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Abstract The brain’s activity is characterized by the interaction of a very large num-

ber of neurons that are strongly affected by noise. However, signals often arise at

macroscopic scales integrating the effect of many neurons into a reliable pattern of

activity. In order to study such large neuronal assemblies, one is often led to derive

mean-field limits summarizing the effect of the interaction of a large number of neu-

rons into an effective signal. Classical mean-field approaches consider the evolution

of a deterministic variable, the mean activity, thus neglecting the stochastic nature

of neural behavior. In this article, we build upon two recent approaches that include

correlations and higher order moments in mean-field equations, and study how these

stochastic effects influence the solutions of the mean-field equations, both in the limit

of an infinite number of neurons and for large yet finite networks. We introduce a new

model, the infinite model, which arises from both equations by a rescaling of the vari-

ables and, which is invertible for finite-size networks, and hence, provides equivalent

equations to those previously derived models. The study of this model allows us to

understand qualitative behavior of such large-scale networks. We show that, though

the solutions of the deterministic mean-field equation constitute uncorrelated solutions

of the new mean-field equations, the stability properties of limit cycles are modified

by the presence of correlations, and additional non-trivial behaviors including periodic

orbits appear when there were none in the mean field. The origin of all these behav-

iors is then explored in finite-size networks where interesting mesoscopic scale effects

appear. This study leads us to show that the infinite-size system appears as a singular
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limit of the network equations, and for any finite network, the system will differ from

the infinite system.

Keywords Neural Mass Equations; Dynamical Systems; Markov Process; Master Equa-

tion; Moment equations; Bifurcations; Wilson and Cowan system.

Introduction

Cortical activity manifests highly complex behaviors which is often strongly character-

ized by the presence of noise. Reliable responses to specific stimuli often arise at the

level of population assemblies (cortical areas or cortical columns) featuring a very large

number of neuronal cells presenting a highly nonlinear behavior and that are intercon-

nected in a very intricate fashion. Understanding the global behavior of large-scale neu-

ral assemblies has been a great endeavor in the past decades. Most models describing

the emergent behavior arising from the interaction of neurons in large-scale networks

have relied on continuum limits ever since the seminal work of Wilson and Cowan and

Amari [2,3,53,54]. Such models tend to represent the activity of the network through

a macroscopic variable, the population-averaged firing rate, that is generally assumed

to be deterministic. Many analytical and numerical results and properties have been

derived from these equations and related to cortical phenomena, for instance for the

problem of spatio-temporal pattern formation in spatially extended models (see e.g.

[19,24,26,36]).

This approach tends to implicitly make the assumption that correlations in the

activity do not modify the behavior of the system in large populations. However, the

stochasticity of the system, and in particular the presence of correlations in the activity

may considerably affect the dynamics in such nonlinear systems, and these can be

even more important as the network size increases. These models therefore make the

assumption that averaging effects counterbalance the prominent noisy aspect of in vivo

firing, a feature that can dramatically affect finite-sized network activity, and, thus,

that the emergent behavior of a cortical column is deterministic.

However, increasingly many researchers now believe that the different intrinsic or

extrinsic noise sources are part of the neuronal signal, and rather than a pure disturb-

ing effect related to the intrinsically noisy biological substrate of the neural system,

they suggest that noise conveys information that can be an important principle of

brain function [46]. At the level of a single cell, various studies have shown that the

firing statistics are highly stochastic with probability distributions close to Poisson

distributions [47], and several computational studies confirmed the stochastic nature

of single-cells firings [15,43,50,51]. How variability at the single neuron level affects

dynamics of cortical networks is less established so far. Theoretically, the interaction

of a large number of neurons that fire stochastic spike trains can naturally produce

correlations in the firing activity of the population considered. For instance power-laws

in the scaling of avalanche-size distributions have been studied both via models and

experiments [7,8,37,49]. In these regimes the randomness plays a central role.

A different approach has been to study regimes where the activity is uncorrelated.

A number of computational studies on the integrate-and-fire neuron showed that under

certain conditions neurons in large assemblies end up firing asynchronously, produc-

ing null correlations [1,4,14]. In these regimes, the correlations in the firing activity

decrease towards zero in the limit where the number of neurons tends to infinity. The
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emergent global activity of the population in this limit is deterministic, and evolves

according to a mean-field firing rate equation. However, these states only exist in the

limit where the number of neurons is infinite, and such asynchronous states do not

necessarily exist in cortical areas or in computational models, and even when they

exist, they are not necessarily stable. This raises the question of how the finiteness of

the number of neurons impacts the behavior of asynchronous states, and how to study

non-asynchronous behaviors. The study of finite-size effects in the case of asynchronous

states is generally not reduced to the study of mean firing rates and can include higher

order moments of firing activity [40,22,13]. In order to go beyond asynchronous states

and take into account the stochastic nature of the firing and how this activity scales

as the network size increases, different approaches have been developed, such as the

population density method and related approaches [18]. Most of these approaches in-

volve expansions in terms of the moments of the resulting random variable, and the

moment hierarchy needs to be truncated which is a quite hard task that can raise a

number of technical issues (see e.g.[38]). A recent approach overcomes this truncation

difficulty by considering the mean-field behavior as a stochastic process and therefore

treating the rigorous limit equation of the interaction of many stochastic neurons as a

fixed point equation in the space of stochastic processes, making use of the powerful

tools of stochastic limit theorems and large deviation techniques (see [27]).

In order to study the effect of the stochastic nature of the firing in large network,

many authors strived to introduce randomness in a tractable form. The models we

will be interested in are based on the definition of a Markov chain governing the fir-

ing dynamics of the neurons in the network, where the transition probability satisfies

a differential equation called the master equation. Seminal works of the application

of such modeling for neuroscience date back to the early 90s with the work of Ohira

and Cowan [42], and have been progressively developed by different authors and today

constitute a model of choice [16,17,10,22]. The present manuscript is based on the anal-

ysis of two recently developed stochastic models of the customary Wilson and Cowan

equations.The global resulting activity is then readily derived from the activity of all

neurons in the network. The two models of interest here were instantiated specifically

in order to be compared to standard Wilson and Cowan rate equations, and provide

tractable stochastic extensions of the purely deterministic standard neural-field models

[17,10]. The two approaches differ in the choice of the transition probability and on the

variables considered, choices mainly based on the fact that they address two different

regimes of network activity: Buice, Cowan and Chow address the highly correlated

Poisson-like activity and Bressloff, the asynchronous states. The two approaches also

differ in the way the equations are treated: Buice, Cowan and collaborators in [16,17]

derive moment equations by carrying out a loop expansion of a path integral represen-

tation of their master equation whose truncation is justified under the assumption that

the network operates in a Poisson-like regime. Bressloff rigorously justifies his moment

truncation by exhibiting an expansion in powers of a small parameter 1/N where N

corresponds to the size of the network. These different points of view lead the authors

to define different variables and they obtain closely related yet different equations on

the variables they define, derive equations for moments from the master equation which

they then simplify and truncate to finite order.

The present paper is organized as follows: in the first section we describe the models

we use. Both simplified models introduced involve coupling between mean firing rate

and correlations between firing times, with finite-size correlations. In the second section,

we are interested in the non-zero correlation solutions of the mean-field equations, and,
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in particular, focus on the qualitative similarities and differences between the solutions

of these stochastic equations compared to the customary Wilson and Cowan behaviors.

In the third section, we turn to study the finite-size effects, namely the qualitative

differences between the solutions of mean-field limits and Wilson and Cowan system on

one hand, and the behaviors of large but finite networks on the other hand. These finite-

size solutions are compared back to the initial Markovian model and the differential

equations they produced.

1 Markovian firing models

In this section, we introduce and describe the master equation formalism used by

Buice, Cowan and collaborators [16,17] (hereafter BCC) and Bressloff [10] and extend

these approaches to take into account different populations. Both models have been

previously derived, so we quickly present their derivation and the resulting equations in

this section, as our main purpose is to derive from these equations our model of interest,

the infinite-size model, and to mathematically analyze it. Details on the derivation of

these equations and on their theoretical justification can be found in [16,17,10].

Throughout manuscript, we will be interested in a network structured into M

homogeneous neural populations. Each population i ∈ {1, . . . ,M} is composed of Ni
neurons, and the total number of neurons is denoted by N (i.e. N =

∑M
i=1Ni). We

are interested in the behavior of the network when the number of neurons N tends

to infinity. In this limit, we assume that the proportion of neurons belonging to each

population are non-trivial, i.e. limN→∞Ni/N = λi ∈ (0, 1). Each neuron of population

i interacts with all the neurons of the network, with an efficiency denoted Wij . These

weights are assumed to scale as 1/Nj , so that a given activity at the level of population

i will produce a bounded activity at the level of population j. We therefore define the

effective interconnection weights wij such that Wij = wij/Nj . Each population is

assumed to receive an input firing rate Ii(t) considered deterministic and constant in

the rest of the paper.

1.1 Deterministic Wilson and Cowan equations

The Wilson and Cowan (WC) model is based on the assumption that the synaptic input

current to each population is a function of the firing-rate of the pre-synaptic population,

and that the contributions of the different populations are linearly summed to produce

the post-synaptic population firing rate. It assumes moreover that the population-

averaged firing rates νi(t) are deterministic function of time that are governed by the

equations:

dνi(t)

dt
= −αiνi(t) + fi

 M∑
j=1

wijνj + Ii(t)

 (1)

where fi is a function transforming an incoming current into an output firing rate

and typically has a sigmoidal shape. αi are the relaxation rates corresponding to the

natural inactivation of each population when they receive no input.

This purely deterministic approach, often used for spatially extended neural net-

works, has proved efficient to model a large number of cortical phenomena, but fails to

reproduce the stochastic behaviors that can appear at the level of population activity.
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We now describe the stochastic framework used by [16,17,10] to extend this framework

in order to take into account the stochastic nature of the firing.

1.2 Markovian Framework

In the Markovian approach yielding BCC and Bressloff models, each neuron can be

either quiescent or active (active meaning in the process of firing an action potential),

and the state of the network is then described by the variable n ∈ NM where ni(t) is

the total number of active neurons in population i. This chain is modeled as a one-

step discrete-time Markov process, i.e. the only possible transitions of this chain are

assumed to be ni → ni ± 1 for i ∈ {1, . . . , M}. Each active neuron of population

i returns to a quiescent state with constant probabilistic rate αi and each quiescent

neuron become active with a state-dependent rate Fi(n) depending on the inputs the

neuron receives. The probability of the network to be in a state n at time t therefore

satisfies a differential equation called the master equation:

dP (n, t)

dt
=

M∑
i=1

[
αi (ni + 1)P (ni+, t)− αiniP (n, t)

+ Fi(ni−)P (ni−, t)− Fi(n)P (n, t)
]

(2)

From this equation the authors derive equations on the moments of the Markov chain.

We propose in appendix A an alternative derivation of the moment equations based on

a Langevin approximation of the rescaled Markov chain and on the use of Rodriguez

and Tuckwell expansions [44].

In the present paper we are particularly interested in a variable that would corre-

spond in the Markov setting to the proportion of active neurons in each population:

pi(t) = ni(t)/Ni for i = 1, . . . , N , which is a priori a well-behaved bounded stochastic

process that takes values in the interval [0, 1]. Having defined this variable, we will be

in a position to rescale BCC and Bressloff variables, and obtain from their derivation

the equation governing this variable. In doing so, as further illustrated below, we will

not need to derive new moment equations from the master equation, but it will ap-

pear as a change of variable in the set of ordinary differential equations these authors

previously obtained. In this view, the rescaled mean firing rate is defined as the instan-

taneous averaged proportion of active neurons in each population νi(t) = 〈ni(t)〉/Ni,
and rescaled correlations as the average value of the correlations of the proportion of

active neurons in each population Cij = 〈ni(t)nj(t)/NiNj〉, the two first moments of

the process p(t).

The equations for the moments involve averaged values of 〈Fi(n)〉 which, since the

activation is not polynomial, involve all the moments of the variable n, and therefore

need to be truncated in order to obtain a closed set of equations. The choice of the

function Fi is so far unspecified and will be defined in order to recover the WC equations

in the mean-field uncorrelated limit.

With the aim of specifically investigating (uncorrelated) asynchronous states, Bressloff

truncates the moment series expansion up to second order, and considers the evolution

of two coupled variables: the mean firing-rate νi and nij = NjCij a correlation vari-

able differing from our variable in that it is scaled by Nj . After Taylor expansion and
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a Van-Kampen system-size expansion, a specific choice of the activation function Fi is

made so that one ends up with the following set of ordinary differential equations:
dνi
dt = −αi νi + fi(si) + 1

2N f ′′i (si)
∑
k,l wik wil nkl

dnij
dt = [αi νi + fi(si)]δij − (αi + αj)nij

+
∑
k[f ′i(si)wik nkj + f ′j(sj)wjk nki]

(3)

where νi corresponds to the firing rate of population i: νi(t) = 〈ni(t)〉/N and nij
are defined as the correlations 〈ni(t)nj(t)〉/N . In the original formula, the number of

neurons of each population is assumed to be equal to N . This quantity is bounded by

application of Kurtz theorem [34], and therefore the term 1
2N f ′′i (si)

∑
k,l wik wil nkl

tends to zero as N tends to infinity, implying that the equation of the mean becomes

independent of the correlations nij . Since we are interested in the statistics of the

proportions of active neurons in each population, we are in a position to derive from

the original Bressloff equations (3) the system of equations governing our variables νi
and Cij formally, and obtain in a multi-population case with distinct population sizes:

dνi
dt = −αiνi + fi(si) + 1

2 f
′′
i (si)

∑
k,l wikwilCkl

dCij
dt = 1

Ni
[αiνi + fi(si)]δij − (αi + αj)Cij

+
∑
k[f ′i(si)wik Ckj + f ′j(sj)wjk Cki]

(4)

In both equations (3) and (4), we denoted by si(t) the total instantaneous current

received by population i at time t:

si(t) =

M∑
j=1

wijνj(t) + Ii(t). (5)

We note that the system (4), though derived from Bressloff’s master equation and

formalism, is equivalent to the original Bressloff model (3) as long as the total number

of neurons N is finite, since it was derived through an invertible change of variable

which is invertible as long as N is finite, but not invertible in the limit N →∞.

Buice, Cowan and collaborators [16,17] (BCC case), interested in studying the

Poisson-like firing modes of the network, transform the moment equations to derive

equations of normal ordered cumulants measuring the deviations of the moments of

the variable n from pure Poisson statistics. The first normal ordered cumulant is equal

to 〈ni〉, the second ordered cumulant to cij = Cij − νi/Niδij . The initial approach

of Buice, Cowan and collaborators is not a finite-size expansion per se in the general

case, hence the parameter according to which the expansion is performed is no longer

1/N as in the case of Bressloff’s Van Kampen expansion, but consists of a multiple

time scale expansion where the small parameter is the decay time of normal order

cumulants (which applies far from bifurcation points). However, in the fully connected

case we are interested in in the present manuscript with weights scaling as 1/N , the

expansion provided Buice, Cowan and collaborators method can be reduced to a finite-

size expansion, and can be compared to Bressloff’s case. In terms of these variables

after some approximations and moment truncation to the second-ordered cumulant,

they end up with the following set of ordinary differential equations (this step involves

an instantiation of the activation functions Fi different from the Bressloff case):
dνi
dt = −αiνi + fi(si) + 1

2f
′′
i (si)

∑
j,k wijwikcjk

dcij
dt = −(αi + αj)cij + f ′i(si)

∑
k wikckj + f ′j(sj)

∑
k wjkcki+

+ 1
Nj
f ′i(si)wij νj + 1

Ni
f ′j(sj)wji νi

(6)
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Remark 1 We note that the rescaling does not affect the form of the equations obtained

in [17]. These equations are valid under our assumptions that the synaptic weights Wij

scale as 1/N in a fully connected network. We emphasize the fact that both expansions

can be rigorously derived far away from bifurcation points. In the manuscript, we will

however be interested in the bifurcations of the dynamical systems given by (4) and

(6). Indeed, these bifurcations produce changes in the number and in the stability of

attractors (fixed point and limit cycle) which will be visible in non-trivial parameter

intervals, and therefore will affect the behaviors of the system far away from bifurcations

and will give us indications of the number and stability of attractors in those parameter

regions.

These models formally appear to very similar. However, it is important to note

that the these two approaches are different: the master equation corresponds to differ-

ent transition rates (different choices of the functions Fi as stated), and the variables

considered differ. The two equations (4) and (6) constitute our starting point for a

mathematical exploration of the solution, and in the rest of this paper, we mathe-

matically analyze these equations. The reader nevertheless needs to keep in mind the

differences between the two approaches for interpreting the results.

1.3 The infinite-size model

The equations (4) and (6) are a priori different. First of all, they do not deal with

the same quantities: equation (4) couples the mean firing-rate and the correlations

while equation (6) the mean firing-rate and the first order cumulant. However, in the

limit N → ∞, the first-order cumulants, cij = Cij − νi/Niδij , are simply equal to

the correlation Cij . Moreover, in the rescaled models we introduced, we observe that

when the number of neurons tends to infinity, both Bressloff (4) and BCC (6) models

converge to the same equations. These equations will be referred to as the infinite size

model and are given by the equations:
dνi
dt = −αiνi + fi(si) + 1

2f
′′
i (si)

∑
k,l wikwil∆kl

d∆ij
dt = −(αi + αj)∆ij

+
∑
k[f ′i(si)wik∆kj + f ′j(sj)wjk∆ki]

(7)

We recall that although the interpretation of the variable ∆ differs in the general case,

it is the not the case of the infinite model: in BCC model ∆ij = cij are the second

ordered cumulant, while in Bressloff model ∆ij = Cij is the correlation in the firing

activity, and in the infinite-size limit, the normal ordered cumulant is equal to the

correlation. However, when N becomes finite, the reader needs to bear in mind that

in the finite-size unfolding of the infinite-size equations in BCC case, ∆ represents

the deviation of spike statistics from a Poisson Process and in Bressloff model the

covariance of the firing activity. When letting N be finite, the two models unfold the

behavior of the system in a different fashion. We also note that if the variable ∆(t) is

equal to zero, then the mean-firing rates νi(t) satisfy the WC equations. In that view,

Bressloff and BCC models are generalizations of WC system that take into account the

correlations in the firing.

In this paper, we will first be interested in studying the mean-field limit solutions of

the infinite size equations (7), and second in unfolding these mean-field behaviors when

the number of neurons is large but finite. Our study will particularly focus on two main
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aspects: (i) how the stochastic nature of the firings affect the observed behaviors at the

macroscopic level through the interplay of firing activity and the correlations, and (ii)

how the finiteness of the number of neurons in the network disturbs these behaviors.

We also note that in view of Kurtz’ theorem [34], our variable in the infinite-size

system vanishes. We formally consider these equations independently of this restriction.

In other words, the infinite-size system is obviously not equivalent to the WC system,

but BCC and Bressloff systems should be equivalent, in this limit, to WC system. The

study of the infinite-size system will allow us to find what we call correlation-induced be-

haviors, which are qualitative distinctions between the behaviors of the solutions of the

infinite-size system and of Wilson and Cowan system. If these behaviors are unfolded

non-trivially into solutions of the finite-size equations, these will evidence additional

behaviors of the system presented by the finite-size Bressloff and BCC equations that

do not correspond to solutions of Wilson and Cowan system. We will address these

questions in in section 3.

Besides our theoretical analysis on the equations, we will also go back to the initial

Markovian model and compare (with Monte Carlo simulations) the stochastic behaviors

it presents to the solutions of WC, BCC and Bressloff models.

2 Influence of the correlations in the infinite-size system

We have shown that in the limit where number of neurons is infinite, both Bressloff

and BCC models, in our particular rescaling, converge to the infinite-size model given

by equations (7) where the mean-firing rate is coupled to the correlations in the firing

activity. When the correlations are equal to zero, the equation for the mean-firing rate

is uncoupled from the one for the correlations ∆ and is identical to the WC system. The

question we address in this section is how the interaction between the mean activity and

the correlations modifies the behavior of the global activity compared to WC system

given by equations (1). We address the following two questions: (i) are the solutions of

Wilson and Cowan equations also solutions of the full systems including correlatons,

and if the answer is yes, are the stability properties of these solutions conserved? and

(ii) Do the correlations yield other behaviors?

2.1 Wilson and Cowan’s Solution Solve the Infinite-Size System

In equation (7), it is easy to see that zero correlation: ∆(t) = 0 is always a fixed

point of the correlation equations no matter what mean firing rates ν(t) are. For zero

correlations, the equations for the mean firing rate ν are reduced to the classical WC

equations. Therefore, WC solutions define solutions for the infinite-size system with

zero correlations. Let us now study the stability of the solutions defined by these

uncorrelated WC behaviors in the infinite size system.

The infinite-size system involves a standard M -dimensional differential equation

on the mean firing rates ν(t) coupled to a matrix differential equation. In order to

use customary approaches for dynamical systems, we transform the correlation matrix

into a M2 dimensional vector and express the equations on ∆ in this new format using

Kronecker products from linear algebra. To this end, we start by defining the function

Vect transforming a M ×M matrix into a M2-dimensional column vector, as defined
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in [41]:

Vect :

{
R
M×M 7→ RM

2

X 7→ [X11, . . . , XM1, X12(t), . . . , XM2(t), . . . X1M (t), . . . , XMM (t)]T

Let us now denote by ⊗ the Kronecker product defined for A ∈ Rm×n and B ∈ Rr×s
as the (mr)× (n s) matrix:

A⊗B :=


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB


Some definitions and identities in the field of Kronecker products are reviewed in ap-

pendix B, and a more complete discussion can be found in [12] and references therein.

We recall here for the sake of completeness some well-known relationship that will be

useful. Let A,B,D,G,X ∈ RM×M , let IM be the M ×M identity matrix and A · B
or AB denote the standard matrix product. We have:

Vect(AXB) = (BT ⊗A)Vect(X)

A⊕A = A⊗ IM + IM ⊗A
(A⊗B) · (D ⊗G) = (A ·D)× (B ·G)

. (8)

The relationship ⊕ is called Kronecker sum. In this framework, we have the following

identity:

Lemma 1 Let V∆(t) = Vect(∆(t)) be the column vectorization of the matrix ∆(t), and

A(x) the matrix defined by A(x) = −α+F (x) where α is the diagonal matrix with (i, i)

element αii = αi and F the matrix of general element (F )ij = (f ′i(
∑M
k=1 wik xk)wij).

The variable V∆(t) satisfies the differential equation in RM
2

:

dV∆(t)

dt
= (A(ν(t))⊕A(ν(t)))V∆(t). (9)

Proof The differential equation governing the evolution of the coefficients of the corre-

lation matrix ∆(t) of the infinite size system (7) can be easily reordered into:

d∆ij
dt

=

M∑
k=1

(
Aik(ν(t))∆kj(t) +Ajk(ν(t))∆ik

)
which, through straightforward linear algebra manipulations, can be written as:

d∆

dt
= A(ν(t)) ·∆(t) +∆(t) ·A(ν(t))T .

The linear operator X 7→ A(ν(t)) ·X + X · A(ν(t))T for X ∈ RM×M can be written

in terms of Kronecker product of matrix on the vectorized version V∆(t) of the matrix

∆(t) using the relationship given in (8) and we have:

Vect(A(ν(t)) ·∆(t) +∆(t) ·A(ν(t))T ) = Vect
(
A(ν(t)) ·∆(t) · IM

)
+ Vect

(
IM ·∆(t) ·A(ν(t))T

)
=
(
ITM ⊗A

(
ν(t)

)
+A

(
ν(t)

)
⊗ IM

)
· V∆(t)

=
(
A
(
ν(t)

)
⊕ A

(
ν(t)

))
· V∆(t).
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Now that we have defined a convenient framework to study the infinite size equa-

tions, we are in position to study the stability of fixed points and limit cycles of the

WC system as solutions with zero correlations of the infinite size system. We start by

addressing the problem in the one population model (M = 1), which allows straight-

forward calculations and will be helpful in our specific study of the one population

infinite-size equation.

Proposition 1 In the one population case, any fixed point of Wilson and Cowan equa-

tion is a zero-correlation fixed point of the infinite-size system, and with the same

stability properties.

Proof In the one population case, equations (6) constitute a planar dynamical system

that reads: {
dν
dt = −αν + f(s) + 1

2f
′′(s)w2∆

d∆
dt = −2α∆+ 2 f ′(s)w∆

(10)

where s = w ν + I.

As stated, the solution ∆ = 0 is a fixed point of the correlation equation, and in

that case, the activity satisfies the one-population WC equation:

dν

dt
= −αν + f(w ν + I)

Let ν∗ be a fixed point of this system. The Jacobian matrix of the infinite-size system

at the fixed point (ν∗,∆ ≡ 0) reads:(
−α+ w f ′(wν∗ + I) 1

2f
′′(wν∗ + I)w2

0 2
(
− α+ w f ′(wν∗ + I)

))
As we can obviously see, the eigenvalues of this equilibrium are λ1 := (−α+w f ′(wν∗+

I)) and λ2 = 2λ1, and therefore the stability of this fixed point is the same as the

stability of the related fixed point in WC’s system.

We therefore conclude that any stable solution of the one dimensional WC equa-

tion provides a zero correlation (∆ = 0) stable fixed point of the infinite-size system,

and we observe that no stable solution of WC system is destabilized by the presence

of correlations, and no unstable solution of the Wilson and Cowan equation will be

stabilized. Therefore, zero-correlation fixed points of the infinite size system exists if

and only if Wilson and Cowan equation has a fixed point, and the related fixed point

of the infinite-size system has the same stability as WC’s fixed point.

We now turn to demonstrating the related properties in arbitrary dimensions M ,

for fixed points and cycles.

Theorem 1 Solutions of the WC system provide solutions of the infinite-size system

with zero correlations ∆ = 0. The stability of fixed points and limit cycles of the infinite

size system depend on the stability of the solution for the WC system as follows:

i) A fixed point of the infinite-size equation with null correlations is stable if and

only if the value of related mean-firing rate is a stable fixed point of WC system;

ii) A cycle of the infinite size system with zero correlations (ν(t),∆ ≡ 0) is expo-

nentially unstable if and only if ν(t) is an unstable cycle of WC system. Stable cycles
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ν(t) of WC’s system define cycles of the infinite-size system with zero correlations with

neutral linear stability. The infinite size system does not present any stable cycle with

null correlations.

Proof In order to prove the theorem, it is convenient to introduce the vector fields

Fν : RM 7→ RM , Gν(ν) : RM 7→ RM×M
2

and F∆ : RM 7→ RM
2×M2

that govern the

dynamics of the infinite size system:{
dν
dt = Fν(ν) +Gν(ν)V∆(t)
dV∆
dt = F∆(ν)V∆(t)

We have Fν(ν) = −α + [fi(si), i = 1 . . .M ]T , F∆(ν) = A(ν) ⊕ A(ν) where A(·) is

defined in lemma 1, and Gν(ν) is the M2 ×M2 matrix such that:

Gν(ν)V∆(t) = [
1

2
f ′′i (si)

∑
k,l

wikwil∆kl, i = 1 . . .M ]T

Let (ν(t),∆ ≡ 0) be a solution of the infinite-size system. The Jacobian matrix of

the system evaluated on this solution has the form:

J(ν(t), 0) =

 dν(Fν) + dν(Gν)V∆

∣∣∣
ν(t),V∆≡0

Gν(ν)
∣∣∣
ν(t),V∆≡0

dν(F∆)V∆

∣∣∣
ν(t),V∆≡0

dV∆(F∆)
∣∣∣
ν(t),V∆≡0



=

(
dν(Fν)(ν(t)) Gν(ν(t))

0 dV∆(F∆)(ν(t))

)
where dXf for a multidimensional vector X and a multidimensional function f denotes

the differential of f with respect to X. Since Fν is exactly the vector field associated

with WC system, dνFν is an M ×M block corresponding to Jacobian matrix of WC

system at the point ν, which is equal to the matrix A(ν) introduced in lemma 1.

Now that the Jacobian matrix is identified, we prove the assertions of the theorem:

i) Let us consider a fixed point (ν,∆ ≡ 0) of the infinite size system. Necessarily, ν

is a fixed point of Wilson and Cowan equation. The stability of this fixed point depends

on the spectrum of the Jacobian matrix J of the system at this point. Since the Jacobian

matrix of the infinite-size system is block diagonal, its spectrum is therefore composed

of the eigenvalues each diagonal block dν(Fν) = A(ν) and dV∆(F∆)(ν(t)). The first

block, A(ν), has exactly the eigenvalues of Wilson and Cowan system at its fixed point

ν. These eigenvalues are denoted {λi, i = 1 . . .M}. The second diagonal block of the

Jacobian matrix dV∆(F∆) is equal to the Kronecker sum A(ν)⊕A(ν) by application of

lemma 1. The eigenvalues of a Kronecker sum are known to be all possible pairwise sums

of all the eigenvalues of A(ν), viz. (λi + λj ; (i, j) ∈ {1, . . . ,M}2) (see an elementary

proof of this fact in proposition 2 of appendix B), hence the spectrum of the Jacobian

matrix of the infinite size system is composed of the eigenvalues:

{λi, i = 1 . . .M} ∪ {λi + λj , (i, j) ∈ {1, . . . ,M}2}.

These eigenvalues depend in a simple fashion on the eigenvalues of the WC Jacobian

matrix at the fixed point ν, and it is easy to show that the fixed point (ν, 0) in the the

infinite system is:
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– exponentially stable if and only if the ν is an exponentially stable fixed point of

WC system, i.e. if and only if all the eigenvalues λi have a strictly negative real

part.

– exponentially unstable if and only if the ν is an exponentially unstable fixed point

of WC system, i.e. if and only if there exists an eigenvalue λi with strictly positive

real part.

– neutrally stable if and only if ν is neutrally stable for WC system, i.e. if and only

if all eigenvalues have non-positive real part and at least one eigenvalue have a null

real part.

In summary, the stability of the zero-correlation fixed point (ν,∆ ≡ 0) is exactly the

same as the stability of ν as a fixed point of WC system.

ii) Let us now address the case of cycles will null correlations. To this end, let us

consider that (ν(t),∆(t) ≡ 0) is a periodic orbit of the infinite-size system (i.e. ν(t) is

a periodic orbit of a WC system). Let us denote by T > 0 the period of this cycle. We

show that the null correlations ∆ ≡ 0 is an exponentially unstable solution if the cycle

ν(t) is exponentially unstable as a solution of WC system, and neutrally stable if the

cycle ν(t) is exponentially stable or neutrally stable as a solution of Wilson and Cowan

system, which proves the theorem.

Given that the cycle ν(t) is known, the correlations ∆(t) satisfy a linear equation:

dV∆(t)

dt
=
(
A(ν(t))⊕A(ν(t))

)
V∆(t)

and the time-dependent matrix
(
A(ν(t)) ⊕ A(ν(t))

)
is T -periodic. A basic result of

Floquet theory implies that the stability of the solution V∆ ≡ 0 depends on the eigen-

values of the resolvant of the system at time T , namely the matrix Ψ(T ) in RM
2×M2

where Ψ(·) is defined by{
dΨ(t)
dt =

(
A(ν(t))⊕A(ν(t))

)
Ψ(t)

Φ(0) = IM2

More precisely, the null fixed point is exponentially stable if and only if all eigenvalues

of Ψ(T ) ( the multipliers) are of modulus strictly smaller than 1, neutrally stable if

all have modulus smaller or than equal to 1 with at least one multiplier with modulus

equal to 1, and exponentially unstable if there exists a multiplier with modulus larger

than 1. We therefore need to characterize the eigenvalues of Ψ(T ) in order to conclude

on the stability of the solution in the infinite-size system. To this end, let us introduce

Φ(t) the resolvent of WC system, i.e. the unique solution of the fundamental equation:{
dΦ(t)
dt = A(ν(t))Φ(t)

Φ(0) = IM

We prove in theorem 3 of appendix B that Ψ(t) = Φ(t) ⊗ Φ(t). Let us denote by

{µi, i = 1, . . . ,M} the eigenvalues of Φ(T ). Because Ψ(T ) is the Kronecker square

of Φ(T ), its eigenvalues are are all pairwise products of the eigenvalues of Φ(T ), i.e.

{µi µj , i, j = 1 . . .M}, as shown in proposition 2 of appendix B.

If the cycle ν(t) is exponentially unstable as a solution of WC system, then Floquet

theory implies that there necessarily exists a multiplier of Φ(T ), µi, such that |µi| > 1.

Therefore the resolvant Ψ(T ) has a multiplier equal to µ2i which has modulus equal
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to |µi|2 > 1 and therefore this cycle is exponentially unstable as a solution of the

infinite-size system.

If ν(t) is exponentially stable or neutrally stable as a solution of WC system, then a

basic result of Floquet theory states that the resolvant if the linearized system evaluated

on the cycle at time T , Φ(T ), has at least a multiplier equal to 1 and all other multipliers

with multipliers of modulus smaller than 1. We now provide an elementary proof of

the existence of the 1 multiplier: let ξ(t) = Fν(ν(t)). Then since ν(t) is T -periodic, so

is ξ(t), and furthermore we have:

dξ(t)

dt
=

dFν(ν(t))

dt
= (dνFν)(ν(t))

dν(t)

dt
= (dνFν)(ν(t))Fν(ν(t)) = A(ν(t)) ξ(t)

Moreover, since ν(t) is not a fixed point, F (ν(0)) 6= 0. We have shown ξ(t) is solution of

the linearized equation and hence using its T -periodicity, we have ξ(T ) = Φ(T )ξ(0) =

ξ(0), which proves that ξ(0) is eigenvector of Φ(T ) associated with the eigenvalue 1.

Therefore, the resolvent Ψ(T ) necessarily has an eigenvalue equal to one (associated

with the eigenvector Vect(ξ(0)ξ(0)T )), which implies that the null fixed point has a

neutral linear stability as a solution of the infinite-size system. We directly conclude

from this result that the infinite size system does not features any exponentially stable

cycle, which ends the proof.

We conclude that the solutions of WC system always provide solutions of the

infinite-size system, and that all fixed points with null correlations in the infinite-size

system are fixed points of WC system, with the same stability properties. However,

cycles of WC system lose exponential stability in the infinite-size system. Note that

this does not necessarily implies that these cycles become unstable, and a nonlinear

stability analysis is necessary. But it implies that the transient phase of convergence

towards the cycle or of repulsion from the cycle will be not be exponential.

2.2 Correlation-induced behaviors

In the previous section, we just proved that all the fixed points of the WC system

are solutions of uncorrelated activity in the infinite size system. We now investigate

the existence of new solutions induced by the presence of non-null correlations in the

infinite system, that are therefore not solutions of WC system. Such solutions will be

referred to as correlation-induced behaviors. The general resolution of this problem is

quite hard. For this reason, we provide a rigorous analysis of the one population case,

and treat two-population case through numerical analysis and simulations.

2.2.1 One population case

We have seen in the one population case that any fixed point of WC system was solution

of the infinite size system with zero correlations. Moreover, there is no possible cycle in

the Wilson and Cowan equations in one dimension. We investigate now the existence

of cycles or additional fixed points in the infinite size system with one population.

We recall that acceptable solutions in the one population case necessarily have non-

negative firing rate ν and ∆. Indeed, in the case of the infinite-size model arising in

the limit of Bressloff’s rescaled model, the correlation ∆ needs to be positive as a limit

of positive quantities (and as the covariance of the Markov process), and in BCC case
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∆ is equal to the limit of the first order cumulant which differs from the correlation up

to the coefficient −ν/N that vanishes in the infinite-size limit.

Theorem 2 In the one population infinite size system, there does not exist any ac-

ceptable stable fixed point with strictly positive correlation ∆.

Proof Let us assume that ∆ 6= 0. The fixed point equation of the infinite-size system:{
−α+ f ′(w ν + I)w = 0

−αν + f(wν + I) + 1
2f
′′(wν + I)w2∆ = 0

(11)

The first equation of the system (11) is independent of ∆ and fixes possible values of

ν. Assuming that this equation has a solution ν∗ and denoting s∗ = w ν∗ + I, the

Jacobian matrix of the system at ν = ν∗ reads, using the property that ν∗ solves the

first equation of (11): (
1
2f
′′′(s∗)w3∆ 1

2f
′′(s∗)w2

2f ′′(s∗)w2∆ 0

)
(12)

Such values of ν∗ necessarily exist for some parameters, and since the function f is

assumed to be sigmoidal, it can have multiple solutions. Moreover, because of the

particular shape of the sigmoidal function f , the second derivative of f can vanish at

a point corresponding to the inflection point of the sigmoid.

In a very particular case (for precisely tuned values of the parameters), one can

hence have f ′′(w ν∗+I) = 0. In that case, fixed points only exist if −α+f ′(wν∗+I)w =

0, if this condition is satisfied, any value of the correlation∆ provides a fixed point of the

system. This fixed point is never exponentially stable, since in that case the Jacobian

matrix has a zero eigenvalue (obvious when using the expression of the Jacobian matrix

(12) and using the fact that f ′′(s∗) = 0).

In the general case where f ′′(s∗) 6= 0, the system has a fixed point with non-null

correlations (
ν∗,∆∗ := 2

αν∗ − f(s∗)

w2 f ′′(s∗)

)
.

We therefore need to check whether if this fixed point is stable and acceptable (i.e.

min(ν∗,∆∗) ≥ 0). The Jacobian matrix at this point has the expression given by

(12). Its determinant is equal to −
(
f ′′(s∗)

)2
w4∆∗ and has an opposite sign to ∆∗.

Therefore, for acceptable solutions with ∆∗ > 0, the determinant of the Jacobian

matrix is strictly negative. We conclude that any fixed point of the infinite-size system

with ∆ > 0 are saddle fixed points.

We conclude from this theorem that the system does not features any acceptable

stable fixed point with non-zero correlations. We can now easily conclude that there are

no acceptable cycles. Consider, first, a limit cycle such that ∆ is strictly positive. Such

a limit cycle must surround one or more fixed points whose Poincare index must sum

to +1 [5]. However, every fixed point in the postive orthant is a saddle point and saddle

points always have indices of -1. Thus, no limit cycle can have a strictly positive ∆.

Any limit cycle must therefore be tangent to the ∆ = 0 line and the point of tangency

cannot contain a fixed point, so, again, the summed index of points in the limit cycle

cannot be +1.
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In conclusion, there are no acceptable limit cycles and all acceptable fixed points

are saddles. Thus, the only stable behavior are the uncorrelated stationary states of

the scalar WC equation. This situation will be quite different in the multi-population

case, as we now develop.

2.2.2 Correlation-induced behaviors in multi-populations networks

We now turn to study multi-population networks with the aim of identifying solutions

of the infinite-size system that qualitatively differ from WC equation. The situation in

the multidimensional case will be quite different, since we have proven in theorem 1

that cycles of WC system lost exponential stability in the infinite-size system, allowing

the appearance of distinct transient and/or asymptotic behaviors.

To identify such correlation-induced behavior we numerically study two particular

two population networks. The first model (Model I) is a two-population network in-

cluding an excitatory and an inhibitory population known to produce oscillations, and

the second example (Model II) builds on a famous model of binocular rivalry presenting

bistability of fixed points.

Perturbation of a WC cycle We proved in theorem 1 that any cycle of WC model lost

exponential stability in the infinite-size system. This loss of exponential stability does

not necessarily mean that the cycle loses stability, and this property depends on the

higher order terms of the nonlinear equation, but even if the cycle keeps stability, the

transient convergence phase towards the cycle will be dramatically slowed.

In this section, we choose to study a two-populations network featuring an ex-

citatory population interconnected with an inhibitory one. Because of the symmetry

∆ij = ∆ij , the system is of dimension 5 (the two mean firing-rates and three correla-

tion variables). To fix ideas, we denote by 1 (resp. 2) the excitatory (resp. inhibitory)

populations. We choose the same activation function for both populations equal to

f(x) = 1/(1 + exp(−x)) and the same inactivation rate α = 1, and are interconnected

through the following connectivity matrix:(
w11 = 15 w12 = −12

w21 = 16 w22 = −5

)
.

Each population receives different input currents I1 = −0.5 and I2 = −5. These param-

eters define a model called Model I in the sequel. For these functions and parameters,

the WC system features a cycle. When taking the input to the excitatory population

I1 small, the system features a single stable fixed point, that loses stability as the input

I1 increases through a supercritical Hopf bifurcation generating a family of stable limit

cycles, that disappear through a homoclinic bifurcation (see Figure 1(a)), branching

onto a high-state stable fixed point. Let us now analyze how this picture is modified

by the presence of correlations.

First of all, from theorem 1, it is clear that the parameter point where WC sys-

tem undergoes the supercritical Hopf bifurcation will be a very degenerate bifurcation

point for the infinite-size system. Indeed, the Hopf bifurcation is characterized by the

presence of a pair of purely imaginay complex conjugate eigenvalues. Then lemma 1

and the fact that the Kronecker sum of two matrixes has all pairwise sums of eigen-

values of the matrixes in the sum (see appendix B) directly implies that the Jacobian

matrix of the full system (7) has the eigenvalues {±λ,±2λ, 0} and the eigenvalue 0
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is of multiplicity one. Therefore at this point, the Jacobian matrix of the infinite size

system has its 5 eigenvalues having a null real part, and thus at this point the system

is very degenerate and in particular the bifurcation is not a generic Hopf bifurcation. It

is quite difficult numerically and analytically to study the solutions emerging from this

bifurcation point, and many solutions can appear at this point, including cycles and

fixed points. Similarly, at the two saddle-node bifurcations of WC system, since the

Jacobian matrix of the infinite-size system has all the pairwise sums of the eigenvalues,

it will have two null eigenvalues and therefore a degenerate bifurcation. The behavior

of the system around these degenerate points will appear more clearly in the finite-size

unfolding of these degenerate bifurcation points, and we will observe in particular that

the Hopf bifurcation point corresponds to the merging of two generic Hopf bifurcations

and the saddle node bifurcations to the merging of two generic saddle-node bifurcations,

see section 2.2.2 and figure Fig. 6. In this section we do not address here the problem

of classifying all behaviors of the system around the bifurcation (since as already men-

tioned, the finite-size unfolding will help answering these questions), and restrict the

analysis to the question of whether the WC cycle keeps a nonlinear stability in the new

system. To answer this question, we numerically perturb WC’s cycle by adding a small

initial condition in the correlations. Interestingly, we observe that a new cycle appears,

that is attractive in a certain range of parameters (see Figure 1). The WC cycle does

not completely loses stability and still appears as the only behavior of the system in a

certain range of input values (e.g. I1 = −0.5 as plotted in Figure 1(b)). But for smaller

values of the parameters, it loses its nonlinear stability and the additional cycle appears

(e.g. I1 = −2 and Figure 1(c) and (d)). This new cycle is totally different in its shape,

has a period close to half the period of the cycle corresponding to WC system, and has

non-zero correlations that vary periodically at the same frequency. A continuation of

this branch of cycles shows that it is stable in a significant range of parameters (Fig-

ure 1(e)). It loses stability when I2 decreases through a period-doubling bifurcation,

and as I2 increases through a Neimark-Sacker bifurcation. This branch of limit cycles

emerges from the very degenerate point corresponding to the Hopf bifurcation of WC

system, as we expected. It disappears at a point corresponding to a subcritical Hopf

bifurcation with correlations (on a branch of unstable fixed points that is not plotted

in the diagram but that will be further investigated in section 3.2).

We conclude with a further observation on transient behavior. We have seen that

WC’s cycle was neutrally stable, but in some regions of parameters, it has nonlinear

stability. In the region of parameters where the WC cycle is nonlinearly stable (white

region in figure 1(d)), the transient phase of convergence towards this cycle takes a long

time. In the green region where it is nonlinearly unstable, the neutral stability of the

cycle produce some very strange transient behaviors where the activity of the cortical

column is trapped around the neutrally stable WC system for long times, before leaving

the neighborhood of this solution and converging towards the only stable solution which

is the new cycle.

Correlation-induced oscillations Correlations can have even more dramatic effects than

modifying a periodic orbit as shown in Model I, and in this section we describe a case

where a periodic orbit arises for parameter values where Wilson and Cowan system

only fixed-points. To this end, we choose a two-population network known to have

bistability. This model consists of two-populations with inhibitory interactions and no
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Fig. 1 Model I: Comparison between WC system and the infinite-size system: (a) and (d) are
the bifurcation diagram with respect to the parameter I1 of respectively WC and the infinite-
size system. The thick lines represent stable fixed point, thin lines unstable fixed points, plain
circles the extremal values of a stable cycle and empty circle unstable cycles. (b) represents
WC cycle as a solution of the infinite-size system, which shows null correlations. red: ν1, white:
ν2, yellow: ∆11, green: ∆22, blue: ∆12 = ∆21. For non-zero correlations of the initial condition,
the solution converges towards a new cycle with correlactions (c) and (d) which is stable in a
determined region of parameters.

self-interaction. The connectivity matrix in that case reads:(
w11 = 0 w12 = −12

w21 = −12 w22 = 0

)
.

The inactivation constants αi are assumed constant equal to 1, and the inputs to the

two populations are distinct and denoted I1 and I2 (hence the system is not fully

symmetrical). The firing rate function are also identical and we make the usual choice

fi(x) = 1/(1 + exp(−x)) for i ∈ {1, 2}. These parameters define a model called Model

II.

We break the symmetries between the two populations by considering that each

population can receive different input, we freeze the input I2 and let I1 vary. In that

case, the standard WC system presents a bistable behavior between two stable fixed

points as we illustrate in Figure 2. The infinite size system driven by equations (7)

with these parameters has much richer dynamics, as illustrated in Figure 2. We first

set I2 = 0 and study the bifurcation diagram as I1 varies. We observe that the infinite-

size system features a stable limit cycle, which is a qualitatively nontrivial effect of

the correlations in the mean-field limit. All fixed-points behaviors in WC system are
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preserved, as predicted by theorem 1 (black curves in Figure 2(b)), but new fixed points

with non-zero correlations appear (blue lines in the diagram). Along one of the newly

generated branch of fixed point, a supercritical Hopf bifurcation appears, generating

a family of stable limit cycles (red circles in Fig. 2(b)) that further undergoes few

consecutive period doubling bifurcations. We note that the new branch of fixed points

intersects the branch of fixed points of Wilson and Cowan system precisely at the

saddle-node bifurcations of Wilson and Cowan system. This fact is compatible with a

partial result of the proof of theorem 1: at the saddle-node bifurcation, instead of a

single eigenvalue equalling zero, two eigenvalues are simultaneously equal to zero, and

the saddle-node bifurcations of WC system appear as transcritical bifurcations in the

infinite size system. Note that in that case, the WC behavior is nowhere the unique

stable behavior of the system, and for any value of the input parameter I1, the infinite

system will present attractive behaviors that are different from the WC behaviors. In

particular, it has stable fixed points with non-zero correlations and non-zero correlation

oscillations. However, we note that though these behaviors exist in the dynamics, the

newly discovered fixed points do not constitute acceptable solutions since they are

characterized by a negative firing-rate ν2 and a non-positive definite correlation matrix.

However, the cycles constitute acceptable solutions that might have counterparts in the

Markov system.
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Fig. 2 Model II, Wilson and Cowan (left column) and infinite-size (right column) systems,
with I2 = 0 (top row) and I2 = 5 (bottom row).
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We further explore this model by choosing a large value of the input parameter

to the second population, I2 = 5. For this level of input, the bifurcation diagram of

WC system presents exactly the same features as in the case I2 = 0, namely two

saddle-node bifurcations and a region of bistability of fixed points. The infinite-size

system, similarly to the case I2 = 0, also has additional branches of fixed points with

non-zero correlations that are connected to WC bifurcation diagram at the saddle-node

bifurcation points. These saddle-nodes are degenerate and non-generic in the infinite

size system from lemma 1 and become transcritical bifurcations. These additional non-

zero correlation fixed points can be stable or unstable, depending on the parameter, and

add additional possible behaviors. From one of these branches, the system undergoes a

supercritical Hopf bifurcation and a family of stable limit cycles appears. This branch

of limit cycles undergoes two period-doubling bifurcations, torus bifurcations and two

fold of limit cycles, yielding additional oscillatory behaviors to the purely fixed-point

structure of WC system.

From all these observations on both models, we conclude that the infinite-size

system, besides featuring the same solutions as Wilson and Cowan system as a subset

of solutions with zero correlations, also has additional behaviors that qualitatively

differ from the Wilson and Cowan system. The mean-field limit including correlations

is therefore a more complex system than WC system, in which correlations of the

firing activity interact in a non-trivial way with the mean firing rate yielding complex

behaviors. These qualitative correlation-induced behaviors can therefore be a good

indicator of which model better accounts for the behavior of cortical columns and

cortical areas if these behaviors hold in the finite-size systems which are equivalent to

the moment equations of the initial Markov chain.

We now turn to investigating finite-size effects arising from the finiteness of the

number of neurons in a network.

3 Finite-size effects

The bifurcation diagram displayed by the infinite-size system studied in the previous

section is composed of some very degenerate points, and displays behaviors the WC sys-

tem does not display. The question that naturally arises at this point is to understand

whether the infinite-size model or WC model really capture the qualitative behavior of

large networks in the Markovian framework through the BCC and Bressloff finite-size

equations.

In this section we first study how the infinite-size bifurcation diagram is unfolded

in finite-size networks, before simulating the Markov process and comparing its global

behaviors to the behaviors of the finite-size systems. We observed that the finite-size

BCC and Bressloff equations appeared as a perturbation of the infinite-size system, in

which the size of the network appears as a parameter of the equations. In all of this

study, instead of considering discrete population sizes, we will consider the inverse of

the total population size n = 1/N as a continuous parameter. Non-trivial distinctions

between finite-size networks and infinite size equation will essentially appear at the

bifurcation points. Indeed, since both the rescaled Bressloff and BCC models vector

fields are continuous with respect to the parameter n, when the infinite-size system

(n = 0) exhibits an hyperbolic fixed point, this fixed point will have a counterpart with

the same stability for finite, sufficiently large networks, by application of the implicit
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functions theorem. This is also the case of hyperbolic fixed points of WC system, since

these are hyperbolic fixed points of the infinite-size system with zero correlations. In

order to study similarities and qualitative differences between finite-size networks and

the infinite size limit, we will therefore focus on the bifurcations of both systems and

numerically study the codimension two bifurcations in the one and two populations

cases, with respect to the size of the network and to another parameter of interest (for

instance an input parameter).

3.1 Analysis of single-population finite-size networks

We start by investigating a single-population case. In the mean-field limit, we have

shown that the infinite size system essentially exhibits the same behaviors as the WC

model in terms of fixed points and limit cycles. But is this still the case where the

number of neurons is finite?

At the bifurcations of the WC system, singular phenomena can occur. Consider for

instance a saddle-node bifurcation point of WC system. At this point, the infinite size

system will present a double zero eigenvalue, and the unfolding of this bifurcation can

lead to different cases. As we show in this section, it can either unfold into a generic

saddle-node bifurcation as we show in the first section, or it can generate an oscillatory

behavior through a limit cycle, creating in the finite-size system oscillations which do

not exist in the WC or in the infinite size one population equations.

3.1.1 Regular unfolding of the infinite-size system

We start by considering BCC model with a strictly positive voltage to rate function

f , and focus on acceptable solutions that have positive firing rates and correlations.

In that case, we numerically show that there is no qualitative difference between the

stable solutions of the finite-size BCC network on one hand, and the infinite size system

and WC system on the other hand (we showed that both models present the same

qualitative behaviors in the one population case). We address this problem numerically,

with an inactivation constant α = 1 (without loss of generality, since modifying this

value only amounts rescaling time), w = 10, and letting both the size of the network

n and the input parameter I free. The activity to rate function is chosen to be f(x) =

1/(1 + exp(−x)).

With these parameters, WC system presents two saddle-node bifurcations when

the input parameter I varies, as shown in Figure 3(a). The system therefore presents

an interval of values of the parameter I where the system presents two stable fixed

points and an unstable fixed point, and outside this interval, the system has a unique

fixed point which is stable. Similarly to what we showed in the previous section, the

infinite-size network presents exactly the same features, and no cycle.

We now study BCC finite-size equations. We set the size of the network to be

N = 50. BCC finite size equations present the same qualitative behaviors, and the

same type of bifurcations: the system undergoes two saddle-node bifurcations as the

input parameter value I varies, and a bounded interval of input values I where the

system presents a bistable behavior. The only qualitative distinction between finite-

size networks and infinite size networks is the existence of a two unstable fixed points

in the bistable zone and the fact that the system presents two distinct branches of
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fixed points, but these differences only affect unstable fixed points and do not produce

generic qualitative differences in the behaviors.

The way this bifurcation diagram is transformed into the bifurcation diagram of

the infinite system is very simple. The two distinct branches of fixed point get increas-

ingly close, and in the limit n = 0, the two branches are superimposed. For finite-size

networks, we observe that the value of the correlations of the stable fixed points was

non-zero (see Fig. 3). These values were nevertheless quite small, and decrease towards

zero as the size of the network as the number of neurons increases. When continuing

the two identified saddle-node bifurcations as the network size increases, we observe

that the bifurcation curve persists until the limit n = 0 with no singularity. At the limit

however, the non-zero eigenvalue of the Jacobian matrix at the saddle-node bifurcation

point tangentially reaches the value 0 yielding the singularity predicted in proposition

1.
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Fig. 3 BCC model and the infinite-size system (a) Bifurcation diagram of WC system with
respect to the input I. Plain curve: stable fixed point, dotted curve: unstable fixed points,
LP stands for limit point (or saddle-node bifurcations) (b) and (c) Bifurcation diagram of
BCC model with respect to I, for N = 50 neurons. (b) Firing rates, (c) Correlations. (d)
Codimension two bifurcation diagram with respect to I and the network size n = 1/N . Pink
line: Saddle-node bifurcations (Limit Points). The star at n = 0 denote double zero eigenvalue
in the Jacobian matrix singular point. The values correspond to the values of WC saddle-node
bifurcations.

In this case, we therefore illustrated the fact that BCC system can smoothly unfold

the WC system by introducing correlations. These correlations vanish as the size of

the population increases, yielding a purely Poisson firing with firing rates given by the

solution of WC equations. For the same parameters and functions, it is easy to show,
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following the same steps, that Bressloff rescaled model also smoothly unfolds the WC

system and that the finite-size system presents exactly the same type of bifurcations

with two separated branches of fixed points each of which collapse in the limit where

the number of neurons is infinite (not shown), and the value of the correlations of the

fixed points decreases towards zero when the number of neurons increases. However in

this case, one has to bear on mind that the interpretation of the result slightly differs:

the limit behavior is now seen as a purely asynchronous state where all the neurons

of the population fire independently in the limit N →∞. These behaviors will closely

match the Markovian model’s behavior as shown in section 3.1.1. In these cases, WC

system conveniently summarizes the behavior of large networks, and provides a simple

model to study large networks. However, there exist models for which this conclusion

does not hold, and where the infinite-size system’s behavior unfolds into more complex

behaviors.

3.1.2 Singular unfolding of the infinite-size system

We now turn to study the possible singular unfolding of the infinite size system in one

population. To this purpose, we will be specifically interested in studying oscillatory

behaviors in the finite-size systems that are not present in the limit where the number of

neurons tends to infinity. We will call these qualitative distinctions between finite-size

and infinite-size systems singular unfolding.

To this purpose, we choose a framework where fixed points are easily described,

and along the fixed point search for sufficient conditions to get a supercritical Hopf

bifurcation, yielding oscillatory behaviors in single population networks that are neither

present in the infinite-size system nor in the WC system. To fix ideas, similarly to the

previous case treated, we consider BCC one population model. We consider here a

non-physiological cases by allowing the firing rate variable to be negative. We choose

an activation function f such that f(I) = 0 for some fixed I, which can always be done

with an unspecified sigmoid f̃ through the modification f(x) = f̃(x)− f̃(I). This quite

unrealistic case will allow studying the qualitative differences that can appear between

the finite and infinite size systems. However, the fixed point 0 is quite particular, and

we will see that this phenomenon is not generalized in a simple way when considering

positive activation functions f and positive firing rates (the affine transform f̃(x)−f̃(I)

does not have a trivial effect on the nonlinear system).

The BCC single population model reads:{
dν
dt = −αν + f(w ν + I) + 1

2f
′′(w ν + I)w2C

dC
dt = −2αC + 2f ′(w ν + I)w (C + 1

N ν)

Therefore, under the assumptions made, it is easy to see that the null solution ν =

0, C = 0 is always solution of the system. The Jacobian matrix J at this point reads:(
−α+ w f ′(s) 1

2f
′′(s)w2

2f ′(s) wN 2 (−α+ w f ′(s))

)
,

where we denoted s = w ν + I = I for ν = 0. The trace of the Jacobian matrix at this

point is equal to 3(−α+ w f ′(s)) and the determinant is equal to 2(−α+ w f ′(s))2 −
f ′(s)f ′′(s)w3/N . The trace vanishes at the null fixed point for (α,w) such that

α = wf ′(I),
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and therefore there exist a set of parameters for which the trace vanishes. In order to

ensure that this null trace corresponds to the presence of a pair of purely imaginary

eigenvalues, we further need to ensure that the determinant is strictly positive. When

the trace vanishes, the determinant simply reads −f ′(s)f ′′(s)w3/N . Since f is a sig-

moidal function, f ′ is always positive, and therefore the determinant is positive as soon

as f ′′(s) < 0, which can be ensured for some specific firing rate functions. In that case,

we will denote ω0 =
√
−f ′(s)f ′′(s)w3/N .

Therefore, under the assumptions that there exists I such that f(I) = 0 and

f ′′(I) < 0, there exist parameters α and w such that the Jacobian matrix of the

system at the null solution has a pair of purely imaginary eigenvalue. Let us now check

that this point corresponds to a Hopf bifurcation when varying the parameter α. To

this purpose, we check transversality and genericity conditions of the Hopf bifurcation

at this point, as given for instance in [35]. These calculations are provided in appendix

C. The transversality condition is easily checked. It consists in showing that the dif-

ferential real part of the eigenvalues of the Jacobian matrix at this point, with respect

to the parameter α, does not vanishes. Let us denote by µ(α) the real part of the

eigenvalues. Since we are in a planar system, we have:

µ(α) =
1

2
Tr(J)

=
3

2
(−α+ w f ′(s))

dµ(α)

dα
= −3

2
< 0

Therefore the transversality condition of the Hopf bifurcation is satisfied at this point.

In order to fully state that the system undergoes a Hopf bifurcation, we need to show

that the first Lyapunov exponent of the system at this point does not vanish. This

Lyapunov exponent, after some tedious calculations using the formula given in [35]

(see appendix C), is shown to be of the same sign as:

w2N

f ′(I)2

[
f (3)(I)f ′(I)

(
1 +

1

ω0

)
+ f ′′(I)2

(
2

ω0
− 14

3

)]
.

The sign of this expression is governed by the values of the differentials of f at the point

I. If the expression in the bracket is negative, then the Hopf bifurcation is supercritical

and the system has stable oscillations. Let us now investigate the dependence of this

cycle on the network size. We have shown that ω0 =
√
−f ′(s)f ′′(s)w3/N . Therefore,

if this cycle appears for some finite network, it will lose stability as the size of the

population increases. The period of the generated cycle is proportional to the inverse

of the square root of N , and therefore slowly tends to zero as the network size increases

(note that the cycle will lose stability as the network size increase, since for sufficiently

large populations, the Hopf bifurcation will be subcritical).

Now that we identified simple conditions for the Hopf bifurcation to take place, we

exhibit a network that indeed has this bifurcation. We choose for instance as activation

function an hyperbolic tangent function

f(x) = tanh(x)− tanh(I)
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with I = 0.5. In that case, we have:
f(I) = 0

f ′(I) ≈ 0.786

f ′′(I) ≈ −0.727 < 0

f ′′′(I) ≈ −0.56

Therefore this function satisfies the assumptions done in the previous paragraph. More-

over, since f ′′′(I) < 0 and (2/ω0 − 14
3 ) < 0 ( for N small enough), the first Lyapunov

coefficient is negative, and therefore the system undergoes a supercitical Hopf bifurca-

tion and presents oscillations, as illustrated in Figure 4.
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Fig. 4 Oscillations in a single population network with finite size. (a) is a cycle observe for f0
(p=0), (b) is the codimension two continuation with respect to w and p of the Hopf bifurcation
for different values of α: pink for α = .3, blue: α = .8 and green: α = 3.

Therefore, we exhibited a case where the finite-size equations have important qual-

itative differences from the infinite-size equations. However this system involved non-

physiological values of the parameters, in particular a non-positive activation function

f . Therefore, this behavior will never appear in the Markov process that yielded BCC

equations.

The question that then arises is whether such behaviors appear in plausible set-

tings. In order to answer this question and search for a system with positive sigmoidal

functions that indeed present oscillations in one-population networks, we continued the

Hopf bifurcation while continuously transforming the non-positive sigmoidal transform

into a positive sigmoid. For instance, we consider f a non-positive sigmoidal function

for which the Hopf bifurcation exhibited here appears, and define fp = f − pmin(f)

a transformation of f such that f0 = f and f1 is a positive sigmoid. This homotopic

transform smoothly maps the vector field presenting an attractive cycle onto a vec-

tor field with a positive activation function. Since we have proved the genericity and

transversality conditions on the Hopf bifurcation identified, we are in position to con-

tinue it as the parameter p varies together with α in a codimension two bifurcation

diagram (by application of the inverse function theorem). We observe in that case that

the Hopf bifurcation cannot be continued when varying the homotopy parameter until

reaching a positive sigmoid (see Figure 4(b) for the example provided above). We have
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tried numerous other sets of parameters and have never been able to continue periodic

orbits to a regime where there is a non-negative activation function.

Therefore, though the one-population BCC equations can display oscillations for

non biologically relevant parameters, we conjecture that there is no acceptable oscilla-

tory solution for positive activation functions.

3.2 A two-populations finite-size network

We have seen in the previous section that the one-population finite-size BCC model was

accurately approximated by the infinite-size system (and therefore the WC system from

the result of a previous section) for biologically realistic parameter, though oscillatory

phenomena may occur for non-biologically relevant parameters that allow both the

firing-rate and the correlations to be negative. The picture will be quite different in

multi-population networks. Indeed, in higher dimensions, the WC system can have Hopf

bifurcations that create very degenerate bifurcation points in the infinite-size system,

which may non-trivially unfold in the finite-size systems. In this section, we consider

the two population networks with excitatory self-interaction and negative feedback

loop, called Model I, introduced in section 2.2.2 and address first the case of Bressloff

model, before showing that BCC model presents the same features in appendix D.

This study will allow addressing in particular the question of the existence of so-called

quasicycles and also of aperiodic solutions in the system close to the Hopf bifurcation

of the mean-field Wilson and Cowan limit, addressed recently in the same model by

Bressloff in [11]. These quasicycles correspond to intrinsic noise-induced oscillations

in parameter regimes where the deterministic mean-field limit (in that case Wilson

and Cowan system) is below the Hopf bifurcation, and where the system features

a stable focus. This phenomenon was also recently found in similar systems arising

in biochemical oscillations of cellular systems, see e.g. [9,39]. Our approach to these

phenomena consists in unfolding the Hopf bifurcation of the mean-field system to

finite network sizes, in order to understand how the intrinsic noise (that can be seen

as through the Langevin approximation of the system valid for large population sizes

as used in appendix A and in [11]) interacts with the Hopf bifurcation.

To fix ideas, we focus in this section on the particular network introduced in sec-

tion 2.2.2, namely the two-population rescaled Bressloff model. Denoting c = C, the

equations read:

ν′1 = −α1ν1 + f(s1) + 1
2 f
′′(s1) (w2

11 c11 + w2
12 c22 + 2w12 w11 c12)

ν′2 = −α2ν2 + f(s2) + 1
2 f
′′(s2) (w2

22 c22 + w2
21 c11 + 2w22 w21 c12)

c′11 = 1
N1

[α1ν1 + f(s1)]− 2α1c11 + 2 f ′(s1) (w11 c11 + w12 c12)

c′22 = 1
N2

[α2ν2 + f(s2)]− 2α2c22 + 2 f ′(s2) (w21 c12 + w22 c22)

c′12 = −(α1 + α2)c12 + f ′(s1) (w11 c12 + w12 c22)

+f ′(s2) (w21 c11 + w22 c12)

where we denoted: {
s1 = w11 ν1 + w12 ν2 + i1

s2 = w21 ν2 + w22 ν2 + i2

For the set of parameters studied in this section and a number of neurons N = 50,

Bressloff finite-size system undergoes four Hopf bifurcations labelled H1 through H4
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and six saddle node bifurcations LP1 through LP6. It features two distinct families of

limit cycles, one that undergoes two folds of limit cycles LPC1 and LPC2, and one

that undergoes a Neimark-Sacker (Torus) bifurcation, as displayed in Figure 5(b), and

are compared with the standard WC system that displays one Hopf bifurcation point

H and two saddle node bifurcations LPa and LPb.

LPa

LPb

H0.25
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(a) Wilson and Cowan system
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0

1

(b) Bressloff model

Fig. 5 Bifurcation diagram of Model I: (a) Wilson and Cowan system and (b) Bressloff sys-
tem. Blue: equilibria, pink: cycles. Bifurcations of equilibria are denoted with a red star, LP
represents a saddle-node bifurcation (Limit Point), H a Hopf bifurcation. The four Hopf bifur-
cations share two families of limit cycles. One of these undergoes two fold of limit cycles LPC,
and the other branch of limit cycle a Neimark Sacker (Torus) bifurcation.

The analysis of this bifurcation illustrates the fact that the small finite-size system

studied have clear qualitative differences with the WC system. However, because of the

properties of the vector field, and in particular its smooth dependency with respect to

the size of the network N , the bifurcation diagram of Fig. 5 smoothly connects to the

degenerate bifurcation diagram of the infinite-size system presented in section 2.2.2.

Let us now investigate how the bifurcation diagram of the infinite system unfolds

into the bifurcation diagram of the finite-size system. To this end, we continue of the

bifurcation diagram of figure Fig. 5(b) as the number of neurons increases, as shown

in the codimension two bifurcation diagram of figure Fig. 6. The structure of the new

bifurcation diagram appear way more intricate than WC’s, and in particular, each

bifurcation point of WC system, corresponding to degenerate dynamics of the infinite-

size system, unfolds non-trivially into different generic bifurcations in the finite-size

moment equations. Let us describe the diagram plotted in figure Fig. 6. We observe

that the bifurcation diagram of the finite-size system, for any N < 232 neurons will

be similar to the one plotted in figure Fig. 5. As N increases, the bifurcation diagram

is smoothly transformed except at two particular codimension two bifurcation point: a

cusp bifurcation at n ≈ 0.0867, from which emerge two additional saddle-node bifur-

cations denoted LP7 and LP8. The value of the correlation variables of these points

progressively converge to zero as the network size increases. These two saddle-node

bifurcations correspond in the infinite-size limit to the two saddle nodes of WC system

LPa and LPb, and are not present in the finite-size model for a small number of neu-

rons. The second codimension two bifurcation appearing in the diagram correspond

to the disappearance of the Hopf bifurcation point H4 through a Bogdanov-Takens

bifurcation with the saddle-node bifurcation manifold corresponding to LP8. Except
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from these two codimension two bifurcations, the continuation of all other bifurcations

is smooth for any n > 0. But in the limiting case n = 0, the system is highly singular

and different bifurcation manifold collide, as we now discuss in more details. Let us

Fig. 6 Codimension two bifurcations with respect to the input to population 1 and the popu-
lation size in Bressloff’s model. Pink: Hopf bifurcations, blue: saddle node bifurcations, green:
folds of limit cycles. The continuation of the Hopf bifurcations H1 and H4 merge at WC’s H
point when N →∞. We observe that the fold of limit cycles merge with other bifurcations in
the limit of infinitely many neurons (see text). In the limit N →∞ (corresponding to n = 0)
we labelled the points H, LPa and LPb arising in WC system. Points with zero correlations
are circled in red, all other points have non-zero correlations.

first follow the continuation the Hopf bifurcation labelled H1 in diagram of Fig. 5(b)

as the network size increases. We observe that this Hopf bifurcation collides, in the

limit N → ∞, with the continuation of the Hopf bifurcation H3 of the second branch

of fixed point. Their collapse corresponds to the degenerate Hopf bifurcation point of

the infinite model, denoted H in Fig. 5(a). The cycle originating from H1 and the cycle

originating from H3 will therefore emerge from this fixed same point, accounting for

the result presented in section 2 and in particular figure Fig. 1 where we evidenced the

presence of two different cycles emerging from the same bifurcation point H. Moreover,

we have seen that the corresponding branch of limit cycles in the infinite-size system

bifurcation diagram Fig. 1 loses stability. This loss of stability corresponds to the con-

tinuation of the Neimark-Sacker bifurcation NS of figure 5 that can be continued in

the mean-field limit. However, an important distinction between the finite and infinite

case is that This cycle undergoes an additional period-doubling bifurcation when the

size of the network increases, as observed in the bifurcation diagram of the infinite-size

system, and as shown in figure 7. In that figure, we continued these cycles for one fixed
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value of the parameter I1 = −0.5, as the number of neuron increases. The family of

limit cycles continued is stable in a bounded interval of values for the parameter N .

For a number of neurons close to N = 142 (precisely n2 = 0.01418), the branch of limit

cycles undergoes a fold of limit cycle, and therefore the branch of limit cycles does not

exists for smaller networks. For networks larger than N = 142 neurons, the system

presents a branch of stable and a branch of unstable limit cycles. Stable cycles persist

up to networks as large as N = 1700 neurons (precisely n2 = 0.001174). At this size,

where the branch stable limit cycles changes stability through a subcritical Neimark

Saker (Torus) bifurcation with no strong resonance. When increasing further the size of

the network, the system shows the presence of a chaotic attractor which clearly cannot

exist in the two-dimensional WC system, yielding an important qualitative distinction

between large scale networks and the relative mean-field limit (see 7). This chaotic

behavior exists until the infinite-size is reached.

(a) Bifurcations of cycle (b) Chaos

Fig. 7 Chaotic behavior for large networks: (a) bifurcation diagram as a function of the
network size. NS: Neimark-Sacker (Torus) bifurcation and FLC: fold of limit cycle. (b) Poincaré
maps representing a1 and c11 with Poincaré section a2 = 0.7.

Let us now follow the branch of limit cycles arising from H3 as the network size

varies. We observe in our codimension three bifurcation diagram that the branch of

Hopf bifurcations H3 exists until the infinite-size is reached. In that limit, we observe

that this branch of Hopf bifurcation asymptotically meets the fold of limit cycles LPC2

and the curve of saddle-node LP7 and the saddle homoclinic curve arising from the

Bogdanov-Takens bifurcations. This point corresponds therefore to a very degenerate

behavior of the system, and corresponds, in WC bifurcation diagram, to the saddle-node

bifurcation LPa that also corresponds to the homoclinic bifurcation point. Regarding

the fourth Hopf bifurcation H4, we already observed that it was continued until it

disappeared, in finite size, through a Bogdanov-Takens bifurcation.

Let us now consider the continuation of the saddle-node bifurcations. The bifurca-

tion diagram of WC presents two saddle-node bifurcations LPa and LPb that corre-

spond to the two saddle-node arising from the cusp bifurcation CP of Fig.6 that are

labelled LP7 and LP8. In the mean-field limit, the saddle-node bifurcations correspond-

ing to the continuation of LP1 and LP4 merge in a cusp bifurcation and disappear. At

this same point, the fold of limit cycles LPC1 collapses and disappears in a homoclinic
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bifurcation. The saddle-node bifurcations LP2 and LP6 disappear in the mean-field

limit by being continued tangentially to the line n = 0. The continuations of the saddle-

node bifurcations LP3 and LP6 crosses the line n = 0 with no singularity and therefore

exists in the infinite size system, corresponding to a non-zero correlation saddle-node

bifurcation and that do not correspond to any plausible behavior (all plausible be-

haviors correspond to zero correlation points). Eventually, the saddle-node bifurcation

LP7 connects with the fold of limit cycle, generating the homoclinic bifurcation of the

infinite-size system.

We therefore observe that the bifurcation diagram of the finite-size Bressloff model

non-trivially unfolds the infinite-size system, and that at any finite scale the bifurcation

diagram and the solutions it present differ significantly from the infinite-size system

and from WC system. In particular, it shows additional cycles, as observed in the

infinite-size system previously, and a chaotic effect that is not present in the two-

dimensional WC system. This analysis also illustrates a mesoscopic-scale phenomenon

in the presence of a periodic orbit that is stable only when the size of the network is

comprised roughly between one hunded and one thousand neurons, a typical size of a

cortical columns often modelled by Wilson and Cowan system. These results remain

valid for BCC model, as shown in appendix D. The question that now arises is whether

these behaviors indeed reflect behaviors of the Markovian model.

3.3 Finite-size Markovian model

In the previous section, we investigated the distinctions between the solutions of the

finite-size BCC model and compared these with those of the infinite-size and of WC sys-

tems. We now return back to the original Markovian system that allowed derivation of

Bressloff and BCC equations, and compare simulations of this network with the finite-

size Bressloff model, composed of two differential equations arising from the moment

truncation of this random variable. We will perform this analysis in the two models

with two populations investigated in the paper, Model I and Model II. This analysis is

particularly interesting in regions of the parameter space where the system presents a

fixed-point behavior, and where the moment expansion is a relevant representation of

the system. In the periodic orbit regimes, we discuss a suitable methodology, beyond

the scope of the present paper, that is suitable to analyze the system.

In order to simulate the Markov chain, we make use of Doob-Gillespie’s algorithm

[20,30,31]. From the master equation governing, e.g. BCC model:

dP (n, t)

dt
=

M∑
i=1

[
αi (ni + 1)P (ni+, t)− αiniP (n, t)

+ Fi(ni−)P (ni−, t)− Fi(n)P (n, t)
]

we derive the transition rates of the state variable n. We use these rates to simulate

sample paths of the state variable n and rescale these to compare to the solutions

obtained for BCC or Bressloff models and the infinite-size models. Given the con-

figuration n(t) of the network at time t, we have in the BCC case (Bressloff case is

straightforwardly treated using the same method):

– The probabilistic intensity for the transition ni(t + 1) = ni(t) − 1 is equal to

qi = αi ni,



30

– The probabilistic intensity for the transition ni(t + 1) = ni(t) + 1 is equal1 to

fi = f(
∑M
j=1 wij nj + Ii).

Given an initial condition n(0), a simulation consists of computing all possible tran-

sitions probabilities qi and fi. We then draw the time for the next transition as an

exponential random variable with intensity Q =
∑
i(qi + fi). This time provides the

next event occurring in the chain. By the properties of exponential laws, the transition

is ni(t + 1) = ni(t) − 1 (resp. ni(t + 1) = ni(t) + 1) for some i ∈ {1, . . . ,M} with

probability qi/Q (resp. fi/Q). This simulation algorithm for the Markov process n(t)

is exact in law, and does not involve any approximation such as time-discretization,

and therefore allows efficient simulation of the sample path and of its statistics. These

statistics are computed using a Monte-Carlo algorithm consisting of simulating many

independent sample paths of the process and deriving from these the trajectory of

the mean firing rate νi(t) and the correlation in the firing activity Cij(t) through the

empirical mean and correlations obtained. In the simulations we focus on BCC model.

The same numerical experiments can be performed in the Bressloff case.

3.3.1 One-Population Model

We start by considering the one-population model studied in section 3.1.1. In that case

we have shown that both Wilson and Cowan and the infinite-size systems had the same

behavior, and that this behavior was regularly unfolded in the finite-size systems. In

these cases, two saddle-node bifurcations defined a zone of bistability that depended on

the size of the network as shown in Figure 3(d). We simulate the network using Doob-

Gillespie algorithm and identify the boundaries of the zones where bistability occurs

by continuation of the fixed points obtained as the parameters increase or decrease.

The continuation is initialized by running the algorithm with parameters associated to

a single attractive fixed point of WC system. Then the parameter I is slowly varied

and simulations are run with initial condition being the last values of the network state

of the previous simulation. We observe the hysteresis phenomenon and bistability, and

the bistability zones closely matches WC system, as shown in Figure 8. We simulate the

Fig. 8 Bistability zones in BCC finite-size model (black dashed curve) and computed from
the Markovian BCC model (colored plain curve).

network for increasingly large networks ranging from N = 50 neurons to N = 100 000

neurons with 10 000 simulated sample path from which we extract the empirical mean

1 Note that the activation functions are different in BCC and Bressloff models.
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and standard deviations. From the curves obtained in that fashion, we automatically

identify zones where there is bistability. These boundaries are plotted together with

the values of the saddle-node bifurcation at these points arising from the codimension

2 bifurcation diagram of BCC finite-size model, and we observe that the curves closely

match as soon as the network is larger than 1 000 neurons. Therefore in this model, BCC

system closely reproduces the behavior of the finite-size Markov model for sufficiently

large networks. A similar result is obtained in BCC case (not shown).

3.3.2 Markovian Model I : Fixed points regimes

We now turn to study the two-dimensional network Model I. In that case we showed

that depending on the input parameter I1, Wilson and Cowan system can either present

a stable cycle or a stable fixed point. We first chose a case where WC system converges

towards a fixed point, and to this end will study the system for I1 = −5. In that case,

both WC system, the infinite-size system, BCC and Bressloff systems converge towards

a fixed point. The periodic regimes are addressed in section 3.3.4.

In the case where WC system presents a unique hyperbolic attractive fixed point,

we showed that the infinite-size presents an exponentially stable fixed point with the

same values of mean firing rate and null correlations, which has a counterpart in the

unfolding of BCC and Bressloff model. Simulations of the Markovian model illustrate

the fact that all the sample paths of the process converge quite fast towards this fixed

point with null correlations displaying stochastic variations, and each sample path

presents a precise match with the solution of WC solution at this point. The stochastic

variations around Wilson and Cowan trajectory arising from the randomness of the

Markov chain are averaged, and produce a fixed mean firing-rate corresponding to the

fixed point of the infinite-size system, i.e. having null correlations and the same value of

mean firing rates. Moreover, we observe that the correlations vanish, which implies that

the state obtained is an asynchronous state, as expected from Bressloff’s expansion.

Figure 9 represents simulations of Model I with I1 = −5. In panels (a) and (b) are

plotted four sample paths of the process for 10 000 neurons simulated over on a time

interval equal to 100, and panels (c) and (d) the mean-firing rates averaged over 5 000

realization of the process, and thats shows a very close agreement with the solution

of WC system. The maximal absolute value of the correlations (not plotted) are of

the order of 10−5 and are neglected as an effect of the finiteness of the sample path

simulated for computing the mean and covariance. The same observations hold for all

the simulations performed for parameters corresponding to an hyperbolic fixed point of

the infinite system. Note that the difference between mean-firing rates of the solution

of WC system on one hand and of BCC system on the other hand is of the order of

10−5 at this network scale, and therefore both models fairly approximate the stochastic

Markovian model.

3.3.3 Markovian Model II

We perform the same analysis in the case of the network Model II studied in section

2.2.2 with symmetric connectivity with null diagonal and inhibitory interaction in BCC

case. In that case, we showed that WC system presented bistability, and the infinite-

size system presented a more complex behavior with multistability and different limit

cycles. In the simulations of the Markovian system, similarly to the case of Model I, we
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(a) Different Sample Path
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Fig. 9 Network Model I, for parameters associated with a stable fixed point (I1 = −5) closely
matches WC trajectory with random variations around the fixed point that average at the
value of the fixed point, and correlations vanish (asynchronous state). (a),(b): The different
colors correspond to different sample paths. The simulations were performed in the BCC case.

observe that when WC system presents a single hyperbolic fixed point, the Markovian

system closely matches with the solution of WC system during the transient phase,

and the stationary state randomly varies around the fixed point of WC system. The

mean of the firing rates over many realization of the process converges exactly towards

the solution of WC system, and the correlations tend to zero, implying the system is in

an asynchronous state and that its behavior is efficiently summarized by Wilson and

Cowan system. We note that in that case, the infinite-size system and the finite size

systems both presented additional fixed points with non-zero correlations, that do not

actually exist as a regime of the Markov chain.

For parameters associated with bistability in WC, the situation is similar, and

we observe in our simulations that the WC system captures precisely the behavior of

the Markovian system and all additional solutions derived from the moment hierarchy

truncation do not appear. Simulations of the Markovian system show that depend-

ing on the initial condition, the system will converge towards one or the other fixed

point. Albeit the stochasticity of the Markov chain yielding the possibility to switch

between the two fixed points, this phenomenon does not occurs often, and except for

input parameters very close to the saddle-node bifurcations, no switching between fixed

points is observed. In that case, we note that the additional fixed point with non-zero

correlations and the additional cycles evidenced in the infinite-size system and that
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are present in the finite-size moment equations do not appear in the simulations of the

underlying Markovian model. We present in Figure 10 the values of taken by the mean

firing rate and correlations for 1000 realizations of the Markov chain over the 20 last

units of time for a simulation of 20 000 neurons as a function of the input paramter I1.

We treat the cases I2 = 0 and I2 = 5, the blue crosses are the continuation of the fixed

points with I1 increasing (from −10 to 10 for I2 = 0 and from −5 to 15 for I2 = 5) and

red circles for I1 decreasing. The continuation is initialized by running the algorithm

with parameters associated to a single attractive fixed point of WC system. Then the

parameter I1 is slowly varied and simulations are run with initial condition being the

last values of the network state of the previous simulation. We observe the hysteresis

phenomenon and bistability, and the bifurcation diagram obtained perfectly matches

WC’s, and no counterpart of any of the identified correlations effects are observed.
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Fig. 10 Stationary values of the Markov chain in Model II with I2 = 0 as a function of I1
(see text). Continuation of equilibria by increasing I1 (blue crosses) and by decreasing I1 (red
circles), superimposed with WC bifurcation diagram (black curve). Correlations are plotted
with a different axis origin in cyan (C11), magenta (C22) and yellow (C12), keep very close
to zero except at the precise value of the bifurcations, where the jump between the two fixed
points produces a spurious standard deviation. BCC case.

It appears from this analysis that the finite-size moment equations present ad-

ditional solutions, associated with large correlations, that do not exist in the initial

Markovian model. We emphasize the fact that though the infinite-size model is not

equivalent to the moment equations derived by both authors, the solutions evidenced

have a counterpart in the finite-size moment equations corresponding to both systems.

These equations present solutions with large correlations (that actually diverge as the

number of neurons tend to infinity), which are not solutions of the initial Markov chain,

which naturally behaves as WC system for large population sizes, as expected from the

moment equations by both authors.

A complementary approach to the study of bistability in the Markov framework al-

lowing to quantify the probabilistic intensity of noise-induced transitions can be driven

through the use of WentzelKramersBrillouin (WKB) approximation (see e.g. [21,11]

and references therein) performed directly on the Markovian system. This method was

used by Bressloff in [11] in the same context for a one-population model, and more

generally allows studying noise-induced transitions between multiple metastable states

where the mean-field theory based on the system-size or loop expansions break down. It

allows reducing the problem to a Hamilton-Jacobi equation from which one can derive

the escape rate, namely the probability intensity that the solution escapes from the
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attraction bassin of a given equilibrium of the deterministic equation (the WC system)

and enters the attraction bassin of the other equilibrium.

3.3.4 Periodic regimes

The models proposed in [16,17,10] emphasize the role of the mean-firing rate and of

the zero timelag correlation functions. As illustrated in the previous section, these

variables are suitable to model the system at fixed points. However, it remains unclear

how these variables characterize the behavior of the Markovian system in periodic or

chaotic regimes.

The analytical study of such regimes can be carried out in a satisfactory fashion

either in the theory of master equations and in the theory of stochastic dynamical sys-

tems, using the Langevin equation. Such studies have been addressed by various authors

within the context of chemical master equations [39,9,29] and recently Bressloff applied

the same tools to neural models, using Langevin equations and Floquet theory [11].

Indeed, it appears that in regimes where the Wilson and Cowan system present a cycle,

the Markovian model is characterized by random fluctuations in the neighborhood of

this attractor, and the system loses phase information over time. These dynamics can

be suitably studied in terms of a diffusive phase variable. In details, under the Langevin

approximation of the dynamics, a possible way to study the behavior of the solutions

of the Markovian system would be to use the stochastic phase reduction (see [48]).

In this section we do not make use of these more customary methods but rather

investigate the relationship between behaviors of the finite-size moment equations and

behaviors of the Markovian system. For our choice of parameters in Model I, let us

consider the parameter region I1 ∈ [I1,H , I1,LPa] where I1,H (resp. I1,LPa) correspond

to the value of I1 at the point H (resp. LPa). In this region, the solutions of WC system

are periodic orbits. The question we address is whether the behavior of the finite-size

(moment equations and Markovian) systems is comparable to the behavior of WC

solutions or to the behavior of the finite-size moment equations, which differs at any

finite scale from WC’s behavior as shown in section 3.2. Indeed, we observed in figure

Fig. 6 that the Hopf bifurcation of the deterministic WC system, which is a degenerate

point of the moment equations, expands in the codimension two diagram into two

branches of generic Hopf bifurcations, that imply the presence of cycles in the finite-

size system. These Hopf bifurcations either unfold a singularity corresponding to the

actual eigenvalues ±λ of WC Hopf bifurcation or to twice this value by application

of the lemma 1, and can be either stable or unstable. Therefore the boundaries of the

region where the system is in a periodic regime are modified as soon as the system

size is finite. The same phenomenon appears close to LPa, in which case the diagram

unfolds into a Hopf bifurcation, a saddle node bifurcation, a fold of limit cycles and a

saddle homoclinic bifurcation. We will observe that in both cases, the behavior of the

Markovian system actually reflects the properties of the finite-size moment equations,

and that quasicycles will appear in the neighborhood of WC’s Hopf bifurcation.

Let us first have a closer look to the behavior of the moment equations in the

neighborhood of I1 = I1,H in the finite-size system. WC’s Hopf bifurcation gives rise

to two Hopf bifurcations whose codimension two curves are tangent to the axis n = 0.

The curve H1 is related to a singular eigenvalue converging as N goes to infinity to the

value of WC Hopf bifurcation, and gives rise to stable limit cycles with period close to

the expected cycle in WC system. The other branch, H3, corresponds to faster cycles

with period around half WC cycles’ period. Let us now fix a certain size of the network
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N . In the moment equations, and let I1 be a free bifurcation parameter. As I1 increases,

cycles will appear corresponding to the Hopf bifurcation H1 at a value IH1(N). We

observe that this value is increasing as the network size increases. Therefore, in regions

where WC system has a stable focus, the finite-size moment equations show oscillations

of frequency close to WC cycles’ frequency. For instance for n = 0.02 corresponding to

the bifurcation diagram of figure Fig. 5, we have IH1(50) = −3.37, defining a region

of quasicycles I1 ∈ [−3.37,−3.245]. This size of the zone where quasicycle appear

decreases very fast (as we can see from the shape of the graph of H1 in the codimension

two plot Fig. 6 and for N = 1000 we have IH1(50) = −3.248. It is important to note

that at a size N = 50, oscillations are very difficult to see because of the small system

size. Moreover, in the particular case treated, the graph of the H1 bifurcation is almost

a vertical line: there is almost no difference between the value of H1 across different

system sizes. The same phenomenon is observed in the simulations: quasicycles close

to the Hopf bifurcation point barely exist, and the value of I1 needs to be very close

from I1,H to start observing these quasicycles.

WC’s family of limit cycle lose stability through a saddle-node homoclinic bifurca-

tion. We observe that unfolding this bifurcation, we find out that the branch of limit

cycles in the finite-size system undergo a fold of limit cycles corresponding to a decreas-

ing value of I1, having the effect of reducing the amplitude of the interval of I1 values

related to a periodic orbit. The curve of fold of limit cycles is no longer vertical in that

case and a wide non-trivial region distinguishes the finite-size and WC’s periodic orbit

parameter regions. We observe again in that case that the LPC2 line actually corre-

sponds to a good estimate of the disappearance of cycles. Indeed, the codimension 2

bifurcation diagram shows that for I1 = 0 oscillations should disappear at a system

size close to 550 neurons. In figure Fig. 11 we observe that indeed, for N = 500 neurons

and I1 = 0, the system does not show any oscillations, and for N = 700 neurons the

system starts showing an oscillatory behavior. Moreover, in that case we observe that

the amplitude of the cycles is not small, consistent with the cycles we observe in the

finite-size system.

The presence of a chaotic orbit as seen in Fig. 7 and the fact that indeed in such

regions the behavior of the system is aperiodic suggests that in these regions close to a

limit cycle of Wilson and Cowan system, the underlying Markovian system can present

a low-dimensional chaotic macroscopic behavior arising through the interaction of a

large but finite number of neurons, a phenomenon that could be related to the work

of El Boustani and Destexhe in [23], where intrinsically stochastic neurons are shown

to yield low-dimensional chaotic macroscopic behaviors. Results are presented in figure

Fig. 11

This particularly good correspondence between cycles of the moment equations

and quasiperiodic orbits of the Markov chain is a very promising result. However, it

is important to note that the additional cycles corresponding to the branches H2 and

H4 do not appear in the Markov simulations. This might be linked with the stability

of such orbits and the system size at which stable periodic orbit exist. This study

therefore indicates that further exploration is needed to assess more clearly a definitive

relationship between quasicycles and actual orbits of the moment equations, and there

is a good chance that these two phenomena are related. This precise study is not within

the scope of the present paper and we are currently actively working on this topic. Of

high interest also is the fact that in some regions corresponding to the vicinity of a

Hopf bifurcation, the moment equations present a low-dimensional chaotic behavior.

Such phenomena, of interest in neuroscience, have, to the best of our knowledge, not
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Fig. 11 Simulations of the Markovian system and periodic obits. Simulations are performed
using Doob-Gillespie algorithm in order to simulate a large number of sample paths of the
Markovian system, and the power spectrum presented are averaged across the realizations.
For I2 = −5, orbits of the WC system exist for I1 ∈ [−3.245, 0.54], and around this zone,
depending on the system size, cycles might exist or not (see text).

been shown, and we believe that if these phenomena indeed appear in the Markovian

system, this is of crucial interest in neuroscience and in the understanding of large-size

stochastic systems.
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4 Discussion

In this paper, we studied the different solutions of newly developed models for describ-

ing the mean-field limit of Markovian neural networks modeling large-scale cortical ar-

eas: BCC and Bressloff models[17,10]. These equations were originally derived from a

Markovian implementation of the firing of each neurons in the population, whose transi-

tion probability satisfied a differential equation, the master equation of the process[22].

Both models studied drew on this framework but, since they addressed different neu-

ronal regimes, dealt with different variables and different scaling, and after truncation

of the moment hierarchy yielded sets two coupled equations, one governing the mean

firing activity and the other governing the same-time correlations of the firing activity

in the network (or the ordered cumulant that can be deduced from the correlation and

the mean firing rate). The particular aim of both models was to recover, in the limit

where the number of neurons is infinite, the standard WC equations.

We transformed these models in order to study the proportion of active neurons

in each populations, in networks composed of different populations of neurons with

different dynamics and composed of different number of neurons. Both models include

finite-size corrections, and the size of the network appears simply in the equations as a

parameter of the model. The limit when the number of neurons tend to infinity appears

in that view as a regular perturbation of the finite-size system in our particular choice

of variables, and that both the BCC- and Bressloff-derived models converged towards

the same equations as the number of neurons tends to infinity, the infinite-size system.

We analyzed the solutions of the infinite-size system, and established the fact that

all solutions of WC system were associated with solutions of the infinite-size system

with null correlations. However, we showed that the stability of the solutions obtained

in that fashion did not necessarily have the same stability properties as in WC system:

fixed points of the Wilson and Cowan system correspond to fixed points of the infinite-

size system with zero correlations having the same stability, but all the cycles of the

WC system are either unstable or neutrally stable in the infinite-size system. This

destabilization of cycles gives rise to new behaviors (fixed points or periodic orbits)

with non-zero correlations, the correlation-induced behaviors.

When studying the finite-size equations and the way it relates to the properties of

the infinite-size system, we presented evidence that the mean-field limit appears to be

a singular limit, in the sense that for any finite-size of the network, the system presents

behaviors the infinite-size system does not feature. Moreover, singular points appear

in the limit of infinitely many neurons, and for infinitely many neurons, branches of

bifurcations collapse and disappear. Besides these qualitative distinctions between fi-

nite and infinite-size systems, we numerically found mesoscopic-scale effects, namely

behaviors that are only present at a certain population scale, and disappear for smaller

or larger populations. The scale at which these behaviors took place coincided with the

scale of typical cortical columns. Such behaviors are neither captured by the study of

small-networks nor by the mean-field limit, stressing the importance of precise descrip-

tions of these intermediate scales in tractable approaches. We want to emphasize that

the system-size expansion and the truncations are not valid at the bifurcation points.

However, the bifurcation analysis we performed allowed us to uncover the number and

stability of fixed points and limit cycles corresponding to different parameters. The

actual transition of the stochastic process is a very complex phenomenon which would

be worth studying but that present very important technical intricacies. We also note

that the underlying Markovian models are stochastic models. If the moment equations
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present multiple attractors, the stochastic system will randomly switch between the

different attraction basins. A large-deviation study in the case where there is a small

parameter (Bressloff case and BCC case in the fully connected system treated in the

manuscript) can allow one to identify the attractor switching and the mean exit time

of each attraction basin in order to more precisely study the behavior of the underlying

stochastic system, that could possibly be performed using Freidlin and Wentzell the-

ory in the large N case [28]. As already mentioned, Paul Bressloff opened the way to

such studies by using WKB approximations allowing to compute the transition rates

between metastable attractors in a one-population model [11]. Alternative approaches

could make use of the stochastic dynamical systems theory [6,33]. These approaches

would allow directly studying the bifurcations of the initial stochastic system in the

Langevin approximation.

Correlation-induced and finite-size behaviors were then compared to the initial

Markovian model. We observed that when WC system presented an attractive fixed-

point behavior, each sample path of the Markov chain presented stochastic variations

around these fixed points, the correlations tended towards zero and the mean coincided

with WC fixed point. In that case, the network regime is therefore an asynchronous

state, and is well approximated by Wilson and Cowan system. The validity of the

moment equations close to bifurcations was shown in the derivations to be mainly valid

far away from bifurcations. However, we showed that the codimension two bifurcations

of the moment equations was closely matched with similar phenomena (e.g. bistability)

observed in simulations of the Markovian system. However, we also observed that both

BCC and Bressloff models can present additional behaviors in these regimes that are

not present in the simulations of the Markov chain. The moment expansion breaks

down when considering periodic orbits of the WC system, corresponding to quasi-

periodic stochastic solutions of the stochastic system, and different techniques such as

the stochastic phase reduction, Langevin approximation and Floquet theory are very

promising. However, we provided numerical evidences showing that actual cycles in the

moment equations could be related to the phenomenon of quasicycles in the Markovian

system. These numerical observations strongly suggest further exploration along these

lines.

The precise study of all these points will further allow understanding the behavior

of large scale systems, and will particularly be interesting in the study of rhythms in the

brain, and possible synchronization or desynchronization as a function of the network

size and of the connectivity. A particularly interesting point of the models studied in

this paper is that they describe a stochastic process by a set of differential equations,

where the size of the network appears as a perturbation parameter of a set of ordinary

differential equations. This approach can be promising in order to study bifurcations

of a stochastic processes and qualitatively analyzing its behaviors and the dependency

of its solutions as a function of the parameters. We also noted that the behavior of

each sample path of the process was possibly very different from the behavior of its

first moments, which raises the question of the best variable to describe such stochastic

processes.

The mathematical method developed to study the stability of the correlation equa-

tions, involving Kronecker products and sum and the application of Floquet theory

is of potential importance in the study of networks with correlations, since the form

of the correlation equation is quite standard in this kind of problems (see e.g. [45] in

the case of small noise expansion). This approach can also be applied to the study of

the stability of solutions in networks involving Hebbian learning, since the connectivity
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weights evolution depends on the firing correlations and the stability of the weights

involves very similar equations as the ones we studied here.

The need for extensions of the present study to more realistic Markovian models

involving more relevant biologically realistic transitions is a direct consequence of the

present work. Indeed, we have seen that the transitions chosen in the Markovian model

are only one-step jumps. In biological terms, this assumption means that when ni(t)

neurons are active in population at time i, at least ni(t)− 1 neurons are active at time

t + dt, i.e. keep firing, which is not biologically realistic since after firing, a neuron

immediately returns to quiescence. Therefore extending the framework to a more com-

plex state space of the Markov chain would be of great interest for the development

of these models towards more realistic biological grounds, and would probably allow a

better assessment of the properties of cortical areas.

Finally, in order to go beyond the description of the moments of the Markov chain,

we believe that one shall turn towards alternative ways to derive mean-field equations

for such systems. A particularly interesting way to study such systems we are currently

exploring builds upon recent methods developed for the study of Markov chains, mainly

in the field of queueing theory, such as fluid limits and large deviations approaches. The

fluid limit technique is based on a space-time proper rescaling depending on the process

under consideration, that yields deterministic or stochastic limits of the activity of the

network when the number of neurons tends to infinity. Large deviation techniques allow

one to derive the finite-size corrections (see e.g. [52] in a case of stochastic ion channels)

and is a natural extension of our work.

Acknowledgments: This work was supported by NSF DMS 0817131.

A An alternative derivation of the moment equations

In this appendix we show that the moment equation corresponding to the Markov chain gov-
erned by equations (2) can be derived from a Rodriguez-Tuckwell moment expansion on the
Langevin approximation of the Markov chain. Following Kurtz approach in [34], we know that
the dynamics of the our rescaled variables pi = ni/Ni, which is a Markov chain in the initial
setting, approaches as N goes to infinity a continuous diffusion process (Xt)t≥0 satisfying the
equation:

dXi
t =

(
− αiXi

t + fi(si(t,Xt))
)
dt+

1

N

√
αiXi

t + fi(si(t,Xt)) dW
i
t (13)

where Si(t,Xt) =
∑N
j=1 wijX

j
t + Ii(t).

Following the works of Rodriguez and Tuckwell [44,45], we derive from this equation the
dynamical system governing the approximate moments of X. Denoting by mj the mean value
of Xj and by Cij the correlation between Xi and Xj , a direct application of Rodriguez and
Tuckwell formula applied to our particular form of dynamical system yields:

dmj
dt

= −αjmj + fj(sj) + 1
2
f ′′j (sj)

∑N
l=1

∑N
p=1 wjpwjlClp

dCij
dt

= −(αi + αj)Cij + f ′i(si)
∑N
l=1 wilClj + f ′j(sj)

∑N
l=1 wjlCli

+δij

[
αimi + fi(si) + 1

NiNj
f ′′i (si)

∑
k,l wikwilCkl

]
Where si =

∑N
j=1 wijm

j
t + Ii(t). These equations therefore appear as a perturbation of the

BCC equations with an additional nonlinear term in the dynamics or order two. Truncation at
order 1 in the small parameter 1/N yields exactly BCC equations. Moreover, it is interesting
to note that these equations again correspond in the limit N → ∞, to the infinite model
described in section 2.
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B Kronecker Algebra: Some useful properties

In this appendix, we review and prove some useful properties of Kronecker products of matrixes.
We recall the definition of the the function Vect transforming a M × N matrix into a M N-
dimensional column vector, as defined in [41]:

Vect :

{
R
M×N 7→ RM N

X 7→ [X11, . . . , XM1, X12(t), . . . , XM2(t), . . . X1N (t), . . . , XMN (t)]T

Let us now denote by ⊗ the Kronecker product defined for A ∈ Rm×n and B ∈ Rr×s as the
(mr)× (n s) matrix:

A⊗B :=


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB


For standard definitions and identities in the field of Kronecker products, the reader is referred
to [12]. We recalled in the main text the following identities for A,B,D,G,X ∈ RM×M , IM
be the M ×M identity matrix and A ·B or AB denote the standard matrix product:

Vect(AXB) = (BT ⊗A)Vect(X)

A⊕A = A⊗ IM + IM ⊗A
(A⊗B) · (D ⊗G) = (A ·D)× (B ·G)

. (14)

The relationship ⊕ is called Kronecker sum.

Proposition 2 Let A and B in RM×M , and assume that A has the eigenvalues {λi; i =
1, . . . ,M} and B the eigenvalues {µi; i = 1, . . . ,M}. Then we have:

– A⊗B has the eigenvalues {λiµj ; (i, j) ∈ {1, . . . ,M}2}.
– A⊕B has the eigenvalues {λi + µj ; (i, j) ∈ {1, . . . ,M}2}.

Proof Let λi (resp.µj) be an eigenvalue of A (resp. B) with eigenvector u (resp. v), and define

the matrix z = u · vT (i.e. zij = ui vj). We have:(
A⊕B

)
Vect(z) = Vect

(
A · u · vT + u · vT ·BT

)
= Vect

(
λiu · vT + u · (B · v)T

)
= λiVect(z) + Vect

(
u(µjv

T )
)

= (λi + µj)Vect(z).

which entails that Vect(z) is an eigenvector of A(ν) ⊕ A(ν) associated with the eigenvalue
λi + λj . Similarly, we have for z = v · uT :(

A⊗B
)

Vect(z) = Vect
(
B · v · uTAT

)
= Vect

(
(µjv) · (λi uT )

)
= λiµhVect(z)

The dimension of A⊕B and A⊗B is M2 and there are exactly M2 linearly independent
matrices z possible built in the proposed fashion, therefore we identified all possible eigenvalues.

Theorem 3 Let Φ(t) be the solution of the matrix differential equation:{
dΦ(t)
dt

= A(t)Φ(t)

Φ(0) = IM
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and Ψ(t) the solution of: {
dΨ(t)
dt

= (A(t)⊕A(t))Ψ(t)

Ψ(0) = IM2

We have Ψ(t) = Φ(t)⊗ Φ(t).

Proof Indeed, we have, using the basic properties of the Kronecker product recalled in equation
(8)

dΦ(t)⊗ Φ(t)

dt
=

dΦ(t)

dt
⊗ Φ(t) + Φ(t)⊗

dΦ(t)

dt

=
(
A(ν(t)) · Φ(t)

)
⊗ Φ(t) + Φ(t)⊗

(
A(ν(t)) · Φ(t)

)
=
(
A(ν(t)) · Φ(t)

)
⊗
(
IM · Φ(t)

)
+
(
IM · Φ(t)

)
⊗
(
A(ν(t)) · Φ(t)

)
= (A(ν(t))⊗ IM ) · (Φ(t)⊗ Φ(t)) + (IM ⊗A(ν(t))) · (Φ(t)⊗ Φ(t))

=
(
A(ν(t))⊗ IM + IM ⊗A(ν(t))

)
·
(
Φ(t)⊗ Φ(t)

)
=
(
A(ν(t))⊕A(ν(t))

)
·
(
Φ(t)⊗ Φ(t)

)
Therefore Φ(t)⊗Φ(t) satisfies the same differential equation as Ψ(t) and moreover, Φ(0)⊗Φ(0) =
IM⊗IM = IM2 , and therefore by existence and uniqueness of the resolvent, Ψ(t) = Φ(t)⊗Φ(t).

C Genericity of the Hopf bifurcation found

In this appendix we derive the expression of the first Lyapunov exponent of the bifurcation,
which proves that the existence of the Hopf bifurcation exhibited in section 3.1.2. In that
section, we derived the expression of the Jacobian matrix at the considered fixed point:

J =

(
−α+ w f ′(s) 1

2
f ′′(s)w2

2f ′(s) w
N

2(−α+ w f ′(s))

)
At the bifurcation point, we have −α∗ +w f ′(s) = 0, and therefore at this point the Jacobian
matrix reads:

J0 =

(
0 1

2
f ′′(I)w2

2f ′(I) w
N

0

)
The eigenvalues of this matrix under the assumptions of section 3.1.2 are ±iω0 where ω0 =√
−f ′(I)f ′′(I)w3/N . We define q the right eigenvector of J0 associated with iω0:

q =
(
−

i√
2 f ′(I)w/N

1
)T

and p the right eigenvector of JT0 associated with the eigenvalue iω0:

p =
( i√
− 1

2
f ′′(I)w2

1
)T

For the sake of simplicity, we also name the components of the vector field of the system:{
f1(
(ν
C

)
, α∗) = w f ′(I)nu+ f(wν + I) + 1

2
f ′′(wν + I)w2 C

f2(
(ν
C

)
, α∗) = −2w f ′(I)C + 2 f ′(wν + I)w

(
C + ν

N

) .

Following [35], we define B(
(x1
y1

)
,
(x2
y2

)
) and C(

(x1
y1

)
,
(x2
y2

)
,
(x3
y3

)
) the second and third deriva-

tives of the vector field, which are bi- and tri-linear forms. We have the following expressions
for these multilinear functions:
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
B1(

(x1
y1

)
,
(x2
y2

)
) = w2 f ′′(I)x1 x2 + 1

2
f ′′(I)w2 (x1 y2 + y1 x2)

B2(
(x1
y1

)
,
(x2
y2

)
) = 2 f ′′(I)w2 (x1 y2 + y1 x2) + 4

N
f ′′(I)w2 x1 x2

C1(
(x1
y1

)
,
(x2
y2

)
,
(x3
y3

)
) = f (3)(I)w3 x1 x2 x3 + 1

2
f (4)(I)w4 (x1 x2 y3 + x1 y2 x3 + y1 x2 x3)

C2(
(x1
y1

)
,
(x2
y2

)
,
(x3
y3

)
) = 6

N
f (3)(I)w3 x1 x2 x3 + 2 f (3)(I)w3 (x1 x2 y3 + x1 y2 x3 + y1 x2 x3)

We are now in position to compute the first Lyapunov exponent l1(0) using the formula:

l1(0) =
1

2ω0
Re
(
〈p, C(q, q, q)〉 − 2〈p,B(q, J−1

0 B(q, q))〉+ 〈p,B(q, (2 i ω0Id− J0)−1B(q, q))〉
)

=
1

2ω0
(A− 2B + C)

where 〈x, y〉 denotes the complex inner product xT · y and the sum of three terms denoted A,
B and C are the real parts of the terms involved in the expression of the Lyapunov exponent.
After straightforward but tedious calculations (that can be conveniently performed using a
formal calculation tool such as Maple), we obtain:

A = w2 N
f ′(I)2

f (3)(I) f ′(I)

B = w2 N
f ′(I)2

(
− f

′′(I)2

ω0
− 1

2
f(3)(If ′(I))

ω0
+ 2f ′′(I)2

)
C = − w2 N

f ′(I)2
2f ′′(I)2

3

which yields the expression for the Lyapunov exponent:

l1(0) =
1

2ω0
[A− 2B + C]

=
w2N

2ω0 f ′(I)2

[
f (3)(I)f ′(I)

(
1 +

1

ω0

)
+ f ′′(I)2

(
2

ω0
−

14

3

)]

D Finite-size effects in BCC two-populations Model I

In this appendix, we study the two-populations BCC system corresponding to Model I and
show that the finite-size effects are closely related to what is observed in Bressloff model as
studied in section 3.2. BCC finite-size equations read:

a′1 = −αa1 + f(s1) + 1
2
f ′′(s1) (w2

11 c11 + w2
12 c22 + 2w12 w11 c12)

a′2 = −αa2 + f(s2) + 1
2
f ′′(s2) (w2

22 c22 + w2
21 c11 + 2w22 w21 c12)

c′11 = −2αc11 + 2 f ′(s1) (w11 c11 + w12 c12) + 2 f ′(s1) a1 w11 ne

c′22 = −2αc22 + 2 f ′(s2) (w21 c12 + w22 c22) + 2ni f
′(s2)w22 a2

c′12 = −2αc12 + f ′(s1) (w11 c12 + w12 c22 + a2 w12 ni) . . .

+f ′(s2) (w21 c11 + w22 c12 + w21 a1 ne)

(15)

where we denoted: {
s1 = w11 a1 + w12 a2 + i1
s2 = w21 a2 + w22 a2 + i2

Similarly to Bressloff case, BCC model features two families of limit cycles. One of these
branches corresponds exactly to the branch of limit cycles of WC system starting from a
Hopf bifurcation and disappearing through a homoclinic bifurcations. Two additional Hopf
bifurcations appear related to the family of periodic orbit corresponding to the correlation-
induced cycle evidence in the analysis of the infinite-size system. This branch of limit cycles
exist whatever n, and loses stability through a Neimark-Sacker bifurcation as the number of
neurons increases. This bifurcation generates chaos for large enough networks, which clearly
does not exists in WC system.
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Fig. 12 Bifurcation diagram for the BCC system. Blue lines represent the equilibria, pink
lines the extremal values of the cycles in the system. Bifurcations of equilibria are denoted
with a red star, LP represents a saddle-node bifurcation (Limit Point), H a Hopf bifurcation.
The four Hopf bifurcations share two families of limit cycles. The branch corresponding to the
smaller values of i1 undergoes two fold of limit cycles, and the other branch of limit cycle a
Neimark Sacker (Torus) bifurcation.

This family of limit cycles presents stability for networks containing between 100 and
17.000 neurons, corresponding to a finite size effect that appears only in the region of interest
of the cortical columns. As the number of neurons increase, the system keep the same number
and type of bifurcations, and the infinite model appears to be a singular case where different
bifurcations meet (see Fig. 13), and very large networks lose the property of presenting a stable
cycle, and present a chaotic behavior.
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