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Abstract During posture control, reflexive feedback
allows humans to efficiently compensate for unpre-
dictable mechanical disturbances. Although reflexes
are involuntary, humans can adapt their reflexive set-
tings to the characteristics of the disturbances. Reflex
modulation is commonly studied by determining reflex
gains: a set of parameters that quantify the contribu-
tions of Ia, Ib and II afferents to mechanical joint be-
havior. Many mechanisms, like presynaptic inhibition
and fusimotor drive, can account for reflex gain mod-
ulations. The goal of this study was to investigate the
effects of underlying neural and sensory mechanisms
on mechanical joint behavior. A neuromusculoskeletal
model was built, in which a pair of muscles actuated a
limb, while being controlled by a model of 2,298 spiking
neurons in six pairs of spinal populations. Identical to
experiments, the endpoint of the limb was disturbed
with force perturbations. System identification was
used to quantify the control behavior with reflex gains.
A sensitivity analysis was then performed on the neu-
romusculoskeletal model, determining the influence of
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the neural, sensory and synaptic parameters on the joint
dynamics. The results showed that the lumped reflex
gains positively correlate to their most direct neural
substrates: the velocity gain with Ia afferent velocity
feedback, the positional gain with muscle stretch over
II afferents and the force feedback gain with Ib afferent
feedback. However, position feedback and force feed-
back gains show strong interactions with other neural
and sensory properties. These results give important
insights in the effects of neural properties on joint
dynamics and in the identifiability of reflex gains in
experiments.

Keywords Reflexes · Afferent feedback · Reflex
gains · Sensitivity analysis · System identification

1 Introduction

During posture control, humans have two strategies
to counteract unexpected disturbances and keep their
equilibrium position. Co-contraction of the muscles
increases joint viscoelasticity, while maintaining equi-
librium. Co-contraction provides instantaneous vis-
coelasticity at the expense of high metabolic energy
consumption. Sensory feedback is energy efficient, al-
though effectiveness is limited due to the inherent
neural time delays.

In the presence of fast unpredictable disturbances
in the upper extremity, reflexes through afferent feed-
back provided by muscle spindles and Golgi tendon
organs are the major contributors to sensory feedback.
Muscle spindles are located in the muscles and provide
feedback on stretch and stretch velocity. Golgi tendon
organs are located in the junction between muscle and

http://nmc.3me.tudelft.nl
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tendon, providing feedback on muscle force. Reflexes
are involuntary responses to stimuli, and their strength
is known to be modulated. Experiments have shown
that different task instructions (Doemges and Rack
1992a, b; Abbink et al. 2004), disturbance properties
(de Vlugt et al. 2002) and dynamic properties of the
environment (Van der Helm et al. 2002) all elicit adap-
tation of the reflexive contribution to joint dynamics.
Model simulations have indicated that these reflex set-
tings are close to optimal for suppressing the distur-
bances (Schouten et al. 2001).

Additional to the many studies that quantify
reflexive behavior by directly deriving metrics like in-
tegrated EMG after the application of a mechanical
or electrical stimulus (e.g. Dewald and Schmit 2003;
Schuurmans et al. 2009; Kurtzer et al. 2008; Nielsen
et al. 2005), other studies use a control engineering
approach to parameterize joint dynamics. A combi-
nation of system identification and modeling is then
used to separate muscular and reflexive contributions
(Kearney et al. 1997; Perreault et al. 2000; Van der
Helm et al. 2002; Ludvig and Kearney 2007; Schouten
et al. 2008a). The dynamic behavior of the joint is
estimated by perturbing the joint with a random force
disturbance using a robotic manipulandum and record-
ing displacement and interaction force between the
subject and the manipulandum. The joint dynamics are
expressed in terms of the mechanical admittance, de-
scribing the amount of displacement per unit force. To
separate reflexive contributions from muscle viscoelas-
ticity, lumped parameters (Schouten et al. 2008b) can
be fitted to the mechanical admittance. The resulting
set of parameters quantify the joint inertia, the muscle
viscoelasticity and the reflexive gains of the force, posi-
tion and velocity feedback pathways.

There are multiple mechanisms that affect the
strength of the reflex pathway. Fusimotor drive (Crowe
and Matthews 1964; Ribot-Ciscar et al. 2009) mod-
ulates the muscle spindle’s sensitivity to stretch and
stretch velocity, therewith altering the gain of the reflex
pathway. With presynaptic inhibition (Rudomin and
Schmidt 1999; Rudomin 2009; Baudry et al. 2010), the
efficacy of transmission between primary afferent fibers
and the receiving neurons can be centrally modulated.
The strengths of interneuronal connections in the spinal
cord affect the net amount of activation of the mo-
toneuron pool due to the sensory feedback. All these
mechanisms contribute to the joint dynamics as deter-
mined experimentally.

Despite the known neural mechanisms of reflex
modulation and the available identification techniques,
there are still many unknowns on how exactly neural
mechanisms affect the measured joint dynamics. The

goal of this study was to investigate how neural and
sensory properties could map onto the (limited) set of
reflex gains as obtained from joint dynamics, using a
neuromusculoskeletal model. In other words: how do
the underlying, physical neural and sensory properties
effectively link to the lumped reflex gains? We used
a neuromusculoskeletal model of a spinal neural net-
work controlling an antagonistic pair of muscles with
afferent feedback (Stienen et al. 2007). In a sensitivity
analysis, sensory and neural properties in the model
were systematically varied and reflex experiments were
simulated to determine reflex gains. The results showed
that besides the expected mappings, there also exist
intricate, counterintuitive relationships between neural
and sensory properties and reflex gains that need to
be taken into account when interpreting experimental
results.

2 Methods

2.1 Approach

Posture control experiments around the shoulder joint
(Van der Helm et al. 2002) were mimicked on a
neuromusculoskeletal (NMS) model. In these types of
experiments, a subject holds the handle of a linear
manipulator and minimizes deviations while being per-
turbed with a random force disturbance. This type of
posture control experiment was mimicked by perturb-
ing a joint in a neuromusculoskeletal model with a
continuous random force disturbance. The reflexive
contributions to the dynamic behavior of the joint
were determined using system identification techniques
identical to experiments in vivo. The reflexive com-
ponent was expressed in terms of reflex gains, which
gave a quantitative measure for the amount of stretch,
stretch velocity and force related reflex action. In the
sensitivity analysis the model parameters were system-
atically varied and the effects on task performance,
joint admittance and the reflex gains were determined.

2.2 Model description

The NMS model is briefly described here; for full
details see Stienen et al. (2007). Posture control of
the shoulder was modeled as a one degree of free-
dom joint (inertia m = 0.18 kg m2), actuated by an an-
tagonistic pair of muscles (moment arm rm = 30 mm).
Since the experiment involved only small deviations
around a constant level of co-contraction (≈40% of
maximal force), a linearized muscle model was used.
The viscoelasticity due to muscle co-contraction was
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set, such that the rotational viscoelasticity of the model
was equivalent to the translational viscoelasticity taken
from experimental data (Van der Helm et al. 2002):
the endpoint stiffness and viscosity of the arm were
respectively 800 N/m and 40 Ns/m. Stiffness and vis-
cosity represented cross-bridge viscoelasticity, which is
dominant in an experiment with co-contraction and
relatively small displacements. The muscle activation
dynamics were of first order with a time constant of
30 ms.

Afferent feedback to the spinal network was pro-
vided by Golgi tendon organs (force, through Ib
afferents) and muscle spindles (stretch velocity and
stretch, through Ia and II afferents). Each of the 121
Golgi tendon organs per muscle fired a spike train with
a spike rate rIb that was proportional (Crago et al.
1982) to the muscle force with a constant cIb in spikes/s
(Eq. (1)).

rIb = cIb
Fm(t)
Fmax

(1)

where Fm is the muscle force, Fmax is the maximal
muscle force (800 N) and t denotes time. A Poisson
process was used to convert spike rate rIb to the spike
trains of the individual fibers. The afferent time delay
of the Ib fibers was 15 ms.

A model of the muscle spindle (Prochazka and
Gorassini 1998) was used to determine the firing rates
of the 121 Ia and II afferent fibers per muscle as a
function of muscle stretch (xm) and stretch velocity
(ẋm). The Ia afferent firing rate rIa was the summation
of a background firing rate (constant aIa), a linear
length dependent part (cIa) and an exponential stretch
velocity dependent part (constants dIa, eIa). For the II
afferents (rII), which were assumed to only transmit
length-dependent information, the same model was
used without the velocity-dependent part.

rIa(t) = aIa + cIa · xm(t) + dIa · ẋeIa
m (t) (2)

rII(t) = aII + cII · xm(t) (3)

The afferent time delays of the group Ia and II fibers
were respectively 15 ms and 30 ms.

The spinal neural network, which integrated the
afferent input to generate the efferent control signals to
the muscles, was based on Bashor (1998) and presented
before in Stienen et al. (2007). The model consisted of
six pairs of spinal neuron populations, i.e. motoneu-
rons, Renshaw cells, group Ia and Ib interneurons
and inhibitory and excitatory interneurons (see Fig. 1).
Each population consisted of either 169 or 196 indi-
vidual spiking neurons (MacGregor and Oliver 1974).
These neurons have four state variables, i.e. membrane
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Fig. 1 Neuromusculoskeletal model. A muscle pair actuated a
one degree of freedom joint while being controlled by a spinal
network with populations of motoneurons (MN), group Ia in-
terneurons (IA), Renshaw cells (RC), inhibitory interneurons
(IN), excitatory interneurons (EX) and group Ib interneurons
(IB). Feedback is provided by Ia, Ib and II afferents

potential, variable threshold, potassium conductance
and synaptic conductance. Whenever the membrane
potential reached threshold, the neuron fired a dis-
crete spike which was transmitted to the connected
synapses. The synaptic connections between the neu-
rons were created according to the connection scheme
in Fig 1. Tonic, descending excitation (TDE) provided
background activity to the motoneurons (resulting in
co-contraction) and to some of the other neural pop-
ulations. Each neuron in a receiving population was
connected to 34–232 neurons, afferent fibers or de-
scending fibers. Generally, the afferent input fans out
over the populations. The connections with the lower
number of synapses are closer to the afferent input
than the connections with high number of synapses
(the interneuronal connections). A full overview of
synapse count can be found in Stienen et al. (2007).
The individual projections were randomized. Five pre-
set types of synaptic connections were used: single, dou-
ble and triple strength excitatory synapses, excitatory
synapses a with long time constant (to the Renshaw
cells), and inhibitory synapses. No network training or
any form of neural plasticity was implemented. Since
the many motoneurons in a population all activated a
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single, lumped muscle (no individual muscle fibers and
a single neuromuscular junction), the input signal to the
muscle activation dynamics was obtained by taking a
20 ms moving average of the summed spike output of
the motoneuron populations. Efferent time delay was
10 ms.

2.3 Simulation of the neuromuscular model

Similar to posture control experiments a crested multi-
sine disturbance signal (Pintelon and Schoukens 2001)
with a flat power spectrum between 0.5 Hz and 20 Hz
was applied to the joint of the NMS model. The mag-
nitude of the disturbance was chosen such that the root
mean square (RMS) of the endpoint displacements was
approximately 4 mm, similar to experiments on human
subjects (Van der Helm et al. 2002). A single model
run simulated a 9 second perturbation experiment. The
model was run with a discrete time step of 1 ms. To
prevent transient behavior from influencing the results
the first 808 ms were rejected, leaving exactly 213 data
samples. To account for possible variability due to the
random processes involved in the generation of the
force disturbance and the Poisson spike trains, each
simulation was repeated eight times with a different
initial seed of the random generators.

2.4 Lumped reflex gain model

After simulation of a perturbation experiment, reflex
gains were determined by fitting a lumped reflex gain
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Fig. 2 Lumped reflex gain model used to fit reflex gains onto
the output of the perturbation experiments of the neuromuscu-
loskeletal model. In this lumped model, the force disturbance d is
applied to a single inertia m. Muscle viscoelasticity is represented
by a stiffness k and viscosity b . Reflexive feedback is represented
by a positional feedback gain kp, a velocity feedback gain kv and
a force feedback gain kf . A single reflexive feedback neural time
delay τdel is represented by Hdel. The first order muscle activation
dynamics are Hact. Output of this lumped model is joint position x̂

model onto the joint dynamics. The reflex gain model
is illustrated in Fig. 2. The model input was disturbance
force d and output was joint position x̂. The intrinsic
dynamics were parameterized by the inertia of the arm
m and the muscle stiffness k and viscosity b . Reflexive
feedback consisted of position feedback (with a gain
kp), velocity feedback (gain kv) and force feedback
(gain kf ). A single reflexive feedback neural time delay
τdel is represented by Hdel. Like in the simulated NMS
model, the muscle activation dynamics Hact were rep-
resented by a first order system with time constant τact.

The reflex gain model transfer function Hmod was
described by:

Hact = 1

τacts + 1
(4a)

Hdel = e−τdels (4b)

H̃i = Fnet

Fint
= 1

1 + kf · Hact · Hdel
(4c)

H̃r = Fnet

Fref
= Hact · Hdel

1 + Hact · Hdel · kf
(4d)

Hmod = X̂
D

= 1

ms2 + (bs + k)H̃i + (kvs + kp)H̃r

(4e)

For convenience, two intermediate variables H̃i and H̃r

describe the effect of the force feedback loop on the
afferent and reflexive velocity and position feedback
loops (from intrinsic muscle force Fint and reflexive
muscle force Fref to net force Fnet). Using these inter-
mediate variables, the entire model transfer function
Hmod can be expressed in a form similar to that of a
mass-spring-damper system (see also Schouten et al.
2008b).

The eight model parameters m, b , k, kp, kv , kf , τdel

and τact (see also Table 1) were fitted onto the data
with a criterion function J which minimized the error
between arm position x of the neuromusculoskeletal

Table 1 Parameters of the lumped reflex gain model

Lumped Unit Description
parameter

m kg · m2 Joint inertia
b Nm · s/rad Muscle viscosity
k Nm/rad Muscle stiffness
kp Nm/rad Position feedback gain
kv Nm · s/rad Velocity feedback gain
kf Nm/Nm Force feedback gain
τdel s Neural time delay
τact s Muscle activation time constant
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Table 2 Model parameters in
the sensitivity analysis and
their description

Neural model parameter Description

Sensory constants
aIa Muscle spindle constant aIa (Eq. (2))
cIa Muscle spindle constant cIa (Eq. (2))
dIa Muscle spindle constant dIa (Eq. (2))
eIa Muscle spindle constant eIa (Eq. (2))
aII Muscle spindle constant aII (Eq. (3))
cII Muscle spindle constant cII (Eq. (3))
cIb Golgi tendon organ constant cIb (Eq. (1))

Transport delays
τIa Ia afferent transport delay
τIb Ib afferent transport delay
τII II afferent transport delay
τEff Efferent transport delay

Synaptic weights (between neurons)
wRC−MN Synaptic weight Renshaw cell → motoneuron
wIA−MN Synaptic weight Ia interneuron → motoneuron
wIN−MN Synaptic weight inhibitory interneuron → motoneuron
wEX−MN Synaptic weight excitatory interneuron → motoneuron
wMN−RC(L) Synaptic weight motoneuron → Renshaw cell (long time constant)
wMN−RC(S) Synaptic weight motoneuron → Renshaw cell (short time constant)
wRC−RC Synaptic weight Renshaw cell → Renshaw cell (reciprocal)
wIA−RC Synaptic weight Ia interneuron → Renshaw cell
wRC−IA Synaptic weight Renshaw cell → Ia interneuron
wIA−IA Synaptic weight Ia interneuron → Ia interneuron (reciprocal)
wIB−IN Synaptic weight Ib interneuron → inhibitory interneuron
wIB−EX Synaptic weight Ib interneuron → excitatory interneuron

Synaptic weights (afferents to neurons)
wia−IB Synaptic weight Ia afferent → Ib interneuron
wia−IN Synaptic weight Ia afferent → inhibitory interneuron
wia−MN Synaptic weight Ia afferent → motoneuron
wia−IA Synaptic weight Ia afferent → Ia interneuron
wib−IN Synaptic weight Ib afferent → inhibitory interneuron
wib−IB Synaptic weight Ib afferent → Ib interneuron
wii−EX Synaptic weight II afferent → excitatory interneuron
wii−IA Synaptic weight II afferent → Ia interneuron

Tonic descending excitation
wtd−MN Synaptic weight descending excitation → motoneuron
wtd−RC Synaptic weight descending excitation → Renshaw cell
wtd−IA Synaptic weight descending excitation → Ia interneuron
wtd−EX Synaptic weight descending excitation → excitatory interneuron
wtd−ALL Synaptic weight descending excitation → all receiving neurons

model and the output of the lumped reflex gain mo-
del x̂:

J =
∑

i

(
x(ti) − x̂(ti)

)2 (5)

where i indexes the time vector t. For efficiency, lumped
reflex gain model output x̂ was first determined in
the frequency domain and then inverse Fourier trans-
formed to obtain:

x̂ = F−1(D · Hmod) (6)

where D is the Fourier transform of disturbance force
d. The criterion J was minimized using the least squares
algorithm lsqnonlin from the Matlab optimization

toolbox.1 The result of the fitting procedure was a
set of 8 parameters that describe the joint dynamics,
including reflexive contribution, in the same way as
done in experiments.

After fitting, the goodness of fit was expressed in
variance accounted for (VAF):

VAF = 1 −

∑

i

(
x(ti) − x̂(ti)

)2

∑

i

x(ti)2
(7)

1The Mathworks, USA.
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A VAF value of 1 indicates a perfect match between
the lumped reflex gain fit and the NMS model output.
Besides the parameters of the lumped reflex gain model
and the VAF, the RMS value of the joint deviation (in
radians) was determined to get a measure of perfor-
mance in counteracting the disturbance.

2.5 Data analysis

A sensitivity analysis was performed where the neural
and sensory parameters in the NMS model were sys-
tematically varied. The effects on the lumped reflex
gains (Table 1) and the performance in terms of dis-
turbance suppression (RMS) were determined. The
36 parameters included in the analysis were: muscle
spindle constants (6), the Golgi tendon organ constant
(1), synaptic weights between afferents and the neuron
populations (8), synaptic weights between the neuron
populations (12), synaptic weights between descending
excitation and each neuron population separately (4),
synaptic weights between descending excitation and all
neuron populations simultaneously (1), and afferent
and efferent time delays (4). A complete overview of
the parameters including their description is listed in
Table 2.

One by one each parameter was simulated at 0.5, 0.9,
1.0, 1.1, 1.5 and 2.0 times its nominal value, with all
other parameters kept to their nominal value. For each
value, a single set of reflex gains was fitted onto the
data of the eight simulation repetitions. A sensitivity
measure was defined by taking the slope of a linear
regression through the six resulting reflex gain values
(Fig. 4). To allow for comparisons between the different
sensitivities the sensitivity measure was normalized
with the reflex gain value when all neural parameters
had their default, nominal value (relative sensitivity,
see Frank 1978). So the sensitivity measure gave the
relative amount of change in a fitted lumped reflex gain
as the result of a changing neural or sensory parameter.
Figure 4 illustrates this process for the three reflex gains
kp, kv , kf and the RMS of joint deviation.

3 Results

Figure 3 illustrates the results of a single model simu-
lation. The top panel shows the multisine disturbance
force d(t) acting on the joint. The resulting joint rota-
tion x(t) of the NMS model is illustrated in the bottom
panel, together with the reflex gain model fit x̂(t). Of
all reflex gain model fits, one fit with a VAF of 0.48
was rejected. This was the condition in which tonic
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Fig. 3 Four-second segment of a perturbation experiment on the
NMS model and the output of the lumped reflex gain fit for
a single condition. Disturbance torque (top) and resulting arm
motion (bottom). Simulation experiment with the NMS model
(solid) and the fit of the lumped reflex gain model (dashed). In
this case VAF of the fit was 0.95

descending excitation (TDE) was minimal, causing
some of the neural populations to completely cease
activity. The average VAF of the remaining 215 fits was
0.95 with a standard deviation of 0.014 and a minimum
of 0.84.

Table 3 lists the lumped reflex gains resulting from
a simulation run with all neural and sensory parame-
ters at their nominal values. The simulation results
are generally close to the experimental results (within
one SD of the experiments by Schouten et al. 2008a),
except for neural time delay τdel, which seems to be
underestimated in the model simulation result.

As an example, Fig. 4 shows how lumped reflex gains
were modulated by varying neural parameter dIa; the
velocity component of the muscle spindles. The sensi-
tivity measure Sij is indicated in the figure. The example

Table 3 Estimated lumped reflex parameters of the neuromus-
cular model with all neural parameters at their nominal values

Lumped Value Unit
reflex gain

m 0.178 kg · m2

b 2.99 Nm · s/rad
k 90.5 Nm/rad
kp 19.2 Nm/rad
kv 3.39 Nm · s/rad
kf 0.384 Nm/Nm
τdel 15.0 ms
τact 47.5 ms
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Fig. 4 Sensitivity of reflex gain parameters kp, kv , kf and RMS
of joint deviation to the velocity component dIa of the muscle
spindle. Lines indicate the linear regression fit; the normalized
slope determined the sensitivity measure Sij

shows that when the velocity component dIa in the
output of the muscle spindle increases, velocity feed-
back gain kv increases as expected. Position and force
feedback gains kp and kf both decrease, demonstrating
that position feedback gain kp and force feedback gain
kf also depend on velocity component dIa of the muscle
spindle. Performance increased with dIa, indicated by
the decreasing RMS value of the joint deviation: as the
amount of velocity feedback from the muscle spindles
increased, joint deviations decreased. In a position task,
small deviations indicate good performance.

The sensitivity of the lumped reflex gains to varia-
tions in the neural and sensory parameters of the NMS
model is illustrated in Fig. 5. For each of the parameters
of the lumped reflex gain model and the RMS of the
joint deviation, the eight neural and sensory parameters
with the largest effect (per parameter) are shown. The
height of the bars shows the magnitude of the sensitivity
metric Sij, plus and minus signs above the bars indicate
the sign of Sij.

The top row in Fig. 5 shows the sensitivity of the
intrinsic parameters: inertia m, joint viscosity b and
joint stiffness k. Sensitivity of the inertia estimate is low
for all parameters (sensitivity in the order of 0.05) as
can be expected, since mass was not varied. Joint viscos-
ity b is mainly affected by tonic descending excitation.
Increasing TDE to specifically the motoneurons or to
all populations increased viscosity by increasing the

tonic muscle activation. Further, viscosity was increased
by various excitatory pathways to the motoneurons and
decreased by inhibitory pathways via the inhibitory
interneuron populations. Sensitivity of stiffness k is
remarkably low (in the same order of magnitude as that
of inertia m). Because of the linearized muscle model,
one might expect similar sensitivity of stiffness and
viscosity. The difference is due to the relatively high
value of stiffness k in the nominal condition, decreasing
the normalized sensitivity.

The middle row in Fig. 5 illustrates the sensitivity
of reflex gains kp, kv and kf to the eight parameters
that they were most sensitive to. Velocity feedback
over the Ia afferent decreased kp. This is indicated
by the negative sensitivity to muscle spindle constant
dIa, and also by the positive sensitivity to inhibitory
pathways from Ia afferents to motoneurons. Group
II afferent feedback increased kp as expected. Ren-
shaw cell activation increases position feedback gain
kp, both through the long latency constant synapse
(wMN−RC(L)) and the synapse between the Renshaw
cells and the IA interneuron (wRC−IA). Velocity reflex
gain kv increases with the stretch velocity components
in the Ia afferent pathway (dIa, eIa) and with increas-
ing strength of the synapse between Ia afferent and
motoneuron. TDE to either the motoneurons alone or
to all populations decreases kv . Further, kv decreases
with the stretch component of the Ia afferent, and the
pathway over inhibitory interneurons. Activation by
excitatory interneurons decreased kv , which might be
caused by these interneurons receiving stretch feedback
from the II afferent and no velocity feedback from the
Ia afferent. Force feedback gain kf strongly decreased
with TDE and Ia afferent feedback and increased
with Golgi tendon organ (GTO) feedback over the
Ib afferent pathway. The neural time delay of the Ib
afferent increased kf as well.

The bottom row in Fig. 5 illustrates the sensitivities
of neural time delay τdel, muscle activation time con-
stant τact and the RMS of joint deviation. Neural time
delay estimate τdel was highly sensitive to the Ia afferent
and efferent neural time delays as expected, and further
to a mixture of neural and sensory parameters. The
high sensitivity of the estimated muscle activation time
constant τact to a wide range of neural and sensory
parameters is surprising (note that muscle activation
was not varied in the simulations).

The bottom-right panel in Fig. 5 shows how the RMS
of the joint deviations changed with the neural para-
meters. TDE had the strongest effect on performance,
by increasing motoneuron activity and therewith co-
contraction. Further, Ia afferent feedback (both synap-
tic strength and muscle spindle properties) improved
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Fig. 5 Sensitivity measure Sij for the eight lumped reflex gain
model parameters (m, b , k, kp, kv , kf , τdel, τact) and RMS of
the joint position. Low RMS indicates high task performance: the

force disturbances result in small deviations. For each graph, only
the eight parameters with the highest sensitivity values are shown

performance while neural time delays decreased
performance. Force feedback over Ib afferents and
position feedback over II afferents only had a small
effect on performance.

Figure 5 demonstrates that most lumped reflex gains
were sensitive to a mixture of neural and sensory pa-
rameters. To elucidate the relation between the prop-
erties of the proprioceptors and the estimated reflex
gains, Fig. 6 shows a subset of the data: the sensitivity of
kp, kv and kf to only the sensory constants of the muscle
spindle and GTO. The velocity components of the mus-
cle spindle (constants dIa and eIa) positively correlated

with velocity gain kv , with relatively low interaction
with the other reflex gains. Position feedback gain kp

and force feedback gain kf however did not show such
a distinct sensitivity. There was positive sensitivity of
kp to the stretch component of the muscle spindle cII,
but kp decreased with velocity component dIa as well.
The GTO constant cIb led to an increase of kf , but the
spindle parameters aIa, cIa and dIa have a far stronger
negative (decreasing) effect on kf . Summarizing, Fig. 6
demonstrates that kv and kf are mostly influenced by
muscle spindle feedback, while kp is influenced by a
mixture of afferent feedback pathways.



J Comput Neurosci (2011) 30:555–565 563

–1

–0.5

0

0.5

1
S

ij [–
]

 

 

a Ia c Ia d Ia e Ia a II c II c Ib

k
p

k
v

k
f

Fig. 6 Sensitivity measure Sij of the lumped reflex gains kp, kv , kf
to the sensory parameters of the muscle spindle and Golgi tendon
organs. The most closely related neural substrates of each reflex
gain parameter are indicated with an asterisk (*), e.g: velocity
feedback gain kv is expected to be closest related to the velocity
components dIa and eIa. (See Eqs. 1–3 and Table 1 for a list of
these parameters)

4 Discussion

Multiple mechanisms contribute to posture mainte-
nance. Perturbation experiments and system iden-
tification are widely used to assess posture maintenance
in humans (e.g. Kearney et al. 1997; Perreault et al.
2000; Van der Helm et al. 2002; Ludvig and Kearney
2007). System identification and neuromuscular model-
ing pose a powerful tool for quantifying posture main-
tenance with a small set of control parameters. For in-
stance, a position feedback gain expresses force buildup
related to muscle stretch. However, many neural and
sensory properties contribute to these feedback gains.
When posture maintenance is captured in such a small
set of reflex parameters, interaction could be expected.
For instance, both decreasing presynaptic inhibition of
the Ia afferent and increasing fusimotor drive can in-
crease the velocity feedback gain, since the net amount
of velocity related feedback in the control action to
the muscle increases. These interactions complicate the
interpretations of the results from reflex experiments.
Neural and sensory mechanisms might affect multiple
parameters of the lumped reflex model (see Figs. 5
and 6). Since direct in vivo measurements of neural
and sensory properties are unfeasible during posture
control experiments in humans, the goal of this study
was to investigate how neural and sensory properties
could map onto the (limited) set of reflex gains. Or,

in the example of presynaptic inhibition and fusimotor
drive, investigate how the net synaptic weights between
afferents and motoneurons or the parameters of the
muscle spindle model affect the lumped reflex gains.

We simulated posture control experiments with a
neuromusculoskeletal model. In the NMS model, spinal
cord circuitry controlled a joint, while receiving feed-
back from muscle spindles and Golgi tendon organs
in the activated muscles. The joint was perturbed with
a random force disturbance. Like in experiments, the
posture control behavior of the simulated NMS model
was captured by fitting the parameters of a lumped
reflex gain model onto the simulated data. The high
VAF of the reflex gain model fits onto the output of the
NMS model indicated that the linear reflex gain model
was able to adequately capture the behavior of the
strongly nonlinear NMS model. This was greatly due to
the conditions in the simulated experiment (and com-
monly used in in vivo experiments): during a posture
control task (minimize deviations), there is a constant
level of muscle co-contraction with small deviations
around the equilibrium position of the joint. Therefore,
the experimental conditions linearize the behavior of
the non-linear neural system. A comparison to actual
experimental data showed that the reflex gains fitted
from the neuromuscular model closely resembled reflex
gains identified in vivo.

The results showed a dominant role of tonic descend-
ing excitation (TDE) on the parameters of the lumped
reflex gain model. TDE to the motoneurons (para-
meter wtd−MN) increases tonic muscle activation (co-
contraction) and therewith the muscle viscoelasticity,
expressed in parameters b and k. Parameter wtd−ALL

simultaneously increased the amount of TDE to both
motoneurons and all other populations receiving TDE.
Besides viscoelasticity, also reflex gains kv and kf were
influenced by these two TDE parameters; these reflex
gains decreased with TDE. In the simulations of the
NMS model, TDE increased activation of the receiving
populations. As a result, the neural network received
relatively less afferent input than tonic input, which
could explain the decreasing reflex gains with TDE.

The results have shown that each of the lumped
reflex gain parameters is positively sensitive to its most
direct neural substrate: kv increases with parameters
related to Ia afferent stretch velocity feedback pathway,
kp with the II afferent stretch feedback pathway, and
kf with Ib afferent force feedback pathway. For kv

this most direct substrate was also the most dominant
and interaction with other pathways was low. In con-
trast, kp and kf showed stronger sensitivities to other



564 J Comput Neurosci (2011) 30:555–565

(and less directly related) neural and sensory mech-
anisms, which makes accurate identification difficult
in the given experimental conditions. Both kp and kf

decreased with velocity feedback over the Ia afferent
pathway. Additionally, force feedback gain kf strongly
decreased with TDE. This is in concordance with exper-
imental findings: force feedback modulation in humans
was strongest in an experimental condition with low
co-contraction and low-frequent (slow) perturbations
(Mugge et al. 2010). Position feedback gain kp was re-
markably less sensitive to neural and sensory property
changes than kv and kf . In the posture control task used
in the experiments deviations were small, while high
muscle stretch velocities resulted from the disturbance
force. Therefore muscle length information played a
lesser role during the posture control task than velocity
feedback. These results suggest that to effectively iden-
tify kp experimentally, stretch velocities need to be kept
small to minimize the interactions between velocity and
position feedback.

Summarizing, the sensitivity analysis demonstrated
dominance of muscle spindle velocity feedback and
tonic descending excitation. Velocity feedback gain kv

was distinctly influenced by afferent velocity feedback
and TDE, while position and force feedback gains kp

and kf depended on a wide variety of neural proper-
ties. The results of this modeling study contribute to
determining experimental conditions suited for study-
ing reflex modulation in vivo. From reflex experi-
ments (de Vlugt et al. 2002; Schouten et al. 2001), we
know that experimental conditions like level of co-
contraction, perturbation velocities and amplitudes, but
also task instruction induce reflex gain modulation.
When the relationship between neural properties and
reflex gains is better understood, experimental condi-
tions can be adapted to the type of reflex modulation
that is being studied. Furthermore, it is important to
know if the experimentally estimated reflex gains are
the result of the expected neural mechanism or may be
a combination of interacting mechanisms. For example,
one must be aware that modulation of kv can, besides
Ia afferent feedback, be caused by tonic descending
excitation to the motoneurons. It could therefore be
important to control the level of co-contraction in such
an experiment.

Like most models, the model presented here has
many simplifications. Starting at the sensory level,
a straightforward feline muscle spindle was chosen,
together with a linear Golgi tendon organ model. Be-
cause of the modeled task (a position task with co-
contraction and small, continuous perturbations with
fixed frequency content) both sensors operate with
small deviations around a relatively steady state. We

argue that under these conditions, the simple models
capture sufficient detail to describe the afferent feed-
back triggered by the perturbations, although we are
aware of the intricate dynamics that muscle spindles
and Golgi tendon organs can demonstrate (Mileusnic
et al. 2006; Mileusnic and Loeb 2006). The sensory
models used had their output in spikes per second and
a Poisson process was used to convert output to spike
trains. Halliday and Rosenberg (1999) presented a
point-process spectral estimate on a human Ia afferent
spike train, that closely matched the spectral properties
of recorded spike trains, indicating that a point process
could describe the Ia afferent dataset.

The spinal neural model was relatively straightfor-
ward. The spinal populations in the neural model were
homogeneous, and connections between the individual
neurons in the populations were assigned using a ran-
dom process. The neuron model was a simple point
neuron, without spatial representations like a den-
drite structure. These are important simplifications, and
more detailed models of the individual components of
our neural model do exist. Nevertheless, this simplicity
serves a purpose. The main goal was to determine how
changes in velocity-, position- and force-related neural
feedback map onto the limited set of reflex gains that
are used in experiments. The main question was: which
neural pathways could be contributing when changes in
reflex gains are observed in an experiment? Unlike a
lumped reflex gain model, where each feedback chan-
nel has a distinct pathway, biological afferent feedback
fans out in the spinal populations before finally con-
verging at the motoneurons. The multitude of pathways
and their interactions are the cause of most lumped
reflex gains being sensitive to multiple neural and sen-
sory parameters. Each detail added to the neural model
adds one or more parameters and thus might add a new
relationship with one of the reflex gains. However, the
main phenomenon that was demonstrated here can be
captured with a relatively simple model that includes
at least the afferent feedback pathways, fan-out and
convergence in the spinal populations and output to a
musculoskeletal model.

We conclude that with postural control tasks and
wide-bandwidth force perturbations, parameters of the
Ia afferent feedback pathway largely contribute to the
task performance enabling accurate identification of
kv . In these conditions of high stretch velocities, but
low stretch and fairly constant muscle activation, pa-
rameters of the II and Ib afferent feedback pathways
hardly contribute to task performance. Because of this
low contribution to task performance, the amount of
position and force related information in the measured
joint deviations is low, resulting in poor identifiability
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of kp and kf . This is expressed by the high sensitivity to
other, seemingly non-related feedback pathways. Iden-
tification of kp and kf probably needs an experimental
design that decreases the effects of interaction from
velocity feedback, like Mugge et al. (2010) suggests
for kf .
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