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Abstract We examine the properties of the transfe{ |ntroduction
function Fr = Vin/VLpp between the intracellular
membrane potentialVf,) and the local field potential
(VLrp) in cerebral cortex. We first show theoretically thafThere is a widespread consensus that mechanisms for
in the subthreshold regime, the frequency dependencegeherating the intracellular electrical activity are very
the extracellular medium and that of the membraneell understood, however not complete. In contrast, much
potential have a clear incidence Bn. The calculation of less is known about the the genesis of extracellular
Fr from experiments and the matching with theoreticglotentials, which is a subject of intense research. This is
expressions is possible for desynchronized states whassociated to the difficulty in assigning measurements of
individual current sources can be considered #se extracellular potentialsto a unique neurophysiolalgic
independent. Using a mean-field approximation, wgenerator, which makes modeling of LFP/EEG a complex
obtain a method to estimate the impedance of tiesue. Some of these mechanisms are believed to be
extracellular medium without injecting currents. Weelated to synaptic activity, synchronous population
examine the transfer function for bipolar (differentialypikes, ephaptic interactions, ionic  dynamics,
LFPs and compare to simultaneous recordinggpnd morphological structure of the neurons and many other
VLrp during desynchronized states in rat barrel coitex processes (reviewed in [ [Jefferys (1995),
vivo. The experimentally derivedry matches the one[Nunez and Srinivasan (2006)]).
derived theoretically, only if one assumes that the
impedance of the extracellular medium i©ne of the characteristics of extracellular potentialfiés t
frequency-dependent, and varies ag,/I (Warburg very steep attenuation of “fast” events such as spikes,
impedance) for frequencies between 3 and 500 Hz. Thikich are visible only within the immediate vicinity (a
constitutes indirect evidence that the extracellulé@w microns) of the electrode. In contrast, “slow” events
medium is non-resistive, which has many possibRich as synaptic potentials are visible for much larger
consequences for modeling LFPs. distances, typically a few hundred microns
[Destexhe et al. (19909), Katzner et al. (2009)]. One way

_ ) _ i to explain this differential filtering is that the extracedr
Keywords: Computational ~ models, Local Field negiym acts as a powerful low-pass filter

Potentials, EEG; Extracellular resistivity; Intracellular [Bédard etal. (2004)]. However, this aspect is

Recordings; Maxwell Equations controversial because some measurements of brain
conductivity did not display significant filtering effects
[Logothetis et al. (2007)] while other measurements did
[Ranck (1963), Gabriel et al. (1996)]. Some of these
experiments|[Gabriel et al. (1996)] used careful controls,
such as correcting for electrode polarization, showing the
different frequency-dependence of various biological
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employed a sophisticated four-electrode measuremesgected. The cisterna magna was drained to improve
setup to  yield more accurate measuredability. For intracellular recordings, additional meees
[Logothetis et al. (2007)]. However, despite suctvere taken to improve stability, including dexamethasone
controls, these measurements used current intensities (i@ mg/kg, i.p.) to reduce brain swelling, hip suspension,
are much larger than biological sources, which mand filling the craniotomy with a solution of 4% agar.
explain the discrepancy [Bédard and Destexhe (2009)].

In the present paper, we provide theoretical work and
analyze experimental measurements to examine whetRée% Electrophysiological Recordings

the extracellular medium is non-resistive. We examine a
uantity which depends on the extracellular impedance, . ) .
?he tra)rllsfer funct?on between simultaneously [r)ecord c.ordmgs of local field potent|§1ls (LFPs) across the
intracellular and extracellular potentials. We shO\X:/Ortlcal depth were performed with 16-channel S|I|gon
robes (Neuronexus, Ann Arbor, MI). Probe recording

theoretically that, in the linear regime and foP" .
desynchronized states, the transfer function calculat llps were separated by 1@0n and had impedances of

from an (intracellular) single recording site strongly” -2.0 M2 at 1 kHz. The probe was lowered info the

. in under visual guidance, oriented normal to the
depends on the extracellular impedance, and c 9

therefore be used to investigate its frequency dependen(E:(?ar.tICaI surface, until the most superficial recording site

We show preliminary results from desynchronized statd$> aligned with the surface. All neurons were

in vivo, which indicate that the extracellular medium iéggltjrllar'Sp”:'hng cells, and had Elplkes \.’;"tth ab%r iFrITD]S
indeed frequency dependent. We relate these ﬁndings\’\f'éj » SO they were presumably excitatory.

previous work and discuss their possible implications fgllgnals shown here were obtained by pairs of
modeling LFPS/EEG. closely-located (400-50Qum apart) electrodes arranged

vertically (surface-depth), and were amplified and
band-pass filtered at 0.1 Hz-10 kHz (FHC, Inc.,
Bowdoinham, ME).

2 Methods

Intracellular recordings were performed in barrel cortex

) o with glass micropipettes pulled on a P-97 Brown Flaming
The experimental data used in this paper were taken fr ller (Sutter Instrument Company, Novato, CA)

a large database of cells [W"er.'t and _Contreras (2005 pettes were filled with 3M potassium acetate and had
|W|Ient ﬁnl(j Contredrgs (Zopﬁt;)]' n \_Nr:j'Ch fweb ﬁe";‘itelﬂc resistances of 60-80 &. A high-impedance
Intracellular recordings with long periods of subthre 0amplifier (low-pass filter of 5 kHz) with active bridge

activity, simultane(_)us with LFP recordings in the_ ViCi_ni%ircuitry (Neurodata, Cygnus Technology, Inc., Delaware
(1 m?) .Of _tiLed mtracEIIngr ;Ig;tcr;ode, and in IIghR/Vater Gap, PA) was used to record and inject current into
anestnesia with desynchronize : cells. Vertical depth was measured by the scale on the
micromanipulator. A Power 1401 data acquisition

interface and Spike2 software (Cambridge Electronic

Design, Cambridge, U.K.) were used for data acquisition.

2.1 Surgery and Preparation

Experiments were conducted in accordance with theg Analysis and simulations

ethical guidelines of the National Institutes of Health and

with the approval of the Institutional Animal Care and

Use Committee of the University of Pennsylvania. AdulAll simulations and analyses were realized using
male Sprague-Dawley rats (300-350g, n=35) weMATLAB (Mathworks Inc, Natick, MA), except for
anesthetized with isoflurane (5% for induction, 2% duringompartmental model simulations (see below).

surgery), paralyzed with gallamine triethiodide, and

artificially ventilated. End tidal CO2 (3.5-3.7%) and heaifhe analysis of the PSD was performed using two
rate were continuously monitored. Body temperature wdgferent methods. A constrained nonlinear least square fit
maintained at 37C via servo-controlled heating blanketof the analytic expressions for different possible transfe
and rectal thermometer (Harvard Apparatus, Hollistofynctions (see Eq[27 and E@.]22 in Results) was
MA). The rat was placed in a stereotaxic apparatus angh@rformed to the transfer function calculated from
craniotomy was made directly above the barrel cort@xperimental data. The fit was constrained to frequencies
(2.0-3.0 mm A/P, 4.0-7.0 mm M/L), and the dura wabetween 3 Hz and 500 Hz and the parameters of the



transfer functions were constrained to the physiologicall synaptic conductances were set to zero in all other
range (see Results for details). compartments.

Because the PSD and calculated transfer functions helte LFP generated by this compartmental model was
large variance, two different methods were used tmlculated at the level of the stem dendrite, 5@ lateral
perform the fitting. First, a polynomial averagingo the dendritic axis, assuming a purely resistive medium,
algorithm was used to calculate the mean value of thecording to the expression:

PSD, and the fit was performed against this mean value

(see details in Appendix B). Second, a moving average \j -, — Re ZI_J’ (1)
window procedure which consisted of partitioning the am 41

data set into five epochs (corresponding to about 7.7 sec

for one cell and about 4.4 sec for the second cell, aWdere Re = 230 Q-.cm is the extracellular

additionally applied a Hanning window to each epoch (&sistivity [Ranck (1963)],1; is the total membrane
Hamming window was tested as well, and gave simil&Hrrent of compartmeni, andr; is the distance between
results). This method markedly reduces the variance @Mmpartmentj and the extracellular position where the
the PSD and of the transfer function. Other choices f&f P iS evaluated. The LFP of the full model was
window length were also tested and yielded simil&ompared to the LFPs calculated from each individual
results as those shown in the figures (not shown). current source similar to above, WMé|J:)p =R :—‘J

3 Theory
2.4 Compartmental model simulations

In this section we formulate a theoretical relationship
Compartmental models were simulated using tHetween extracellular and intracellular sub-threshold
freely-available NEURON simulation voltage activity. We consider a linear electromagnetic
environment [[Hines and Carnevale (1997)]. Aegime, which is defined by the fact that the linking
16-compartment “ball-and-stick” model was simulategquations are linear in frequency space. In such case we
based on a soma (area of 5@0n?) and 15 dendritic havejs = otEf, Df = &Ef andB¢ = pufHy¢ where the
compartments of equal length (46(6m) and tapering second-order symmetric tensogg, & and ps do not
diameter (from 4um at the soma up to fim at the distal depend orE¢ andHy¢. oy, & andus depend on position
tip), so that the total cell area was of 60p@n®. Each in general. In other words, we will work in the
compartment had passive properties, with axial resigtivisubthreshold voltage range, for which we assume linear
of 250 Q-cm, specific capacitance of [IF/cn?, resting current-voltage relations, and that conductances are not
membrane conductance of 0.45 mS?cmnd reversal voltage dependent. Henceforth, we will refer to this
potential of -80 mV. dynamical state as "linear regime”. We also assume that

the cortical tissue is macroscopically isotropic, in which
To simulate high-conductance states similariiovivo case the tensors become scalar functions.
measurements, each dendritic compartment contained
two randomly fluctuating synaptic conductances (modélfe will also formulate the model in the frequency
from [Destexhe et al. (2001]) which were adjusted so thdemain, to easily enable comparison between the amount
the mean excitatory and inhibitory conductances we@é intracellular and extracellular signal within each
respectively of 0.73 and 3.67 times the restinjequency band, which is readily accessible from
conductance. These values represent mean values ofékeerimental data. The advantage of this approach is
“spontaneous” synaptic activity during activated states simplicity as it avoids tackling directly the different tem
vivo, according to intracellular measurements (see detagiales inherently associated to LFP/EEG signals, many of
in [Destexhe et al. (2003]). We verified that using thesghich are not yet understood. For example, it is known
parameters, the subthresholg, \ctivity of the cell was that LFP/EEG signals are composed of mixed-mode
conform to typical intracellular measurements duringscillations, however the origins and transitions between

desynchronized-EEG states, as for example in tHeese modes are not yet explained
experiments reported here. [Erchova and McGonigle (2008)]. The choice of working

in the frequency domain also seems natural because the
In a separate set of simulations, the synaptic inputs wetiéferential equations describing electric potentials
present only in the most distal compartment. In this cageansform into algebraic equations in frequency space.



The formulation of the relation between transmembrane
(Vim) and extracellular\{ gp) activity requires to derive
the transfer functionkr, that measures the ratio between
the impedance of the cellular membrane and extracellular
medium. To obtain this, we start from a general
formalism whereV gp is expressed as a function of a
large number of current sources located at different
positions in extracellular space (Sectidn 3). We then show
under what conditions this formalism can reduce to a
single current source, and derive the impedance for this
current source (Sectidn 3.3) and derive the corresponding
transfer functions (Sectiofis 3.4[f0 1B.5).

In the following, we use the notatidna( f) or F; to denote

the functionF in Fourier space with frequendyandw =
2rf.

3.1 General model with multiple current sources

We start from the general model in Fourier space:

N .
Vire(r,f) = 3 SLZPE(1)1(1) @)
= Gij

where Vi gp(ri, ) is the extracellular potential at a
positionr; as resulting from a set ™ monopolar current
sourced;(f). R;j is a constantd; is the distance between

sourcej and positiorr;, andZJmad is the impedance of the C

extracellular medium around sourge This model is

based on the property that any charge distribution in '_ﬁ 1 |_'_| |—_|_
space and frequency can be expressed as a sum o Za S 2y =
monopolar sources. This therefore applies to complex Vi Ve Vigew

current dlStrIbUtIOﬂS |n the Comp|eX dendrItIC Stl’UCtUI’QSg 1 Arrangement of potentia's and impedancesl A. Scheme of
of many neurons surrounding the recording sitdsee the general model where the local field potentiaké) is generated

Fig.[dA), and thus, this formalism is general. by a large number of individual monopolar current sourcesl)(r
distributed in soma and dendrites of neurons in the netwbtke

. . . ctivity of these current sources is desynchronized, tiséesy can
If we assume that the extracellular medium is electrical Yiuce to a single current source using a mean-field appegidm

homogeneous, the extracellular impedaliq@d is the B. Scheme of an individual current source, which is assuradzet
same for every pair of pointg j, and the local field of spherical symmetry with homogeneous extracellular mmadiso
potential becomes: that there is no position-dependence of conductivity onpiéiity.
V' andVe¢ are the electric potentials, respectively inside and datsi
R; of the membrane, relative to a reference poteifal= 0 situated at
—1;(f) (3) an infinite distance. The membrane potentialis the difference
dij betweenV; andVe. Vi gp is the local field potential, which is the
voltage difference between a pointin extracellular space arfef.
C. Equivalent electrical circuit for each current sourceeveZy, is

We also assume that the network activity is of IOthe impedance of the membrane, whileandZz, are impedances of

. . . . e extracellular medium.

correlation, as typically found during desynchronized

network statesn vivo, such as in awake animals, or

during the “up-states” of anesthesia. In such states, it wamnsequence, we can consider that the dendritic structure
shown that the activity is very irregular with low levels ofs bombarded by noisy synaptic events that are essentially
correlation between cortical neuronsincorrelated, and if we assume that this activity primes
[Destexhe et al. (1999), Gawne and Richmond (1993), over the deterministic link between individual current
[Steriade et al. (2001b), Zohary et al. (1994)]. As sources (see Sectign B.2 for a test of this assumption),

Mz

V|_|:p(ri, f) :Zrmd(f)

j=1
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A Single source In vivo - like

then the field produced by the ensembleMfcurrent — | LFP

sources is equivalent to the field produced by independent | .|
sources. the variable% and l; can be considered as

statistically independent, and by averaging over the
ensemble of current sources, we obtain:

PSD Tioms

mv2/ Hz
mv2/ Hz

M=z

VLFp(ri,f):ZmGd(f)l
J

Frequency (Hz)

dii;w):zm(f)r?al‘(f).
(@)

Here, the LFP has been expressed as a function of a
“mean current source” (in the spatial sense)
I(f)=N<I1i(f) > andwhereﬁD:<%>|jE|. This - Py ()
formulation is equivalent to a mean-field theory expressg@' 2 Test of the assumptions of the formalism using a ball-and-

stick model. A. Top: scheme of the model. Excitatory (bluedl a

in Fourier space and where we consider the LFP ﬂﬁibitory (red) random synaptic conductances (model rigkkem

generated by the mean current source contribution.  [Destexhe et al. (2001]) were inserted in the distal conmpernt of a
ball-and-stick model with 16 compartments (see Methodsjldh:

3.2 Testing the assumptions of the formalism LFP calculated from the total membrane currents, aps® from
the neuron. Middle: PSD of the LFP, which showed a marked

filtering due to the neuronal morphology, as described preshy

T . f th fi f the f i [Pettersen and Einevoll (2008)]. Bottom: PSDs obtainednfithe
o verify some of the assumptions of the formalism, Wgep o cach individual source. B. Same simulation as in A,

have simulated a ball-and-stick dendritic model subject ft the random synaptic inputs were distributed in all ditiodr
fluctuating synaptic conductances (Hiy. 2). In a first set cfmpartments and were matched to the the conductance state
simulations, the synaptic conductances (model fropRservedin vivo. Middle: the filtering due to morphology was
[Destexhe et al. (200 . egligible in this case. Bottom: individual PSDs are venyikr,

eSt(_,D_( e et a,' 1]) were located only at a Smgg%ggesting that a mean-field approximation is justified ia tase.
dendritic location. This case produced LFPs which wefige dotted curves represent the optimal fit to the PSD in Biguai
markedly filtered by the dendritic structure (Figl 2Alorentzian function 1(1+ wt") with n= 1.8 and rescaled to the
middle panel), as described previouslynaximum of each PSD.

[Pettersen and Einevoll (2008)]. This type of filtering is

due to the fact that in dendritic structures, the retuistriputed current sources, the PSDs of different current
current (which participates to generate the LFP) is filteregrces are very similar (Figl 2B, bottom). This similarity

by the membrane. In another set of simulations, we haygg extended to LFPs calculated from different locations
considered a more realistic situation in which the synapii¢ extracellular space, which produced LFPs of different
conductances were located at all locations of the dendrigﬁ]plitudes, but with almost superimposable PSDs (not
structure, so that the total conductance matches t'%ﬁbwn). These simulations suggest that, for im

measured experimentally vivo [Destexhe et al. (2003]. yjyo-like states, a mean-field approximation is
In this case, the filtering due to morphology wagsasonable.

negligible (Fig.[2B, middle panel), presumably because

synaptic currents largely dominate over axial currents.

These simulations suggest that the filtering due to

morphology can be neglected for vivo-like conditions, 3.3 Membrane impedance for a spherical source in the
and that in such conditions, the filtering must come froinear regime

another origin, such as the extracellular medium.

1

PSD. PSD.

mv2/ Hz
mv2/ Hz

JLUBUuiuienig|™

3
Frequency (Hz)

To test the validity of a mean-field approximation, wén the previous sections, we assumed that the LFP
have plotted the PSD of the LFP generated by eaghnerated in desynchronized network states has
individual source in the ball-and-stick neuron (Fify. 2A,Bequivalent properties to that produced by a “mean current
bottom panels). In the case the synaptic current is locatgalirce”. We now calculate the membrane impedance for
at a single dendritic location, the PSDs of individuan individual current source of spherical symmetry,
sources are all different (Figl 2A, bottom), because of teambedded in a medium which is homogeneous/isotropic
filtering due to the morphology. However, in the case @fnd continuous, and with electric paramet@fssfﬁ. The

1 Note that for desynchronized activity, we expect that such a? Note that we keep the electric parameters frequency depende
spatial average will be of small amplitude, as indeed tyiyidaund to keep the expressions as general as possible. In additien,
for the “desynchronized EEG” condition investigated here. theory can easily be generalized to multipoles, as any puoli



cell is represented by an RC circuit where the membrabader these approximations, we can write:
potential is expressed as the  difference

Vm =V, — Ve~ =70 mV (Fig. [IB). At the resting \

membrane potential, there is a net negative ch&ge Ay =S g (Vi) |)AVin

inside, which is perfectly balanced with a net positive i;

chargeQ, on the external surface of the membrane, such

that Q_ + Q. = 0. In this situation, the electric fiel& Al = CmdAVm

produced by the cell in the medium is null, which implies dt ©6)
thatVe = V{* = 0, whereV;” is the reference potential at

infinite distance from the source. Al = Alr +Ale

Suppose that a small excess of positive charge is injected @)

inside the cell. Due to this excess of charge, an electric

field E will instantaneously appear in extracellular space.

An electric current will also appear to restore thelere, we have a linear system of equations with
equilibrium (and therefore will give rise to a variation otime-independent coefficients. By expressing the
the electric field). The current produced depends on theariation of current produced by the cell as a function of
physical and biological characteristics of the membrangge variation of membrane voltage, in Fourier space, we
which will determine the time evolution of the electrimbtain:

field. The current is given by:

Al (f) = GmAVn(f)

N
= 3 8 (V) (Ve(t) ~ ) Ale(f) = 16CnAVn(f)
- )
|C:Cm% Al(f) = Al () + Alg()
()
Im = Ir + IC
where
N
where I, and I, are the ionic and capacitive currents, .
respectively. The indexi represents the different
membrane conductances with their reversal potential 11,4 impedance of the membrane is given by:
E;, andC, is the membrane capacitance.
In the following, we will assume that the excess of charge AVin(T) =3
remains small and varies around a stationary mean value, Zm f)= Al(f) ~ 1+ior, &)

so that we can can neglect the time variations of

conductances and of thég, (AViy), with agij/avm ~0.In

this case, we can consider that the conductances are aghereRy, =

function of the mean value of th&,. This is equivalent to

assume that, in the subthreshold regime, the conductandés next define the theoretical transfer function, which

are not dependent on the potential, and that the revensadvides a relation (in this case, in the frequency domain)

potentialsE; are constant. This is valid if the impact ofbetween LFP and/y,, asF(r,f) = \X—;“p(r, f). Having

ionic concentration changes orj are negligible defined above the impedance of the membrane we now

compared to the voltage variations. require to define the impedance of the medium to fully
characterize the transfer function. Consequently, in
subsequent sections, we define the transfer function in
general form and we then consider particular cases due to

configuration can be decomposed in a sum of monopoles, anddﬂ'(fiferenf[ recordings mon_tages (bipolar and monopolar)
multiple sources using the linear superposition principle and various types of media.

1
Gm"




3.4 Computing the transfer function of each current  dimension equals4nl7, which corresponds to the sum
source. Za + Zy whenr = RandZ, whenr = d.

In the case of a heterogeneous isotropic medium, we have
In this section, we calculate separately the two transff@edard and Destexhe (2009)]:

functions: :
1 © 1 oi(R+iwe(R)
1 Vin( f :7/ r=
FTU(f):V:((f)) Z(r.f) 4104(R) Jr r 2 or(r')+iw e (r') (16)
and for a spherical and isopotential sourcg.represents the
F(2>(df O Ve(f) complex conductiyity. In _the absc_ence of sphgricgl
T 4 7V7LFP(d;f). symmetry and with non-isopotential sources, it is

necessary, in general, to solve differential or integral
equations derived from Maxwell equations in the

FY (£ can be calculated from the equivalent circuguasi-static  regime  (neglecting  electromagnetic

shown in Fig[LC. We have the following relations: induction; see{[Chari and Salon (1999)]).
It is important to note that the expressions above for the
Zmed(R 1) = Za(d, f) + Zo(d, T) (10) transfer function are independent of the particular
Vm(f) = Vi(f) —Ve(f) (11) frequency spectrum of the current sources.
Vi(f) V()

Zon(1) + Zeea(R 1)~ Zoea(R 1) (12)

3.5 Frequency dependence of differential (bipolar)
whereR is the radius of the current source amds the recordings
distance relative to the center of the source. It follows tha

Vin(f) _ _ Zm(f)

_ _ If the power spectral density (PSD) of the LFP signal
Ve(f)  Zmea(R )

varies as 1fY where y > 1 (for monopolar LFP
recordings), then the energy associated to the signal
would necessarily be infinite, which is of course
Fi?(d, f) can also be calculated based on the equivalestiysically impossible. In fact, according to a model

(13)

circuit of Fig.[1C: developed previously (see Egs. 53-54 in
[Bédard and Destexhe (2009)]), a more accurate
F2(d, f) = Ve(f) _ Za(f)+2(d, ) (14) relationship between the extracellular medium’s
Vire(d, f) Zp(d, ) properties and the meavk is given by the following
expression
We note that ifZ; and Z, have the same frequency V(r, )= Ki(r) (17)

> -
dependence, for examplé, thenFT<2) is independent of fv/2 4 &

frequency when the medium is macroscopicalf¢herea is negligible for frequencies larger than 1 Hz
homogeneous. For example, if both media have a&@d smaller than about 500 Hz (because LFPs are usually
Warburg impedanceZ(~ 1/,/F) or capacitive impedanceconsidered up to 500 Hz). Note that the PSD is

(Z ~1/f), the functionFT(z) has the same value as for thé)ropo_rtiongl to the square M(_f) and yvill thus scale as
case of a resistive medium (frequency independeWth_'” this case. The PSD_ is also independent of the
impedance). For a spherical source and for d&fSition (homogeneous medium).

extracellular position at a distanckfrom the center of

the source, we have: The values of constantg and a represent respectively

the proportionality constant for each electradevhich
F<2)(r ) = Ve(T) _ 9 (15) depends on the intensity of the field for large frequencies,
T Virp(r,f) R and the natural limit of the value of the voltage for very
) ) low frequencies (which limits the energy of the system).
where R is the radius of the current source. In thig, general, these constants depend on electrode position,

relation, the resistance of a spherical shell of radius 54 therefore when one takes the difference between two
an isotropic and homogeneous medium of infinitgacirodes. we have:

K1 K2

3 Note that the notatioﬁT(") stands for different functions and not 1) 2) B _
fv2ra fV24a

for nth order derivative. Vairr () = V'-(FP< f) _VL(FP( f)




(18) medium. In this case, we have:
Zn(f) R
E(2 m° ). =
d?

Fr(f)=FY(f)-F2(f) =
R o - ()T()T()Rmed
the signal intensities of the two . electrodes ar(?/vhere the parameters are as described above Axith)

comparable for large frequencies, we have necessar|l . .
P 9 au . . . |'1)é membrane impedance. Thus, according to[Eqg. 9, we
K1 =~ K2, such that the differential or bipolar signa . .
gve the following transfer function:

(difference between two nearby extracellular electrode

(21)

(very correlated signals), will have the following form, on FS(f) = Rm ) 1 B 22)
average: " Rped 14wty d°
Vaitt (F) ~ Ko - H—a LS (19) where T is the membrane time constant. This transfer
Aty (fY2+ag)(fV2+a)  fV function is depicted in Fid.]3A.

wherek = k1(a; —a;) and forf > 1Hzandf < 500Hz . B
. . .~ The transfer function can also be calculated for a “non
Thus, if monopolar LFPs have a PSD which varies a& Y . . S
Loy . ideal” membrane, with a more realistic RC circuit model
1/fY, one can have a PSD inf 1< in bipolar recordings. . . :
where the capacitance is non-ideal and does not charge
instantaneously (see details in
4 Numerical simulations of transfer functions [Bedard and Destexhe (2008)]; see also Appendix A).
Considering such a non-ideal membrane with a resistive

medium, we have:

In this section, we present simple numerical simulations Rm 1 R

to illustrate how the transfer function is influenced by the Fr () = Reg 15124 (23)
frequency dependence of the cellular membrane, that of T

the medium, and of the recording configuration. where 1, is the Maxwell-Wagner time of a non-ideal

capacitance. Note that whep, = 0, we recover the case
above for an ideal membrane. This transfer function is
represented in Fidl] 3A. The transfer function is in general

4.1 Resistive membrane with homogeneous/isotropic monotonic (and scales close tof?).

resistive medium

Interestingly, there is a phase resonance for non-ideal

{'n%mbranes (seeXin Fig.[3B). The physical origin of

As a first and simplest case, suppose we have aresistﬁl h resonance in the non-ideal cable is that th
membrane (the membrane capacitance is neglecte > Phase resonance € non-ideal cable 1S that the

embedded in a homogeneous resistive medium. In t@n mbrane is quasi-resistive at low~ (0) and high

IS .
case, the resistive medium is described by Laplacr(glquem]f'etf1 (103 Hz) (seet Fg.J33), S? that th(ihabsorl]ute
equation, and we have: value of the phase must necessarily pass through a
_Rm R

maximu
Fr(f) =R () RO =g ™ g,

whereR is the radius of the sourc&y, is the membrane
resistanceRyg is the resistance of the medium, athds - )
the distance from the LFP measurement site to the Cet{?&n—re&stlve medium
of the source.

(20)

4.3 RC membrane in homogeneous/isotropic

. . - We now focus on non-resistive media by providing a
This case, however, is not very realistic because the ! . .

. : -transfer function for which the functional form should be

membrane capacitance is neglected. In the followin

sections, we consider more elaborate membranes %1
different extracellular media.

gervable from extracellular measurements. We consider
e simplest case scenario of only linear subthreshold
regime where the membrane is described by a simple RC
circuit embedded in a medium with impedariggf). In
this case, the transfer function for a mono-polar
4.2 Capacitive effects of membranes in extracellular recording is given by:
homogeneous/isotropic resistive media 1 R
':r(f)_Rm'z<f)<1+iwrm)'a’ (24)
We now consider a membrane with capacitive effects' gyery positive continuous function defined on a compact
described by a simple RC circuit, together with a resistivi®main has necessarily a maximum inside that domain.
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If the |m9edance of the medium 7 andy > 1,
where Kk is a complex constant, the monopolar and
bipolar transfer functions are respectively:

Itp
(Degree)

m
v

itp

m

Modulus of V_/V,

Phaseinof V_/V

mono( ) ~, Rm. ()% R
Fro(f) ~ 58 1o, a- (25) 1
I:diff f) ~ Rm fv R olrm =5
T ( ) ~ K Tfiory d- 0 50 100 0 50 100

Frequency (Hz) Frequency (Hz)
S
x 10

The differences between monopolar and bipolar transfer
functions are explained in Sectign B.5. In Fig. 3C, we
show few examples of such a case with different values of
the membrane time constam§,. We observe that the
modulus of the transfer function can present a maximum
which depends omnry,, and therefore of the level of
activity or the “conductance state” of the membrane.

41| Ty =50 ms

(Degree)

Ifp

=3 5

Tm =20 ms

Modulus of V_/V,
m

Phaseinof V_/V

0 50 100
Frequency (Hz) Frequency (Hz)

5 Comparison with experimental results c 1621

Tm =50 ms

Tm =20 ms

Ifp

In this section, we test the resistive or non-resistive reatu
of the extracellular medium by evaluating the transfer
function from experimental data and compare with
theoretical estimates. However, we note that in our
experiments we use bipolar LFPs recorded in rat barrel
cortex, simultaneously with intracellular recordingstie t

m
w’ Vi (Degree)

Modulus of V_/V,
Phase inof V_/V

same cortical area. Since the LFP recordings are bipolar, %o ey iy O ey ™
we use the following form (see Section}4.3):
9 ( ) Fig. 3 Amplitude and phase of the transfer functienas a function
(diff) Rm fY R of frequency for different models and for mono-polar eled&
Fr (f)= m q’ (26) montage. In all cases the transfer function was estimatedfo
m distance of 30um from a spherical source of 1Am radius. A.
with Z(f) = fy/z andy > 1. Here,d is the distance Standard RC membrane model wigh, = 102 F /n? and various
flguratlons for membrane time constapt The extracellular
between the recordlng site and the source (approximat dium conductivity is 8 S/m. B. Non-ideal membrane model (see
1 mm in these experiments). [Bédard and Destexhe (2008)]) with same parameters as and,

with a Maxwell-Wagner timeryw = 5 ms (see Appendix A). The
In the particular case of a Warburg impedange-(1), we extracellular medium is also resistive in this case. Saipgly, we
have: observe a resonance in the phase of the transfer functiowiasied
by (x). C. Standard RC membrane model together with a medium
FT(d'ff)(f) _ ARmif ) B} (27) described by a Warburg Impedan(ig,f';f—\/T where ¢ is frequency
kw(1+iwtm) d independent. We have takep = 0 to illustrate the differences

where R, is a complex constant because a Warbuﬁtween this type of impedance compared to a resistive mediu

d h that f atib | be different than zero in general, with no change to tregoius.
impedance is such t ZI( ) = For a quasi-resistive Note that there is a peak in amplitude of the absolute valubef

mediumZ(f) = 5" & With y very close to zero, we have: transfer function that increases and shifts to lower freqies asm
increasesk indicates a resonance.

' R
FOf - Pn R 28
T (7) Kr (1+iwty) d’ (28)
wherek; is a real constant. wherek; is a purely imaginary constant in this case.

Finally, in the case of a purely capacitive mediwm=2  we now compare Eqd_P7929 with the experimental

and we have: measurements. We have analyzed four neurons in which
EF0) 6y Ry f2 R (29) simultaneoud/y, and (bipolar)V gp were obtained from
T ()= Re (1+iwty) d rat barrel cortexn vivo. Because the theoretical estimates
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are for linear regime activity, our analysis must avoid argilso used a moving average window procedure (see
possible interference with spikes, and focus solely dviethods), which markedly reduces the variance (Eig. 5,
long periods of subthreshold activity as marked by thesets; see dark grey shaded curves superimposed on the
grey shaded boxes superimposed on Yheand LFP original PSD in light grey).
traces (see Fifl4). The bottom panels of Elg. 4 show the
PSD of theVy, and of Vi rp, which display similar The theoretical expressions for the transfer function were
frequency-scaling exponents. Note that the expondiit to the transfer functions reconstructed from the
values of \{, activity lie within the range identified for experiments. These fits were performed for a
other anesthetic conditions, for which the,\éxponent Warburg-type medium (Fid.l5, solid lines), for a resistive
varies between -2 and -3[ [ElBoustani et al (2009medium (dashed lines) and for purely capacitive medium
[Rudolph et al. (2005)] (dashed red lines). Constrained to the frequency range of
3 Hz to 500 Hz, the fit was always markedly better for
To compute the transfer function from these data sets, Wéarburg type impedances, for both cells shown in Elg. 5
evaluate the ratio between the absolute value of thad for both methods, as shown by the values of the
Fourier transform of bothv,, and LFP as shown inresiduals (see Table 1). Note that for a resistive-type
Fig.[HA (light grey curves), which corresponds to the dataedium, as well as for a purely capacitive medium, the
of Fig.[4. As suggested by this similar scaling (bottorparameter estimation (in particular fory) always
panel of Fig[®), the transfer function of the d;ﬁé{“”) reached the boundaries of the constrained values, which

has a mean value that is approximately constant (slogeindicative that the obtained minimum in parameter
zero) for a large frequency range (about 10 Hz to 500 Hgfpace was far from optimal (even if the time constants
(Fig.[BA-B). may coincidentally reach realistic values). To confirm
this, we allowed an unconstrained parameter fit and we
We performed a constrained nonlinear least square fit fgbserved that although the resistive-type would
the three transfer functions (Eqs.] 27] 28 29) to tlseemingly improve the fit (i.e., the initial plateau of the

calculated data transfer functiéd®' ") for the frequency resistive-type curve would shift towards the 10-500 Hz
range between 3 Hz and 500 Hz. The membrane tiff@Nge), it would however provide unrealistic parameter
constant was constrained to physiological ranggnges. For the purely capacitive case, it was always
Tn € [5 ms, 50 n‘s]’ whereas the |umped parametei’mp()SSible to achieve a gOOd fit (i.e., Slope ZerO). This is

a = BoR was allowed to vary for a large set,c [0,10%]. to be expected as the numerator of Egl 29 grows

Note ﬁwa;t we chose not to fit all the parametd®s,(R K quadratically and faster than the denominator, hence it
" o behaves like the identity functiory, = f, as frequency

andd) as some of these parameters are related Q. s . 4
and T,) and there is an indeterminacy about theégnds to infinity. Also note that the polynomial averaging

parameters because they are lumped. In addition so%%orithm of Appendix B always gave better results (see
’ ues of the residuals in Table 1), although performed on

parameters will vary from experiment to experiment. Fof f high . h i inth
instance, electrode coefficients, size of the mea§ured c@lfj?taslet 0 (Ijg_ er Va”?r:_: (5<:omparet e grey lines in the
diffusion constants (embedded in the paraméteias main plots and insets of Fif] 5).

!ndlcated by Egs. . 53-54 Note that the large difference in the residuals between the
in [Bédard and Destexhe (2009)]) will vary across . . o ;
. : : polynomial and moving average fits, in particular for the
different experiments. To fit all these parameters, a . )
. . ; wargburg impedance, can be explained by the fact that the
different experimental protocol would be required tQo ~ = - .
: . moving average does not fully eliminate the variance of
gather the necessary data to disambiguate them. Henge, . - . o
. ) . €'signal, while all the variance is virtually removed by

we decided to lump them into the single parametemnd

-~ . the polynomial method (see magenta curves in
also for the fitting purpose we considerand 1, to be _. .
independent. Fig. [BA-B). The error increases even further for larger

frequencies as the slope starts to change, possibly due to
To ensure soundness in the parameter fitting, W her phenomena, Wh'_Ch the mod_el does not capture.
employed two different averaging techniques to tH%SO note that pglynomlal_and moving average methods
transfer function FTdiff (see Methods). Polynomial were compared in a previous study (see. chapter 14 and
averaging techniques (see Appendix B) are known ng' 14.8.1 in [[Press etal. (2008)]), which should be

produce robust results when the variance of the signalcl{%nsfu“ed for details. We.stress that for the Warlgurg type
very high [Press etal. (2008)]. This method is applie@ed'um that values obtained faoy, anda are consistent
here in the frequency domain, and virtually suppresses I'fh the Qata and theqretlcal predlctlor_]s. In particulae, t
of the variance of the transfer function (Fig. 5A-B, maif"€°"Y with Warburg .|rr.1pedance predlct§ that the values
plots; see the dashed magenta curves). In addition, Wea should be negligible for frequencies greater than
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1Hz (see Egs. 53-54 in  Appendix ofA
ref. [Bédard and Destexhe (2009)]). 10

Similar results were also obtained for two other cells ¢~ 1’
the same database (not shown). The same results w
also found by performing a similar analysis on anotht
data set consisting of simultaneous intracellular and LF
recordings in awake cats (not shown; data froi

[Steriade et al. (20017a)], courtesy of Igor Timofeev, Lavisi- o* | g

University, Canada).

1, LFP

Wi stk bl

-05 10° 10 10° 10’
14 Frequency (Hz)

20+ Vm B ,

mV
o
|

>
£ -20 | .
10
40 4
,60 J
‘ ‘ ‘ ‘ ‘ ; ; ‘ ‘ 10° |
0 5 10 15 20 25 30 35 40
Time(s)
10*
. PSD
10 g P
ST -

mv2/Hz

108t i 10 10 10° 10
Frequency (Hz)

Fig. 5 Transfer functiorFT(di”) computed from experimental data.

= , The top panel corresponds to the cell shown in Elg. 4 and the

1
10 10’ 10 10" pottom panel to a different cell. The experimentally caited
Frequency (Hz) (diff) -
Fr (shown in light grey) shows an average slope of zero for

Fig. 4 Power spectra of simultaneous intracellular and LFfequencies between about 3 Hz and 500 Hz, and is compared to
recordings in desynchronized statesvivo. The top panels depict the best fits using a Warburg-type medium (solid black liree),
the time series of simultaneously recorded bipolar LFP ¥rd resistive medium (black dashed line) and purely capacitiegium

from rat barrel cortex in light anesthesia with low-ampdiéu (red dashed line). Two different methods were used to catieuhe
desynchronized EEG (all recordings at zero current). Thelasth best nonlinear least square fit, a polynomial averagingrikgo

grey box indicate the time periodr (~ 38.69 s) of subthreshold (main plots, third-order polynomial average shown as dadhee
activity selected for analysis. The bottom panels are theutzted curves; see Appendix B for details) and a moving average odeth
Power spectra (PSD) of both,V(top plot in dark grey) and whichreduces the variance of the PSD (insets; see Methiods)th

LFP (bottom plot in light grey), which show similar scaling.cases, the fit was constrained to frequencies between 3 @nldA0
Superimposed, in black, are the moving average PSD withdomin  The parameters of the respective fits are given in Table 1.

of ~ 7.7sec (see Methods). This procedure results in a PSD with

reduced variance but also reduced frequency resolutioa.tdtal
number of points analyzed was N=386900 (betwe&hahd 29). - -
The similar scaling between yand LFP is highlighted by the 6 Discussion
overlaid white lines that have exaciope = —2. In particular, the

V, scales with an exponent comprised between -2 and -2.4, while

the LFP exponents range between -1.9 and -2.6. In this paper, we have examined the transfer function
between intracellular and extracellular potentials. By
using a mean-field approximation in Fourier frequency
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Cell Impedance type, & Tm a of correlation is unavoidable from the redundant
connectivity of neurons in cortex, although the activity
Cell1 | Warburg 34x1%? | 175ms!| 1.43 itself can produce negative corr_eliations which may cancel
Resistive 5x 103 5ms 194.94 the effect of redundant connectivify [Renart et al. (2010)]
Capacitive 1x10° 15ms | 0.001 Second, it is evident that the activity cannot be totally
. . decorrelated, otherwise the EEG amplitude would be
Cell 1% | Warburg 32x10° | 148ms| 1.22 close to zero [[Gold etal. (2006)]. Nevertheless, the
Resistive 1.3x10° | 5ms 111.74 i : : .
Capacitive 43x10 | 15ms | 0.010 ampllltude of the EEG durlng_ desynchrom_zed statgs_ is
considerably lower than during synchronized activity
Cell2 | Warburg 34x10 | 245ms| 1.3 (such as slow waves), which is associated to a general
Resistive 5x10° | Sms 186.10  decorrelation of neurons [Contreras and Steriade (1996)],
Capacitive 78107 | 50ms | 0.004 and the present formalism should be applicable to such
Cell 2¢ | Warburg 14x10F | 24.4ms| 1.28 desynchronized states. Further studies should consider
Resistive 1.7x10° | 5ms 63.84 these points to build more realistic mean-field models of
Capacitive 9.3x10f | 50ms | 0.002 desynchronized states, which would lead to more realistic

Table 1 Parameters for the fitting of the transfer function tdransfer functions.

experimental data for different types of extracellular @dance.

€ = |ly = Y(tm, a)|[2: squared 2-norm of the fit residual, wherein a previous investigation [Bédard and Destexhe (2009)],
y denotes the data ang(m,a) represents the various modely, o 'haye shown theoretically that several physical
(Warburg, Resistive and Capacitiva),: membrane time constant
anda = ReR (refer back to equations in the main text), which ar@N€nomena can lead to frequency dependence of the
obtained by the fitting procedure. Cell 1 and Cell 2 corresigora)  €Xtracellular medium: ionic diffusion and membrane
and b) in Fig[®; Cell 1* and 2* refer to the values obtainedhia t polarization. The former predicts an impedance of

same cells using the moving average method (Fig. 5, insets). Warburg type Z ~ 1/,/T), while the latter predicts a

capacitive-type impedance Z( ~ 1/f)
[Beédard et al. (2006b)]. These two phenomena can also

space, we derived a method allowing us to obtain a@xplain different experimental observations: the
expression relating the LFP with the intracellulag, V frequency dependent conductivity observed
activity. The main theoretical finding is that this transfegxperimentally in brain tissué [Gabriel et al. (1996)] can
function (which does not depend on the frequendye reproduced by a combination of these two
spectrum of current sources) takes very different fornmsechanisms. Recent measurements from monkey cortex
according to the type of frequency dependence of teaggesting resistive mediuni [Logothetis et al. (2007)]
extracellular medium, and thus could be used as a meaas be explained by the fact that the influence of diffusion
to estimate which type of frequency dependence (if anyas avoided in that case. This technique is based on the
is most consistent with experiments. Second, we hagaturation effect (Geddes effect, which is represented by
applied this formalism to intracellular recordings irzener diodes in[Logothetis et al. (2007)]), which greatly
desynchronized EEG states, for which the mean-fiediminishes the concentration gradient around the
approximation should best apply. We found that, in raflectrode, such that the ionic diffusion is more limited. A
barrel cortex, the extracellular medium seems frequengyarburg type impedance was also found to account for
dependent with a Warburg type impedance. the 1/f power spectral structure of LFPs (see details in

[Bédard and Destexhe (2009)]).
One key assumption of the present formalism is that

individual synaptic currents sources are uncorrelateThe present results are consistent with this analysis. The
There is ample evidence that this is the case famnsfer functions measured here for 4 cells are all
EEG-desynchronized states, as shown by the low levetnsistent with the Warburg type impedance of ionic
of correlation between simultaneously recordegiffusion up to 500 Hz. The other type of extracellular
units [Contreras and Steriade (1996)mpedances mentioned above, either purely resistive or
[Destexhe et al. (1999), Gawne and Richmond (1993), purely capacitive, could not fit the data (see Hig. 5).
[Steriade et al. (2001l), Zohary et al. (1994)], or by th@/hile these results seem to rule-out purely resistive or
low correlations between multi-sitecapacitive media, there is still a possibility that theyIspp
LFPs [Destexhe et al. (1999)]. However, there are limitsutside the 3-500 Hz frequency range. For example,
to this assumption. First, dual recordings in awake migmlarization phenomena, which can be modeled as a
barrel cortex showed that the subthreshold activities chpacitive effect with a low cutoff frequency

neurons can display periods of significant correlatiofBedard et al. (2006b)], may contribute to the low
even with desynchronizedfrequency range (below 10 Hz). Further theoretical and

EEG [Poulet and Petersen (2008)]. Indeed, a certain level
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experimental work is needed to investigate these aspeetdracellular medium as a function of frequency (still
In particular, experiments should be carried witlwithin the mean-field approximation). We did not attempt
controlled current sources as close as possible to thés type of approach here, but instead considered
biological current sources, for example usingdifferent hypotheses concerning the impedance of the
micropipettes. medium. The present analysis reported here for 4 cells
was also confirmed by using two cells from another
It is important to keep in mind that the present methaghtabase of intracellular recordings in desynchronized
derives from a mean-field approach in frequency spagEG states in awake animals (courtesy of |. Timofeev,
and thus relies on the assumption that individual currepéval University, Canada), which also indicated a
sources are independent. This justifies the use \Warburg type impedance (not shown). The same
desynchronized EEG states, in which synaptic currempproach should be extended to a much larger sample of
sources are expected to have very low correlation. Tbells and brain states, to provide a full estimate of the
simulations presented in Figl. 2 (bottom panels) show thaipedance spectrum of the medium. The present results
the LFP predicted by a compartmental dendritic model iserefore must be considered as preliminary and must be
virtually identical to that obtained by individualconfirmed by using further analyses of simultaneously
compartments, which suggests that considering a setreforded LFPs and intracellular recordings during
independent sources is not a bad approximatioesynchronized EEG statiasvivo.
However, if strong correlations occur, such as during
synchronized population activities, the current sources
may no longer be considered as independent, and another
formalism should be used.

A recent study on modeling extracellular action potentials
[Pettersen and Einevoll (2008)] showed that the cable
structure of neurons can also cause low-pass filtering,
because the return current is itself filtered by th . :
: L %Jé)endlx A: impedance for non-ideal membranes

membrane capacitance. This is a clear example where t

correlation between current sources cannot be neglected.

However, we showed here that such a contribution ji§ this section. we derive the expressions for the

negligible forin vivo conditions (Fig[2A,B), presumablyjmpedance of non-ideal membranes, which take into

because the axial currents are very small compared {0 the o nt that the membrane capacitance cannot be charged

intense synaptic currents. So far, the only plausiblgsiantaneously (see Bedard and Destexhe, 2008). Still
physical cause to explain the observed filtering under \yithin the linear regime and for a spherical source, we
invivo conditions is ionic diffusion (for frequencies up tg, 5 e-

500 Hz). It is possible that for states of reduced synaptic

activity, the filtering due to morphology plays a role,

although this still needs to be demonstrated

experimentally Further studies should investigate these N

aspects by constraining these different theories by lr:_Zgi (t,Vin) (Vim(t) — Ei)
appropriate experiments. =

L= dVe
One major criticism to the previous measurement ¢ Cm?
techniques [[Ranck (1963), Gabriel et al. (1996), (30)
[Logothetis et al. (2007)] is that they use current | —|, +I
intensities of one or several order of magnitude larger
than biological sources, and these currents evidently dVe dVe
interact with the medium very differently as natural Vm=Vc+ RMWCmE =Vc+ Tw g
sources. The present method has the advantage of not
suffering from this limitation, because it is using only
passive recordings of physiological signals, with no need
of injecting currents. This method should therefore baevhere all parameters have the same definition as in the
considered as complementary to direct measurements.main text, except for,,,, which is the Maxwell-Wagner

resistance which gives the non-ideal aspect of the

Finally, the expression given by E¢sl]24 26 could lbgembrane capacitance. The associated time constant,
used to directly estimate the impedance of thg,, is also known as “Maxwell-Wagner time”.
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In the linear regime, we have data and model via a minimization problem (in the
frequency space) as follows
N
Alr =S Gi (Vi) [1)AVin argming, o||y(f) = 9(f,tm,a)||, f € [3Hz500HZ,
i=1 (34)
dAV, .
Alg =Ch—— where y(f) represents the transfer function (after a
dt (31) Fourier transform or PSD has been applieg):) "
represent the various model transfer functions (i.e.
Alm = Alr +Ale Warburg, resistive or capacitive) parameterizedynd
a. Since the theory we develop only explains changes in
AszAVCJrTMW% the slqpe Qf the mean oy(f),. then to a firsF ord.er
dt approximation the above equation can be re-written in the

following way

Thus, in these conditions, the system of equations R
associated to the membrane is linear WwitB"9MiNg, of| <y>(f)—Y(f,mm a)[|, f€[3HZ500H7

time-independent coefficients. (35)

By expressing the variation of current produced by tHéhere the operatok - > is the mean of the data in

cell as a function of the variation of membrane voltage, fi¢quéncy domain. Any technique can be taken to
Fourier space, we obtain: evaluate the mean such as the moving average. However,

the moving average does not completely remove the
variance and is not general enough. Since Fourier

Alr(f) = GmAVim(f) transform of the transfer function or its PSD show a large
variance we remove entirely this variance by employing
Ale(f) = iwCrAV,(f) the following polynomial algorithmic filter.
(32) 1. The Fourier transform of the signals is integrated
Alm(f) = Al (f)+Alc(f) relative to frequency:
f
AVin(f) = AVe() +iwT, AVe() G(f)=/f_ F(f")df’ (36)
where fnin is the minimal frequency considered with
where N f < Fmax, and F(f') is the signal for which the mean
Gm="Y g function must be obtained. This integration gives a
i; function of frequency which is very close to the integral

of the mean function, which is true for the signals

. o considered here.
It follows that the membrane impedance is given by:

2. To smooth the functio®( f), a minimum variance fit is

Zn(f) = AVin( 1) = _R”;,T (33) performed using a third-degree polynomial:
Al(f) 1+ i
G (f) =Agf3+ Apf2 - Arf +Ag+O(F4) . (37)
h = . Note that if ww =0, _ _
whereRm = g, . Note that if we ser 0, we recover Note that higher-order polynomials can be used to

the same expressions for the impedance of ideI?A rove accuracy. However, in our case we did not
membranes, as considered in the main text. P y. ’

observe any gain for orders larger than three.

- - - - 3. This polynomial was formally derived to find the
Appendix B: Polynomial averaging algorithm for expression of the mean functienF > (f)
frequency-dependent signals

*

dG
<F>(f)= =3Asf2 4+ 28 F + A;. (38)

df
The polynomial averaging technique consists of fitting a
polynomial to the cumulative distribution of the
amplitude of the signal in frequency space. According ftdote that this algorithm is general and does not depend
this procedure, one evaluates the difference between tme any hypothesis concerning the stationarity of the
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