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Abstract
The preBötzinger complex (preBötC) is a heterogeneous neuronal network within the mammalian
brainstem that has been experimentally found to generate robust, synchronous bursts that drive the
inspiratory phase of the respiratory rhythm. The persistent sodium (NaP) current is observed in
every preBötC neuron, and significant modeling effort has characterized its contribution to square-
wave bursting in the preBötC. Recent experimental work demonstrated that neurons within the
preBötC are endowed with a calcium-activated nonspecific cationic (CAN) current that is
activated by a signaling cascade initiated by glutamate. In a preBötC model, the CAN current was
shown to promote robust bursts that experience depolarization block (DB bursts). We consider a
self-coupled model neuron, which we represent as a single compartment based on our
experimental finding of electrotonic compactness, under variation of gNaP, the conductance of the
NaP current, and gCAN, the conductance of the CAN current. Varying these two conductances
yields a spectrum of activity patterns, including quiescence, tonic activity, square-wave bursting,
DB bursting, and a novel mixture of square-wave and DB bursts, which match well with activity
that we observe in experimental preparations. We elucidate the mechanisms underlying these
dynamics, as well as the transitions between these regimes and the occurrence of bistability, by
applying the mathematical tools of bifurcation analysis and slow-fast decomposition. Based on the
prevalence of NaP and CAN currents, we expect that the generalizable framework for modeling
their interactions that we present may be relevant to the rhythmicity of other brain areas beyond
the preBötC as well.
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1 Introduction
The preBötzinger complex (preBötC) of the mammalian ventral respiratory brainstem
contains a heterogeneous neuronal network that generates the inspiratory phase of the
respiratory rhythm (Smith et al. 1991; Feldman and Del Negro 2006). In isolation from the
rest of the brainstem, the preBötC sustains robust, network-wide, rhythmic bursts that can be
studied in reduced preparations in vitro (Smith et al. 1991). Excitatory synaptic connections
between neurons within the preBötC are essential for rhythm generation, while the preBötC
rhythm persists under blockade of chloride-mediated inhibition (Feldman and Smith 1989;
Brockhaus and Ballanyi 1998; Shao and Feldman 1997; Ren and Greer 2006). Neurons
within the preBötC are endowed with a persistent sodium (NaP) current (Paton et al. 2006)
and a calcium activated nonspecific cationic (CAN) current (Pace et al. 2007a). Both
currents are relevant to rhythmicity within the preBötC. The CAN current can be activated
via second-messenger mediated synaptic pathways (Pace et al. 2007a). The NaP current is
voltage dependent but has sub-threshold activation (Del Negro et al. 2002a; Ptak et al. 2005;
Koizumi and Smith 2008), which allows it to drive square-wave bursting in a computational
model and would also give it the potential to complement the CAN current by amplifying
synaptic excitation. Previous analysis of preBötC activity has primarily focused on each of
these currents individually, in the context of distinct neuronal models (Butera et al. 1999a;
Rubin et al. 2009b). To understand how these two currents interact to promote rhythmicity
of the preBötC, we present and analyze a model that includes both the CAN and NaP
currents.

The NaP current has been shown to play a role in generating robust bursts in the preBötC
(Paton et al. 2006; Ptak et al. 2005; Koizumi and Smith 2008; Del Negro et al. 2002a; Rybak
et al. 2007), at least in certain conditions, such as when the respiratory brainstem is
challenged by hypoxia, anoxia, or hypercapnia (Rubin et al. 2009a; Smith et al. 2007; Rybak
et al. 2003). Butera and colleagues developed a single neuron model (henceforth called the
Butera model) that included the NaP current (Butera et al. 1999a, b). This model can exhibit
network bursting and reproduce important features of the in vitro respiratory rhythm. Recent
experimental results suggest that under pharmacological nullification of the NaP current
(Del Negro et al. 2001), the preBötC still generates an inspiratory-like rhythm (Pace et al.
2007b). Nevertheless, the NaP current is ubiquitous within the preBötC and given its
capacity to enhance neuronal activity (Lee and Heckman 2001), investigation of the NaP
current is critical to efforts to fully understand preBötC rhythmicity.

The CAN current is found in up to 96% of preBötC neurons (Pace et al. 2007a).
Experimental results indicate that the CAN current plays an important role in
rhythmogenesis within the preBötC (Crowder et al. 2007; Mironov 2008; Pace et al. 2007a,
b). A recent model (we will call it the Rubin–Hayes model) was used to study the CAN-
based mechanism for rhythmogenesis by focusing on the role of excitatory synaptic
interactions in activating the CAN current (Rubin et al. 2009b). In its core form, this model
included the CAN current and a Na/K ATPase electrogenic pump current. It was shown that
qualitative features of model dynamics were preserved when the pump was replaced by any
of a variety of other currents, including the NaP current. Analysis was done mostly in the
absence of the NaP current, however, to focus on emergent network properties achieved
through recruitment of postsynaptic burst-generating conductances by network activity.

In this work, we analyze a unified model by extending the core Rubin–Hayes model to
include the NaP current, with all of its associated dynamic effects. This is a crucial step in
understanding the rhythmicity of the preBötC. Indeed, although the previous modeling work
done on these neurons for the most part separated out the CAN and NaP components of
preBötC dynamics, it is likely that in the majority of preBötC neurons, it is the interaction of
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these currents that produces the cellular activity that underlies the bursting rhythm. Our
unified model provides a framework with which we can understand this interaction.

We use a slow-fast decomposition involving three slow variables to analyze dynamics of the
unified model. We approach this problem by reviewing bifurcation mechanisms present in
the NaP-only and CAN-only limits of the unified model, which have one and two slow
variables, respectively, and then consider how these interact when both currents are present.
Specifically, in Section 2, we introduce the unified model. In Section 3, we review, in the
context of the unified model, the mechanisms by which the Butera model and Rubin–Hayes
model generate bursting rhythms. Section 4 discusses the particulars of our numerical
implementations of the unified model. In Section 5 and Section 6 we provide an analysis of
the unified model by considering dynamic regimes that emerge under variation of the CAN
and NaP conductances. Section 7 highlights the coexistence of bursting and tonically active
solutions for some regions of conductance space. Overall, our work shows that the
interaction of the synaptically activated CAN conductance with the voltage dependent NaP
conductance yields a rich spectrum of behaviors, most of which are prevalent in
experimental recordings of neurons of the preBötC. These results suggest that the diversity
of observed preBötC neuron outputs reflects an intrinsic heterogeneity across neurons in this
population, which should be taken into account in future preBötC network models.

2 Preliminaries
We present and analyze a model that extends the Rubin–Hayes model to include the NaP
current. As a starting point for developing this model, we used the Rubin–Hayes model
containing the CAN current together with a Na/K ATPase pump. In the Rubin–Hayes
model, individual model neurons isolated from synaptic inputs can be quiescent or tonically
active, with transitions between these regimes governed by the reversal potential, EL, of the
leak current, or equivalently by Iapp, the applied current. Excitatory synaptic coupling
between two tonically active model neurons, or between a quiescent model neuron and a
tonically active model neuron, allows the pair to burst via interactions of the CAN current
and the Na/K ATPase pump. We analyze a self-coupled model neuron that, considered in
synaptic isolation, would be tonically active. We review the mechanisms underlying the
bursting behavior in the Rubin–Hayes model resulting from synaptic excitation in Section
3.2. We model the NaP current based on the data given for the Butera model (Butera et al.
1999a).

The Butera model differs from the Rubin–Hayes model in that isolated model neurons,
without self-coupling, may have quiescent, bursting, or tonically active spiking patterns,
with transitions between these dynamics as appropriate parameters are varied (Purvis et al.
2007). In the Butera model, introducing self-coupling for a model neuron that would
intrinsically be tonically active may yield a bursting rhythm (Best et al. 2005). Quiescent
and tonically active model neurons may also be coupled together to generate a bursting
rhythm (Rubin 2006; Dunmyre and Rubin 2010). In the Butera model, the NaP current is
responsible for transitions from the silent to the active phase and for the return from the
active phase to the silent phase, as reviewed in Section 3.1.

Parameters have been adjusted from those values found in Rubin et al. (2009b) and Butera et
al. (1999a) such that the unified model can be tuned to generate qualitatively identical
dynamics to the Rubin–Hayes model and the Butera model. Using the notation ẋ for the
time derivative of the variable x, the unified model is

(1)
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(2)

(3)

(4)

(5)

(6)

(7)

(8)

where εCa, α, and εhp are relatively quite small, and IL(v) = gL(v − EL), INa(v, h, m) =
gNam3h(v − ENa), IK(v, n) = gKn4 (v − EK), Isyn(v, s) = gsyns(v − Esyn), ICAN(v, Ca) =
gCAN(v − ECAN)/(1 + exp((Ca − kCAN)/σCAN)), INaP(v, hp) = gNaPmp∞(v)hp(v − ENa),

Ipump(Na) = ϕ(Na) − ϕ(Nabase), where . For each x ∈ {h, hp, mp, n, s}, the
function x∞(v) takes the form x∞(v) = {1 + exp[(v − θx)/σx]}−1. Also for each x ∈ {h, hp,
m, n}, the function τx(v) is given by τx(v) = τ̄x/ cosh[(v − θx)/(2σx)]. In Table 1 we record
the baseline parameter values used for Eqs. (1)–(8). A value for EL is included, although we
also comment on variations away from this baseline. Values of gCAN and gNaP are discussed
throughout the text, so these parameters do not appear in Table 1.

In the Rubin–Hayes model and the unified model (1)–(8), the value for kIP3 is large and
represents the effects of a signaling cascade that begins with presynaptic glutamate release
and terminates with the release of intracellular calcium stored in the postsynaptic
endoplasmic reticulum. When enough intracellular calcium is released (represented by Ca ≈
kCAN) the CAN current activates. The Rubin–Hayes model includes an outward current
denoted Ipump(Na) with corresponding dynamic variable Na, which represents the effects of
ATPase pumps that are activated during CAN current dominated activity (Rubin et al.
2009b).

When two neurons modeled by Eqs. (1)–(8) are coupled with excitatory synapses, the pair
can produce robust bursts analogous to those exhibited by the Rubin–Hayes model, when
gNaP = 0, or to those exhibited by the Butera model, when gCAN = 0. With the unified
model, we seek to analyze the forms of rhythmic activity produced by interactions of the
CAN and NaP currents. To understand this interaction, we systematically vary gCAN, the
conductance of the CAN current, and gNaP, the conductance of the NaP current.

In a real preBötC neuron, synaptic recruitment of the CAN current and the Na/K ATPase
pump activity occurs primarily in dendrites (Pace and Del Negro 2008; Mironov
2008;Morgado-Valle et al. 2008), whereas sodium channels are likely to be most prevalent
near the axon hillock, where they can strongly influence action potential generation.
However, simultaneous somatic voltage recordings and dendritic calcium imaging from
preBötC neurons suggest that preBötC neurons are electrotonically compact. Figure 1 shows
an example of the temporal proximity of somatic and dendrite responses, which is
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representative of a large set of recordings (Del Negro et al. 2010). In particular Fig. 1(e)
demonstrates that the difference between the time when the onset of activity occurs in the
dendrite (green trace in panel (e)) and the time when activity begins in the soma (black trace
at the top of panel (e)) is sufficiently small that we may justify using a one compartment
model, which simplifies the analysis. Another way we have simplified analysis is by
focusing on one self-coupled model neuron, instead of a network of two model neurons. We
provide numerical justification for this simplification in Section 4.

Our primary tool for analysis will be geometric singular perturbation theory (Fenichel 1979)
(for thorough review see Jones 1994). This analysis exploits the fact that εCa, α and εhp are
small, and so Ca, Na, hp (the “slow subsystem”) evolve on a timescale separate from the
dynamic variables v, h, m, n, s (the “fast subsystem”). Here we briefly summarize the
interactions of the slow and fast subsystems. From the perspective of the fast subsystem, the
slow subsystem’s dynamic variables are fixed at some values. The fast subsystem then
approaches some stable orbit or critical point based on the current values of the slow
variables. From the slow subsystem’s perspective, the dynamics of the fast subsystem is
instantaneous. Based on the asymptotic limit of the fast subsystem dynamics, the slow
subsystem slowly evolves. This drift updates the appropriate stable orbit for the fast
subsystem, but the fast subsystem instantly tracks these updates, and the slow subsystem
continues to drift in a way that is determined by the fast subsystem’s limits.

3 Review of the limiting cases gCAN=0 and gNaP=0

We begin our analysis by reviewing model dynamics in the two extremal parameter regimes,
gCAN = 0 and gNaP = 0. Analysis of these regimes isolates key mechanisms that will
combine to yield the rich dynamics of the general case.

3.1 Dynamics without the CAN current
First, we set gCAN = 0 and allow gNaP to vary for a self-coupled model neuron. With gCAN =
0, we can safely ignore the calcium dynamics given in Eq. (5) and the sodium dynamics will
equilibrate at Na = Nabase. Thus, after a transient, we need only consider one slow variable,
hp, which simplifies the analysis. In this case, the model is similar to the Butera model,
though the parameter values differ slightly. Importantly, the bifurcation structure is similar
to the one from the Butera model (see Best et al. 2005). Here we will briefly recall how a
slow-fast decomposition can be used to describe the dynamics in the case gCAN = 0. First we
present the bifurcation structures associated with Eqs. (1)–(4) and (8) in Fig. 2 by projecting
the bifurcation diagram generated by treating hp as a parameter, along with the graph of the
curve satisfying equation hp′ = 0 (also called the hp-nullcline), into (v, hp) coordinates.

We have marked three key features in Fig. 2, a saddle-node (SN) bifurcation (visible in the
inset), a family P of stable periodic orbits, and the family’s termination point: a critical point
of the fast subsystem (1)–(4) and (8) that is the asymptotic limit of a homoclinic orbit (HC).
At the SN bifurcation the family of asymptotically stable critical points of the fast subsystem
that correspond to quiescence ceases to exist. The family P is born in a supercritical
Andronov–Hopf (AH) bifurcation at hp > 1.2 but is is not visible in Fig. 2.

The features illustrated in Fig. 2 will be visited in succession by the evolving trajectory to
create the dynamics for the gCAN = 0 system. We will work in the εhp = 0 limit so that the
methods of geometric singular perturbation theory allow us to first consider the slow
variable hp as fixed. For each fixed hp ∈ [0, 1] each solution of the fast subsystem is quickly
attracted to one of the stable structures highlighted in Fig. 2.
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To facilitate our analysis we introduce the following notation. Considering hp fixed as a
parameter, we call (v, h, m, n, s) the fast subsystem, with associated fast dynamics given by
Eqs. (1)–(4) and (8).

Let x · t be the result of applying the flow of the fast dynamics to initial condition x for time
t. Allow d(x, y) to be the usual euclidean distance between points x = (vx, hx, mx, nx, sx) and

y = (vy, hy, my, ny, sy), that is, . We use the
dynamics of Eqs. (1)–(4) and (8) to define FgCAN=0(hp, x0) = {x: for fixed hp and any given
δ > 0 there exists tn → ∞ such that for each tn, d(x0 · tn, x) < δ}. Note that FgCAN=0(hp, x0)
can be thought of as limt→∞ x0 · t for hp fixed, when this limit exists. FgCAN=0(hp, x0) may
be either a nontrivial orbit or a critical point and may depend critically on x0 for choices of
hp where the fast subsystem exhibits bistability. We construct a solution for the full system
by allowing hp to drift based on the dynamics of Eq. (7) averaged over FgCAN=0(hp, x0). We
define hpSN to be the hp coordinate of the SN bifurcation. In Fig. 2 the AH bifurcation (with
hp-coordinate hpAH) is not seen because it occurs at hpAH > 1.2. Further, for hp fixed in [0,
hpSN), we define Q(hp) to be the unique stable critical point of the fast subsystem
corresponding to quiescence for that fixed hp, see Fig. 2. We will call hpHC the hp
coordinate of the homoclinic orbit. For hpHC ≤ hp < 1 we define P(hp) to be the unique
stable periodic orbit with large amplitude and high voltage corresponding to fast subsystem
spiking for that given value of hp, see Fig. 2.

Without loss of generality, we begin our analysis of the model dynamics with gCAN = 0 and
an initial condition (hp, x0) on the lower stable branch in Fig. 2; that is, (hp, x0) = (hp,
Q(hp)) for 0 < hp < hpSN. FgCAN=0(hp, x0) = Q(hp) is below the hp-nullcline, so that hp will
slowly begin to increase toward hp∞(v). As hp slowly increases, FgCAN=0(hp, x0) = Q(hp)
initially persists. If the hp-nullcline intersects the curve of stable quiescent states, then the
system converges to this intersection point, and the resultant solution will exhibit quiescent
dynamics. Otherwise, hp > hpSN eventually holds, and Q(hp) is not defined for such values
of hp. For hpAH > hp > hpSN, FgCAN=0(hp, x0) = P(hp), so a spiking or active phase begins
once hp > hpSN.

During the active phase, the relation FgCAN=0(hp, x0) = P(hp) is maintained, based on the x0
values visited. If the right hand side of Eq. (7) averaged over P(hp) is negative for each fixed
hp ∈ (hpHC, hpSN], then there is a negative net drift for hp, so that hp decreases until hp ≈
hpHC. The location of the hp-nullcline relative to the homoclinic orbit will determine the
resultant dynamics of the solution. More precisely, let T(P(hp)) be the period of P(hp) and

let  where (v, m, n, h, s) evolve according to P(hp).

The net drift of hp across the homoclinic is . Suppose D < 0. Under this
assumption, hp < hpHC eventually holds (and P(hp) is no longer defined) and again
FgCAN=0(hp, x0) = Q(hp), resulting in the termination of the active phase, after which the
full cycle repeats. Such dynamics represents square-wave bursting. On the other hand, if D ≥
0, even if hp < hpHC for some time, then eventually hp > hpHC again, and FgCAN=0(hp, x0) =
P(hp) for all subsequent time. The full system will eventually settle onto a periodic orbit,
resulting in tonic spiking.

Modulation of gNaP or EL shifts the location of the SN bifurcation and the location of the
homoclinic orbit. For some range of EL ≤ −61 and EL = −61 in particular, increasing gNaP
from 0 to 5, the stable dynamics changes from quiescence to bursting, and eventually from
bursting to tonic spiking. For some range of EL ≥ −60 and gNaP ∈ [0, 5], the full system
always exhibits tonic spiking.
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3.2 Dynamics without the NaP current
We now consider a self-coupled model neuron with gNaP = 0 and gCAN nonzero. With gNaP
= 0, we may safely ignore the dynamics of hp, and so may reduce our system to one that has
two slow variables: Ca and Na. In this case, with the exception of a few parameter values,
the model is the same as the Rubin–Hayes model (Rubin et al. 2009b). For a sample voltage
trace of a burst when gNaP = 0, together with its projection into the (Na,Ca) plane, see Fig. 3.
There are several bifurcation structures we must consider to explain the dynamics when
gNaP = 0. In Fig. 4, we present the bifurcation diagram of the fast subsystem projected into
(Ca, v) coordinates with Na > Nabase fixed. As in the gCAN = 0 regime, there is a
supercritical AH bifurcation that gives rise to a family of small amplitude periodic orbits,
which quickly coalesce with a family of unstable periodic orbits at a SNP bifurcation; it is
important to note that the Ca-coordinate of the AH bifurcation will be attainable by the full
system, unlike the gCAN = 0 case. The unstable family of periodic orbits meets the stable
family of periodic orbits P at another SNP bifurcation. P contains periodic orbits with large
amplitude and generally short period, again representative of neuronal spiking. As above, P
terminates at a homoclinic orbit; however, this homoclinic orbit precisely coincides with a
SN bifurcation, resulting in a saddle-node on an invariant circle (SNIC) bifurcation. In this
section, we consider two slow variables, but our definitions will be analogous to those in
Section 3.1. In Section 3.1 we defined Q(hp) as the branch of stable quiescent critical points
for the fast subsystem. Those critical points were not defined for hp > hpSN. Analogously, in
this section, instead of a single SN bifurcation point, there is a curve of SNIC bifurcations in
the (Ca, Na) plane. Setting Ca = Cabase and considering Na as a bifurcation parameter, there
is a SNIC bifurcation of the critical points corresponding to quiescence at Na = NaSNIC. For
Na > NaSNIC we define CaSNIC(Na) to be the unique Ca coordinate of the curve of SNIC
bifurcations. For (Ca, Na) such that Na > NaSNIC and Ca < CaSNIC(Na) there is a unique
stable critical point of the fast subsystem, Q(Ca, Na), corresponding to hyperpolarized
quiescence. In particular, Cabase < CaSNIC(Na) for almost all Na > NaSNIC.

Similarly to Section 3.1, we use the dynamics of Eqs. (1)–(4), (8) to define FgNaP=0(Ca, Na,
x0) = {x : for fixed (Ca, Na) and any given δ > 0 there exists tn → ∞ such that for each tn,
d(x0 · tn, x) < δ}. Again, FgNaP=0(Ca, Na, x0) may be either a nontrivial orbit or a critical
point. We use this definition to consider various types of trajectories for the full system. We
begin our construction with Ca = Cabase and Na > NaSNIC so that FgNaP=0(Ca, Na, x0) =
Q(Ca, Na). In this state, s ≈ 0 and thus Ċa ≈ 0, and we need only consider the Na dynamics,
which will initially cause Na to decrease toward Nabase. If NaSNIC < Nabase, then Na will
stagnate at Nabase, resulting in a solution to the full system that exhibits quiescence. On the
other hand, if NaSNIC > Nabase, the system may exhibit bursting or tonic spiking dynamics.
As Na decreases toward Nabase, eventually Na < NaSNIC holds and Q(Ca, Na) is no longer
defined; the full system exits the quiescent state, see Fig. 5.

For fixed Na, treating Ca as a bifurcation parameter yields two SNP bifurcations, which we
label as ISNP (“inner SNP”), for the one with a lower Ca coordinate, and OSNP (“outer
SNP”), for the bifurcation at higher Ca coordinate. We define CaISNP(Na) to be the Ca
coordinate of ISNP for the given value of Na, and similarly, CaOSNP(Na) is defined to be the
Ca coordinate of OSNP for the given value of Na. For CaSNIC(Na) ≤ Ca < CaOSNP(Na) we
can define P(Ca, Na) to be the unique high voltage large amplitude stable periodic orbit of
the fast subsystem that corresponds to spiking.

As the full system exits the quiescent state, it follows that FgNaP=0(Ca, Na, x0) = P(Ca, Na).
The model neuron is self-coupled, and as a result of the spiking the s dynamic variable
increases, which induces a positive drift in Ca, see Eq. (5). Increased Ca activates the CAN
current, which for sufficiently high gCAN leads to increased spiking frequency. This
increased spiking frequency further drives Ca by sustaining a higher synaptic level s, see
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Eqs. (1) and (8). The dynamics may enter a voltage-dependent spike inactivation state called
depolarization block, and to explain this, we consider the location of the AH bifurcation
relative to the trajectory of the slow subsystem. There is a curve of AH bifurcations in the
(Ca, Na) plane, so we define CaAH(Na) to be the Ca coordinate of the AH bifurcation for a
provided value of Na. For (Ca, Na) satisfying CaAH(Na) < Ca, we define DB(Ca, Na) to be
the unique stable critical point of the fast subsystem corresponding to depolarization block
(e.g., the solid branch of critical points near v = −20 in Fig. 4). As Ca increases, eventually
Ca > CaOSNP(Na) > CaAH(Na) holds, and P(Ca, Na) is no longer defined; FgNaP=0(Ca, Na,
x0) = DB(Ca, Na) so that the dynamics no longer exhibits spiking. Instead, through damped
oscillations, it winds down to the depolarization block state.

With the full system in depolarization block, the s dynamic variable decays due to the spike
attenuation (see Eq. (8), and in particular s∞(v) and θs in Section 2). From Eq. (5) we note
that low levels of s cause Ca to decay, so that Ca < CaAH(Na) eventually holds. For (Ca, Na)
satisfying CaISNP(Na) < Ca < CaAH(Na), we define L(Ca, Na) to be the unique high voltage
low amplitude stable periodic orbit of the fast subsystem corresponding to the given (Ca,
Na) pair. For CaISNP(Na) < Ca < CaAH(Na) there is bistability between L(Ca, Na) and P(Ca,
Na) for the fast subsystem; however, a solution just exiting depolarization block will be in
the basin of attraction for L(Ca, Na). Periodic orbits for L(Ca, Na) have a maximal voltage
less than θs; see Fig. 4 for an example of this situation. These sub-threshold oscillations do
not yield an increase in the s dynamic variable, so that Ca continues to have a negative drift,
at least until Ca < CaISNP(Na), so that L(Ca, Na) is no longer defined and FgNaP=0(Ca, Na,
x0) = P(Ca, Na). However, due to the activated CAN current, Na continues to have a
positive net drift throughout the active phase that we have described, see Eq. (6). As Na
increases, so does CaSNIC(Na). If the combined changes in Na and Ca push Ca < CaSNIC,
then P(Ca, Na) is not defined, yielding FgNaP=0(Ca, Na, x0) = Q(Ca, Na) so that the full
system returns to the silent phase. We summarize the (Na, Ca) coordinates corresponding to
different dynamics for FgNaP=0(Ca, Na, x0) in Fig. 5.

A solution that encompasses all of these components has a burst that exhibits depolarization
block during its active phase, which we will call a DB burst. If gCAN is low, then, for Na ≥
Nabase, CaAH(Na) may be beyond the maximum attainable value of Ca, so the model neuron
will not reach the depolarization block state, see Section 5.5. This may lead either to square-
wave bursting or to tonic activity. We say that a function f(x) blows up for finite x = x0 if
limx→x0 f(x) = ∞. When the coordinate of a bifurcation blows up, the trajectory may be
captured by this bifurcation. For instance, if CaSNIC(Na) blows up for finite Na = Na0 then
as Na approaches Na0, the trajectory’s Ca and Na coordinates satisfy Ca < CaSNIC(Na), and
so FgNaP=0(Ca, Na, x0) = Q(Ca, Na) and we say that the trajectory has been captured by the
SNIC bifurcation. Specifically, if gCAN is low, then CaSNIC(Na) may blow up for finite Na,
see Section 5.6.

If the activated CAN current can pull Na up to such a value that the CaSNIC(Na) blows up,
then FgNaP=0(Ca, Na, x0) = Q(Ca, Na). Thus, the trajectory will have a period of quiescence,
so that Ca and Na will decay. As Na decays during the quiescence, CaSNIC(Na) takes finite
values again. Eventually Na < NaSNIC holds and triggers re-entry to the active phase, which,
via activation of the CAN current, brings Na high enough that CaSNIC(Na) blows up,
resulting in a return to the silent phase. A solution with such dynamics exhibits square-wave
bursting with a long period and we note that this version of square-wave bursting is distinct
from the square-wave bursts see in Section 3.1. Should this blowup of the CaSNIC(Na) not
occur, the resultant solution has no way to return to the silent phase and so will be tonically
active.
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The dynamics of the gNaP = 0 system depends on EL as well. If EL ≤ −61, then Nabase >
NaSNIC, so that the solution cannot enter the active phase and quiescence results. If EL =
−60, then increasing gCAN from 0 to 5 first yields tonically active solutions and then DB
bursting solutions. For EL = −59.5, increasing gCAN from 0 to 5 first yields solutions that are
tonically active, then square-wave bursting, then tonic activity again, and finally DB
bursting. Desirable bursting solutions persist for a range of EL ≥ −59.5; however, when EL is
not sufficiently negative, Ipump is unable to terminate the burst by causing a prolonged silent
phase (Rubin et al. 2009b). Instead, for sufficiently high gCAN and EL, the trajectory will
wind back and forth through the AH bifurcation, resembling an elliptic burster. The
mechanisms underlying these different solutions will be described in detail, for the more
general case with both INaP and ICAN in the model, in Sections 5 and 6.

4 Numerics
Most of our numerical work was done in the MAT-LAB programming language (The
MathWorks, Natick, MA). Systems such as our unified model that have multiple timescales
are stiff, so to speed up integration we used a C implementation of the CVODE package
from SUNDIALS (Hindmarsh et al. 2005), interfaced with MATLAB via the mex
command. Two dimensional bifurcation diagrams such as Fig. 2 were generated with
XPPAUT (Ermentrout 2002), and three dimensional bifurcations were created by the
MATCONT package for MATLAB (Dhooge et al. 2003) as well as XPPAUT. XPPAUT
files for the unified model are available as electronic supplementary material.

In Fig. 6, we present a colorization of (gNaP, gCAN) parameter space based on the dynamics
of the model under different parameter choices, using blue for quiescence, black for tonic,
and green for bursting. To classify a parameter set based on neuronal activity, we use initial
conditions corresponding to the silent phase, with elevated Na and low Ca and hp, and after
a transient of 10,000 msec, we apply an algorithm to the spiking pattern of the model neuron
recorded over the next 9,999 msec. The algorithm records that the model neuron has spiked
each time V = 0 and V′ > 0, since most spikes peak at about V = 20, and V stays below 0
during both the spike attenuation leading into depolarization block that sometimes occurs
and the sub-threshold oscillations that emerge upon exit from depolarization block. If there
are no spikes after the initial transient, then we classify the model neuron as quiescent.
Otherwise, we compute the standard deviation of the interspike intervals (ISI). The ISI of a
tonically active model neuron will have a standard deviation very close to zero milliseconds.
On the other hand, due to the long time between the last spike of a burst and the first spike
of the next burst, in the bursting case the standard deviation of the ISI is significantly
increased relative to the tonically active case. We classified the model neurons as follows: if
the standard deviation of the ISI was less than 10 msec, we considered the model neurons to
be tonically active; otherwise, they were considered to be bursting. All of the tonically
active model neurons observed before automating the procedure had ISI standard deviations
well below 10 msec. Most bursting solutions yielded ISIs with standard deviations greater
than 50 msec, so a threshold of 10 msec is reasonable for partitioning the parameter space.

We include white labels in Fig. 6 to facilitate later discussion. Figure 7 provides
representative voltage traces from these labeled regions. The bursting dynamics in region II
(Fig. 7(a)) is square-wave bursting as seen in the Butera model (Butera et al. 1999a), while
that in region III (Fig. 7(b)) is DB bursting as seen in the Rubin–Hayes model (Rubin et al.
2009b). Both of these are prevalent in voltage traces recorded from mouse preBötC slices, as
are the patterns found in region * (Fig. 7(c)). Figure 8 gives several sample recordings and
agrees well with model output for the various bursting regimes.
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In Fig. 9 we present a colorization of (gNaP, gCAN) parameter space for two reciprocally
coupled model neurons that have slightly different initial conditions but the same values for
all other parameters. For automated dynamics detection, the above algorithm had to be
modified slightly to account for the phase difference in bursts. For each model neuron, we
determine the burst duration of the last recorded burst by taking the difference in times for
the first spike and last spike of the burst. We define the total time of activity as the
difference between the first spike of the first model neuron to enter the active phase and the
last spike of the last model neuron to enter the silent phase. We define the time of shared
activity as the difference between the first spike of the second model neuron to enter the
active phase and the last spike of the first model neuron to enter the silent phase. If the ratio
of the shared activity to the total activity was greater than 0.4, we say that the bursts were in-
phase, otherwise, we say the bursts are out-of-phase. For the most part Fig. 9 looks like Fig.
6. The key difference is that, for gCAN > 3, tonic solutions are more prevalent in the two-
neuron case. Most of these tonic solutions lack spike synchrony. The precise effects of spike
asynchrony are out of the scope of this work, but the primary result is that this feature allows
for bistability between asynchronous tonically active solutions and bursting similar to that
arising in regions II, III and * in Fig. 6. This accounts for the primary difference between
Figs. 6 and 9. Except for the precise spike synchrony, all of the dynamics observed in the
self-coupled case have been observed in the two-neuron case. Thus, to gain insight into the
two-neuron network, a good step is to understand the self-coupled case.

Variations in EL have been used to explore robustness of model dynamics in past work, for
various reasons (see Discussion). We generated Fig. 6 with EL = −61, although the figure
would be qualitatively similar for a range of EL values. In particular, for EL < −61, a higher
value of gNaP is required for solutions to be able to enter the active phase, so all of the
regions will shift to the right in gNaP space. On the other hand, for EL > −61 and large
enough such that the system fails to produce quiescence or bursts when gCAN = 0, then the
gCAN ≠ 0 case will not exhibit region I-like or region II-like dynamics, but the other regions
persist. We note that region * is lost for a value of EL close to that which causes the loss of
region II. For EL insufficiently negative, Ipump and the NaP current will be unable to cause a
prolonged silent phase (as seen in the gNaP = 0 case), and the system may exhibit activity
that resembles elliptic bursts.

5 Analysis of unified model dynamics
In this section, we analyze the mechanisms by which the solutions observed in each marked
region of Fig. 6 come about. Figure 6 was generated with EL = −61 and with initial
conditions corresponding to the quiescent state, as described in Section 4. We elected EL =
−61 for this analysis because when gCAN = 0, we have quiescent, bursting, and tonic spiking
solutions, depending on the values of other parameters, in the presence of self-coupling.

For gNaP ≠ 0, for fixed hp > 0 and for fixed Na > Nabase, the bifurcation diagram for the fast
subsystem generated by treating Ca as a bifurcation parameter is similar to Fig. 4. When
gNaP ≠ 0, but hp = 0, the bifurcation diagram is the same as Fig. 4, because hp and gNaP are
multiplied together in Eq. (1) and do not appear anywhere else in the fast subsystem.
However, for hp > 0, the SNIC bifurcation from the hp = 0 case decomposes into a SN
bifurcation and a separate homoclinic bifurcation as in Fig. 2. The unstable critical point to
which the homoclinic orbit converges as t → ±∞ will be called a homoclinic point. For
sufficiently small hp, we may approximate the Ca and Na coordinates of the homoclinic
point with the coordinates of the SN bifurcation. Again, we will work in the (εCa, α, εhp) =
(0, 0, 0) limit and allow F(Ca, Na, hp, x0) = {x: for fixed (Ca, Na, hp) and any given δ > 0
there exists tn → ∞ such that for each tn, d(x0 · tn, x) < δ}. As before, F(Ca, Na, hp, x0) may
be a critical point or a nontrivial orbit. In Fig. 10, by treating Ca, Na, hp as bifurcation
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parameters, we present some examples of bifurcation structures for the fast subsystem; in
particular, we include a surface of SN bifurcations (SN surface), a surface of AH
bifurcations (AH surface), as well as a surface of homoclinic points (HC surface). Indeed,
except for the different values of EL used when generating Figs. 5 and 10, these figures are
closely related; Fig. 5 corresponds to the hp = 0 plane of Fig. 10. We set CaSN(Na, hp),
CaAH(Na, hp), and CaHC(Na, hp) to be the Ca coordinates of the SN surface, AH surface,
and HC surface for each given (Na, hp). We will also define CaISNP(Na, hp) and
CaOSNP(Na, hp) to be the Ca coordinates of the two SNP surfaces, analogous to the
corresponding curves in Fig. 5. For X ∈ {SN, AH, HC, ISNP, OSNP} we say that the
trajectory intersects or reaches the surface X if the trajectory’s Ca, Na, hp coordinates satisfy
Ca = CaX(Na, hp). In general, a transition from the silent phase to the active phase occurs
when the trajectory intersects the SN surface transversely, and hence crosses through it,
through increases in hp or Ca or decreases in Na. A transition from the active phase to the
silent phase occurs when the trajectory crosses the HC surface via decreases in hp or Ca. An
increase in Na promotes such a transition by bringing the surface to larger hp and Ca values
(Figs. 10 and 11) but will not achieve this transition on its own due to the curvature of the
relevant part of the HC surface.

For the following, we assume that initially, Na > Nabase and 0 ≤ hp ≤ 1. As in Sections 3.1
and 3.2, for (Ca, Na, hp) such that Ca < CaSN(Na, hp), there is a unique stable critical point
for the fast subsystem corresponding to hyperpolarized quiescence, Q(Ca, Na, hp).

For (Ca, Na, hp) such that CaHC(Na, hp) < Ca < CaOSNP(Na, hp) there is a unique large
amplitude high voltage stable periodic orbit of the fast subsystem, P(Ca, Na, hp),
corresponding to spiking. When (Ca, Na, hp) satisfy CaISNP(Na, hp) < Ca < CaAH(Na, hp),
there is a unique small amplitude high voltage stable periodic orbit of the fast subsystem,
L(Ca, Na, hp), corresponding to sub-threshold oscillations. Finally, for (Ca, Na, hp) such
that CaAH(Na, hp) < Ca, there is a unique stable critical point of the fast subsystem, DB(Ca,
Na, hp), corresponding to depolarization block.

5.1 Region I
As described in Fig. 6, parameter values from region I yield quiescent solutions. We begin
the analysis with gCAN = 0. Increasing gNaP lowers hpSN, possibly so that the hp-nullcline

no longer intersects the family of quiescent critical points. We call  the critical gNaP such

that when gCAN = 0 the quiescent solution exists if and only if . We note that  is
the value for gNaP such that the hp-nullcline intersects the surface of fast subsystem critical

points precisely at the SN bifurcation point. When , allow hpmax(gNaP) to be the hp
coordinate of the intersection of the hp-nullcline and branch of quiescent critical points.

When EL = −61 in the case gNaP = 0, the solution is unable to escape quiescence because
Nabase > NaSNIC. Modulation of gCAN will not change this, because ICAN(v, Ca) does not
contribute to v̇ when Ca is small. With Ca decaying to Cabase the slow subsystem evolves
toward the point (Cabase, Nabase, hpmax), and Cabase < CaSN(Nabase, hpmax) so that F(Ca, Na,
hp, x0) → Q(Cabase, Nabase, hpmax) and the solution exhibits quiescent dynamics forever,

see Fig. 12. Similar coordinates for  yield the vertical right boundary of region I
in Fig. 6, representing independence from gCAN.

5.2 Region II
Trajectories found for parameter values in region II exhibit square-wave bursts typical of the
Butera model, even in the presence of elevated gCAN. Indeed, the dynamics here is not very
different from the dynamics described in Section 3.1, with gCAN = 0. Here, we will show
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how this dynamics is preserved when gCAN > 0. With EL = −61, since Nabase > NaSN, we
rely on hp increasing enough to cause the singular solution to cross the SN surface to initiate
spiking, see for instance the Ca = Cabase = 0.05 plane in Fig. 10. That is, after Na has
decayed to Nabase and Ca has decayed to Cabase, we need hp such that CaSN(Nabase, hp) <
Cabase in order for the solution to exit the silent phase. As in Section 3.2, once the solution
exits the silent phase, F(Ca, Na, hp, x0) = P(Ca, Na, hp), the solution begins spiking, and hp
begins to decay. Across each spike, Ca rises to a higher level, and then Ca decays after the
spike. However, the CAN current requires a certain level of Ca, namely Ca ≈ kCAN, to
become active and qualitatively change the dynamics. Until Ca ≈ kCAN, Na remains near
Nabase and the dynamics is qualitatively as in the gCAN = 0 case.

To activate the CAN current, then, we need a certain number of spikes of F(Ca, Na, hp, x0)
to occur within a certain window of time to increase s and overwhelm the decay of Ca to
Cabase (see Eq. (5)). The bursts in region II do not yield enough spikes to meet this
condition, and decreasing hp causes a return to the silent phase exactly as with gCAN = 0. In
fact, the presence of the CAN current, even if not fully activated due to low Ca, actually aids
in this transition to the silent phase. The small rise in Ca induced by the spiking activity
causes enough ICAN activation to increase Na slightly, especially for high gCAN.
Numerically, we observe that, for Ca fixed, both hpHC and hpSN are increasing functions of
Na, see Fig. 11. Thus, the spiking activity that increases Na slightly causes an earlier
crossing of hpHC and return to the silent phase. Further, since hpSN is an increasing function
of Na, hp may be unable to cross hpSN until Na decays. This has two key effects. First, the
dependence on the slow decay of Na causes the solution of the full system to spend a longer
time in the silent phase. Second, the singular solution crosses the SN surface with a higher
hp value, which may cause more spikes to occur; however, in region II, these extra spikes
never appreciably activate the CAN current. So, increasing gCAN within region II changes
the interburst interval, and the spike counts within bursts, but does not yield the DB bursts
seen in region III (Fig. 7).

5.3 Region III
Region III contains DB bursts similar to those seen in the Rubin–Hayes model from
interactions of ICAN and Ipump. Again, the key difference arising for DB bursts in the unified
model (1)–(8), compared to the Rubin–Hayes model, is that the SNIC bifurcation transforms
into two separate entities, a SN bifurcation of critical points and a homoclinic bifurcation.
Nevertheless, when a solution spends an extended time in the active phase, we may use the
SN bifurcation as an approximation to the homoclinic orbit once the CAN current is
activated. This approximation is reasonable because hp becomes very small during an
extended active phase and gNaP and hp are multiplied in INaP(v, hp) in Eq. (1), so that during
an extended active phase, the bifurcation structures approach those from the gNaP = 0 case,
where the saddle node and homoclinic do combine to form a SNIC bifurcation. In Fig. 10,
we see that for hp = 0, the homoclinic surface and SN surface coincide as expected,
supporting our claim that for low hp we may approximate the homoclinic surface by the SN
surface. This approximation can also be justified by the interpretation of hp as an
inactivation variable for INaP, so when hp is low there is little contribution from INaP due to
inactivation. This approximation will come into play in understanding the transition to the
silent phase in region III, as described below.

While F(Ca, Na, hp, x0) = Q(Ca, Na, hp), decreasing Na and increasing hp cause a decrease
in CaSN(Na, hp), until CaSN(Na, hp) < Cabase, allowing the trajectory to exit the silent phase.
As in both Sections 3.1 and 3.2, once CaSN(Na, hp) < Cabase, the fast subsystem no longer
has a branch of critical points corresponding to quiescence as an attractor, and F(Ca, Na, hp,
x0) = P(Ca, Na, hp). The difference between region II and region III is that region III has
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higher gNaP than region II, resulting in faster spikes along solutions in F(Ca, Na, hp, x0),
which occur fast enough to build up Ca and activate the CAN current.

By the time that Ca builds up, hp has decayed significantly, so that we may approximate the
HC surface by the SN surface. With this approximation, the dynamics is similar to Section
3.2. Ca continues to build up, until Ca > CaOSNP(Na, hp) holds. For Ca > CaOSNP(Na, hp),
F(Ca, Na, hp, x0) = DB(Na, hp), and the full system enters depolarization block. Spike
attenuation due to depolarization block causes Ca to decrease and eventually Ca < CaAH(Na,
hp) holds, such that the solution exits depolarization block. As the trajectory exits
depolarization block, F(Ca, Na, hp, x0) = L(Ca, Na, hp) and the solution has small amplitude
high voltage periodic orbits, as in Section 3.2. The small amplitude of the periodic orbits do
not produce enough voltage variation to yield an increase in Ca. Thus, at least until Ca <
CaISNP(Na, hp) holds (and so F(Ca, Na, hp, x0) = P(Ca, Na, hp)), Ca continues to decrease.
Meanwhile Na has been increasing, so that it is possible that as Ca decreases, Ca <
CaSN(Na, hp) ≈ CaHC(Na, hp) results and correspondingly F(Ca, Na, hp, x0) = Q(Ca, Na,
hp). The full system returns to quiescence until Na decreases and hp increases enough to
start another burst, as described above.

The variable hp plays two roles in generating a DB burst in region III. First, hp combines
with Na to allow escape from the silent phase. Second, hp contributes to the spike speed-up
that yields the Ca increases needed for a DB burst. One of the key features of the trajectory
of the full system for region III is that in the active phase, although hp becomes small, the
decrease in hp alone could not trigger a return to the silent phase. As gNaP is decreased, this
feature may be lost, and this brings us to region *.

5.4 Region *
Region * is characterized by solutions that feature both square-wave bursts and DB bursts.
As described in Section 5.3, while the full system is in the silent phase, a sufficient decrease
in Na together with an adequate rise in hp allows CaSN(Na, hp) < Ca, causing F(Ca, Na, hp,
x0) = P(Ca, Na, hp), and the solution transitions to the active phase. During the active phase,
Ca increases and hp decreases. These effects result in a race between Ca and hp. On one
hand, if hp decreases so that CaHC(Na, hp) > Ca, the full system may return to quiescence
without going into the full burst that incorporates greater plateau-like voltages, higher
spiking rates, and ultimately depolarization block. Thus, this outcome results in a square-
wave burst as in region II. On the other hand, if Ca increases enough to activate the CAN
current, then decreasing hp alone will be unable to trigger a return to the silent phase; to
terminate the burst, Ca must be decreased by the full system entering depolarization block as
in region III. The winner of the race is influenced by the level of Na when the full system
enters the active phase, as we shall now describe.

For Ca fixed, hpHC increases as Na increases, see Fig. 11. When the trajectory enters the
active phase with elevated Na, the decreasing variable hp may be able to drop to the elevated
value of hpHC and the net drift of hp at the homoclinic orbit may be negative. In this case, hp
triggers a return to the silent phase before the CAN current can activate and cause a DB
burst. The result is a square-wave burst. Such square-wave bursts, due to the fact that Ca
does not exhibit a large increase, yield a net decrease in Na. After one or more square-wave
bursts, the full system enters the active phase with Na low enough that hp cannot drop below
hpHC to trigger a return to the silent phase, resulting in a DB burst. After a DB burst, Na is
elevated, and thus so is hpHC, so the subsequent bursts may be square-wave. In this way, we
may observe solutions with varying sequences of square-wave and DB bursts.

To illustrate this mechanism, we have plotted a trajectory of the full system projected into
hp, Ca space, along with two slices of the homoclinic surface, one for lower Na and one for
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higher Na, see Fig. 13. We begin on the orange section of the trajectory shown in Fig. 13(b).
Here, the full system has crossed through the SN surface and entered the active phase with
hp = .8 and Na = 5.3 (“start” in Fig. 13(a)). As the solution spikes, Ca experiences several
abrupt but transient increases while hp decreases. The trajectory passes through the blue
curve, which is the slice of the homoclinic surface corresponding to Na = 5.1, and even
though several subsequent spikes occur, they are insufficient to keep the trajectory in the
active phase. With the subsequent return to the silent phase, a square-wave burst results. In
the silent phase, Na decreases to 5.051 and hp increases to about 0.6, and again the
trajectory passes through the SN surface, causing the solution to re-enter the active phase.
We illustrate the next part of the solution in Fig. 13 in black. Again, as the solution spikes,
Ca experiences abrupt though transient increases. Now we compare the trajectory of the full
system against the slice of the homoclinic surface corresponding to Na = 5.051, shown in
magenta. This time, the trajectory crosses the homoclinic surface only briefly, immediately
returning back to the other side of the surface due to a spike. Indeed, this last spike brings
Ca > kCAN, activating the CAN current, and the DB burst progresses as usual, such that Na
attains an elevated level (Fig. 13(b)) and then the trajectory enters the silent phase. In this
way, with Na diminished by each square-wave burst until it becomes small enough to allow
a DB burst, which pushes it back up again, the model may continually generate alternating
square-wave and DB bursts, or perhaps sequences of two or more square-wave bursts before
a DB burst, as in Figs. 7(c) and 8(d).

In recordings from preBötC neurons that alternate between DB and square-wave bursts we
observe that the interburst interval following a DB burst is generally longer than the
interburst interval after a square-wave burst. We highlight one example of this phenomenon
in Fig. 14(a), and the preceding analysis for region * can shed some light on this situation.
During a DB burst, the activated CAN current elevates Na, and hp typically decays to hp ≈ 0
due to the prolonged activity. The next active phase begins when hp crosses hpSN, which
will take longer due to elevated Na (Fig. 11), even though Na is slowly decaying during the
silent phase. If the subsequent burst is a square-wave burst, Na will have continued to decay,
and it need not be the case that hp ≈ 0 at the start of the silent phase. Thus, following a
square-wave burst, hp is initially larger and hpSN is smaller (due to decaying Na), so it takes
less time for the system to attain hp > hpSN and enter the next active phase, see Fig. 14(b).

5.5 Region IV
As before, we begin our analysis with Na > Nabase, hp = 0, Ca = Cabase and F(Ca, Na, hp,
x0) = Q(Ca, Na, hp). A decrease in Na toward Nabase and an increase in hp cause CaSN(Na,
hp) < Ca, resulting in a transition to the active phase. As in region III, gNaP is high enough
so that a decrease in hp alone cannot trigger a return to the silent phase. For fixed Na, hp, we
observe that CaAH(Na, hp) is a decreasing function of gCAN, see Fig. 15. Decreasing gCAN
may cause CaAH(Na, hp) to blow up, in which case, Ca < CaAH(Na, hp) always holds.
During an extended active phase, hp decreases to a minimal value, and we are essentially in
the situation from Section 3.2. Recall from Section 3.2 or Section 5.3 that to terminate the
burst, we required the solution to enter depolarization block so that spike attenuation would
lead to a decrease in Ca. If Ca < CaAH(Na, hp) always holds, the only way to depolarization
block and corresponding decrease in Ca will never occur, and tonic activity results, unless
eventually CaHC(Na, hp) > Ca holds. However, for most values of gCAN, the value of
CaSN(Na, hp), and thus CaHC(Na, hp), remains low relative to Ca levels of CAN driven
tonic activity in region IV, even for extremely high Na, see Fig. 16. Thus, given that
CaAH(Na, hp) is beyond the maximal attainable value of Ca and CaSN(Na, hp) remains low,
F(Ca, Na, hp, x0) = P(Ca, Na, hp) and the model’s activity is indeed tonic.
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As we shall see in the next subsection, there are some gCAN values for which CaSN(Na, hp)
does not remain bounded as a function of Na and hence for which significantly different
model dynamics emerges.

5.6 Region V
In this section we explain how the square-wave bursts seen in Fig. 7(e), corresponding to
region V, are realized. As usual, we begin in the silent phase, with Na decreasing toward
Nabase and hp increasing. Eventually, Ca > CaSN(Na, hp), F(Ca, Na, hp, x0) = P(Ca, Na, hp),
and the solution enters the active phase. We note that region V has gNaP values similar to
those of region III, which implies that the trajectory cannot return to the silent phase simply
by virtue of hp decreasing, see Section 5.3. Moreover, region V lies below the gCAN value
for which CaAH(Na, hp) blows up, see Fig. 15. So the trajectory cannot pass through the AH
surface, meaning that the full system cannot enter depolarization block and hence Ca cannot
decrease to pass back through the HC surface. Instead, we find in region V that CaHC(Na,
hp) actually blows up as Na increases, see Fig. 17. When this blowup occurs, the trajectory
is captured by the HC surface, that is, Ca < CaHC(Na, hp) holds so that F(Ca, Na, hp, x0) =
Q(Ca, Na, hp) and the full system returns to the silent phase.

5.7 Region VI
Regions IV and VI both feature tonically active solutions. The difference between the two
regions is that in region VI, the CAN current does not become active, such that essentially
the same tonic spiking dynamics as in Section 3.1, with gCAN = 0, emerges. When gNaP is
low, there are tonic solutions such that the spikes are not fast enough to maintain sustained
levels of s sufficient to increase Ca enough to activate the CAN current. When gCAN is low,
even if the spike acceleration increases Ca enough to activate the CAN current, the CAN
current is too weak to bring Na to values such that CaSN(Na, 0) blows up (Section 5.6).
Also, low values of gCAN prohibit the CAN current from strongly influencing the dynamics.
On the other hand, in region IV, the CAN current is strong and active during tonic spiking
(Section 5.5), which yields solutions with shorter ISI. We summarize these differences
graphically in Fig. 18.

6 Transitions between regions
In Section 5, we explained how particular bifurcation structures give rise to different forms
of model dynamics, as indicated in Figs. 6 and 7. In this section, we estimate where the
borders between dynamic regimes lie in the (gNaP, gCAN) plane (Fig. 6) based on criteria
derived from insights presented in Section 5 and additional numerical calculations. In some
cases, we numerically compute estimated boundary curves, the accuracy of which confirms
the validity of our analysis. The transition criteria that we provide also allow us to predict
the location of regions of bistability in the (gNaP, gCAN) plane, which we discuss further in
Section 7.

6.1 From I to II and from II to VI
The transitions from region I to II and from region II to VI are well understood when gCAN
= 0 (Best et al. 2005). The transition mechanisms persist when gCAN > 0. Starting from
region I, an increase in gNaP pushes hpSN low enough that the hp-nullcline no longer
intersects the family of quiescent critical points, and F(Ca, Na, hp, x0) = P(Ca, Na, hp) once
hp > hpSN. This change in the location of the intersection point provides the transition from
region I to region II. In the transition from region II to region VI, a further increase in gNaP
moves the homoclinic surface enough such that the net drift of hp along the homoclinic is
nonnegative, such that hp can never lead the transition back to the silent phase and tonic
spiking is attained.
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6.2 From II to *
The transition from region II to region * is similar to the transition from region II to region
VI. The key point is that in region II, the CAN current does not sufficiently activate to take
control of the active phase before the decrease in hp can terminate it. With an increase in
gNaP, even without CAN current activation, the trajectory can no longer return to the silent
phase simply by virtue of hp decreasing. Without a contribution from ICAN the resultant
solution would be tonically active, as in region VI. Such spiking activity sustains an elevated
value for Ca. Even if this sustained Ca < kCa, and so may not be enough to activate the CAN
current in the traditional sense, it may enable to the CAN current to have a slight influence
on the voltage. This influence is amplified by gCAN, and for gCAN large enough, it
qualitatively changes the dynamics by giving the trajectory the extra spike needed to fully
activate the CAN current. The tipping point for this qualitative change is shown as the lower
boundary for region * in Fig. 6. Thus, as described in Section 5.3, alternation of DB and
square-wave bursts, depending on levels of Na ensues. Recall from Section 3.1 D = D(hp)
was the net drift of hp across the homoclinic orbit. In brief, in region II, D < 0, and it is
increasing gNaP such that D = 0, in the presence of enhanced ICAN, that triggers a transition
to region *.

6.3 From * to III
Increasing gNaP further increases D = D(hp), such that in region III, unlike region *, levels
of Na attained by typical DB bursts maintain D > 0. While D > 0, the only way for a solution
to return to the silent phase is through a DB burst, and thus DB bursting characterizes region
III.

6.4 From III to IV
The key feature of solutions in region III is that eventually Ca > CaAH(Na, hp), so that F(Ca,
Na, hp, x0) = DB(Na, hp). CaAH(Na, hp) is a decreasing function of gCAN, see Fig. 15. As
gCAN decreases, CaAH(Na, hp) blows up for finite gCAN. This blowup can be used to
indicate a transition from region III to region IV, because for lower gCAN the system cannot
go into depolarization block. In Fig. 19, we plot the predicted boundary between regions III
and IV, based on where this blowup occurs. To determine the value of gCAN such that
CaAH(Na, hp) blows up, we must fix Na and hp. We fixed Na at 6.5, a value higher than
those normally seen in bursting activity, but lower than is seen in tonic activity. We also set
hp = 0, assuming a prolonged active phase. For each value of gNaP, we found gCAN such that
CaAH(Na, hp) = 1.6, a typical saturation value for Ca during tonic activity. This scheme
gives us the red boundary curve seen in Fig. 19.

Similarly, INaP(v, hp) is a depolarizing current, so CaAH(Na, hp) is a decreasing function of
gNaP as well. This means that an increase in gNaP decreases CaAH(Na, hp), so that we need a
slightly lower gCAN to maintain CaAH(Na, hp) = 1.6. This relationship causes the negative
slope of the boundary between regions III and IV.

6.5 From IV to V and V to VI
In Fig. 20, we present an approximation to the boundary between regions IV and V and to
the boundary between regions V and VI. These approximations are not based on a slow-fast
decomposition, but rather on a bifurcation analysis of the full system. To find these curves,
we start with a tonic solution T in region IV and follow T as gCAN is decreased, with gNaP
fixed. T loses stability at a torus, or Neimark-Sacker, bifurcation; we color the (gNaP, gCAN)
at which the torus bifurcation occurs magenta. We continue to follow T until it regains
stability at another torus bifurcation, coloring the corresponding bifurcation point blue. We
note that the continuation analysis performed in XPPAUT (Ermentrout 2002), due to the
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incidence of limit point of periodic orbit (LPPO) bifurcations, is not necessarily monotonic
in gCAN, see Fig. 21. This lack of monotonicity occurs for low gNaP so that even though the
magenta point is identified first by the algorithm, the blue point occurs for higher values of
gCAN. The magenta curve accurately predicts the boundary between regions IV and V, while
the blue curve gives an accurate estimate of the boundary between regions V and VI for
sufficiently large gNaP and deviates as gNaP decreases (but see Section 7).

We can also predict the boundary between regions IV and V based on the slow-fast
decomposition. The mechanism that distinguishes regions IV and V is that in in region V,
CaHC blows up to trigger a return to the silent phase. This blow up occurs after an extended
time in the active phase, so for the rest of this analysis we assume hp has decreased to a
small but nonzero value. Actually, in region IV, CaHC(Na, hp) blows up for finite Na, but
such values of Na are not attained. Indeed, solving Ṅa = 0 for Na yields Nafp(v, Ca), the
value that Na will approach based on the activity of the CAN current. For a given (gNaP,
gCAN) pair, the value Na = Na* for which CaSN(Na, hp) blows up may be such that Na* >
Nafp(v, Ca); that is, the Na dynamics will saturate at Nafp(v, Ca) and never reach Na*. As
such, the blow up of CaHC(Na, hp) will never occur for this (gNaP, gCAN) pair, so we know
that (gNaP, gCAN) belongs to region IV. On the other hand, if Na* < Nafp(v, Ca), then as Na
drifts toward its saturation value Nafp(v, Ca), it crosses Na*, causing CaHC(Na, hp) to blow
up and capture the trajectory, triggering a return to the silent phase. This places (gNaP, gCAN)
in region V. The border between IV and V therefore is the curve of (gNaP, gCAN) pairs where
Na* = Nafp(v, Ca). To approximate this border, we first allow Na* to be the value of Na such
that CaHC(Na*, hp) = Ca* where Ca* must be determined. As CaHC(Na*, hp) increases, the
fast subsystem approaches a homoclinic orbit, and this increased time between spikes can
have subtle effects on the drift for Ca and Na. We tried many values for Ca*, and Ca* = 1.01
gave the best fit for the border. We also use the fact that for low hp, CaSN(Na, hp)
approximates CaHC(Na, hp) well. For fixed Ca we calculate the mean v, s over one period of
the tonic spiking solution. Using this mean s in Eq. (5), we calculate the drift of Ca, which
changes the value of the CAN current. With mean v and adjusted Ca, we calculate an
approximation for Nafp(v, Ca). This updated Na moves the homoclinic surface, possibly
changing the mean v, s for the tonic spiking solutions with updated fixed Ca. We iterate this
calculation until Nafp(v, Ca) changes by no more than 10−3, and call this value Nafp. In Fig.
19 we plot in magenta the (gNaP, gCAN) pairs such that Nafp = Na*.

Again, because INaP(v, hp) is a depolarizing current, a slight increase to gNaP lowers CaSN,
thus requiring slightly higher Na for CaSN(Na, hp) ≈ CaHC(Na, hp) to blow up. On the other
hand, increasing gNaP has little effect on Nafp(v, Ca). Therefore, increasing gNaP from a
point on the border of regions IV and V causes Na* > Nafp, resulting in the dynamics of
region IV, consistent with the negative slope of the boundary curve between regions IV and
V.

7 Bistability
Figure 20 predicts several regions of bistability. Tonic solutions where the CAN current is
activated, similar to those solutions commonly seen in region IV, are found for (gNaP, gCAN)
above the magenta curve in Fig. 20. For appropriate values of (gNaP, gCAN), these tonic
solutions coexist with the previously described solutions of regions I, II, III, VI and *.
Similarly, for (gNaP, gCAN) below (to the left) of the blue curve in Fig. 20, there are tonic
solutions where the CAN current does not play a strong role. These solutions are like those
solutions commonly found in region VI and coexist with the previously described solutions
of regions *, III and IV. Such solutions lose stability at the boundary of region II and so they
are not observed in regions II or I. We summarize the result of this bistability analysis in
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Fig. 22. In Table 2, we list the regions of Fig. 22 together with the regions for which
corresponding solutions were originally described.

8 Discussion
In this work we consider a computational model for respiratory neurons in the preBötC that
includes the CAN current and the Na/K ATPase pump, as modeled in theRubin–Hayes
model (Rubin et al. 2009b), and the NaP current, all of which are ubiquitous within this
population of neurons. By considering varying strengths of gCAN, the conductance of the
CAN current, and gNaP, the conductance of the NaP current, we explain the mechanisms
through which the model yields dynamics seen in in vitro recordings, such as square-wave
bursting (2 different mechanisms), bursts featuring depolarization block (DB bursts), and
mixed patterns of square-wave and DB bursts, as well as tonic activity. Although analysis is
done for one model neuron, the model is self-coupled, and so actually represents the activity
of a small, synaptically coupled network. Using our understanding of the bifurcation
structure of the fast subsystem, we compute estimates of where transitions between dynamic
regimes are predicted to occur, and these agree with direct simulations, validating our
analysis. We predict that activity patterns shown in this work will be observed in
reciprocally coupled pairs of preBötC neurons, as well as preBötC neurons that are
manipulated in culture to form autapses.

A multitude of factors influence the activation and magnitude of the CAN current in a
biological setting. In the present model, activation of the CAN current depends on
intracellular calcium, which is released via a synaptic pathway. Acting through AMPA
receptors, glutamate can trigger a small influx of calcium (Pace and Del Negro 2008), while
glutamate binding to metabotropic glutamate receptors (specifically mGluR5s) can induce G
protein activation that leads to inositol 1,4,5-trisphosphate (IP3) synthesis and subsequent
intracellular calcium release. These two mechanisms work in concert to recruit the CAN
current (Pace et al. 2007a; Pace and Del Negro 2008). Phosphatidyl 4,5-bisphosphate (PIP2)
is required to synthesize IP3 and is generally abundant in preBötC neurons (Crowder et al.
2007). Levels of PIP2 in the membrane surrounding the channels may fluctuate or be
regulated and thus affect channel availability, however, which impacts the magnitude of the
CAN current (Liu and Liman 2003). Finally, second messengers such as calcium can also
adjust the magnitude of the CAN current by affecting the phosphorylation state of relevant
ion channels (Nilius et al. 2006; Crowder et al. 2007). Given the variety of factors that could
contribute to the heterogeneity in CAN current magnitude and activity across neurons in the
preBötC, it was most convenient simply to use variations in the parameter gCAN to represent
these effects, as a means to explore how changes in the CAN current characteristics
influence preBötC neuron dynamics. The characteristics of the NaP current within the
preBötC also exhibit inherent biological variability, which we represent in this work by
modulating gNaP.

Rhythmic activity in the preBötC can be influenced by either the NaP current or the CAN
current, as shown previously (Butera et al. 1999a; Rubin et al. 2009b), but their combination
in this paper gives a spectrum of additional activity patterns and bistability that are expected
to arise in the preBötC network. In particular, alternation of square-wave and DB bursts is
seen in experimental data, and is often attributed to intrinsic noise and neuronal variability,
but our unified model suggests that such bursting may result from the interactions of the
CAN and NaP currents. DB bursts require activation of the CAN current, which also
increases Na so that the Na/K ATPase pump leads to eventual burst termination. Although
Na decays during the subsequent silent phase, Na may be elevated enough during the next
burst that the Na/K ATPase pump and NaP inactivation together may terminate the burst
before the CAN current is activated. This interaction may cause one or more square-wave
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bursts to occur between DB bursts and can also be used to explain the differences in
durations of the silent phases between such bursts. Specifically, we observed in our sample
of in vitro recordings that, in a preBötC neuron that has both DB and square-wave bursts,
the silent phase following a DB burst was generally longer than the silent phase following a
square-wave burst (Fig. 14). We explained this phenomenon by noting that after a DB burst,
the Na/K ATPase pump experiences an increased load, which prolongs the silent phase by
requiring more NaP deinactivation to occur before the next burst can start. During a
subsequent square-wave burst, as noted above, the load on the pump decreases, resulting in a
shorter silent phase before NaP deinactivation initiates the next burst. Thus, the model
predicts that this link between the nature of a burst and the duration of the subsequent
interburst interval should be a general feature of activity of the type generated by the unified
model for parameter values from region *.

In addition to underlying square-wave bursting, to contributing to the mixed burst patterns
seen in region * and prevalent in electrophysiological recordings (Fig. 8), and to helping
control interburst interval durations, the NaP current plays a role in boosting synaptic
activation, due to its voltage-dependence. In the unified model, this boost can promote DB
bursts if both gNaP and gCAN are large enough. By increasing the spike rate during tonic
activity, the NaP current can contribute to CAN current activation, resulting in a transition
through depolarization block and eventually a return to quiescence. Indeed, increasing gNaP
increases the range of gCAN for which DB bursting occurs (Fig. 6), which represents another
model prediction.

The efforts of Rybak et al. have refined models of the NaP current (Rybak et al. 2003,
2004). We expect that including such refinements would induce some quantitative
differences in the locations of the boundaries between regions in Fig. 6; however, it is
unlikely that these relatively minor changes would alter the qualitative bifurcation structures
or model dynamics that we have described and analyzed. Toporikova and Butera recently
developed a two compartment model including the CAN and NaP currents (Toporikova and
Butera 2010). Their work focuses on individual model neurons that utilize either NaP
inactivation, IP3 desensitization, or a combination of these mechanisms to burst in the
absence of synaptic input. In this paper, we present a recent experimental result (Fig. 1)
demonstrating that, despite the lack of information regarding the distribution of the NaP and
CAN currents, preBötC neurons appear to be electrotonically compact. Given this finding,
and the absence of evidence that more compartments are needed to capture the essential
mechanisms of burst generation, we here consider the unified model as a one compartment
model. Furthermore, intrinsic rhythmicity in individual preBötC neurons is neither necessary
for preBötC rhythmicity (Del Negro et al. 2002b, 2005) nor necessarily advantageous for
burst synchrony over a broad parameter range (Dunmyre and Rubin 2010), and our unified
model highlights the diversity of burst-generation mechanisms that emerge through the
interaction of synaptically-gated channels with other voltage-dependent channels. It is
possible that including desensitization of IP3 in the unified model may alter the locations
and burst frequencies associated with regions * and III of Fig. 6 by delaying activation of the
CAN current or yielding earlier burst termination with less Na accumulation, and these
effects should be explored in future work. We also note that EL, the reversal potential of the
leak current, has been focused on in previous modeling work on the preBötC because it can
significantly impact certain forms of model dynamics, it can be manipulated experimentally
through alterations in potassium concentrations external to neurons, and it can serve as a
proxy for variations in Iapp (since gLEL and Iapp play identical roles) (Butera et al. 1999a;
Rubin and Terman 2002; Rubin et al. 2009b). If EL is perturbed, then similar forms of
dynamics to those seen in Fig. 6 arise, albeit with differences in region locations. Larger
increases in EL can push the model away from bursting toward tonic spiking, although DB
bursts persist for sufficiently high gCAN until they are transformed into elliptic-like bursts
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due to the failure of the Na/K ATPase pump to create a prolonged silent phase, as discussed
in Section 4.

While our work is motivated by the dynamics observed in the preBötC (e.g. Fig. 8), it may
be applicable to other rhythmic brain areas as well. In many mammalian locomotor CPGs,
the NaP current has been identified as playing a critical role in generating the network
rhythm (Tazerart et al. 2007, 2008; Zhong et al. 2007). On the other hand, in other rhythmic
brain areas such as entorhinal cortex (Egorov et al. 2002; Fransén et al. 2006) or the
trigeminal system (Tsuruyama et al. 2008), the CAN current plays a critical role in pattern
generation. In fact, the trigeminal system features both NaP (Wu et al. 2005) and CAN
currents. Indeed, given that CAN and NaP currents are widespread and can robustly drive
the array of rhythmic activity patterns presented and analyzed in this paper, it seems likely
that the interaction of these currents is a fundamental component of neuronal
rhythmogenesis. Therefore, the generalizable modeling framework that incorporates the
CAN and NaP currents presented in this specific preBötC model could be useful for
adaptation or application to other neuronal systems as well.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Neurons in the preBötC are electrotonically compact. (a) Videomicroscopic image of a
whole-cell patch-clamp recording in the preBötC of a neonatal mouse. (b) Neuronal soma
and dendrites imaged via Alexa 568 hydrazide (fast diffusing) fluorescent dye. The white
box in (b) shows the dendrite region subsequently imaged using Oregon–Green BAPTA 2, a
calcium-sensitive dye, and two-photon excitation (Del Negro et al. 2010). The inset shows
this dendrite region imaged via Oregon–Green BAPTA 2. (c) Superimposition of (a) and
(b). (d) Inspiratory bursts recorded immediately after achieving a whole-cell recording in the
neuron (a)–(c). A bias current of −90 pA was applied to maintain a −60 mV baseline
membrane potential. At first, the Alexa dye quickly dialyzes the cell (panel (b)) to reveal its
full morphology. However, the Oregon–Green dye diffuses more slowly and does not reach
the dendrite until 20–30 min later. (e) Whole-cell recording and dendritic imaging after 30
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min. A 300 ms current step command is also illustrated to show that calcium fluorescence
changes in the dendrite occur closely in time with somatic voltage changes
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Fig. 2.
Bifurcation diagram for gCAN = 0 formed by treating hp as a bifurcation parameter. P is a
family of stable periodic orbits, the maximum and minimum v values of the periodic orbits
are indicated by solid black circles. P terminates in a homoclinic orbit with homoclinic point
HC. Solid lines indicate stable critical points, while black dashed lines are unstable critical
points, and the sigmoidal red dashed curve is the hp-nullcline
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Fig. 3.
Sample trajectory for a burst in the gNaP = 0 case. (a) Voltage trace. The colors correspond
to those in panel (b). (b) Projection of the trajectory into the (Na, Ca) plane. As the model
neuron spikes (purple), Ca exhibits several sharp increases until the CAN current activates
(green), which drives both Ca and Na to higher values, eventually leading to depolarization
block (black) and the termination of the burst (red)
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Fig. 4.
Bifurcation diagram of the fast subsystem with gNaP = 0 generated by treating Ca as a
bifurcation parameter. Na has been fixed at a level higher than Nabase. Solid lines indicate
stable critical points of the fast subsystem. Dashed lines indicate unstable critical points of
the fast subsystem. Open or closed circles mark the maximum and minimum v coordinates
of a periodic orbit. Closed black circles indicate stable periodic orbits P of the fast
subsystem that correspond to spiking. Open black circles correspond to unstable periodic
orbits for the fast subsystem. Orange circles correspond to high voltage low amplitude
oscillations L of the fast subsystem. A SN bifurcation coincides with a homoclinic
bifurcation of P, resulting in a SNIC bifurcation. P meets the unstable periodic orbits at a
SNP bifurcation, labeled OSNP here. The unstable periodic orbits meet L at another SNP
bifurcation, labeled ISNP here. L collapses down to the branch of stable critical points
corresponding to depolarization block at an AH bifurcation
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Fig. 5.
Plot of various bifurcation curves and resultant dynamics of the fast subsystem when gNaP =
0. For (Na, Ca) corresponding to the light blue region FgNaP=0(Ca, Na, x0) = Q(Ca, Na). For
(Na, Ca) corresponding to the light grey region, FgNaP=0(Ca, Na, x0) = P(Ca, Na). For (Na,
Ca) in the green region, there is bistability in the fast subsystem, either FgNaP=0(Ca, Na, x0)
= P(Ca, Na) or FgNaP=0(Ca, Na, x0) = L(Ca, Na). Similarly, for (Na, Ca) in the red region,
there is also bistability in the fast subsystem such that either FgNaP=0(Ca, Na, x0) = P(Ca,
Na) or FgNaP=0(Ca, Na, x0) = DB(Ca, Na) holds. Finally, for (Ca, Na) in the white region,
FgNaP=0(Ca, Na, x0) = DB(Ca, Na). These regions are bounded by various curves of SNIC,
AH, or SNP bifurcations
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Fig. 6.
Partition of (gNaP, gCAN) parameter space based on the dynamics of the unified model. Blue
dots represent quiescent solutions. Black dots represent tonic activity. Green dots represent
bursting activity, either of DB bursting or square-wave bursting type. See Fig. 7 for example
voltage traces corresponding to non-quiescent labeled regions
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Fig. 7.
Example voltage traces of select regions from Fig. 6. Panel (a) corresponds to region II, (b)
to region III, and (c) to region *, while panel (d) shows the typical structure of a DB burst
from region III or region *. Panel (e) shows activity from region V, (f) from region IV, and
(g) from region VI
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Fig. 8.
Examples from typical in vitro recordings from the mouse. Panel (a) corresponds to region
II (Fig. 7(a)), panels (b) and (c) to region III (Fig. 7(b)), and panels (d) and (e) to region *
(Fig. 7(c))
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Fig. 9.
Partition of parameter space based on the dynamics of a reciprocally coupled two neuron
network where each model neuron is given by the unified model without self-coupling. Dark
blue dots represent quiescent solutions. Black dots represent tonic activity. Green dots
represent in-phase DB and in-phase square-wave bursting. The relatively few (n = 9)
occurrences of out-of-phase bursts are colored light blue. Magenta dots correspond to the
rare (n = 5) occasion where one model neuron being identified by the algorithm as tonically
active, while the other model neuron was identified as bursting. It is likely that the magenta
dots are numerical artifacts. Red dots represent solutions where both model neurons were
bursting based on the standard deviation of ISIs criterion, but the algorithm failed to
determine the phase difference. For some values of gCAN > 3 and gNaP > 1 there is
bistability between tonically active and bursting solutions
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Fig. 10.
SN bifurcation surface (red), AH bifurcation surface (green), and homoclinic points (blue)
of system (1)–(4), (8), treating Ca, Na and hp as bifurcation parameters. Notice that as hp
decreases toward 0, the blue and red surfaces combine to form a SNIC bifurcation surface.
We also note that for Ca = 0 and hp = 0, NaSN < Nabase = 5, so the slow subsystem cannot
pass through the SN surface unless hp or Ca increases. The MATLAB figure file is available
as electronic supplementary material
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Fig. 11.
Bifurcation curves with fixed Ca ≈ Cabase. The top curve is hpSN as a function of Na. The
bottom curve is hpHC as a function of Na. Note that the functions increase, so that a small
increase in Na may cause hpHC to be crossed, resulting in an early return to and an extended
time in the silent phase
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Fig. 12.
SN surface projected onto (Ca = Cabase, Na, hp) coordinates is colored black. The colored
curve with the arrowhead is the projection of the trajectory of the full system. The trajectory
converges to (Cabase, Nabase, hpmax) without crossing the SN surface, yielding a quiescent
steady state
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Fig. 13.
Example trajectory from region *, with projection into (hp, Ca) coordinates to illustrate the
analysis of Section 5.4. (a) Projection of a trajectory from region * into (hp, Ca) coordinates.
The light blue curve is a slice of the homoclinic surface for Na = 5.1 and the magenta curve
is a slice of the homoclinic surface for Na = 5.051. (b) v and Na plotted against time
corresponding to the trajectory in (a)
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Fig. 14.
Silent phases following DB bursts have longer durations than those following square-wave
bursts. Panel (a) shows a sample recording from a preBötC cell that consistently exhibited
both square-wave and DB bursts. Panel (b) shows a typical trace from region *. Even though
the time scale is not the same, the relative differences between the silent phases in the model
agree well with the data
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Fig. 15.
CaAH(Nabase, 0) as a function of gCAN, with gNaP = 3. For fixed gCAN, if CaAH(Nabase, 0) is
below the maximal value of Ca attainable by the full system, the full system can exhibit a
DB burst. Lowering gCAN causes CaAH(Nabase, 0) to blow up, so that depolarization block is
never realized, resulting in tonic activity
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Fig. 16.
CaSN(Na, 0) plotted for gCAN = 2.5 and gNaP = 3, a value for which the full system’s Ca
coordinate cannot attain CaAH(Nabase, 0). For (Na, Ca) below CaSN(Na, 0), the full system
exhibits quiescence, while above it, the full system exhibits tonic spiking
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Fig. 17.
CaSN(Na, 0) plotted for gNaP and gCAN corresponding to region V. Note that for values
attainable by Na during tonic spiking, CaSN(Na, 0) blows up. Using the approximation
CaHC(Na, 0) ≈ CaSN(Na, 0), we conclude that CaHC(Na, 0) blows up for finite Na as well.
For (Na, Ca) below CaSN(Na, 0) the full system’s dynamics corresponds to quiescence,
while for those above CaSN(Na, 0) the full system exhibits tonic spiking
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Fig. 18.
Mean interspike interval (ISI) for tonically active model neurons. Black regions indicate that
the model neuron was not tonically active. Note the sharp change between high ISI and low
ISI within the tonic spiking dynamics that occurs at some gCAN ∈ (1, 3.5) for each gNaP ∈
(1, 2)
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Fig. 19.
Numerical approximations to the boundaries between regions III and IV (red), and IV and V
(magenta), as described in Sections 6.4 and 6.5, respectively
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Fig. 20.
Locations of torus bifurcations of tonic solutions from region IV found by decreasing gCAN
as described in Section 6.5. For (gNaP, gCAN) above the magenta curve, there are stable
tonically active solutions. Also, for (gNaP, gCAN) below the blue curve, there is a second
family of stable solutions with tonic activity
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Fig. 21.
Two examples of the bifurcation analysis described in Section 6.5. Solid dots correspond to
stable tonically active solutions with the corresponding ISI, and open circles are unstable
tonic solutions. In each panel above, the continuation analysis begins at gCAN = 2 and
initially gCAN decreases. The first torus bifurcation found is labeled as TB with a magenta
arrow and the second one is labeled with a blue arrow. For Panel (a), gNaP was fixed at gNaP
= 1.8. Note that after locating the first torus bifurcation the analysis encountered a LPPO
bifurcation and the algorithm increased gCAN until another LPPO was encountered.
Decreasing gCAN again eventually yielded another torus bifurcation at a higher gCAN value
than the first. For Panel (b), gNaP was fixed at gNaP = 4. We note that in Panel (b), the
continuation analysis was monotonic in gCAN
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Fig. 22.
Partitioning of parameter space based on bistability analysis. The colors only establish the
boundaries of regions A–L
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Table 2

Dynamics observable in regions of Fig. 22

Region
of Fig. 22

Solutions
corresponding to
regions of Fig. 6

A I

B I, IV

C II, IV

D II

E IV, VI

F IV

G V, VI

H V

I *, IV, VI

J IV

K III, IV

L III, IV, VI
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