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Abstract

The Ising Model has recently received much attention for
the statistical description of neural spike train data. In this
paper, we propose and demonstrate its use for building de-
coders capable of predicting, on a millisecond timescale,
the stimulus represented by a pattern of neural activity.
After fitting to a training dataset, the Ising decoder can
be applied “online” for instantaneous decoding of test
data. While such models can be fit exactly using Boltz-
mann learning, this approach rapidly becomes compu-
tationally intractable as neural ensemble size increases.
We show that several approaches, including the Thouless-
Anderson-Palmer (TAP) mean field approach from statis-
tical physics, and the recently developed Minimum Prob-
ability Flow Learning (MPFL) algorithm, can be used for
rapid inference of model parameters in large-scale neural
ensembles. Use of the Ising model for decoding, unlike
other problems such as functional connectivity estima-
tion, requires estimation of the partition function. As this
involves summation over all possible responses, this step
can be limiting. Mean field approaches avoid this prob-
lem by providing an analytical expression for the parti-
tion function. We demonstrate these decoding techniques
by applying them to simulated neural ensemble responses
from a mouse visual cortex model, finding an improve-
ment in decoder performance for a model with heteroge-
neous as opposed to homogeneous neural tuning and re-
sponse properties. Our results demonstrate the practical-
ity of using the Ising model to read out, or decode, spatial

patterns of activity comprised of many hundreds of neu-
rons.

1 Introduction

Interpreting the patterns of activity fired by populations
of neurons is one of the central challenges of modern sys-
tems neuroscience. The design of decoding algorithms
capable of millisecond-by-millisecond readout of sensory
or behavioural correlates of neuronal activity patterns
would be a valuable step in this direction. Such decoding
algorithms, as well as helping us to understand the neural
code, may have further practical application, as the basis
of communication neural prostheses for severely disabled
patients such as those with ”Locked In” syndrome.

At the heart of such a decoding algorithm must lie -
whether explicit or implicit - a description of the con-
ditional probability distribution of activity patterns given
stimuli or behaviours. Making this description is nontriv-
ial, as the brain, like other biological systems, exhibits
enormous complexity. This results in a very large number
of possible states or configurations exhibited by the sys-
tem, making the description of such systems by simply
measuring the probabilities of each state unfeasible. Ex-
cept for very small patterns, a model-based approach of
some kind is essential.

New technologies in neuroscience such as high-density
multi-electrode array recording and multi-photon calcium
imaging now make it possible to monitor the activity of



large numbers of neurons simultaneously. Analysis tools
for such high dimensional data have however lagged be-
hind the experimental technology, as most approaches are
limited to very small population sizes. While consider-
able advances have been made in the use of information-
theoretic approaches to characterise the statistical struc-
ture of small neural ensembles (Gawne et al. 1996, Panz-
eri, Schultz, Treves & Rolls 1999, Schultz & Panzeri
2001, Panzeri & Schultz 2001, Reich et al. 2001, Petersen
et al. 2001, Pola et al. 2003, Montani et al. 2007), finite
sampling limitations have made results for larger ensem-
bles much more difficult to obtain.

For the statistical description of multivariate neural
spike train data, parametric models able to capture most
of the interesting features of real data while still being
of empirically accessible dimensionality are highly desir-
able. One promising approach has emerged from statis-
tical mechanics: the use of Ising (or Ising-like) models,
exploiting an analogy between populations of spike trains
and ensembles of interacting magnetic spins (Shlens et al.
2006, Shlens et al. 2009, Schneidman et al. 2006).

Our aim here is to devise an algorithm for “millisecond-
by-millisecond” neural decoding, on the basis that in-
formation processing in the nervous system appears to
make use of such fine temporal scales (Carr 1993, Bair
& Koch 1996). The timescale of the “symbols” used in
information processing is thus likely to be somewhere be-
tween 1 and 20 ms for most purposes (Butts et al. 2007).
For time bins on this scale, neural spike trains are ef-
fectively binarized, and the simplest binary model (in
the maximum entropy sense) that captures pairwise cor-
relations is the Ising model. The Ising model is thus
a natural way to describe the statistics of neural spike
patterns at the timescale of interest. Fitting of such a
model to the observed neural data has the advantage that
it does not implicitly assume some non-measured struc-
ture in the data, i.e. maximum entropy models express the
most uncertainty about the modelled data given the (ex-
plicit) chosen constraints (e.g. that certain moments of the
measured distribution agree with the model distribution)
(Jaynes 1957). It can be shown that this is mathematically
equivalent to maximizing the likelihood of the model pa-
rameters to explain the observed data (Berger et al. 1996).
By using this approach to fit a model to the conditional ac-
tivity pattern distribution, in conjunction with maximum a
posteriori decoding (Foldidk 1993, Oram et al. 1998), it is

possible to train a decoder which takes as its input a pat-
tern of spiking activity, and gives as its output the stimulus
that it determines to have elicited that spike pattern.

A major obstacle to the use of Ising models for neu-
ral decoding, is that, in general, it is necessary to com-
pute a partition function (or normalization factor), involv-
ing a sum over all possible states. This can be numeri-
cally challenging, and for large numbers of neurons, un-
feasible. In the present study, we adopted several ap-
proaches for circumventing this problem. Firstly, we
make use of mean field approximations, including both
the ‘naive’ mean field approximation and the Thouless
et al. (1977) (TAP) extension to it, following Roudi, Tyr-
cha & Hertz (2009). Secondly, we compare this with
the recently proposed Minimum Probability Flow Method
(Sohl-Dickstein et al. 2009) for learning model param-
eters. To assess the relative performance of these ap-
proaches in the context of a discrete decoding problem,
we simulated the activity of a population of neurons in
layer V of the mouse visual cortex during an experiment
in which a discrete set of orientation stimuli were pre-
sented. Using this simulation, we evaluated the relative
performance characteristics of the different decoding al-
gorithms in the face of limited data, exploring decoding
regimes with up to 1000 neurons. We demonstrate, for
the first time, the use of the Ising model to effectively de-
code discrete stimulus states from large-scale simulated
neural population activity.

2 Methods

2.1 Ising models of neural spike trains

Activity states in an Ising model are Boltzmann dis-
tributed, i.e. they are distributed according to the negative
exponential of the “energy” associated with each state.
This distribution,

P x e 2u?ufe is the maximum entropy distribution
subject to the set of constraints imposed by Lagrange mul-
tiplers A\, on variables f,. Imposing these constraints
upon firing rates and pairwise correlations gives
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where r = (r1,79,...,7¢)T and each binary response

variable r; € {0, 1} indicates the firing/not firing of neu-
ron ¢ in the observed time interval. The parameters h;
(known in statistical physics as ‘external fields’) and J;;
(‘pairwise couplings’) have to be fit to the data such that
the model displays the same means and pairwise correla-
tions as the data:

(2a)
(2b)

<T73>Ising = <Ti>Data ’
<rirj>lsing = <Tirj>Data ’

where (-)model denotes expectation with respect to the
specified distribution. Z(s) is the partition function,
which acts as a normalisation factor. i.e.:

Z(s) = Z exp Z hi(s)r; + %Z Jij(s)rir;
reR 7 i#j
3)
Note that the first sum is over all possible (as opposed to
observed) responses, given by the set R.

In statistical physics it is more common to use a sym-
metric representation o; € {—1,1} for the ‘spins’ that
describe the activation of neuron ¢ (with —1 indicating
‘no spike’ and 1 indicating ‘spike’), which simply corre-
sponds to a change of variables o; = 2r; — 1. Accord-
ingly the fields, couplings and partition functions change.
As it is occasionally more convenient to work in one or
the other representation we will denote the fields and cou-
plings in the spin representation with h; and ji]‘.

Standard Monte Carlo techniques for fitting these
model parameters, such as Boltzmann learning, which
can in principle provide an exact solution - given the
number of samples is high enough - become computa-
tionally very expensive if not intractable as the num-
ber of cells increases. We have found in previous work
(Seiler et al. 2009), that the Boltzmann learning approach
becomes computationally too expensive in our case for
ensemble sizes larger than 30 cells. This poor scaling
behaviour is mainly due to the exponentially increasing
number of states with the number of cells. Speeding up
the model fitting process is hence an essential requirement
to utilize Ising models for studies with large ensembles
of neurons. Solutions to speed up the “classical” Boltz-
mann learning approach have been suggested (Broderick
et al. 2007). However these are still associated with a high
computational cost.

2.2 Neural Decoding

In this paper we consider the problem of decoding which
of a number of different stimuli has elicited a neural spike
pattern. This can be seen as a discrete classification task:
we have a set of S stimuli s € S = {1, 52,...,55}. De-
coding in this scenario means that we have to provide a
decision rule that estimates which stimulus has been the
input to the system, given an observed spike pattern r ;.
The particular example to which we apply this is a simula-
tion of the spike pattern responses elicited by visual stim-
uli across the receptive field of a visual cortical neuron:
in this case each stimulus s; represents a different orien-
tation of a sinusoidal grating. Our main aim with this sim-
ulation was to validate our methodology in a neurophys-
iologically realistic coding regime, relevant to datasets to
which our methodology might be applied. As a supple-
mentary goal, we hoped to gain some insight into whether
some aspects of the model affect decoding performance
- such as heterogeneity of tuning, observed in real neural
recordings but often ignored in population coding models.

For decoding, we use the maximum a posteriori (MAP)
rule:

5§ = arg maxp(8|1'obs) (4)
— argmax PEe[9)P() )

s p(robs)
= arg mgxp(robs|8)1?(s)> (6)

where the second step is the application of Bayes’ theo-
rem and the third equality holds because p(rqps) is inde-
pendent of s and is hence irrelevant for maximising the
given expression, i.e. just a constant factor with respect
to s that scales the maximum accordingly. In the case we
examine here we assume we are in control of the stimulus
distribution p(s), and thus we can choose it to be uniform,
i.e. to exhibit the same constant probability for each stim-
ulus and therefore be independent of s, as well. Hence
our decoding rule simplifies further to the maximum like-
lihood (ML) rule:

§ = arg msaXp(robs|3)' (7
Within this setting, the task of creating a neural decoder
reduces to the modelling of the stimulus dependent dis-
tributions p(r|s). Once these are obtained, we can apply



our ML decoding rule (Equation 7) to estimate the given
input stimulus s.

We have used two different statistical models to fit the
observed spike patterns for each stimulus. Firstly, we have
used an Ising model for p(r|s), i.e. we assume that for
each stimulus, the spike pattern distribution can be de-
scribed by a (different) Ising model. Secondly, we have
used an independent model distribution pj,g, assuming
that given a stimulus, each cell is independent of the oth-
ers:

C
Pina(r|s) = Hp<7"i|5>- )]
i=1

The independent model is the binary maximum entropy
model of first order, i.e. it takes into account only the
first order moments (the constraints on the means given
by Equation 2a) and is therefore a natural comparison for
the Ising model. As it is very easy to fit the independent
model, we used this as a control method, to test whether
the more complex Ising model could enhance decoding
performance. Note that the numerical values for the prob-
abilities can get very small for large cell ensembles, and
therefore to evade finite precision problems we use in this
case an equivalent log-likelihood decoding rule instead of
the ML rule, i.e. maximise the logarithm of the likelihood
instead of maximising the likelihood directly.

2.3 Training and Testing

To train and test the decoders, we proceed as follows:

1. For each stimulus we simulate a set of possible re-
sponse vectors. The details of the simulation are de-
scribed in the following subsection.

2. We separate the simulated response patterns into
training data, which is used to fit the model and test
data which we use to evaluate the decoding perfor-
mance of the obtained models.

3. The whole testing procedure is performed with 10
fold cross-validation, i.e. we divide the whole data
for each stimulus into 10 equally sized parts. We
then use 9 parts of the data to train our model and
the remaining one for testing. We repeat this pro-
cess again with all 10 possible test/training data set
combinations of this kind to reveal if our results gen-
eralize to the whole dataset.

2.4 Simulation of Evoked Spike Patterns
from Mouse Primary Visual Cortex

We simulated the transient response patterns of activity
evoked by visual (orientation) stimuli in layer V pyrami-
dal neurons of the anaesthetized mouse visual cortex. The
orientation direction were chosen to be n - 180/.S, where
S is the number of stimuli and n € {0,1,...,5—1}. The
properties of our simulation are motivated by the results
reported by Niell & Stryker (2008). We simulated dif-
ferent models by augmenting a basic model with mostly
homogeneous response characteristics, with some come
controlled heterogeneous characteristics.

Our model is defined as follows, with parameters spec-
ified in Table 1. The spontaneous activity of each neu-
ron was set to 1.7 spikes per second, corresponds to the
reported median value for layer V neurons in (Niell &
Stryker 2008). We assumed that neuronal direction pref-
erences were uniformly spaced around the circle. Each
neuron’s tuning curve was defined by a von Mises func-
tion (circular Gaussian) with half width at half maximum
(HWHM) fit to experimental data (Niell & Stryker 2008).
The direction selectivity index (DSI) was set to 0.1 for all
layer 5 neurons in our model. Sustained firing rates were
fit to the distributions reported in (Niell & Stryker 2008).
To reflect that we are considering a situation in which a
stimulus is decoded from a short time window (20 ms) of
data, we multiplied these evoked rates by a fixed transient-
to-sustained ratio of 1.5, taken to reflect the onset re-
sponse of the neuron’s response to a flashed stimulus. As
our model is fit to data from directional (drifting grat-
ing) stimuli, we took the arithmetic mean value of the two
corresponding diametrically opposite directions for each
neuron to compute the model response to a flashed orien-
tation.

The characteristics of the basic model were modulated
via two inhomogeneity parameters v, € [0, 1], to in-
troduce a heterogeneous distribution of firing rates and
the tuning widths respectively, as described in Table 1.
We neglected inhomogeneity in other parameters. Thus
the parameter v regulates firing rate heterogeneity, where
v = 0 corresponded to the basic homogeneous mode,l
and v = 1 to the most heterogeneous firing rate setting.
The parameter £ was used analogously to regulate hetero-
geneity in the tuning widths of the neurons. The effects
of the two heterogeneity parameters ~y, £ are illustrated in



Parameter Value Comments

Preferred tuning direction uniformly spaced 0°—360°

Tuning width (HWHM) 38 + £P; ¢ € [0,1]; @; normally distributed, fitted to Fig. 4f of Niell &
Stryker (2008), truncated minimum of 10.
Direction Selectivity Index 0.1 fixed for all neurons; Niell & Stryker (2008) Fig. 5c.

Spontaneous firing rate 1.7+ ~X; (Hz) v € [0, 1]; X; normally distributed about zero, distribution fitted to

Fig. 8d of Niell & Stryker (2008); truncated to minimum of 0.3

Sustained evoked firing rate 7+ ~Y; (Hz) ~ € [0, 1]; Y; normally distributed, fitted to data in Fig. 8 and supp.
fig. S3 of Niell & Stryker (2008); truncated to minimum of zero
Transient-to-sustained ratio 1.5 fixed for all neurons

Table 1: Parameters of the mouse visual cortical model simulated.  and e determine the extent of heterogeneity in

the model, with v, ¢ = 0 setting the model properties to homogeneous.

Figure 1.

Patterns of spikes fired by the neural population
were simulated using a dichotomized Gaussian approach
(Macke et al. 2009). Since we cannot estimate covariance
matrices from experimental data directly, and not every
positive definite symmetric matrix can be used as the co-
variance matrix of a multivariate binary distribution, we
adapted the following approach. First we compute upper
and lower covariance bounds for each pair of neurons, ac-
cording to (Macke et al. 2009)

max {—pq, —(1 — p)(1 — q)} < Cov(r;, 7))
<min{(1-q)p,(1—p)q}, ©

where p and q are the means (mean spiking probabilities)
of neuron ¢ and j, respectively. We then choose a ran-
dom symmetric matrix A that lies between these bounds.
As in general this choice does not result in a permissible
correlation matrix for the underlying Gaussian, a Higham
(2002) correction is applied to find the closest correlation
matrix possible for the latent Gaussian (cf. Macke et al.
(2009)), to which we finally arithmetically add a random
correlation matrix with uniformly distributed eigenvalues
to adjust the mean correlation strength. Having estab-
lished a dichotomized Gaussian model we can thus draw
samples with high efficiency.

Where not otherwise stated in the text, 10000 trials per
stimulus were simulated, allowing 9000 training samples
and 1000 test samples with 10-fold crossvalidation. In the
absence of a detailed characterization of the correlation
structure of neural responses in the mouse visual cortex,

we assumed that the correlation in firing between each
pair of neurons was weak and positive. Our simulation
results in a mean correlation of 0.11 and a standard devi-
ation of 0.040 (measured with 100000 samples for differ-
ent ensemble sizes) for our basic model and similar levels
of correlation for nonzero v, £. Due to limitations of the
dichotomized Gaussian simulation, we were not able to
specify the correlations of the spike trains/between the in-
dividual neurons exactly, thus all reported correlations are
measured and may be prone to small variations. However,
such limitations would be inherent to any simulation ap-
proach, as i) the covariance structure of a multivariate bi-
nary distribution is always constrained by the firing prob-
abilities of the cells and can not be chosen independently
of these firing rates (Macke et al. 2009), and ii) finite sam-
pling effects will always affect the simulated data, result-
ing in fluctuations in the correlation structure.

We were able to vary the (measured) mean absolute
correlation level in some simulations, allowing an assess-
ment of the relative effects of correlation strength for de-
coding. To do this we proceeded as follows: having es-
tablished the correlation matrix of the latent Gaussian as
described before allows us to sample in a regime with cor-
relations around 0.1. Likewise a latent Gaussian with a
correlation matrix given by the identity matrix would cor-
respond to the case where there are no correlations in the
latent Gaussian and thus in the simulated spike trains it-
self, which means that the simulated spike patterns for
each neuron are independent (note that due to the model
used in Macke et al. (2009) the correlation matrix and the



covariance matrix of the latent Gaussian are the same). Fi-
nite sampling effects might still introduce some nonzero
measured correlations in the spike patterns, but the un-
derlying distribution would still be with independent neu-
rons. Thus, by interpolating between these two cases we
can reduce the effective correlations in the data in a con-
trolled way, where at one end we yield our original model
and at the other end we yield a set of independent neurons.

2.5 Fitting the Ising Model Parameters

For fitting the model parameters in the Ising model case
we use two different strategies: mean field approxima-
tions and minimum probability flow learning. In earlier
work we used Boltzmann learning (Seiler et al. 2009),
however as this becomes rapidly computationally in-
tractable with an increasing number of neurons, we have
not reported it here.

2.5.1 Mean Field Methods

The suitability of different Mean Field approaches for fit-
ting the parameters of an Ising model have been recently
assessed by Roudi, Tyrcha & Hertz (2009). In their work,
Roudi et al. compared the learned model parameter as
inferred by Boltzmann learning, with the parameters in-
ferred by a number of different approximative algorithms.
Here we examine the utility for decoding of using succes-
sively higher order mean field approximations. Tanaka
(1998) demonstrated how to systematically obtain mean
field approximations of increasing order based on a Ple-
fka series expansion (Plefka 2006) of the Gibbs free en-
ergy. By truncating these series to terms up to n-th or-
der, and using the linear response correction, it is possible
to derive an n-th order mean field approximation, yield-
ing C' equations for the external fields, and C(C — 1)/2
equations for the pairwise couplings (cf. Tanaka (1998)).
These equations can then be solved with respect to ji]‘
and h;. For higher order approximations, these equations
can have more than one solution. This problem can be re-
solved by considering that the Plefka series expansion is
effectively a Taylor series expansion and continuity of the
solutions is expected when higher order terms are gradu-
ally increased (Tanaka 1998).

Tanaka further provided an explanation for the “diago-
nal weight trick” as used by Kappen & Rodrguez (1998).

With this trick one introduces C' extra equations for the
pairwise “self-couplings” J;;, which can be used to refine
the respective approximations. The success of this trick
can be explained (Tanaka 1998) by considering that us-
ing this diagonal weight trick in an n-th order method, is
effectively incorporating the dominant terms of the next
higher (n + 1) order expansion.

For fitting the parameters, we have compared different
mean field approximations from zeroth to second order
with and without the diagonal weight trick, thus incor-
porating with our highest approximations all second or-
der terms and the dominant third order terms of the free
energy expansion. The zeroth order method is thereby
equivalent to the independent model, thus providing an-
other way of thinking about the independent decoder.

First order methods (naive mean field approximation).
For the first order or naive mean field approximation, the
equations for the external fields and pairwise couplings
become:

J=-Cc (i # J), (10a)
ili = tanhﬂ m; — Z jijmj, (IOb)
J#i

where J is the estimated coupling matrix with elements
jij, the ‘magnetization’ m; = (o;), and the covariance
matrix C is defined by C;; = (0;0;) — m;m;. In the
following we will denote this naive mean field method by
nMF.

By incorporating the diagonal weight trick the above

equations change slightly into the following:

(11a)
(11b)

where in addition to the matrices defined above, we have
defined the diagonal matrix P;; = (1 — m?)d;;, with d;;
being the Kronecker delta. Note that in the nomencla-
ture of Roudi, Tyrcha & Hertz (2009), this has been called
“naive mean field method”. However we will in the fol-
lowing refer to it as naive mean field method with diago-
nal weight trick (nMFwd).



Second order methods (TAP approximation). The
equations of the second order method are also known as
the TAP equations (Thouless et al. 1977) and can be seen
as a correction to the naive mean field methods. Using
the TAP approach the equations for the model parameters
read:

2J3mimj + Ji; +(C7 1)y =0 (i#4), (12a)

h; = tanh ™! m; — Z jl-jmj +m; Z jlf(l — m?)7
J#i J#i

(12b)
where the first equation can be solved for the pairwise
couplings J;;. As mentioned previously the correct so-
lution has to be chosen according to continuity condi-
tions outlined in Tanaka (1998), from which then the
external fields h; can be computed. More precisely, if
m;m;(C~1);; < 0 we choose the solution, which is
closer to the original first order mean field solution. If
m;m;(C~1);; > 0 we use the first order mean field solu-
tion directly. We use this procedure as it avoids pairwise
couplings becoming complex, and respects the continu-

ity of the inverse Ising problem for J;; as a function of
(C™1);;. In the following this method is denoted by TAP.

Incorporating third order terms. The second order
method can also be augmented by the diagonal weight
trick, hence incorporating the leading third order terms
of the free energy expansion. The equations for the TAP
method with diagonal weight trick (TAPwd) are given by:

27 mem; + T+ (C7y =0 (i #j), (13)
— 1 -1 s

Ji= Ty~ (O (=), (13b)

hi = tanh ™" m; — > Jim;, (13¢)

J

where we have solved the equations in an analogous fash-
ion to that described for the normal TAP approach.

2.5.2 Minimum Probability Flow Learning

Sohl-Dickstein et al. (2009) recently proposed the Min-
imum Probability Flow Learning (MPFL) technique,
which provides a general framework for learning model
parameters. As this technique is also applicable to the

Ising model, we have used it to learn external fields and
pairwise couplings for our model. However, as the sam-
pling regime usually feasible in neurophysiological exper-
iments dictates a small number of samples compared to
the number of parameters in the model (which is O(C?)
with C cells), the learning problem for the parameters be-
comes under-constrained already at intermediate neural
ensemble sizes, i.e. we are likely to have more param-
eters to fit than there are samples.

We therefore introduced a regularization term to their
original objective function to penalize model parameters
growing to large numbers, i.e. to avoid overfitting. Given
the original objective function K (6) with 6 being the pa-
rameters of our model, our regularized objective function
reads:

A
Kreg(0) = K(6) + 5116112, (14)

where || - ||2 is the Lo norm, which is a common choice of
regularization term (Bishop 2007). So for the Ising model
case we have:

1613 = Do nE+ > 75

i#]

For the present work, the regularization parameter was
set to A = 0.0127, after systematically assessing differ-
ent settings for an ensemble size of 100 cells via cross-
validation. We refer to this learning algorithm as rMPFL
(regularized MPFL) in the rest of the manuscript.

Other choices for the regularization term are possible
and might even result in better performance for decoding
purposes, e.g. two independent penalty terms for the ex-
ternal fields and the pairwise couplings. However an ex-
tensive assessment of different parameter settings would
be very time consuming due to the cost of calculating
the invoked partition function. We therefore have not
performed an exhaustive analysis of regularization. In a
real experiment the regularization term should however be
adapted to yield the best possible performance for the spe-
cific number of cells. We not that while it is not necessary
to compute the partition function for some applications of
MPFL (e.g. if learning the J;; parameters is the end in
itself), it is required for decoding.



2.6 Partition Function Estimation

Estimating the partition function is a computationally ex-
pensive task, since the set of possible responses R grows
exponentially with the number of cells C, rendering an
analytical computation (Equation 3) intractable for large
neural ensembles.

As MPFL learning does not provide an estimate of the
partition function, we used the Ogata-Tanemura partition
function estimator (Ogata & Tanemura 1984, Huang &
Ogata 2001), which is based on Markov Chain Monte
Carlo (MCMC) techniques. However MCMC is still a
very time consuming technique. To speed up the model
fitting process, we estimated the partition function for
each stimulus only once in a 10 fold cross-validation run
when using MPFL, as ideally all samples for a specific
stimulus should come from the same distribution, thus ap-
proximately sharing the same partition function. We have
examined the effect of this approximation (see Results).

When fitting the model parameters with mean field the-
oretic approaches, we computed the (true) partition func-
tion Z(s) in the mean field approximation, as reported in
Kappen & Rodrguez (1998), Thouless et al. (1977), and
Tanaka (1998).

For the first order mean field approach this yields:

log Z = Z log (2 cosh (iLZ + WZ)) — Z Wi,m;

+ E Jijmimj,
1<J

as)

with

Wi = Z Ji]‘mj.
J#i
Here each of the parameters is actually a function of the
stimulus s, which we omit for clarity.

For the second order methods, the corresponding equa-
tion becomes:

logZ:Zbg(Qcosh(iL-—&—L-)) ZLmz
+ZJUmm]+ Z )(1—m3),

1<j i<j
(16)

with

—m; Z jl?(l
j#i

Li = Zjumj
J#i

2.7 Performance evaluation

The fraction of correctly decoded trials was the principal
method used to assess decoding performance. However,
as the fraction correct or accuracy does not by itself pro-
vide a complete description of decoder performance, we
sought used additional performance measures. The per-
formance of a decoder is fully described by its confusion
matrix, and we show how directly examining this matrix
can yield insight into its behaviour. However, it is advan-
tageous to be able to reduce this to a single number in
many cirumstances. We therefore additionally computed
the mutual information between the encoded and decoded
stimulus (Panzeri, Treves, Schultz & Rolls 1999) to char-
acterise the performance further. This provides a compact
summary of the information content of the decoding con-
fusion matrix.

We can write the mutual information (measured in bits)
as:

I(s,8) = H(s) — H(s|3), (17)
where H (s) is the entropy of the encoded stimulus
== p(s)logy p(s) (18)

seS

and H (s|38) is the conditional entropy describing the dis-
tribution of stimuli s that have been observed to elicit each
decoded state 3,

H(s|8) = = Y p(s,5)log, p(s[3).

s,8€S

(19)

Since we have in the current study opted for a uniform
stimulus distribution, the entropy H(s) is simply given
by

H{(s)

=log, S. (20)

In general the conditional entropy H (s|§) has to be com-
puted from the confusion matrix. We note that if we were
to assume that the correctly decoded stimuli and errors



are uniformly distributed for all stimuli, i.e. that the con-
ditional distribution p(8|s) is of the form

fe fors=s
Sls)=¢1—f.
p(sls) S—fll for § # s,

then the conditional entropy simplifies to

This simplified expression has been used to characterize
decoder performance in the Brain Computer Interface lit-
erature (Wolpaw et al. 2002). Here, we present this equa-
tion only to make apparent the scaling behaviour, and
compute the decoded information using the more general
expression (Eqn. 17).

3 Results

We performed computer simulations as described in
Methods, to generate datasets for training and testing de-
coding algorithms. For all settings, 20 simulations were
performed with different random number seeds, in order
to characterize decoding performance. A number of met-
rics, including the fraction of correct decodings (accu-
racy) and mutual information between decoded and pre-
sented stimulus distributions, were used in order to char-
acterize and compare decoding performance.

Basic Model

The Ising model based decoders show better performance
than the independent decoder in nearly all cases (Fig. 3a),
in terms of the average fraction of correctly decoded stim-
uli. The performance of the standard (non-regularized)
MPFL technique, however, in our hands falls away rel-
atively quickly as the number of cells increases, fail-
ing to better the independent decoder after approximately
100 cells. This behaviour can be explained by consid-
ering that the problem of parameter estimation becomes
more and more underconstrained as the number of cells
increases while holding the number of training samples
fixed. Falsely learned model parameters moreover affect
the decoding performance by influencing the estimated

partition function and thus worsen the decoder perfor-
mance. As we have only estimated the partition function
once per stimulus when using MPFL, large fluctuations
in the training dataset can potentially have a big effect.
To compensate for this behaviour, a regularization term
can be included, which can stabilize the performance up
to a significantly larger number of neurons (as described
in Methods). Our regularized version of MPFL still de-
creases in performance after about 110 cells. However,
we have used a fixed value for the regularization param-
eter for all simulations here, whereas ideally the regular-
ization term should be adapted to the number of cells and
number of samples in the specific setting. Using such an
approach would most likely result in a better performance
for larger numbers of cells. As an example we have tested
for an optimized A\ parameter for 150 cells and found that
we could increase performance to 0.874 in this case (av-
erage over 10 trials, not shown in figure).

One of the assumptions made for much of this pa-
per is that the partition function can be estimated only
once in each 10-fold crossvalidation run, thus speeding
up training. We studied the effect of this approximation
on performance, finding, as shown in Figure 4, that the
effect is marginal, at least under our operating conditions.
No statistically significant difference between the two ap-
proaches was observed. In a decoding regime where the
rMPFL method starts to infer the wrong model parameters
(e.g. due to overfitting) one would expect these effects to
become more pronounced. However, in such a scenario
where the rMPFL method becomes unreliable, a different
regularization term or a different inference method should
be considered.

The decoded information analysis reveals that the dif-
ference in the decoding performance of the independent
and Ising (as exemplified by TAP, TAPwd and rMPFL)
models becomes more pronounced as the number of stim-
uli is increased, as shown in Fig. 3b,c. As the number
of stimuli increase, the independent and Ising decoder
curves separate, indicating not only a difference in the ac-
curacy of both decoders, but also a difference in the con-
fusion matrices, i.e. in the distribution of errors between
the two approaches. This is considered in more detail in
section 3.2.

A further interesting behavior of the Ising decoder is
apparent in Fig. 3c: as the number of stimuli increases,
the relative decoding gain 7, (which we define as the ra-
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Figure 4: Decoding performance effects of reduced par-
tition function estimation for rMPFL method as Box-
Whisker plot. Interquartile range is indicated by blue box,
the median value by a red line. Whiskers are used to visu-
alize the spread of the remaining data for values at most
within 1.5 times the interquartile range from the ends of
the box. Left: results for computing the partitioning func-
tion for each stimulus every round for 10-fold crossval-
idation. Right: results for computing the partition func-
tion only in the first round for each stimulus. Data from
20 simulation runs, 70 cells, basic model, 10000 samples
simulated per stimulus

tio between the “actual” and “chance” fraction correct)
keeps increasing with the number of stimuli for the Ising
model case, whereas it saturates for the independent de-
coder. This effect can be explained as follows: the inde-
pendent decoder relies on the fact that two different stim-
uli will result in different firing rates for each cell. With an
increasing number of stimuli however, the difference be-
tween two adjacent stimuli becomes smaller and smaller,
and thus the difference in the firing rates discriminating
two adjacent stimuli becomes smaller and smaller. There-
fore the decoder performance of the independent decoder
rapidly decreases as the number of stimuli increases. As
two adjacent stimuli can result in neural responses that
have quite different correlation structure despite having
very close firing rates, the Ising decoder can additionally
make use of this information in the data and thus yield
better performance. This suggests that the Ising decoder
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may be particularly advantageous as the decoding prob-
lem becomes more difficult and not easily discriminable
in terms of the neural firing rates. Real world performance
will of course be dependent upon the level of systematic
difference in correlation structure induced by stimuli in
any given dataset.

Performance of the Ising decoder is strongly dependent
on the number of training trials available (Fig. 3d 1).
Here we found, for 70 neurons, that around 400 train-
ing samples were required to allow the Ising decoder to
outperform independent decoding. The independent de-
coder will necessarily have better sampling performance,
as it relies only upon lower order response statistics. (It is
worth recalling that a “full” decoder, which made use of
all aspects of spike pattern structure, would have far worse
scaling behaviour than either). Another way of looking at
this is to examine the estimated covariance matrix from
the simulated data (Fig. 3d ii). We define the mean rela-
tive error of the covariance matrix as

Cdata — O
S Z 2 Z - SCjas e ) (21)
seS i, 13,8

where C’f;“;‘ is the estimated covariance between unit 7 and
j under stimulus s from the (finite) simulated data (nor-
mally 10000 samples), and C; _ is the asymptotic covari-
ance, defined in the same way but computed with 100,000
samples. This error provides a measure of the finite sam-

pling bias we encounter for fitting the model.

Heterogeneous Models

The performance characteristics in a heterogeneous sce-
nario, i.e. with nonzero &, -y, are for the most part broadly
similar to the homogeneous case, so we report here only
on the observed differences. The overall classification
performance both in terms of fraction correct and mutual
information, is slightly improved for both independent
and Ising decoders with heterogeneous neural ensembles.
As an example, the accuracy as a function of ensemble
size is compared for the basic model and the “fully hetero-
geneous” (7 = £ = 1) models in Fig.5, for both TAPwd
and Independent decoders. The greater performance for
nonzero v, ¢ can be explained by the greater variability
of cell properties, allowing more specific response pat-
terns than in the homogeneous scenario. Such a scenario
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Figure 5: Decoder performance is enhanced in the hetero-
geneous scenario (¢ = v = 1). Comparison of Fraction
correct vs. number of cells for basic model and fully het-
erogeneous model. The TAPwd algorithm was used to
train the decoder.

is presumably relevant to many real-world decoding prob-
lems, suggesting that decoder performance analysed with
homogeneous test data may slightly under-represent real-
world performance.

We also assessed the relative influence of the individ-
ual parameters 7, £ on the decoding behavior as shown in
Figure 6. Our analysis shows that, while the heterogene-
ity in the firing rates as specified by  has a positive effect
on the decoding performance, an increased tuning width
heterogeneity slightly decreases the performance of the
decoder. However, the relative influence of the parameter
& is small.

3.1 Dependence on level of correlation

As the advantage of the Ising Decoder over the Inde-
pendent Decoder stems from its ability to take advantage
of information contained in pairwise correlations, we ex-
amined the dependence of this advantage on the average
strength of correlation. Although we have set the average
level of correlation to what has traditionally been thought
to be a reasonable level for cells in the same neighbour-
hood (Zohary & Shadlen 1994), there is an ongoing de-
bate about the level and stimulus dependence of correla-
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Figure 6: Decoder performance dependence on parame-
ters &,~y. With increasing ~ the decoding performance is
enhanced. The tuning width heterogeneity as specified by
& reduces the performance of the decoder (values from up-
per left to lower right curve £ = {0,0.2,0.4,0.6,0.8,1}).
Data for 70 cells, TAPwd algorithm used to train the de-
coder.

tion relevant for cortical function (Renart et al. 2010, Bair
et al. 2001, Nase et al. 2003, Ecker et al. 2010). This
is of course critical for the performance of the Ising de-
coder. If there were no (noise) correlations present in the
data, i.e. an independent decoder were the correct model
for the data, there would be no benefit to using any de-
coder including correlation such as the Ising decoder. In
fact, any decoder including correlations would most likely
perform worse in practice than an independent decoder,
as due to finite sampling effects one would most likely
falsely estimate some small correlation in the data. Over-
fitting to these falsely learned correlations would then re-
sult in a performance decrease compared to an indepen-
dent decoder, which by construction does not include any
correlations, i.e. would implement the correct model.
This effect be seen in Figure 7, where we have varied
the mean absolute correlation strength as outlined in the
methods section. It can be seen that as the level of corre-
lation increases for specified spike count, the independent
decoder loses some discriminative capacity. The Ising de-
coders, however, take advantage of the higher level and
spread of correlation values for discrimination between
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Figure 7: Ising decoder benefits from a correlation

regime. Upper panel: Fraction correct as a function of
the measured average absolute Pearson correlation coeffi-
cient for four decoding algorithms. Lower panel: Average
Standard Deviation of the Pearson Correlation coefficient
vs. average Pearson correlation coefficient. All averages
taken over 20 simulations; 70 cells; basic model; correla-
tions measured with 10000 samples.

stimuli. As described in Methods, at the lower end of this
curve the underlying latent Gaussian has an identity corre-
lation matrix, and thus the individual neurons are actually
independent, although the average measured absolute cor-
relation does not completely decrease to zero. This pro-
vides an explanation of why the Ising decoder fails to beat
the independent decoder: by assuming the measured cor-
relations are due to the true distribution, it overfits to these
correlations, and thus performs worse compared to the
(by construction correct) independent model. It should be
noted, however, that the performance drop of the Ising de-
coder compared to the independent decoder is small even
for a regime where cells are effectively independent.

To mimic the richer correlation structures potentially
found in real neural recordings, we performed further test-
ing. We simulated larger ensembles of neurons, while
keeping the number of observed cells fixed, thus effec-
tively creating “hidden” neurons. The visible neurons
were simulated as described in methods, while for every
unobserved cell, the preferred tuning direction was cho-

fc/ fc0

Chidden/C

visible

Figure 8: Decoder robustness to correlations due to hid-
den units. Fraction Correct fc¢ for 100 cells, normalized to
the fraction correct fcy where 100 out of 100 cells are vis-
ible, is displayed as a function of the ratio between Chiggen
hidden cells and Cl;pe Observed cells. For simulations
the basic model was used.

sen randomly according to a uniform distribution. By us-
ing this scheme we could assure that the observed Cligipie
cells always had the same characteristics except the cor-
relation structure, which was effectively changed by the
introduction of Ch;ggen Unobserved neurons. It should be
noted that introducing hidden cells alters not only the sec-
ond order statistics but also higher order correlations in
the data, thus providing a much richer statistical structure
in the data.

The different decoding (and training) methods vary in
their robustness towards the introduction of such higher
order correlation structure (Fig. 8). While the indepen-
dent decoder is relatively unaffected by the introduction
of additional unobserved cells, the Ising decoder model
is more sensitive to such changes. However, significant
differences between the different training strategies can
be observed: in our case the rMPFL method showed the
least performance drop (about 10%) in a scenario where
approximately 100 out of 500 cells were observed, while
the fraction correct for the standard TAP approach drops
by more than 15% in this scenario. TAPwd is less af-
fected than TAP, consistent with its inclusion of the lead-
ing terms for the next order expansion.
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3.2 Confusion Matrix Analysis

The confusion matrix provides complete information
about the decoding error distribution. Confusion matri-
ces for the Ising decoder and the Independent decoder
respectively are shown in Fig. 9. The Ising decoder has
higher diagonal terms, corresponding to better decoding
accuracy. The overall appearance of the Ising decoder
confusion matrix is fairly similar to the independent de-
coder. However, by comparing the two confusion ma-
trices it can be seen that the Ising decoder mainly gains
its performance benefit over the independent decoder by
avoiding confusion of adjacent stimuli. This shows that
as the difference in adjacent stimulus directions becomes
less with an increasing number of stimuli, the Ising model
decoder can utilize the correlation patterns to enhance the
decoding accuracy, i.e. to distinguish between adjacent
stimulus directions more precisely. This effect of course
depends on the correlation model used - here the correla-
tion between each pair of neurons was resampled for each
stimulus in the simulation. If (noise) correlations were
not at all stimulus-dependent, or if the model was quite
different, then the Ising decoder may not be able to take
advantage of this potential performance advantage.

3.3 Comparison with linear decoding

While most work in the Brain-Machine Interface litera-
ture has focused on continuous decoders, there has been
some work on the discrete decoding problem, although
to date with a focus on the analysis of either contin-
uous data, such as electroencephalographic (EEG) data
(Wolpaw et al. 2002), or on longer time windows of multi-
electrode array data, in which spike counts are far from
binary (Santhanam et al. 2009). As the discrete decoding
problem can be viewed as a classification problem (in the
same sense as the continuous decoding problem can be
seen as a regression problem), it is of interest to compare
the performance of our approach with traditional classi-
fication approaches such as the Optimal Linear Classifer
(OLC).

Following Bishop (2007), each stimulus class can be
described by its own linear model, so that

Yk = WL+ wy, (22)

where s

1,...,S5. Using a 1-of-S binary coding
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scheme (i.e. we denote stimulus class s; by a “target” col-
umn vector t with all zeros except the i-th entry, which is
one) the weights w can be trained such as to minimize a
sum of squares error function for the target stimulus vec-
tor.

This is done in Fig. 10. It can be seen that, under the
conditions we test here (10000 trials, simulated data as
described previously for the basic model), the OLC un-
derperforms both the Ising (as exemplified by the TAPwd
approach) and Independent classifiers. The former is not
unexpected, but it may seem initially counter-intuitive that
the OLC does not yield identical performance to the In-
dependent decoder, as the latter is in effect performing a
linear classification.

However, the following differences must be noted for
these two algorithms. As their implementation details
differ, they may have markedly different sensitivity to
limited sampling - the independent decoder, as we have
constructed it here (product of marginals) has remark-
able sampling efficiency. Most importantly however, the
OLC decoder assumes by construction a Gaussian error
in the stimulus class target vectors, i.e. it corresponds to
a maximum likelihood decoding when assuming that the
target vectors follow a Gaussian conditional distribution
(Bishop 2007). This assumption is clearly not valid in the
case of binary target vectors. Therefore the failure of the
OLC decoder should not be surprising.

4 Discussion

We have demonstrated, for the first time, the use of the
Ising model to decode discrete stimulus states from simu-
lated large-scale neural population activity. To do this, we
have had to overcome several technical obstacles, namely
the poor scaling properties of previously used algorithms
for learning model parameters, and similarly the poor
scaling behavior of methods for estimating the partition
function, which although not necessary for some appli-
cations of the Ising model in neuroscience, is required
for decoding. The Ising model has one particular advan-
tage over a simpler independent decoding algorithm: it
can take advantage of stimulus dependence in the cor-
relation structure of neuronal responses, where it exists.
With the aid of a statistical simulation of neuronal ensem-
ble spiking responses in the mouse visual cortex, we have
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Independent Decoder with the Optimal Linear Classifier
(OLC).

demonstrated that correlational information can be taken
advantage of for decoding the activity of neuronal ensem-
bles of size in the hundreds by several algorithms, includ-
ing mean field methods from statistical physics and the
rMPFL algorithm.

Ising models have gained much attraction recently in
neuroscience to describe the spike train statistics of neu-
ral ensembles (Schneidman et al. 2006, Shlens et al. 2006,
Shlens et al. 2009). However, these findings have largely
been made only in relatively small neural ensembles (typ-
ically a few tens of cells), from which an extrapolation to
larger ensemble sizes might not be wise (Roudi, Niren-
berg & Latham 2009, Roudi, Aurell & Hertz 2009). The
principal reason for this limit has been the poor scaling of
the computational load of fitting the Ising model param-
eters, when algorithms such as Boltzmann learning are
used. Moreover, new findings suggests that pairwise cor-
relations (and thus Ising models) might not be sufficient to
predict spike patterns of small scale local clusters of neu-
rons (< 300um apart), which have been observed to pro-
vide evidence of higher order interactions (Ohiorhenuan
et al. 2010). While the formalism for higher order mod-
els may be similar, scaling properties are guaranteed to be
even worse. There is thus the pressing need to develop
better algorithms for learning the parameters of Ising and
Ising-like models. It should be noted that while Ising
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models might not necessarily provide an exact descrip-
tion of neural spike train statistics, for decoding purposes
we only require that we can approximate their distribution
well enough to achieve good decoding performance.

The development of discrete neural population decod-
ing algorithms has two motivations. The first motivation
is the desire to develop brain-computer communication
devices for cognitively intact patients with severe motor
disabilities (Mak & Wolpaw 2009). In this type of ap-
plication, an algorithm such as those we describe could
be used together with multi-electrode brain recordings to
allow the user to select one of a number of options (for
instance a letter from a virtual keyboard), or even in the
longer term to communicate sequences of symbols from
an optimized code directly into a computer system or
communications protocol. Given the short timescale to
which the Ising decoder can be applied (we have fixed
this at 20 ms here), and sufficiently large recorded ensem-
bles to saturate decoder performance, very high bit rates
could potentially be achieved.

The second motivation is more scientific: to use such
decoding algorithms to probe the organization and mech-
anisms of information processing in neural systems. It
should be immediately be apparent that the Ising decoder
and related models can be used to ask questions about
the neural representation of sensory stimuli, motor states
or other behavioral correlates, by comparing decoding
performance under different sets of assumptions (for in-
stance, by changing the constraints in an Ising model to
exclude correlations, include correlations within 50 pm,
etc). This (commonly referred to as the “encoding prob-
lem”) is essentially the same use to which Shannon in-
formation theory has been applied in neuroscience (see
e.g. Schultz et al. (2009) for a recent example), with
simply a different summary measure. Use of decoding
performance may be an intuitively convenient way to ask
such questions, but it is still asking exactly the same ques-
tion. However, there are other uses to which such algo-
rithms can be applied. For instance, combining sensory
and learning/memory experimental paradigms, once a de-
coder has been trained, it could be used subsequently to
read out activity patterns in different brain states such as
sleep, or following some period of time - for instance, to
“read out memories” by decoding the patterns of activ-
ity that represent them. The decoding approach may thus
have much to offer the study of information processing in



neural circuits.

Our results show that decoding performance is criti-
cally dependent on the sample size used for training the
decoder, as relatively precise characterization of pairwise
correlations is needed to fit a model that matches the sta-
tistical structure of as-of-yet unobserved data well. In the
“encoding problem”, such finite sampling constraints re-
sult in a biased estimate of the entropy of the system. For
the decoding problem considered here, finite sampling
leads to overfitting of the model to the observed training
data, so that it does not generalize well to the unobserved
data, and accordingly fails to predict stimulus classes cor-
rectly during test trials. Such finite sampling constraints
mean that below a particular sampling size - which we
found to be 400 trials for 70 neurons in one particular
example we studied - there is no point in using a model
which attempts to fit pairwise (or above) correlations, one
may as well just use an independent model. This has im-
plications for experimental design. However, it should be
noted that the real brain has no such limitation - in effect,
many thousands or millions of trials are available over de-
velopment, and so a biological system should certainly be
capable of learning the correct correlations from the data
(Bi & Poo 2001) and thus may well be able to operate in a
regime where decoding benefits substantially from known
correlation structure.

We have shown that incorporating correlations in the
decoding process might be especially relevant for ‘hard’
decoding problems, i.e. multi-class discrimination prob-
lems in which stimuli are not easily distinguishable by
just observing individual neuronal firing rates. In this sce-
nario including correlations could be a means to enhance
the precision of the decoding process by increasing the
discriminability between adjacent or similar stimuli. In-
cluding correlations could make the pattern distribution
more flat, or uniform, with low firing rates, leading to
greater energy efficiency of information coding (Baddeley
et al. 1997).

We must insert a note of caution concerning the pres-
ence of higher order correlations in data to be fitted. Such
higher order correlations might arise simply from the
presence of a large number of “hidden” neurons whose
activity has not been recorded, but which have a substan-
tial influence on the activity of those neurons recorded.
This is likely to occur frequently in real neurophysiolog-
ical situations. The performance of pairwise correlation
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decoder models, such as the Ising model, is necessarily
affected detrimentally by such effects, as shown in Fig. 8.
Interestingly, an independent decoder is less affected (al-
though it may also be capturing less information anyway).
Obviously, it is possible to make use of higher order mod-
els to alleviate this problem, but a penalty then has to be
paid in sampling terms.

We note that the primary use of the Ising model in
neuroscience so far has been to model the empirical
statistics of neural spike train ensembles (Schneidman
et al. 2006, Shlens et al. 2006). There is of course no
requirement that a good decoder is also a good model of
neural spike train statistics - what matters is its perfor-
mance on the test dataset. Nevertheless, knowing how
well the model captures spike train pattern structure may
help to build better decoders, and of course may be of par-
ticular value when those decoders are used to study neu-
ral information processing (as opposed to being used for
a practical purpose such as brain-machine interface devel-
opment). Unfortunately, a direct comparison of empirical
to model spike pattern probabilities is not experimentally
feasible for large ensemble sizes - while this is relatively
simple for 15 cells, it is far from viable for 500 cells.
Further work is needed to determine how best to evaluate
the performance of decoders at predicting empirical spike
patterns, when decoding very large neural ensembles.

One caveat to the advantage provided by correlations
of using Ising over Independent decoders is that it de-
pends entirely upon the extent to which correlations are
found to depend upon the stimulus variables of interest.
While a previous study at longer timescales has found cor-
relations to improve neural decoding (Chen et al. 2006),
the jury is still out on the prevalence of stimulus de-
pendence of pairwise and higher order correlations in
the mammalian cortex. Stimulus-dependent correlations
have been found in mouse (Nase et al. 2003), cat (Das
& Gilbert 1999, Samonds & Bonds 2005) and monkey
(Kohn & Smith 2005, Kohn et al. 2009), where they
have been shown to contribute to information encoding
(Montani et al. 2007), but most recordings to date have
sampled relatively sparsely from the local cortical circuit,
due to limitations in multi-electrode array hardware. It is
possible that if one were to be able to record from a greater
proportion of neurons in the local circuit, then stronger
stimulus-dependent correlations might be observable.

In an experimental setting the performance could also



be enhanced by choosing an optimal timebin-width, a
question that we have not addressed in this paper. How-
ever care is needed for choosing the right bin-width. As
shown by Roudi et al. (Roudi, Aurell & Hertz 2009,
Roudi, Nirenberg & Latham 2009), a small bin-width is
likely to yield a good fit, however choosing a too small
bin-width invalidates the underlying assumption of uncor-
related time-bins. Choosing a too large time-bin makes it
however harder to find a good fit for the model and addi-
tionally may violate the assumptions of binary responses.

A number of avenues present themselves for future de-
velopment of decoding algorithms. Firstly, algorithms
for reducing model dimensionality without losing dis-
criminatory power, may prove advantageous. These
may include graph and hypergraph theoretic techniques
(Aghagolzadeh et al. 2010) for pruning out uninformative
dimensions (edges and nodes), and factor analysis meth-
ods for modeling conditional dependencies (Santhanam
et al. 2009). Such an approach may be particularly ad-
vantageous when experimental trials are limited, as the
dimensionality of the parameter set is the main reason for
Ising model performance not exceeding the Independent
model for limited trials. One difficulty with the use of
graph pruning approaches is that the usual pairwise cor-
relation matrix of neural recordings, unlike the graph in
many network analysis problems, tends not to be sparse.
It is of course a functional, as opposed to synaptic, con-
nectivity matrix, and one reason for this lack of sparseness
is its symmetric nature. It has recently been proposed that
the symmetry property of the J;; matrix can be relaxed in
the context of the (non-equilibrium) Kinetic Ising model,
which also provides a convenient way to take into account
space-time dependencies, or causal relationships (Hertz
etal. 2010, Roudi & Hertz 2011). Use of the Kinetic Ising
model framework for decoding would appear to be an in-
teresting future direction to pursue.

New experimental technologies are yielding increas-
ingly high dimensional multivariate neurophysiological
datasets, usually without concomitant increases in the du-
ration of data that can be collected. However, there is
some reason for optimism that we will be able to develop
new data analysis methods capable of taking advantage of
this data. Maximum entropy approaches to the fitting of
structured parametric models such as the Ising model and
its extensions would appear to be one approach likely to
yield progress.
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Figure 1: Tuning curves for a neural ensemble of 50 cells for different heterogeneity parameters v, £. The shown
spiking rates correspond to the transient rates. a Tuning curves for basic model, v = £ = 0. b Tuning curves with
heterogeneous firing rates (y = 1), but fixed tuning widths (¢ = 0) (NB the tuning width is defined relative to the
spontaneous activity). ¢ Tuning curves with heterogeneous tuning widths (£ = 1), but fixed firing rates (y = 0). d
Tuning curves for fully heterogeneous scenario (y = & = 1)

20



A Stimulus 1 Stimulus 2 Stimulus 3 Stimulus 4

[ = L “H A i = X o G - L L 0.3
. {'.:"'-!:4;.\ . _ t- : 3 -J‘H_ B -L. ,.: i'%' -..u- b E

JUBI911}807) LUOSIES

11®0

Figure 2: Neural ensemble responses simulated for basic model (y = £ = 0) for 50 cells. a Correlation matrices for
4 stimuli (computed with 100000 samples). Diagonal terms set to zero for visualization purposes only. b Simulated
population neural responses over 1000 trials for two different stimuli, with black indicated a spiking response from a
neuron on a given trial.
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Figure 3: Performance of decoding algorithms for the basic model. a Fraction of correct decodings versus neural
ensemble size, for a training dataset size of 9000 samples per stimulus. b The relationship between fraction correct
and mutual information I (s, §) for varying stimulus set and ensemble size (C' = {50, 80, 110, 140, 170, 200} varying
from bottom left to top right for each symbol type). Triangles denote the performance of the Independent decoder,
squares the TAP Ising Decoder with diagonal weight trick. ¢ The dependence of decoding performance on stimulus
set size for 70 cells. i TAP, TAPwd, Independent and rMPFL decoders compared to random selection of stimuli. This
is replotted in ii as the gain in fraction correct over chance performance, 77 = Pgec/ Deuess» Making the performance
saturation for the independent decoder as problem difficulty increases more apparent. d Dependence of decoder
performance on training set sample size, for 4 stimuli and a neural ensemble size of 70. i Fraction correct as a function
of number of training samples. Below 450 training samples the Ising decoder fails to better the independent decoder.
ii Relation between mean relative covariance error E' as a measure of finite sampling effects and fraction correct.
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Figure 9: Decoder confusion matrices. The case illustrated is for 16 Stimuli, a 200-neuron ensemble, under the basic
model (v = £ = 0). Relative frequency as an approximation to the conditional probability with which each stimulus
is decoded, for 10000 stimulus presentations. a Ising model decoder (TAPwd). b Independent decoder. ¢ A difference
plot between a and b.
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