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Abstract We examine the properties of the transfer
function FT = Vm/VLFP between the intracellular
membrane potential (Vm) and the local field potential
(VLFP) in cerebral cortex. We first show theoretically that,
in the subthreshold regime, the frequency dependence of
the extracellular medium and that of the membrane
potential have a clear incidence onFT . The calculation of
FT from experiments and the matching with theoretical
expressions is possible for desynchronized states where
individual current sources can be considered as
independent. Using a mean-field approximation, we
obtain a method to estimate the impedance of the
extracellular medium without injecting currents. We
examine the transfer function for bipolar (differential)
LFPs and compare to simultaneous recordings ofVm and
VLFP during desynchronized states in rat barrel cortexin
vivo. The experimentally derivedFT matches the one
derived theoretically, only if one assumes that the
impedance of the extracellular medium is
frequency-dependent, and varies as 1/

√
ω (Warburg

impedance) for frequencies between 3 and 500 Hz. This
constitutes indirect evidence that the extracellular
medium is non-resistive, which has many possible
consequences for modeling LFPs.
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1 Introduction

There is a widespread consensus that mechanisms for
generating the intracellular electrical activity are very
well understood, however not complete. In contrast, much
less is known about the the genesis of extracellular
potentials, which is a subject of intense research. This is
associated to the difficulty in assigning measurements of
the extracellular potentials to a unique neurophysiological
generator, which makes modeling of LFP/EEG a complex
issue. Some of these mechanisms are believed to be
related to synaptic activity, synchronous population
spikes, ephaptic interactions, ionic dynamics,
morphological structure of the neurons and many other
processes (reviewed in [Jefferys (1995),
Nunez and Srinivasan (2006)]).

One of the characteristics of extracellular potentials is the
very steep attenuation of “fast” events such as spikes,
which are visible only within the immediate vicinity (a
few microns) of the electrode. In contrast, “slow” events
such as synaptic potentials are visible for much larger
distances, typically a few hundred microns
[Destexhe et al. (1999),Katzner et al. (2009)]. One way
to explain this differential filtering is that the extracellular
medium acts as a powerful low-pass filter
[Bédard et al. (2004)]. However, this aspect is
controversial because some measurements of brain
conductivity did not display significant filtering effects
[Logothetis et al. (2007)] while other measurements did
[Ranck (1963),Gabriel et al. (1996)]. Some of these
experiments [Gabriel et al. (1996)] used careful controls,
such as correcting for electrode polarization, showing the
different frequency-dependence of various biological
tissues, but most importantly, the independent
measurements of conductivity and permittivity with
theoretical constraints (Kramers-Kronig relations)
[Gabriel et al. (1996)]. The recent measurements
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employed a sophisticated four-electrode measurement
setup to yield more accurate measures
[Logothetis et al. (2007)]. However, despite such
controls, these measurements used current intensities that
are much larger than biological sources, which may
explain the discrepancy [Bédard and Destexhe (2009)].

In the present paper, we provide theoretical work and
analyze experimental measurements to examine whether
the extracellular medium is non-resistive. We examine a
quantity which depends on the extracellular impedance,
the transfer function between simultaneously recorded
intracellular and extracellular potentials. We show
theoretically that, in the linear regime and for
desynchronized states, the transfer function calculated
from an (intracellular) single recording site strongly
depends on the extracellular impedance, and can
therefore be used to investigate its frequency dependence.
We show preliminary results from desynchronized states
in vivo, which indicate that the extracellular medium is
indeed frequency dependent. We relate these findings to
previous work and discuss their possible implications for
modeling LFPs/EEG.

2 Methods

The experimental data used in this paper were taken from
a large database of cells [Wilent and Contreras (2005a),
Wilent and Contreras (2005b)], in which we selected
intracellular recordings with long periods of subthreshold
activity, simultaneous with LFP recordings in the vicinity
(1 mm) of the intracellular electrode, and in light
anesthesia with desynchronized EEG.

2.1 Surgery and Preparation

Experiments were conducted in accordance with the
ethical guidelines of the National Institutes of Health and
with the approval of the Institutional Animal Care and
Use Committee of the University of Pennsylvania. Adult
male Sprague-Dawley rats (300-350g, n=35) were
anesthetized with isoflurane (5% for induction, 2% during
surgery), paralyzed with gallamine triethiodide, and
artificially ventilated. End tidal CO2 (3.5-3.7%) and heart
rate were continuously monitored. Body temperature was
maintained at 37◦C via servo-controlled heating blanket
and rectal thermometer (Harvard Apparatus, Holliston,
MA). The rat was placed in a stereotaxic apparatus and a
craniotomy was made directly above the barrel cortex
(1.0-3.0 mm A/P, 4.0-7.0 mm M/L), and the dura was

resected. The cisterna magna was drained to improve
stability. For intracellular recordings, additional measures
were taken to improve stability, including dexamethasone
(10 mg/kg, i.p.) to reduce brain swelling, hip suspension,
and filling the craniotomy with a solution of 4% agar.

2.2 Electrophysiological Recordings

Recordings of local field potentials (LFPs) across the
cortical depth were performed with 16-channel silicon
probes (Neuronexus, Ann Arbor, MI). Probe recording
sites were separated by 100µm and had impedances of
1.5-2.0 MΩ at 1 kHz. The probe was lowered into the
brain under visual guidance, oriented normal to the
cortical surface, until the most superficial recording site
was aligned with the surface. All neurons were
regular-spiking cells, and had spikes with about 2 ms
width, so they were presumably excitatory. All LFP
signals shown here were obtained by pairs of
closely-located (400-500µm apart) electrodes arranged
vertically (surface-depth), and were amplified and
band-pass filtered at 0.1 Hz–10 kHz (FHC, Inc.,
Bowdoinham, ME).

Intracellular recordings were performed in barrel cortex
with glass micropipettes pulled on a P-97 Brown Flaming
puller (Sutter Instrument Company, Novato, CA).
Pipettes were filled with 3M potassium acetate and had
DC resistances of 60-80 MΩ . A high-impedance
amplifier (low-pass filter of 5 kHz) with active bridge
circuitry (Neurodata, Cygnus Technology, Inc., Delaware
Water Gap, PA) was used to record and inject current into
cells. Vertical depth was measured by the scale on the
micromanipulator. A Power 1401 data acquisition
interface and Spike2 software (Cambridge Electronic
Design, Cambridge, U.K.) were used for data acquisition.

2.3 Analysis and simulations

All simulations and analyses were realized using
MATLAB (Mathworks Inc, Natick, MA), except for
compartmental model simulations (see below).

The analysis of the PSD was performed using two
different methods. A constrained nonlinear least square fit
of the analytic expressions for different possible transfer
functions (see Eq. 27 and Eq. 22 in Results) was
performed to the transfer function calculated from
experimental data. The fit was constrained to frequencies
between 3 Hz and 500 Hz and the parameters of the
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transfer functions were constrained to the physiological
range (see Results for details).

Because the PSD and calculated transfer functions had
large variance, two different methods were used to
perform the fitting. First, a polynomial averaging
algorithm was used to calculate the mean value of the
PSD, and the fit was performed against this mean value
(see details in Appendix B). Second, a moving average
window procedure which consisted of partitioning the
data set into five epochs (corresponding to about 7.7 sec
for one cell and about 4.4 sec for the second cell, and
additionally applied a Hanning window to each epoch (a
Hamming window was tested as well, and gave similar
results). This method markedly reduces the variance of
the PSD and of the transfer function. Other choices for
window length were also tested and yielded similar
results as those shown in the figures (not shown).

2.4 Compartmental model simulations

Compartmental models were simulated using the
freely-available NEURON simulation
environment [Hines and Carnevale (1997)]. A
16-compartment “ball-and-stick” model was simulated,
based on a soma (area of 500µm2) and 15 dendritic
compartments of equal length (46.6µm) and tapering
diameter (from 4µm at the soma up to 1µm at the distal
tip), so that the total cell area was of 6000µm2. Each
compartment had passive properties, with axial resistivity
of 250 Ω ·cm, specific capacitance of 1µF/cm2, resting
membrane conductance of 0.45 mS/cm2 and reversal
potential of -80 mV.

To simulate high-conductance states similar toin vivo
measurements, each dendritic compartment contained
two randomly fluctuating synaptic conductances (model
from [Destexhe et al. (2001]) which were adjusted so that
the mean excitatory and inhibitory conductances were
respectively of 0.73 and 3.67 times the resting
conductance. These values represent mean values of the
“spontaneous” synaptic activity during activated statesin
vivo, according to intracellular measurements (see details
in [Destexhe et al. (2003]). We verified that using these
parameters, the subthreshold Vm activity of the cell was
conform to typical intracellular measurements during
desynchronized-EEG states, as for example in the
experiments reported here.

In a separate set of simulations, the synaptic inputs were
present only in the most distal compartment. In this case,

all synaptic conductances were set to zero in all other
compartments.

The LFP generated by this compartmental model was
calculated at the level of the stem dendrite, 50µm lateral
to the dendritic axis, assuming a purely resistive medium,
according to the expression:

VLFP =
Re

4π ∑
j

I j

r j
, (1)

where Re = 230 Ω ·cm is the extracellular
resistivity [Ranck (1963)], I j is the total membrane
current of compartmentj, andr j is the distance between
compartmentj and the extracellular position where the
LFP is evaluated. The LFP of the full model was
compared to the LFPs calculated from each individual
current source similar to above, withV ( j)

LFP = Re
4π

I j
r j

.

3 Theory

In this section we formulate a theoretical relationship
between extracellular and intracellular sub-threshold
voltage activity. We consider a linear electromagnetic
regime, which is defined by the fact that the linking
equations are linear in frequency space. In such case we
have j f = σ f E f , D f = ε f E f andB f = µ f H f where the
second-order symmetric tensorsσ f , ε f and µ f do not
depend onE f andH f . σ f , ε f andµ f depend on position
in general. In other words, we will work in the
subthreshold voltage range, for which we assume linear
current-voltage relations, and that conductances are not
voltage dependent. Henceforth, we will refer to this
dynamical state as ”linear regime”. We also assume that
the cortical tissue is macroscopically isotropic, in which
case the tensors become scalar functions.

We will also formulate the model in the frequency
domain, to easily enable comparison between the amount
of intracellular and extracellular signal within each
frequency band, which is readily accessible from
experimental data. The advantage of this approach is
simplicity as it avoids tackling directly the different time
scales inherently associated to LFP/EEG signals, many of
which are not yet understood. For example, it is known
that LFP/EEG signals are composed of mixed-mode
oscillations, however the origins and transitions between
these modes are not yet explained
[Erchova and McGonigle (2008)]. The choice of working
in the frequency domain also seems natural because the
differential equations describing electric potentials
transform into algebraic equations in frequency space.
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The formulation of the relation between transmembrane
(Vm) and extracellular (VLFP) activity requires to derive
the transfer function,FT , that measures the ratio between
the impedance of the cellular membrane and extracellular
medium. To obtain this, we start from a general
formalism whereVLFP is expressed as a function of a
large number of current sources located at different
positions in extracellular space (Section 3). We then show
under what conditions this formalism can reduce to a
single current source, and derive the impedance for this
current source (Section 3.3) and derive the corresponding
transfer functions (Sections 3.4 to 3.5).

In the following, we use the notationF( f ) or Ff to denote
the functionF in Fourier space with frequencyf andω =
2π f .

3.1 General model with multiple current sources

We start from the general model in Fourier space:

VLFP(ri, f ) =
N

∑
j=1

R j

di j
Zmed

j ( f )I j( f ) , (2)

where VLFP(ri, f ) is the extracellular potential at a
positionri as resulting from a set ofN monopolar current
sourcesI j( f ). R j is a constant,di j is the distance between
sourcej and positionri, andZmed

j is the impedance of the
extracellular medium around sourcej. This model is
based on the property that any charge distribution in
space and frequency can be expressed as a sum of
monopolar sources. This therefore applies to complex
current distributions in the complex dendritic structures
of many neurons surrounding the recording siteri (see
Fig. 1A), and thus, this formalism is general.

If we assume that the extracellular medium is electrically
homogeneous, the extracellular impedanceZmed

j is the
same for every pair of pointsi, j, and the local field
potential becomes:

VLFP(ri, f ) = Zmed( f )
N

∑
j=1

R j

di j
I j( f ) (3)

We also assume that the network activity is of low
correlation, as typically found during desynchronized
network statesin vivo, such as in awake animals, or
during the “up-states” of anesthesia. In such states, it was
shown that the activity is very irregular with low levels of
correlation between cortical neurons
[Destexhe et al. (1999),Gawne and Richmond (1993),
Steriade et al. (2001b),Zohary et al. (1994)]. As a

Fig. 1 Arrangement of potentials and impedances. A. Scheme of
the general model where the local field potential (VLFP) is generated
by a large number of individual monopolar current sources (red)
distributed in soma and dendrites of neurons in the network.If the
activity of these current sources is desynchronized, the system can
reduce to a single current source using a mean-field approximation.
B. Scheme of an individual current source, which is assumed to be
of spherical symmetry with homogeneous extracellular medium, so
that there is no position-dependence of conductivity or permittivity.
V i andV e are the electric potentials, respectively inside and outside
of the membrane, relative to a reference potentialR∞

f = 0 situated at
an infinite distance. The membrane potentialVm is the difference
betweenVi andVe. VLFP is the local field potential, which is the
voltage difference between a pointP in extracellular space andR∞

f .
C. Equivalent electrical circuit for each current source, whereZm is
the impedance of the membrane, whileZa andZb are impedances of
the extracellular medium.

consequence, we can consider that the dendritic structure
is bombarded by noisy synaptic events that are essentially
uncorrelated, and if we assume that this activity primes
over the deterministic link between individual current
sources (see Section 3.2 for a test of this assumption),
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then the field produced by the ensemble ofN current
sources is equivalent to the field produced by independent
sources. the variables

R j
di j

and I j can be considered as
statistically independent, and by averaging over the
ensemble of current sources, we obtain:

VLFP(ri, f ) = Zmed( f )
N

∑
j=1

R j

di j
I j( f ) = Zmed( f ) R̄D Ī( f ) .

(4)

Here, the LFP has been expressed as a function of a
“mean current source” (in the spatial sense)
Ī( f ) = N < I j( f ) > | j and whereR̄D = <

R j
di j

> | j
1. This

formulation is equivalent to a mean-field theory expressed
in Fourier space and where we consider the LFP as
generated by the mean current source contribution.

3.2 Testing the assumptions of the formalism

To verify some of the assumptions of the formalism, we
have simulated a ball-and-stick dendritic model subject to
fluctuating synaptic conductances (Fig. 2). In a first set of
simulations, the synaptic conductances (model from
[Destexhe et al. (2001]) were located only at a single
dendritic location. This case produced LFPs which were
markedly filtered by the dendritic structure (Fig. 2A,
middle panel), as described previously
[Pettersen and Einevoll (2008)]. This type of filtering is
due to the fact that in dendritic structures, the return
current (which participates to generate the LFP) is filtered
by the membrane. In another set of simulations, we have
considered a more realistic situation in which the synaptic
conductances were located at all locations of the dendritic
structure, so that the total conductance matches that
measured experimentallyin vivo [Destexhe et al. (2003].
In this case, the filtering due to morphology was
negligible (Fig. 2B, middle panel), presumably because
synaptic currents largely dominate over axial currents.
These simulations suggest that the filtering due to
morphology can be neglected forin vivo–like conditions,
and that in such conditions, the filtering must come from
another origin, such as the extracellular medium.

To test the validity of a mean-field approximation, we
have plotted the PSD of the LFP generated by each
individual source in the ball-and-stick neuron (Fig. 2A,B,
bottom panels). In the case the synaptic current is located
at a single dendritic location, the PSDs of individual
sources are all different (Fig. 2A, bottom), because of the
filtering due to the morphology. However, in the case of

1 Note that for desynchronized activity, we expect that such a
spatial average will be of small amplitude, as indeed typically found
for the “desynchronized EEG” condition investigated here.

Fig. 2 Test of the assumptions of the formalism using a ball-and-
stick model. A. Top: scheme of the model. Excitatory (blue) and
inhibitory (red) random synaptic conductances (model taken from
[Destexhe et al. (2001]) were inserted in the distal compartment of a
ball-and-stick model with 16 compartments (see Methods). Middle:
LFP calculated from the total membrane currents, at 50µm from
the neuron. Middle: PSD of the LFP, which showed a marked
filtering due to the neuronal morphology, as described previously
[Pettersen and Einevoll (2008)]. Bottom: PSDs obtained from the
LFP of each individual source. B. Same simulation as in A,
but the random synaptic inputs were distributed in all dendritic
compartments and were matched to the the conductance state
observedin vivo. Middle: the filtering due to morphology was
negligible in this case. Bottom: individual PSDs are very similar,
suggesting that a mean-field approximation is justified in this case.
The dotted curves represent the optimal fit to the PSD in B, using a
Lorentzian function 1/(1+ωnτn) with n = 1.8 and rescaled to the
maximum of each PSD.

distributed current sources, the PSDs of different current
sources are very similar (Fig. 2B, bottom). This similarity
also extended to LFPs calculated from different locations
in extracellular space, which produced LFPs of different
amplitudes, but with almost superimposable PSDs (not
shown). These simulations suggest that, for inin
vivo–like states, a mean-field approximation is
reasonable.

3.3 Membrane impedance for a spherical source in the
linear regime

In the previous sections, we assumed that the LFP
generated in desynchronized network states has
equivalent properties to that produced by a “mean current
source”. We now calculate the membrane impedance for
an individual current source of spherical symmetry,
embedded in a medium which is homogeneous/isotropic
and continuous, and with electric parametersσ f , ε f

2. The

2 Note that we keep the electric parameters frequency dependent,
to keep the expressions as general as possible. In addition,the
theory can easily be generalized to multipoles, as any multipole
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cell is represented by an RC circuit where the membrane
potential is expressed as the difference
Vm = Vi − Ve ≈ −70 mV (Fig. 1B). At the resting
membrane potential, there is a net negative chargeQ−
inside, which is perfectly balanced with a net positive
chargeQ+ on the external surface of the membrane, such
that Q− + Q+ = 0. In this situation, the electric fieldE
produced by the cell in the medium is null, which implies
thatVe = V ∞

f = 0, whereV ∞
f is the reference potential at

infinite distance from the source.

Suppose that a small excess of positive charge is injected
inside the cell. Due to this excess of charge, an electric
field E will instantaneously appear in extracellular space.
An electric current will also appear to restore the
equilibrium (and therefore will give rise to a variation of
the electric field). The current produced depends on the
physical and biological characteristics of the membrane,
which will determine the time evolution of the electric
field. The current is given by:

Ir =
N

∑
i=1

gi (t,Vm)(Vm(t)−Ei)

Ic = Cm
dVm

dt
(5)

Im = Ir + Ic

where Ir and Ic are the ionic and capacitive currents,
respectively. The indexi represents the different
membrane conductancesgi, with their reversal potential
Ei, andCm is the membrane capacitance.

In the following, we will assume that the excess of charge
remains small and varies around a stationary mean value,
so that we can can neglect the time variations of
conductances and of theVm (∆Vm), with ∂ gi

j/∂Vm ≈ 0. In
this case, we can consider that the conductances are only
function of the mean value of theVm. This is equivalent to
assume that, in the subthreshold regime, the conductances
are not dependent on the potential, and that the reversal
potentialsEi are constant. This is valid if the impact of
ionic concentration changes onEi are negligible
compared to the voltage variations.

configuration can be decomposed in a sum of monopoles, and to
multiple sources using the linear superposition principle.

Under these approximations, we can write:

∆ Ir =
N

∑
i=1

gi (〈Vm〉 |t)∆Vm

∆ Ic = Cm
d∆Vm

dt
(6)

∆ Im = ∆ Ir +∆ Ic

(7)

Here, we have a linear system of equations with
time-independent coefficients. By expressing the
variation of current produced by the cell as a function of
the variation of membrane voltage, in Fourier space, we
obtain:

∆ Ir( f ) = Gm∆Vm( f )

∆ Ic( f ) = iωCm∆Vm( f )

(8)

∆ Im( f ) = ∆ Ir( f )+∆ Ic( f )

where

Gm =
N

∑
i=1

gi .

The impedance of the membrane is given by:

Zm( f ) =
∆Vm( f )
∆ I( f )

==
Rm

1+ iωτm
(9)

whereRm = 1
Gm

.

We next define the theoretical transfer function, which
provides a relation (in this case, in the frequency domain)
between LFP andVm, as FT (r , f ) = Vm

Vl f p
(r , f ). Having

defined above the impedance of the membrane we now
require to define the impedance of the medium to fully
characterize the transfer function. Consequently, in
subsequent sections, we define the transfer function in
general form and we then consider particular cases due to
different recordings montages (bipolar and monopolar)
and various types of media.
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3.4 Computing the transfer function of each current
source.

In this section, we calculate separately the two transfer
functions:

F(1)
T ( f ) =

Vm( f )
Ve( f )

and

F(2)
T (d, f ) =

Ve( f )
VLFP(d, f )

.

F(1)
T ( f )3 can be calculated from the equivalent circuit

shown in Fig. 1C. We have the following relations:

Zmed(R, f ) = Za(d, f )+Zb(d, f ) (10)

Vm( f ) = Vi( f )−Ve( f ) (11)
Vi( f )

Zm( f )+Zmed(R, f )
=

Ve( f )
Zmed(R, f )

(12)

whereR is the radius of the current source andd is the
distance relative to the center of the source. It follows that

F(1)
T ( f ) =

Vm( f )
Ve( f )

=
Zm( f )

Zmed(R, f )
(13)

F(2)
T (d, f ) can also be calculated based on the equivalent

circuit of Fig. 1C:

F(2)
T (d, f ) =

Ve( f )
VLFP(d, f )

=
Za( f )+Zb(d, f )

Zb(d, f )
(14)

We note that if Za and Zb have the same frequency

dependence, for examplef n, thenF(2)
T is independent of

frequency when the medium is macroscopically
homogeneous. For example, if both media have a
Warburg impedance (Z ∼ 1/

√
f ) or capacitive impedance

(Z ∼ 1/ f ), the functionF(2)
T has the same value as for the

case of a resistive medium (frequency independent
impedance). For a spherical source and for an
extracellular position at a distanced from the center of
the source, we have:

F(2)
T (r , f ) =

Ve( f )
VLFP(r , f )

=
d
R

(15)

where R is the radius of the current source. In this
relation, the resistance of a spherical shell of radiusr in
an isotropic and homogeneous medium of infinite

3 Note that the notationF (n)
T stands for different functions and not

for nth order derivative.

dimension equals 1
4πσr , which corresponds to the sum

Za +Zb whenr = R andZb whenr = d.

In the case of a heterogeneous isotropic medium, we have
[Bédard and Destexhe (2009)]:

Z(r, f ) =
1

4πσz(R)

∫ ∞

r
dr′

1
r′2

σ f (R)+ iω ε f (R)

σ f (r′)+ iω ε f (r′)
(16)

for a spherical and isopotential source.σz represents the
complex conductivity. In the absence of spherical
symmetry and with non-isopotential sources, it is
necessary, in general, to solve differential or integral
equations derived from Maxwell equations in the
quasi-static regime (neglecting electromagnetic
induction; see [Chari and Salon (1999)]).

It is important to note that the expressions above for the
transfer function are independent of the particular
frequency spectrum of the current sources.

3.5 Frequency dependence of differential (bipolar)
recordings

If the power spectral density (PSD) of the LFP signal
varies as 1/ f γ where γ ≥ 1 (for monopolar LFP
recordings), then the energy associated to the signal
would necessarily be infinite, which is of course
physically impossible. In fact, according to a model
developed previously (see Eqs. 53–54 in
[Bédard and Destexhe (2009)]), a more accurate
relationship between the extracellular medium’s
properties and the meanV f is given by the following
expression

V (r , f ) =
κi(r)

f γ/2+ai
. (17)

where ai is negligible for frequencies larger than 1 Hz
and smaller than about 500 Hz (because LFPs are usually
considered up to 500 Hz). Note that the PSD is
proportional to the square ofV ( f ) and will thus scale as
1/ f γ in this case. The PSD is also independent of the
position (homogeneous medium).

The values of constantsκi and ai represent respectively
the proportionality constant for each electrodei, which
depends on the intensity of the field for large frequencies,
and the natural limit of the value of the voltage for very
low frequencies (which limits the energy of the system).
In general, these constants depend on electrode position,
and therefore when one takes the difference between two
electrodes, we have:

Vdi f f ( f ) =V (1)
LFP( f )−V (2)

LFP( f ) =
κ1

f γ/2+a1
− κ2

f γ/2+a2
.
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(18)

If the signal intensities of the two electrodes are
comparable for large frequencies, we have necessarily
κ1 ≈ κ2, such that the differential or bipolar signal
(difference between two nearby extracellular electrodes
(very correlated signals), will have the following form, on
average:

Vdi f f ( f )≈ κ1 ·
a2−a1

( f γ/2+a2)( f γ/2+a1)
≈ κ̂

f γ . (19)

whereκ̂ = κ1(a2−a1) and for f > 1Hz and f < 500Hz.
Thus, if monopolar LFPs have a PSD which varies as
1/ f γ , one can have a PSD in 1/ f 2γ in bipolar recordings.

4 Numerical simulations of transfer functions

In this section, we present simple numerical simulations
to illustrate how the transfer function is influenced by the
frequency dependence of the cellular membrane, that of
the medium, and of the recording configuration.

4.1 Resistive membrane with homogeneous/isotropic
resistive medium

As a first and simplest case, suppose we have a resistive
membrane (the membrane capacitance is neglected),
embedded in a homogeneous resistive medium. In this
case, the resistive medium is described by Laplace
equation, and we have:

FT ( f ) = F(1)
T ( f ) ·F(2)

T ( f ) =
Rm

Rmed
· R

d
, (20)

whereR is the radius of the source,Rm is the membrane
resistance,Rmed is the resistance of the medium, andd is
the distance from the LFP measurement site to the center
of the source.

This case, however, is not very realistic because the
membrane capacitance is neglected. In the following
sections, we consider more elaborate membranes and
different extracellular media.

4.2 Capacitive effects of membranes in
homogeneous/isotropic resistive media

We now consider a membrane with capacitive effects
described by a simple RC circuit, together with a resistive

medium. In this case, we have:

FT ( f ) = F(1)
T ( f ) ·F(2)

T ( f ) =
Zm( f )
Rmed

· R
d
, (21)

where the parameters are as described above, withZm( f )
the membrane impedance. Thus, according to Eq. 9, we
have the following transfer function:

Fs
T ( f ) =

Rm

Rmed
· 1
1+ iωτm

· R
d
. (22)

whereτm is the membrane time constant. This transfer
function is depicted in Fig. 3A.

The transfer function can also be calculated for a “non
ideal” membrane, with a more realistic RC circuit model
where the capacitance is non-ideal and does not charge
instantaneously (see details in
[Bédard and Destexhe (2008)]; see also Appendix A).
Considering such a non-ideal membrane with a resistive
medium, we have:

FN
T ( f ) =

Rm

Rmed
· 1
1+ i ωτm

1+iωτMW

· R
d

(23)

whereτMW is the Maxwell-Wagner time of a non-ideal
capacitance. Note that whenτMW = 0, we recover the case
above for an ideal membrane. This transfer function is
represented in Fig. 3A. The transfer function is in general
monotonic (and scales close to 1/ f 2).

Interestingly, there is a phase resonance for non-ideal
membranes (see (⋆) in Fig. 3B). The physical origin of
this phase resonance in the non-ideal cable is that the
membrane is quasi-resistive at low (≃ 0) and high
frequencies (100 Hz) (see Eq. 33), so that the absolute
value of the phase must necessarily pass through a
maximum4

4.3 RC membrane in homogeneous/isotropic
non-resistive medium

We now focus on non-resistive media by providing a
transfer function for which the functional form should be
observable from extracellular measurements. We consider
the simplest case scenario of only linear subthreshold
regime where the membrane is described by a simple RC
circuit embedded in a medium with impedanceZ( f ). In
this case, the transfer function for a mono-polar
extracellular recording is given by:

FT ( f ) = Rm · 1
Z( f ) (1+ iωτm)

· R
d
, (24)

4 Every positive continuous function defined on a compact
domain has necessarily a maximum inside that domain.
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If the impedance of the medium is κ
f γ/2−ai

and γ ≥ 1,

where κ is a complex constant, the monopolar and

bipolar transfer functions are respectively:

Fmono
T ( f ) ≈ Rm

κ · ( f )γ/2

1+iωτm
· R

d .

Fdi f f
T ( f ) ≈ Rm

κ̂ · f γ

1+iωτm
· R

d .
(25)

The differences between monopolar and bipolar transfer
functions are explained in Section 3.5. In Fig. 3C, we
show few examples of such a case with different values of
the membrane time constantτm. We observe that the
modulus of the transfer function can present a maximum
which depends onτm, and therefore of the level of
activity or the “conductance state” of the membrane.

5 Comparison with experimental results

In this section, we test the resistive or non-resistive nature
of the extracellular medium by evaluating the transfer
function from experimental data and compare with
theoretical estimates. However, we note that in our
experiments we use bipolar LFPs recorded in rat barrel
cortex, simultaneously with intracellular recordings in the
same cortical area. Since the LFP recordings are bipolar,
we use the following form (see Section 4.3):

F(di f f )
T ( f ) =

Rm f γ

κ̂ (1+ iωτm)
· R

d
, (26)

with Z( f ) = κ
f γ/2−ai

and γ ≥ 1. Here,d is the distance

between the recording site and the source (approximately
1 mm in these experiments).

In the particular case of a Warburg impedance (γ = 1), we
have:

F(di f f )
T ( f ) =

Rm f
κ̂w(1+ iωτm)

· R
d
, (27)

where κ̂w is a complex constant because a Warburg
impedance is such thatZ( f ) = a+ib√

f
. For a quasi-resistive

mediumZ( f ) = κ
f γ−ai

with γ very close to zero, we have:

F(di f f )
T ( f ) =

Rm

κ̂r (1+ iωτm)
· R

d
, (28)

whereκ̂r is a real constant.

Finally, in the case of a purely capacitive medium,γ = 2
and we have:

F(di f f )
T ( f ) =

Rm f 2

κ̂c (1+ iωτm)
· R

d
, (29)

Fig. 3 Amplitude and phase of the transfer functionFT as a function
of frequency for different models and for mono-polar electrode
montage. In all cases the transfer function was estimated for a
distance of 30µm from a spherical source of 10µm radius. A.
Standard RC membrane model withCm = 10−2 F/m2 and various
configurations for membrane time constantτm. The extracellular
medium conductivity is 0.3 S/m. B. Non-ideal membrane model (see
[Bédard and Destexhe (2008)]) with same parameters as in A,and
with a Maxwell-Wagner timeτMW = 5 ms (see Appendix A). The
extracellular medium is also resistive in this case. Surprisingly, we
observe a resonance in the phase of the transfer function as indicated
by (⋆). C. Standard RC membrane model together with a medium
described by a Warburg Impedanceeiφ

4πσ
√

f
where φ is frequency

independent. We have takenφ = 0 to illustrate the differences
between this type of impedance compared to a resistive medium. φ
will be different than zero in general, with no change to the modulus.
Note that there is a peak in amplitude of the absolute value ofthe
transfer function that increases and shifts to lower frequencies asτm
increases;⋆ indicates a resonance.

whereκ̂r is a purely imaginary constant in this case.

We now compare Eqs. 27–29 with the experimental
measurements. We have analyzed four neurons in which
simultaneousVm and (bipolar)VLFP were obtained from
rat barrel cortexin vivo. Because the theoretical estimates
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are for linear regime activity, our analysis must avoid any
possible interference with spikes, and focus solely on
long periods of subthreshold activity as marked by the
grey shaded boxes superimposed on theVm and LFP
traces (see Fig. 4). The bottom panels of Fig. 4 show the
PSD of the Vm and of VLFP, which display similar
frequency-scaling exponents. Note that the exponent
values of Vm activity lie within the range identified for
other anesthetic conditions, for which the Vm exponent
varies between -2 and -3 [El Boustani et al (2009),
Rudolph et al. (2005)]

To compute the transfer function from these data sets, we
evaluate the ratio between the absolute value of the
Fourier transform of bothVm and LFP as shown in
Fig. 5A (light grey curves), which corresponds to the data
of Fig. 4. As suggested by this similar scaling (bottom
panel of Fig. 4), the transfer function of the dataF(di f f )

T
has a mean value that is approximately constant (slope
zero) for a large frequency range (about 10 Hz to 500 Hz)
(Fig. 5A-B).

We performed a constrained nonlinear least square fit for
the three transfer functions (Eqs. 27, 28 and 29) to the

calculated data transfer functionF(di f f )
T for the frequency

range between 3 Hz and 500 Hz. The membrane time
constant was constrained to physiological range,
τm ∈ [5 ms,50 ms], whereas the lumped parameter,
α = RmR

k̂d
, was allowed to vary for a large set,α ∈ [0,103].

Note that we chose not to fit all the parameters (Rm, R, k̂
and d) as some of these parameters are related (e.g.Rm

and τm) and there is an indeterminacy about these
parameters because they are lumped. In addition, some
parameters will vary from experiment to experiment. For
instance, electrode coefficients, size of the measured cell,
diffusion constants (embedded in the parameterk̂, as
indicated by Eqs. 53-54
in [Bédard and Destexhe (2009)]) will vary across
different experiments. To fit all these parameters, a
different experimental protocol would be required to
gather the necessary data to disambiguate them. Hence,
we decided to lump them into the single parameterα and
also for the fitting purpose we considerα and τm to be
independent.

To ensure soundness in the parameter fitting, we
employed two different averaging techniques to the
transfer function Fdi f f

T (see Methods). Polynomial
averaging techniques (see Appendix B) are known to
produce robust results when the variance of the signal is
very high [Press et al. (2008)]. This method is applied
here in the frequency domain, and virtually suppresses all
of the variance of the transfer function (Fig. 5A-B, main
plots; see the dashed magenta curves). In addition, we

also used a moving average window procedure (see
Methods), which markedly reduces the variance (Fig. 5,
insets; see dark grey shaded curves superimposed on the
original PSD in light grey).

The theoretical expressions for the transfer function were
fit to the transfer functions reconstructed from the
experiments. These fits were performed for a
Warburg-type medium (Fig. 5, solid lines), for a resistive
medium (dashed lines) and for purely capacitive medium
(dashed red lines). Constrained to the frequency range of
3 Hz to 500 Hz, the fit was always markedly better for
Warburg type impedances, for both cells shown in Fig. 5
and for both methods, as shown by the values of the
residuals (see Table 1). Note that for a resistive-type
medium, as well as for a purely capacitive medium, the
parameter estimation (in particular forτm) always
reached the boundaries of the constrained values, which
is indicative that the obtained minimum in parameter
space was far from optimal (even if the time constants
may coincidentally reach realistic values). To confirm
this, we allowed an unconstrained parameter fit and we
observed that although the resistive-type would
seemingly improve the fit (i.e., the initial plateau of the
resistive-type curve would shift towards the 10-500 Hz
range), it would however provide unrealistic parameter
ranges. For the purely capacitive case, it was always
impossible to achieve a good fit (i.e., slope zero). This is
to be expected as the numerator of Eq. 29 grows
quadratically and faster than the denominator, hence it
behaves like the identity function,y = f , as frequency
tends to infinity. Also note that the polynomial averaging
algorithm of Appendix B always gave better results (see
values of the residuals in Table 1), although performed on
a dataset of higher variance (compare the grey lines in the
main plots and insets of Fig. 5).

Note that the large difference in the residuals between the
polynomial and moving average fits, in particular for the
wargburg impedance, can be explained by the fact that the
moving average does not fully eliminate the variance of
the signal, while all the variance is virtually removed by
the polynomial method (see magenta curves in
Fig. 5A-B). The error increases even further for larger
frequencies as the slope starts to change, possibly due to
other phenomena, which the model does not capture.
Also note that polynomial and moving average methods
were compared in a previous study (see chapter 14 and
Fig. 14.8.1 in [Press et al. (2008)]), which should be
consulted for details. We stress that for the Warburg type
medium that values obtained forτm andα are consistent
with the data and theoretical predictions. In particular, the
theory with Warburg impedance predicts that the values
of α should be negligible for frequencies greater than
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1Hz (see Eqs. 53-54 in Appendix of
ref. [Bédard and Destexhe (2009)]).

Similar results were also obtained for two other cells of
the same database (not shown). The same results were
also found by performing a similar analysis on another
data set consisting of simultaneous intracellular and LFP
recordings in awake cats (not shown; data from
[Steriade et al. (2001a)], courtesy of Igor Timofeev, Laval
University, Canada).

Fig. 4 Power spectra of simultaneous intracellular and LFP
recordings in desynchronized statesin vivo. The top panels depict
the time series of simultaneously recorded bipolar LFP andVm
from rat barrel cortex in light anesthesia with low-amplitude
desynchronized EEG (all recordings at zero current). The shaded
grey box indicate the time period (T ≈ 38.69 s) of subthreshold
activity selected for analysis. The bottom panels are the calculated
Power spectra (PSD) of both Vm (top plot in dark grey) and
LFP (bottom plot in light grey), which show similar scaling.
Superimposed, in black, are the moving average PSD with a window
of ∼ 7.7sec (see Methods). This procedure results in a PSD with
reduced variance but also reduced frequency resolution. The total
number of points analyzed was N=386900 (between 218 and 219).
The similar scaling between Vm and LFP is highlighted by the
overlaid white lines that have exactlyslope = −2. In particular, the
Vm scales with an exponent comprised between -2 and -2.4, while
the LFP exponents range between -1.9 and -2.6.

Fig. 5 Transfer functionF(di f f )
T computed from experimental data.

The top panel corresponds to the cell shown in Fig. 4 and the
bottom panel to a different cell. The experimentally calculated

F(di f f )
T (shown in light grey) shows an average slope of zero for

frequencies between about 3 Hz and 500 Hz, and is compared to
the best fits using a Warburg-type medium (solid black line),a
resistive medium (black dashed line) and purely capacitivemedium
(red dashed line). Two different methods were used to calculate the
best nonlinear least square fit, a polynomial averaging algorithm
(main plots, third-order polynomial average shown as dashed blue
curves; see Appendix B for details) and a moving average method
which reduces the variance of the PSD (insets; see Methods).In both
cases, the fit was constrained to frequencies between 3 and 500 Hz.
The parameters of the respective fits are given in Table 1.

6 Discussion

In this paper, we have examined the transfer function
between intracellular and extracellular potentials. By
using a mean-field approximation in Fourier frequency
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Cell Impedance type ε τm α

Cell 1 Warburg 3.4×102 17.5 ms 1.43
Resistive 5×103 5 ms 194.94
Capacitive 1×108 15 ms 0.001

Cell 1* Warburg 3.2×105 14.8 ms 1.22
Resistive 1.3×106 5 ms 111.74
Capacitive 4.3×107 15 ms 0.010

Cell 2 Warburg 3.4×102 24.5 ms 1.3
Resistive 5×103 5 ms 186.10
Capacitive 7.8×107 50 ms 0.004

Cell 2* Warburg 1.4×106 24.4 ms 1.28
Resistive 1.7×106 5 ms 63.84
Capacitive 9.3×106 50 ms 0.002

Table 1 Parameters for the fitting of the transfer function to
experimental data for different types of extracellular impedance.
ε = ||y − ŷ(τm,α)||2: squared 2-norm of the fit residual, where
y denotes the data and ˆy(τm,α) represents the various models
(Warburg, Resistive and Capacitive).τm: membrane time constant
andα = RmR

k̂d
(refer back to equations in the main text), which are

obtained by the fitting procedure. Cell 1 and Cell 2 correspond to a)
and b) in Fig. 5; Cell 1* and 2* refer to the values obtained in the
same cells using the moving average method (Fig. 5, insets).

space, we derived a method allowing us to obtain an
expression relating the LFP with the intracellular Vm

activity. The main theoretical finding is that this transfer
function (which does not depend on the frequency
spectrum of current sources) takes very different forms
according to the type of frequency dependence of the
extracellular medium, and thus could be used as a means
to estimate which type of frequency dependence (if any)
is most consistent with experiments. Second, we have
applied this formalism to intracellular recordings in
desynchronized EEG states, for which the mean-field
approximation should best apply. We found that, in rat
barrel cortex, the extracellular medium seems frequency
dependent with a Warburg type impedance.

One key assumption of the present formalism is that
individual synaptic currents sources are uncorrelated.
There is ample evidence that this is the case for
EEG-desynchronized states, as shown by the low levels
of correlation between simultaneously recorded
units [Contreras and Steriade (1996),
Destexhe et al. (1999),Gawne and Richmond (1993),
Steriade et al. (2001b),Zohary et al. (1994)], or by the
low correlations between multi-site
LFPs [Destexhe et al. (1999)]. However, there are limits
to this assumption. First, dual recordings in awake mice
barrel cortex showed that the subthreshold activities of
neurons can display periods of significant correlation,
even with desynchronized
EEG [Poulet and Petersen (2008)]. Indeed, a certain level

of correlation is unavoidable from the redundant
connectivity of neurons in cortex, although the activity
itself can produce negative correlations which may cancel
the effect of redundant connectivity [Renart et al. (2010)].
Second, it is evident that the activity cannot be totally
decorrelated, otherwise the EEG amplitude would be
close to zero [Gold et al. (2006)]. Nevertheless, the
amplitude of the EEG during desynchronized states is
considerably lower than during synchronized activity
(such as slow waves), which is associated to a general
decorrelation of neurons [Contreras and Steriade (1996)],
and the present formalism should be applicable to such
desynchronized states. Further studies should consider
these points to build more realistic mean-field models of
desynchronized states, which would lead to more realistic
transfer functions.

In a previous investigation [Bédard and Destexhe (2009)],
we have shown theoretically that several physical
phenomena can lead to frequency dependence of the
extracellular medium: ionic diffusion and membrane
polarization. The former predicts an impedance of
Warburg type (Z ∼ 1/

√
f ), while the latter predicts a

capacitive-type impedance (Z ∼ 1/ f )
[Bédard et al. (2006b)]. These two phenomena can also
explain different experimental observations: the
frequency dependent conductivity observed
experimentally in brain tissue [Gabriel et al. (1996)] can
be reproduced by a combination of these two
mechanisms. Recent measurements from monkey cortex
suggesting resistive medium [Logothetis et al. (2007)]
can be explained by the fact that the influence of diffusion
was avoided in that case. This technique is based on the
saturation effect (Geddes effect, which is represented by
Zener diodes in [Logothetis et al. (2007)]), which greatly
diminishes the concentration gradient around the
electrode, such that the ionic diffusion is more limited. A
Warburg type impedance was also found to account for
the 1/ f power spectral structure of LFPs (see details in
[Bédard and Destexhe (2009)]).

The present results are consistent with this analysis. The
transfer functions measured here for 4 cells are all
consistent with the Warburg type impedance of ionic
diffusion up to 500 Hz. The other type of extracellular
impedances mentioned above, either purely resistive or
purely capacitive, could not fit the data (see Fig. 5).
While these results seem to rule-out purely resistive or
capacitive media, there is still a possibility that they apply
outside the 3-500 Hz frequency range. For example,
polarization phenomena, which can be modeled as a
capacitive effect with a low cutoff frequency
[Bédard et al. (2006b)], may contribute to the low
frequency range (below 10 Hz). Further theoretical and
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experimental work is needed to investigate these aspects.
In particular, experiments should be carried with
controlled current sources as close as possible to the
biological current sources, for example using
micropipettes.

It is important to keep in mind that the present method
derives from a mean-field approach in frequency space,
and thus relies on the assumption that individual current
sources are independent. This justifies the use of
desynchronized EEG states, in which synaptic current
sources are expected to have very low correlation. The
simulations presented in Fig. 2 (bottom panels) show that
the LFP predicted by a compartmental dendritic model is
virtually identical to that obtained by individual
compartments, which suggests that considering a set of
independent sources is not a bad approximation.
However, if strong correlations occur, such as during
synchronized population activities, the current sources
may no longer be considered as independent, and another
formalism should be used.

A recent study on modeling extracellular action potentials
[Pettersen and Einevoll (2008)] showed that the cable
structure of neurons can also cause low-pass filtering,
because the return current is itself filtered by the
membrane capacitance. This is a clear example where the
correlation between current sources cannot be neglected.
However, we showed here that such a contribution is
negligible forin vivo conditions (Fig. 2A,B), presumably
because the axial currents are very small compared to the
intense synaptic currents. So far, the only plausible
physical cause to explain the observed 1/ f filtering under
in vivo conditions is ionic diffusion (for frequencies up to
500 Hz). It is possible that for states of reduced synaptic
activity, the filtering due to morphology plays a role,
although this still needs to be demonstrated
experimentally Further studies should investigate these
aspects by constraining these different theories by
appropriate experiments.

One major criticism to the previous measurement
techniques [Ranck (1963),Gabriel et al. (1996),
Logothetis et al. (2007)] is that they use current
intensities of one or several order of magnitude larger
than biological sources, and these currents evidently
interact with the medium very differently as natural
sources. The present method has the advantage of not
suffering from this limitation, because it is using only
passive recordings of physiological signals, with no need
of injecting currents. This method should therefore be
considered as complementary to direct measurements.

Finally, the expression given by Eqs. 24 and 26 could be
used to directly estimate the impedance of the

extracellular medium as a function of frequency (still
within the mean-field approximation). We did not attempt
this type of approach here, but instead considered
different hypotheses concerning the impedance of the
medium. The present analysis reported here for 4 cells
was also confirmed by using two cells from another
database of intracellular recordings in desynchronized
EEG states in awake animals (courtesy of I. Timofeev,
Laval University, Canada), which also indicated a
Warburg type impedance (not shown). The same
approach should be extended to a much larger sample of
cells and brain states, to provide a full estimate of the
impedance spectrum of the medium. The present results
therefore must be considered as preliminary and must be
confirmed by using further analyses of simultaneously
recorded LFPs and intracellular recordings during
desynchronized EEG statesin vivo.

Appendix A: impedance for non-ideal membranes

In this section, we derive the expressions for the
impedance of non-ideal membranes, which take into
account that the membrane capacitance cannot be charged
instantaneously (see Bedard and Destexhe, 2008). Still
within the linear regime and for a spherical source, we
have:

Ir =
N

∑
i=1

gi (t,Vm)(Vm(t)−Ei)

Ic = Cm
dVc

dt
(30)

Im = Ir + Ic

Vm = Vc +RMWCm
dVc

dt
=Vc + τMW

dVc

dt

where all parameters have the same definition as in the
main text, except forrMW, which is the Maxwell-Wagner
resistance which gives the non-ideal aspect of the
membrane capacitance. The associated time constant,
τMW , is also known as “Maxwell-Wagner time”.
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In the linear regime, we have

∆ Ir =
N

∑
i=1

gi (〈Vm〉 |t)∆Vm

∆ Ic = Cm
d∆Vc

dt
(31)

∆ Im = ∆ Ir +∆ Ic

∆Vm = ∆Vc + τMW

d∆Vc

dt

Thus, in these conditions, the system of equations
associated to the membrane is linear with
time-independent coefficients.

By expressing the variation of current produced by the
cell as a function of the variation of membrane voltage, in
Fourier space, we obtain:

∆ Ir( f ) = Gm∆Vm( f )

∆ Ic( f ) = iωCm∆Vc( f )

(32)

∆ Im( f ) = ∆ Ir( f )+∆ Ic( f )

∆Vm( f ) = ∆Vc( f )+ iωτMW∆Vc( f )

where

Gm =
N

∑
i=1

gi

.

It follows that the membrane impedance is given by:

Zm( f ) =
∆Vm( f )
∆ I( f )

=
Rm

1+ i ωτm
1+iωτMW

(33)

whereRm = 1
Gm

. Note that if we setτMW = 0, we recover
the same expressions for the impedance of ideal
membranes, as considered in the main text.

Appendix B: Polynomial averaging algorithm for
frequency-dependent signals

The polynomial averaging technique consists of fitting a
polynomial to the cumulative distribution of the
amplitude of the signal in frequency space. According to
this procedure, one evaluates the difference between the

data and model via a minimization problem (in the
frequency space) as follows

argminτm,α ||y( f )− ŷ( f ,τm,α)||, f ∈ [3Hz,500Hz],

(34)

where y( f ) represents the transfer function (after a
Fourier transform or PSD has been applied). ˆy(·)
represent the various model transfer functions (i.e.
Warburg, resistive or capacitive) parameterized byτm and
α. Since the theory we develop only explains changes in
the slope of the mean ofy( f ), then to a first order
approximation the above equation can be re-written in the
following way

argminτm,α ||< y> ( f )− ŷ( f ,τm,α)||, f ∈ [3Hz,500Hz]

(35)

where the operator< · > is the mean of the data in
frequency domain. Any technique can be taken to
evaluate the mean such as the moving average. However,
the moving average does not completely remove the
variance and is not general enough. Since Fourier
transform of the transfer function or its PSD show a large
variance we remove entirely this variance by employing
the following polynomial algorithmic filter.

1. The Fourier transform of the signals is integrated
relative to frequency:

G( f ) =
∫ f

fmin

F( f ′)d f ′ (36)

where fmin is the minimal frequency considered with
f ≤ Fmax, and F( f ′) is the signal for which the mean
function must be obtained. This integration gives a
function of frequency which is very close to the integral
of the mean function, which is true for the signals
considered here.

2. To smooth the functionG( f ), a minimum variance fit is
performed using a third-degree polynomial:

G∗( f ) = A3 f 3+A2 f 2+A1 f +A0+O( f 4) . (37)

Note that higher-order polynomials can be used to
improve accuracy. However, in our case we did not
observe any gain for orders larger than three.

3. This polynomial was formally derived to find the
expression of the mean function< F > ( f )

< F > ( f ) =
dG∗

d f
= 3A3 f 2+2A2 f +A1 . (38)

Note that this algorithm is general and does not depend
on any hypothesis concerning the stationarity of the



15

signal because the average function is calculated in
Fourier space.
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