of small oscillations (s) is to the
upper bound smax. This parameter is adjusted through the biophysical parameter gA.
Increasing gA increases s.

Figure 12 shows how the number of spikes in a burst varies for the case C = 2 pF, computed
through numerical simulation of the full system. To the right and below the bursting region
of the gK-gA parameter space the system spikes continuously (small blue circles). To the left
and above the bursting region the system is at a steady state (blue dots). Within the bursting
region, but near the bottom boundary, the number of spikes per burst is small, typically two
or three. As one moves away from the lower boundary the number of spikes per burst
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increases rapidly to a maximum, and the value of this maximum is larger on the left side of
the bursting region than on the right side. This is all consistent with the singular perturbation
analysis. Even for larger values of the capacitance C the same trends are observed, however
as C is increased the lower bursting boundary moves upward and there is an increase in the
range of gA values over which the number of spikes per burst increases from two to its
maximum (not shown).

7 Discussion
Mixed mode oscillations have appeared in several neural applications (Erchova and
McGonigle, 2008; Wechselberger, 2005; Rubin and Wechselberger, 2007; Rotstein et al.,
2008; Ermentrout and Wechselberger, 2009; Drover et al., 2005; Brons et al., 2008; Krupa
et al., 2008; Guckenheimer et al., 1997). In this article we have demonstrated how MMOs
can produce a type of bursting oscillation (Fig. 1) that has been described in a recent
mathematical model of the pituitary lactotroph (Toporikova et al., 2008), and which could
potentially describe bursting in other endocrine cells and neurons. We have shown the
genesis of this bursting rhythm using geometric singular perturbation theory. The curves in
the (gK,gA) parameter space that bound the MMO region in the singular limit (Fig. 10)
correspond nicely to those that bound the bursting region away from this limit (C = 2 pF,
Fig. 3). Thus, the analysis performed at the singular limit not only reveals the subtle
mechanism of bursting in this system, but it also provides information on the extent of
bursting that is consistent with the bifurcation analysis of the full system.

Importantly, the singular perturbation analysis provides information on features that were
not apparent from the bifurcation analysis of the full system. While the full-system analysis
provided boundaries for the bursting region in parameter space, it did not fully explain the
rationale for these boundaries. The singular perturbation analysis gave a clear rationale, in
terms of the properties of the folded node singularity and the curves delimiting the singular
funnel. Also, singular analysis provided information on how the number of spikes in a burst
varies in parameter space. This information could not be obtained from the bifurcation
analysis of the full system, but required numerical simulation (Figs. 6, 12). Finally, the
singular theory predicts that the amplitude of the spikes that occur during bursting increase
as the square root of the capacitance (the actual value of capacitance for pituitary
somatotrophs is ~ 5 pF and for lactotrophs is ~ 6 pF). This dependence of spike amplitude
on C can only be obtained from the full system through numerical simulation.

While the singular perturbation analysis has many virtues, it also has limitations. Most
obviously, the singular analysis is only guaranteed to be valid for sufficiently small C. Also,
the analysis is most effective when there are no more than two slow variables. Thus, the
singular analysis has limitations that are not present in the full-system bifurcation analysis.
This emphasises the power of combining the two analysis techniques: singular perturbation
analysis to understand the oscillation mechanism and extent in parameter space assuming
that certain conditions are met, and full-system bifurcation analysis to extend the singular
analysis to the non-singular situation that is likely a more accurate description of the
biological system.
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Figure 1.
(A) Perforated patch electrical recording of bursting in a GH4 pituitary cell line. (B)
Bursting produced by the model with the default parameters shown in Table 1, with C = 6
pF, gK = 4.4 nS, and gA = 18 nS.
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Figure 2.
(A) Bifurcation diagram illustrating the asymptotic dynamics of the system, with gK as
bifurcation parameter (fixed C = 2 and gA= 2). Steady state solutions (black) are either stable
(solid) or unstable (dashed). (Red) Minimum and maximum V of periodic spiking solutions,
either stable (solid) or unstable (dashed). Subcritical Hopf bifurcations (HP1, HP2) initiate
and terminate the periodic branch. (B) Blowup of the diagram in the top panel near HP1,
highlighting the region where bursting occurs. PD=period doubling bifurcation.
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Figure 3.
(A) Two-parameter bifurcation diagram in the parameters gK and gA, with C = 2 pF. (B)
Blowup of panel A, highlighting the bursting region. The label SN represents a saddle node
bifurcation. The label TB represents a codimension-2 Takens-Bogdanov bifurcation. The
system behaviors are in bold: bursting=periodic bursting, dep=depolarized steady state,
hyp=hyperpolarized steady state, dep/hyp=bistable region.
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Figure 4.
(A) One-parameter bifurcation diagram for C = 2 pF and gA = 15 nS. There is a fold in the
stationary branch, with two saddle-node (SN) bifurcations. The stable spiking branch
terminates at a homoclinic (HM) saddle-node on invariant circle bifurcation. Bursting exists
between PD1 and PD2. (B) Increasing gA to 20.5 pS moves SN1 to the left of PD2. The
unstable spiking branch terminates at a homoclinic saddle-node loop bifurcation that is very
close to PD2. Bursting only exists between PD1 and SN1. (C) Further increasing gA to 22 nS
moves SN1 to the left of PD1, so that bursting is no longer produced.
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Figure 5.
(A) Two-parameter bifurcation diagram illustrating the dependence of the Hopf bifurcations
on the membrane capacitance C for four different values of gA. The HP1 bifurcation is
insensitive to gA. (B) Two-parameter bifurcation diagram illustrating the C dependence of
period doubling bifurcations of the primary spiking solution. A single HP1 curve is also
included. Bursting occurs between HP1 and PD2. Between PD1 and HP1 the system is
bistable between a hyperpolarized steady state and a complex spiking pattern (doublets, 4-
spike pattern, etc.).
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Figure 6.
Number of spikes per burst for a grid of gK and C values (gA = 4 nS). Single points represent
steady states, and small dark circles represent continuous spiking. Larger circles with colors
ranging from light blue to red represent bursting. The larger the circle, the greater the
number of spikes per burst. The minimum number of spikes is 2 (small, light blue), and the
maximum is 62 (large, red). Circles with points in the middle represent bistable dynamics.
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Figure 7.
A singular periodic orbit concatenated by slow and fast segments of the two singular limit
systems, the reduced problem (5.11)–(5.12) and the layer problem (5.16)–(5.17), that leads
to relaxation oscillations in (Eqs. 3.1–3.3) for C > 0. Here, the periodic orbit does not enter
the singular funnel of the folded node FN, bounded by the fold curve L+ and the strong
singular canard SC. (A) A view of the singular periodic orbit (black) and the critical
manifold. (B) Projection onto the (e, V)-plane with the singular funnel highlighted in gray.
FN is at (e, V) = (0.41,−15.26), eigenvalue ratio is μ ≈ 0.1 and parameter values are gA= 0.2
nS and gK = 4.0 nS. There is also a saddle equilibrium S (black diamond) at (e, V) = (1.5 ×
10−4, −15.94).

Vo et al. Page 25

J Comput Neurosci. Author manuscript; available in PMC 2011 August 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
A singular periodic orbit (black) concatenated by slow and fast segments of the two singular
limit systems, the reduced problem (5.11)–(5.12) and the layer problem (5.16)–(5.17), that
leads to MMO in (Eqs. 3.1–3.3) for C > 0. Parameter values are gA = 4.0 nS and gK = 4.0
nS. (A) Critical manifold (surface) with fold curves L− and L+ (red) and fold curve
projections P(L±) (blue). Also shown is the strong singular canard (green, SC) of the folded
node (FN). (B) Projection onto the (e, V)-plane with the singular funnel highlighted in gray.
The FN is at (e, V) = (0.02, −15.26) and has eigenvalue ratio of μ ≈ 0.1. There is also a
saddle equilibrium S (black diamond) at (e, V) = (1.4 × 10−4, −15.94).
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Figure 9.
Mixed mode oscillations with gK = 4 nS, gA = 4 nS, and various values of C. (A) C = 0.05
pF is very small and the small amplitude oscillations are not visible. (B) When C is
increased forty-fold (C = 2 pF) small oscillations become visible during the active phase,
reflecting the twists near the folded node. Here we find smax = 5 plus one additional small
oscillation at the beginning of the active phase. (C) With a larger conductance, C = 6 pF, the
small oscillations (8 + 1) occur throughout the active phase. The predicted maximum
number smax = 5 does not hold anymore because the conductance C, considered as a singular
perturbation parameter, is too large.
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Figure 10.
Region in the gK-gA parameter space where MMOs are predicted in the C → 0 limit. The
colored vertical line segments indicate various values of smax, the maximum number of
small oscillations that can occur in an MMO (red=12, yellow=5, green=2, blue=1). This
number increases as gK is decreased.
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Figure 11.
Time courses of MMO patterns for parameter values gA = 10 nS and C = 2 pF near the right
PD2 boundary in Fig. 3: (A) a period-doubled oscillation (21 MMO pattern) for gK =
6.00895 nS and (B) a 11 MMO oscillation for gK = 5.5 nS.
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Figure 12.
Number of spikes per burst for a grid of gK and gA values (C = 2 pF). Single points represent
steady states, and small dark circles represent continuous spiking. Larger circles with colors
ranging from light blue to red represent bursting. The larger the circle, the greater the
number of spikes per burst (same as in Fig 6). The minimum number of spikes is 2 (small,
light blue), and the maximum is 53 (large, red). The green and brown curves are the period
doubling and saddle node bifurcation curves shown in Fig. 3B.
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Table 1

Parameter values used in the model

Parameter Value Definition

C 0 – 20 pF Membrane Capacitance

gK 0 – 10 nS Maximal conductance of delayed rectifier K+ channels

gA 0 – 25 nS Maximal conductance of A-type K+ channels

gCa 2 nS Maximal conductance of Ca2+ channels

VCa 50 mV Reversal potential for Ca2+

Vm −20 mV Voltage value at midpoint of m∞

sm 12 mV Slope parameter of m∞

VK −75 mV Reversal potential for K+

Vn −5 mV Voltage value at midpoint of n∞

sn 10 mV Slope parameter of n∞

τn 40 ms Time constant for n

Va −20 mV Voltage value at midpoint of a∞

sa 10 mV Slope parameter of a∞

Ve −60 mV Voltage value at midpoint of e∞

se 5 mV Slope parameter of e∞

gL 0.3 nS Maximal conductance of leak current

τe 20 ms Time constant of e
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