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Abstract

Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal 

networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic 

neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials 

and are recovered stochastically in time. The dynamics of this process of vesicle release and 

recovery interacts with variability in the arrival times of presynaptic spikes to shape the variability 

of the postsynaptic response. We use continuous time Markov chain methods to analyze a model 

of short term synaptic depression with stochastic vesicle dynamics coupled with three different 

models of presynaptic spiking: one model in which the timing of presynaptic action potentials are 

modeled as a Poisson process, one in which action potentials occur more regularly than a Poisson 

process (sub-Poisson) and one in which action potentials occur more irregularly (super-Poisson). 

We use this analysis to investigate how variability in a presynaptic spike train is transformed by 

short term depression and stochastic vesicle dynamics to determine the variability of the 

postsynaptic response. We find that sub-Poisson presynaptic spiking increases the average rate at 

which vesicles are released, that the number of vesicles released over a time window is more 

variable for smaller time windows than larger time windows and that fast presynaptic spiking 

gives rise to Poisson-like variability of the postsynaptic response even when presynaptic spike 

times are non-Poisson. Our results complement and extend previously reported theoretical results 

and provide possible explanations for some trends observed in recorded data.
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1 Introduction

Variability of neural activity plays an important role in population coding and network 

dynamics [17]. Random fluctuations in the number of action potentials emitted by a 

population of neurons affects the firing rate of downstream cells [55,54]. In addition, spike 
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count variability over both short and long timescales can impact the reliability of a rate-

coded signal [16]. It is therefore important to understand how this variability is shaped by 

synaptic and neuronal dynamics.

Several studies examine the question of how intrinsic neuronal dynamics interact with 

variability in presynaptic spike timing to determine the statistics of a postsynaptic neuron’s 

spiking response, but many of these studies do not account for dynamics and variability 

introduced at the synaptic level by short term synaptic depression and stochastic vesicle 

dynamics. Synapses release neurotransmitter vesicles probabilistically in response to 

presynaptic spikes and recover released vesicles stochastically over a timescale of several 

hundred milliseconds [72,18]. The dynamics and variability introduced by short term 

depression and stochastic vesicle dynamics alter the response properties of a postsynaptic 

neuron [67,2,10,32,22,53,21,24,43,45,49,6,48] and therefore play an important role in 

information transfer [70,44,20,37,50], neural coding [64,12,1,23,46, 29,41] and network 

dynamics [62,19,7,69,63,5]. Understanding how variability in presynaptic spike times 

interact with short term depression and stochastic vesicle dynamics to determine the 

statistics of the postsynaptic response is therefore an important goal.

In this study, we use a model of short term synaptic depression with stochastic vesicle 

dynamics to examine how variability in a presynaptic input is transferred to variability in the 

synaptic response it produces. We use the theory of continuous-time Markov chains to 

construct exact analytical methods for calculating the the statistics of the postsynaptic 

response to three different presynaptic spiking models: one model with Poisson spike arrival 

times, one with more regular spike arrival times, and one with more irregular spike arrival 

times. We find that depressing synapses shape the timescale over which neuronal variability 

occurs: the number of neurotransmitter vesicles released over a time interval is highly 

variable for shorter time windows, but less variable for longer time windows when 

variability is quantified using Fano factors. Additionally, we find that when presynaptic 

inputs are more irregular (Fano factor greater than 1), synaptic dynamics cause a reduction 

in Fano factor, consistent with previous studies [22,21,44,45]. On the other hand, when 

presynaptic input is more regular (Fano factor less than 1), synaptic dynamics often cause an 

increase in Fano factor. This observation suggests a mechanism through which irregular and 

Poisson-like variability can be sustained in spontaneously spiking neuronal networks [61, 

56,8,9,35,11], which complements previously proposed mechanisms [65,68,57,25,30].

2 Methods

We begin by introducing the synapse model used throughout this study. We then proceed by 

analyzing the statistics of the synaptic response to three different input models.

2.1 Synapse model

A widely used model of depressing synapses [64,2,62, 32,53] does not capture stochasticity 

in vesicle recovery and release. As a result, this model underestimates the variability of the 

synaptic response [45,48]. For this reason, we use a more detailed synapse model that takes 

stochastic recovery times and probabilistic release into account [67,36,31,69,18,48].
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We consider a presynaptic neuron with spike train I(t) = Σj δ(t − tj) that makes M functional 

contacts onto a postsynaptic cell. Here, tj is the time of the jth presynaptic action potential. 

Define m(t) to be the number of contacts with a readily releasable neurotransmitter vesicle at 

time t (so that 0 ≤ m(t) ≤ M). For simplicity, we assume that each contact can release at most 

one neurotransmitter vesicle in response to a presynaptic spike. When a presynaptic spike 

arrives, each contact with a releasable vesicle releases its vesicle independently with 

probability pr. After releasing a vesicle, a synaptic contact enters a refractory period during 

which it is unavailable to release a vesicle again until it recovers by replacing the released 

vesicle. The recovery time at a single contact is modeled as a Poisson process with rate 1/τu. 

Equivalently, the duration of the refractory period is exponentially distributed with mean τu.

Define wj to be the number of contacts that release a vesicle in response to the presynaptic 

spike at time tj (so that  where ). The synaptic 

response is quantified by the marked point process

Since the signal observed by the postsynaptic cell is determined by x(t), we quantify 

synaptic response statistics in terms of the statistics of x(t) in our analysis. The process x(t) 

can be convolved with a post-synaptic response kernel to obtain the conductance induced on 

the postsynaptic cell [48]. The effects of this convolution on response statistics is well 

understood [60], so we do not consider it here.

This model can be described more precisely using the equation [48]

where dNu(t) = u(t)dt is the increment of an inhomogeneous Poisson process with 

instantaneous rate that depends on m(t) through 〈dNu(t)〉|m(t)〉 = dt(M – m(t))/τu (here, 〈·|·〉 

denotes conditional expectation),  is the number of vesicles released up to 

time t, and each wj is a binomial random variable with mean prm(tj) and variance m(tj)pr(1 − 

pr).

2.2 Statistical measures of the presynaptic spike train and the synaptic response

We focus on steady state statistics in this article, and therefore assume that the presynaptic 

spike trains are stationary and that the synapses have reached statistical equilibrium. The 

intensity of a presynaptic spike train is quantified by the mean presynaptic firing rate,

where 〈·〉 denotes the expected value and
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represents the number of spikes in the time interval [0, T]. Temporal correlations in the 

presynaptic spike times are quantified by the auto-covariance,

and the variability in the presynaptic spike train is quantified by its Fano factor,

For much of this work, we will focus on Fano factors over large time windows which, 

through a slight abuse of notation, we denote by Fin = limT→∞ Fin(T). To compute Fano 

factors, we will often exploit their relationship to auto-covariance functions [58,14],

(1)

and

(2)

The statistics of the synaptic response, x(t), are defined analogously to the statistics of I(t). 

The steady state rate of vesicle release is defined as

where  represents the number of vesicles released in the time interval [0, 

T]. Temporal correlations in the synaptic response are quantified by the auto-covariance,

and response variability is quantified by the Fano factor of the number of vesicles released,
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As above, we define Fx = limT→∞ Fx(T) and note that

(3)

2.3 Model analysis with Poisson presynaptic inputs

We first consider a homogeneous Poisson input, I(t), with rate rin. The input auto-covariance 

for this model is given by Rin(τ) = rinδ(τ) and the Fano factor is given by Fin(T) = 1 for any 

T > 0. The mean rate of vesicle release for this model is given by

which saturates to M/τu for large presynaptic rates, rin. A closed form approximations to the 

auto-covariance function of the response for this Poisson input model are derived in [48,37] 

(see also [43]) and consist of a sum of a delta function and an exponential,

(4)

where the mass of the delta function is given by

(5)

the timescale of the exponential decay is given by

and the peak of the exponential is given by

(6)

It can easily be checked that E > 0 whenever M ≥ 1, 0 ≤ pr ≤ 1, rin > 0, and τu > 0 so that the 

peak of the exponential in (4) is negative. For finite T, the Fano factor, Fx(T), is given by

(7)

and, in the limit of large T,
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(8)

2.4 Model analysis with super-Poisson presynaptic inputs

Spike trains measured in vivo often exhibit irregular, super-Poisson spiking statistics 

indicated by Fano factors larger than 1 [4,15,3,11]. To describe the synaptic response to 

super-Poisson inputs, we use a model of presynaptic spiking in which the instantaneous rate 

of the presynaptic spike train, I(t), randomly switches between two values, rs and rf > rs, 

representing a slow spiking state and a fast spiking state. The time spent in the slow state 

before transitioning to the fast state is exponentially distributed with mean τs. Likewise, the 

amount of time spent in the fast state before switching to the slow state is exponentially 

distributed with mean τf. Transition times are independent from one another and from the 

spiking activity. Between transitions, spikes occur as a Poisson process.

To find rin, Rin(τ), and Fin, we represent this model as a doubly stochastic Poisson process. 

Define r(t) ∈ {rs, rf} to be the instantaneous firing rate at time t. Then r(t) is a continuous 

time Markov chain [27] on the state space Γ = (rs, rf) with infinitesimal generator matrix

Clearly, r(t) spends a proportion τs/(τs + τf) of its time in the slow state (defined by r(t) = rs) 

and a proportion τf/(τs + τf) of its time in the fast state (defined by r(t) = rf). This gives a 

steady-state mean firing rate of

At non-zero lags (τ ≠ 0), the auto-covariance of a doubly stochastic Poisson process is the 

same as the auto-covariance of r(t) [48], which we can compute using techniques for 

analyzing continuous time Markov chains. For τ > 0, we have

(9)

where 〈·|·〉 denotes conditional expectation and

The probability in this expression can be written in terms of an exponential of the generator 

matrix, A, and then calculated explicitly to obtain
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where [v]k denotes the kth component of a vector, v. An identical calculation can be 

performed to obtain an analogous expression for 〈r(t + τ) | r(t) = rf〉. Combining these with 

Eq. (9) gives

For positive τ, we have . As with all stationary point processes 

Rin(τ) = Rin(−τ) and Rin(τ) has a Dirac delta function with mass rin at the origin [14]. Thus, 

the auto-covariance of I(t) is given by

(10)

For finite T, the Fano factor, Fin(T), can be computed using Eqs. (1) and (10). In the limit of 

large T, we can use Eqs. (2) and (10) to obtain a closed form expression,

(11)

Poisson spiking is recovered by setting rf = rs, τf = 0, or τs = 0. For any other parameter 

values (i.e., when rf ≠ rs and τf, τs > 0), it follows from Eq. (11) that Fin(T) > 1 for any T. 

Therefore this input model, hereafter referred to as the “super-Poisson” model, represents 

spiking that is more irregular than a Poisson process.

The analysis in [48] used to derive closed form expressions for the response statistics with 

Poisson inputs cannot easily be generalized to derive expressions with non-Poisson inputs 

like those considered here. Instead, we analyze the synaptic response for the super-Poisson 

input model using techniques for analyzing continuous time Markov chains. First note that 

the process b(t) = (m(t), r(t)) is a continuous-time Markov chain on the discrete state space 

{0, 1, …, M} × {rs, rf}. Here, m(t) denotes the size of readily releasable pool and r(t) 

represents the instantaneous presynaptic rate (which switches between rs and rf). We 

enumerate all 2(M +1) elements of this state space and denote the jth element of this 

enumeration as Γj = (mj, rj) for j = 1, …, 2(M + 1).

The infinitesimal generator, B, of b(t) is a 2(M + 1) × 2(M + 1) matrix with off-diagonal 

terms defined by the instantaneous transition rates,
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(12)

and with diagonal terms chosen so that the rows sum to zero: Bj,j = −Σk≠j Bj,k [27].

To fill the matrix B, we consider each type of transition that the process b(t) undergoes. 

Vesicle recovery events occur at the instantaneous rate (M − m(t))/τu and increment the 

value of m(t) by one vesicle. Therefore

for m ∈ {0, …, M − 1} and r ∈ {rs, rf}. Vesicle release events occur at the instantaneous rate 

r(t) and decrement the value of m(t) by a random amount k with a binomial distribution so 

that

for m ∈ {1, …, M}, k ∈ {0, …, m}, and r ∈ {rs, rf}. The value of r(t) switches from rs to rf 

with instantaneous rate 1/τs so that

and, similarly,

These four transition types account for all of the transitions that b(t) undergoes. They can be 

used to fill the off-diagonal terms of the matrix B. The diagonal terms are then filled to make 

the rows sum to zero, as discussed above.

Once a the infinitesimal generator matrix, B, is obtained, the probability distribution of b(t) 

given an initial distribution p(0) is given by

The stationary distribution, p0, of b(t) is given by the vector in the one-dimensional null 

space of B with elements that sum to one [27].
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The instantaneous rate of vesicle release, conditioned on the current state of r(t) and m(t), is 

given by

Averaging over r and m in the steady state gives

where [·]j denotes the jth element. The auto-covariance, Rx(τ), has a Dirac delta function at τ 

= 0. We separate this delta function from the continuous part by writing 

 where  is a continuous function. The area of the delta 

function can be found by conditioning on the current state of r(t) in the steady state to get

(13)

where wk is the number of vesicles released by the kth presynaptic spike. Conditioned on the 

size, , of the readily releasable pool immediately before the presynaptic spike arrives, 

wk has a binomial distribution with second moment,

which can be substituted into Eq. (13) to calculate Ax.

All that remains is to calculate the continuous part, , of Rx(τ). First note that, for τ > 0,

(14)

The second term in Eq. (14) can be computed as
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where ei is the 2(M +1) × 1 vector whose ith element is 1 and all other elements are zero, 

which represents an initial distribution concentrated at Γi. The last term in Eq. (14) is given 

by

Finally,  for τ ≠ 0 so that

which can be computed efficiently using matrix multiplication. The response Fano factor, 

Fx, can then be found by integrating Rx(τ) according to Eqs. (1) and (2).

2.5 Model analysis with sub-Poisson presynaptic inputs

We now consider a spiking model that gives Fano factors smaller than 1 and therefore spike 

trains that are more regular than Poisson processes. We achieve this by defining a renewal 

process with gamma-distributed interspike intervals (ISIs). Such a process can be obtained 

by first generating a Poisson process, Σk δ(t − sk) with rate r = θrin for some positive integer 

θ, then keeping only every θth spike to build the spike train I(t). More precisely, the first 

spike of the gamma process is obtained by choosing an integer, k, uniformly from the set {1, 

…, θ} and defining defining t1 = sk. The remaining spikes are defined by tj+1 = sjθ+k to 

obtain the stationary renewal process, I(t) = Σj δ (t − tj) [13].

Clearly, this process has rate rin since the original Poisson process has rate θrin and a 

proportion 1/θ of these spikes appear in I(t). The auto-covariance is given by [47]

(15)

where

is the density of the waiting time between the first spike and the (k + 1)st spike (i.e., the 

duration of k consecutive ISIs).

For finite T, the Fano factor, Fin(T), can be computed using Eqs. (1) and (15). In the limit of 

large T, we can use Eq. (2) or use the fact that, for renewal processes, Fin = var(ISI)/〈ISI〉2 
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where  is the variance and 〈ISI〉 = 1/rin is the mean of the gamma 

distributed ISIs [13]. This gives 1

Poisson spiking is recovered by setting θ = 1. When θ > 1, we have that Fin(T) < 1 for any T. 

Therefore this model, hereafter referred to as the “sub-Poisson” input model, represents 

spiking that is more regular than a Poisson process.

The synaptic response with the sub-Poisson input model can be analyzed using methods 

similar to those used for the super-Poisson model. We introduce an auxiliary process, q(t), 

that transitions sequentially through the state space {1, …, θ}. Once reaching θ, q(t) 

transitions back to state 1. Transitions occur as a Poisson process with rate θrin. The waiting 

times between transitions from q = θ to q = 1 are gamma distributed. Thus, to recover the 

sub-Poisson input model, we specify that each transition from 1 = θ to q = 1 represents a 

single presynaptic spike. The process g(t) = (m(t), q(t)) is then a continuous time Markov 

chain on the discrete state space {1, …, θ} × {0, …, M}. We enumerate all θ(M + 1) 

elements of this space and denote the jth element as Γj = (mj, qj) for j = 1, …, θ (M + 1).

The infinitesimal generator, G, which is a θ(M +1)× θ(M + 1) matrix is defined analogously 

to the matrix B in Eq. (12) above. The elements of G can be filled using the following 

transition probabilities. As for the super-Poisson input model, vesicle recovery occurs as a 

Poisson process with rate (M − m(t))/τu so that

for m = 0, …, M and q = 1, …, θ. Transitions that increment q(t) occur with instantaneous 

rate, θrin so that

for q = 1, …, θ − 1 and m = 0, …, M. The only other transitions are those from q(t) = θ to 

q(t) = 1, which represent a presynaptic spike and are therefore accompanied by a release of 

vesicles. The transitions contribute the following,
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for m ∈ {0, 1, …, M} and k ∈ {0, …, m}. These transition rates can be used to fill the off-

diagonal terms of the matrix G. The diagonal terms are then filled so that the rows sum to 

zero. The stationary distribution, p0, of g(t) = (m(t), q(t)) is given by the vector in the one-

dimensional null space of G with elements that sum to one.

A proportion [p0]γ(k) of time is spent in state (m(t), q(t)) = (k, θ) where γ(k) represents the 

index of the element (k, θ) in the enumeration chosen for Γ (i.e., the index, j, at which Γj = 

(k, θ)). In that state, the transition to q(t) = 1 occurs with instantaneous rate θrin and releases 

average of prm(t) vesicles. Thus, the mean rate of vesicle release is given by

As above, we separate the auto-covariance into a delta function and a continuous part by 

writing  where  is a continuous function. The area of the delta 

function at the origin is given by

by an argument identical to that used for the super-Poisson input model above. Also by a 

similar argument used for the super-Poisson input model, we have that

2.6 Obtaining exact solutions for the Poisson input model

Eqs. (4–8) above give closed form approximations to the response of a depressing synapse 

to a Poisson presynaptic spike train. To test the accuracy of these approximations, exact 

solutions can be found numerically using the analysis of the sub-Poisson input model with θ 

= 1, which yields Poisson spiking. Alternatively, exact numerical results can be achieved by 

taking rs = rf for the super-Poisson input model. In figures showing results for the Poisson 

input model, we plot the closed form approximations described in Eqs. (4–8) along with 

exact numerical results obtained using the sub-Poisson input model with θ = 1.

2.7 Parameters used in figures

Theoretical results are obtained for arbitrary parameter values, but for all figures we use a 

set of parameter values that are consistent with experimental studies. For synaptic 

parameters, we use τu = 700 ms and pr = 0.5 consistent with measurements of short term 

depression in pyramidal-to-pyramidal synapses in the rat neocortex [64,18]. We also choose 

M = 5 which is within the range observed in several cortical areas [6].
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The Poisson presynaptic input model is determined completely by its firing rate and the sub-

Poisson input model is determined completely by its firing rate and Fano factor. Presynaptic 

firing rates and Fano factors are reported on the axes or captions of each figure. The super-

Poisson input model has four parameters that determine the firing rate and Fano factor. In all 

figures, we set τf = τs = 1.315/c, rf = 37c, and rs = 3c which gives a Fano factor of Fin = 

20.0017 ≈ 20 for any value of c (from Eq. (11)). Changing c effectively scales the timescale 

of presynaptic spiking, hence scaling rin, without changing Fin.

3 Results

We analyze the synaptic response to different patterns of presynaptic inputs using a 

stochastic model of short term synaptic depression in which a presynaptic neuron makes M 

functional contacts onto a postsynaptic neuron [67,18,20,45]. The input to the presynaptic 

neuron is a spike train denoted by I(t). Neurotransmitter vesicles are released 

probabilistically in response to each presynaptic spike. Specifically, a contact with a readily 

available vesicle releases this vesicle with probability pr in response to a single presynaptic 

spike. After a synaptic contact has released its neurotransmitter vesicle, it enters a refractory 

state where it is unable to release again until the vesicle is replaced. The duration of this 

refractory period is an exponentially distributed random variable with mean τu, so that 

vesicle recovery is Poisson in nature.

We are interested in how the statistics of the presynaptic spike train determine the statistics 

of the synaptic response. The presynaptic statistics are quantified using the presynaptic 

firing rate, rin, the presynaptic auto-covariance function, Rin(τ), and the Fano factor, Fin(T), 

of the number of presynaptic spikes during a window of length T. Similarly, we quantify the 

statistics of the synaptic response using the mean rate of vesicle release, rx, the auto-

covariance of vesicle release, Rx(τ), and the Fano factor, Fx(T), of the number of vesicles 

released during a window of length T. We will especially focus on Fano factors over large 

time windows and define Fin = limT→∞ Fin(T), Fx = limT→∞ Fx(T) accordingly. See 

Methods for more details.

We begin by considering the effect of Fin on the mean rate of vesicle release, rx. We then 

examine the dependence of Fx(T) on the length, T, of the time window over which vesicle 

release events are counted. Finally, we show that short term synaptic depression promotes 

Poisson-like responses to non-Poisson presynaptic inputs.

3.1 Irregularity of presynaptic spiking reduces the rate at which neurotransmitter vesicles 
are released

We first briefly investigate the dependence of the rate of vesicle release, rx, on the rate and 

variability of the presynaptic spike train, as measured by rin and Fin respectively. Vesicle 

release rate generally increases with rin, but saturates to rx = M/τu whenever prrin ≫ 1/τu 

since synapses are depleted in this regime (Fig. 1).

When presynaptic spike times occur as a Poisson process (so that Fin = 1), the mean rate of 

vesicle release is given by rx = Mprrin/(prrinτu + 1) [18,45,48]. Interestingly, vesicle release 

is slower for super-Poisson presynaptic spiking and faster for sub-Poisson presynaptic 
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spiking even when presynaptic spikes arrive at the same mean rate (Fig. 1, also see [44]). 

This can be understood by noting that, for the super-Poisson input model, spikes arrive in 

bursts of higher firing rate followed by durations of lower firing rate. Vesicles are depleted 

by the first few spikes in a burst and subsequent spikes in that burst are ineffective and 

therefore essentially “wasted” spikes (Fig. 2A). When presynaptic spikes arrive more 

regularly, more vesicles are released on average (Fig. 2B).

3.2 Variability in the number of vesicles released in a time window decreases with window 
size

We now consider how the the variability of the synaptic response to a presynaptic input 

depends on the timescale over which this variability is measured. We quantify the variability 

of the synaptic response using the Fano factor, Fx(T), which is defined to be the variance-to-

mean ratio of the number of vesicles released in a time window of length T (see Methods) 

and can be calculated from an integral of the auto-covariance function, Rx(τ), using Eq. (3).

The auto-covariance of a Poisson presynaptic spike train is simply a delta function at the 

origin, Rin(τ) = rinδ(τ), and the Fano factor over any window size is therefore equal to one, 

Fin(T) = 1 (Figs. 3C and 4C). The auto-covariance of the synaptic response when 

presynaptic inputs are Poisson consists of a delta function at the origin surrounded by a 

double-sided exponential with a negative peak (see Eq. (4) and Fig. 3D) that decays with 

timescale τ0 = τu/(1 + prrinτu). The fact that the auto-covariance is negative away from τ = 0 

implies that the Fano factor, Fx(T), is monotonically decreasing in the window size, T (see 

Eq. (7) and Fig. 4D). For small T, the mass of the delta function at the origin dominates the 

integral in Eq. (3) so that the Fano factor is approximately equal to the ratio of this mass to 

the mean rate, rx, at which vesicles are released. As T increases, the negative mass of the 

exponential peak subtracts from the positive contribution of the delta function and decreases 

the Fano factor. In particular, Fx(T) ≈ D − ET + (T2) where Drx is the mass of the delta 

function in Rx(τ) and −Erx is the peak of the exponential in Rx(τ) (see Eqs. (5) and (6)). As T 

continues to increase, Fx(T) monotonically decreases towards its limit, Fx: = limT→∞ Fx(T) 

= D − 2Eτ0. Thus, short term synaptic depression converts a Fano factor that is constant 

with respect to window size into one that decreases with window size (Fig. 4C,D).

When presynaptic spike times are not Poisson, the statistics of the postsynaptic response 

cannot be derived analytically using the methods utilized for the Poisson input model. 

Instead, we use the fact that the synapse model can be represented using a continuous time 

Markov chain, which can be analyzed to derive expressions for the response statistics in 

terms of an infinitesimal generator matrix (see Methods).

Irregular, super-Poisson presynaptic spiking (i.e., inputs with Fin > 1) is achieved by varying 

the rate of presynaptic spiking randomly in time to produce a doubly stochastic Poisson 

process (see Methods). For this model, the input auto-covariance is a delta function at the 

origin surrounded by an exponential peak (see Eq. 10 and Fig. 3A). The input Fano factor 

therefore increases with window size (see Eq. 11 and Fig. 4A). The positive temporal 

correlations exhibited in the input auto-covariance function are canceled by the temporal de-

correlating effects of short term synaptic depression [22,21,20]. For the parameters chosen 

in this study, this de-correlation outweighs the positive presynaptic correlations so that the 
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auto-covariance function of the response is negative away from τ = 0 (Fig. 3B), although 

parameters can also be chosen so that temporal correlations in the response are small and 

positive [21]. As with the Poisson input model, negative temporal correlations cause the 

response Fano factor to decrease with window size (Fig. 4B). Thus short term synaptic 

depression and stochastic vesicle dynamics can convert a presynaptic Fano factor that 

increases with window size into one that decreases.

Sub-Poisson presynaptic spiking is achieved by generating a renewal process with gamma-

distributed interspike-intervals. The input auto-covariance function for this model exhibits 

temporal oscillations (Eq. (15) and Fig. 3E) and the Fano factor generally decreases with 

window size (Fig. 4E). Perhaps unsurprisingly, the auto-covariance function of the synaptic 

response exhibits oscillations and the response Fano factor decreases with window size 

(Figs. 3F and 4F).

For all three input models, the variability of the synaptic response is larger over shorter time 

windows and smaller over larger time windows. A postsynaptic neuron that is in an 

excitable regime will generally respond most effectively to inputs that exhibit more 

variability over short time windows [51,52,40,39]. In addition, rate coding is often more 

efficient when spike counts over larger time windows are less variable [71]. Thus, the 

dependence of Fx(T) on window size is especially efficient for the neural transmission of 

rate-coded information [20].

In addition to the temporal dependence of Fx(T) introduced by short term depression, note 

that the response Fano factor for the super-Poisson input model is substantially smaller than 

the input Fano factor (Fig. 4A,B) Conversely, the response Fano factor for the sub-Poisson 

input model is larger than the input Fano factor (Fig. 4E,F). For both models, the response 

Fano factor is substantially nearer to 1 than the input Fano factor. We explain this 

phenomenon next.

3.3 Depleted synapses exhibit Poisson-like variability even when presynaptic inputs are 
highly non-Poisson

We now investigate the dependence of the variability in synaptic response on the rate and 

variability of the presynaptic input. Since we have already discussed the dependence of 

Fx(T) on T above, we will focus here on the Fano factor calculated over long time windows, 

Fx = limT→∞ Fx(T).

We first consider parameter regimes where the effective rate of presynaptic inputs is much 

slower than the rate of vesicle recovery (prrin ≪ 1/τu). In such a regime, each contact is 

likely to recover between two consecutive presynaptic spikes and therefore all M contacts 

are likely to have a vesicle ready to release when each spike arrives (Fig. 6A). In this limit, 

the number of vesicles released by each spike is an independent binomial variable with 

mean 〈wj〉 = prM and variance var(wj) = Mpr(1 − pr). The number, Nx(T), of vesicles 

released in a time window of length T can then be represented as a sum of Nin(T) 

independent binomial random variables (i.e., a random sum). The mean of this sum is given 

by 〈Nx(T)〉 = 〈Nin(T)〉 〈wj〉, which implies that rx = Mprrin in this limit. Similarly, the 
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variance of this sum is given by [27] var(Nx(T)) = 〈Nin(T)〉var(wj) + 〈wj〉
2var(Nin(T)), which 

implies

(16)

Eq. (16) is verified for the Poisson input model by taking rin → 0 in Eqs. (7). For the super-

Poisson and sub-Poisson input models, Eq. (16) should be interpreted heuristically, as it was 

derived heuristically. A counterexample to Eq. (16) for the super-Poisson input model can 

be constructed by fixing rf and τf, then letting τs → ∞ and rs → 0 to achieve the rin → 0 

limit. In this case, our assumption that each contact is increasingly likely to recover between 

two consecutive spikes is violated and Eq. (16) is not valid (not pictured). Regardless, we 

verify numerically that Eq. (16) is accurate when rin is decreased toward zero while keeping 

Fin fixed (Fig. 5).

We now discuss the statistics of the postsynaptic response when the effective presynaptic 

spiking is much faster than vesicle recovery (prrin ≫ 1/τu). In such a regime, incoming 

spikes occur much more frequently than recovery events and synapses becomes depleted. As 

a result, the number of vesicles released over a long time window is determined 

predominantly by the number of recovery events in that time window and largely 

independent from the number of presynaptic spikes (Fig. 6B) [45,48]. The synaptic response 

therefore inherits the Poisson statistics of the recovery events so that

For the Poisson input model, this limit can be made more precise in the T → ∞ limit by 

expanding Eq. (8) in terms of the parameter α = 1/(prrinτu) to obtain

(17)

which converges to 1 as rinτu → ∞. For the super-Poisson and sub-Poisson input models, 

we verify in Fig. 5 that Fx → 1 when rin is increased while keeping Fin fixed.

The time constant, τu, at which a synapse recovers from short term depression has been 

measured in a number of experimental studies and is often found to be several hundred 

milliseconds [64,66,32,19,18,24,42]. Therefore, for even moderate presynaptic firing rates, 

synapses are often in a highly depleted state. As discussed above, this promotes Poisson-like 

variability in the synaptic response. This provides one possible mechanism through which 

irregular Poisson-like firing can be sustained in neuronal populations [11].

4 Discussion

We used continuous time Markov chain methods to derive the response statistics of a 

stochastic model of short term synaptic depression with three different presynaptic input 

Reich and Rosenbaum Page 16

J Comput Neurosci. Author manuscript; available in PMC 2015 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models. We then used this analysis to understand how the mean presynaptic firing rate and 

the variability of presynaptic spiking interact with synaptic dynamics to determine the mean 

rate of vesicle release and variability in the number of vesicles released. This analysis 

revealed a number of fundamental, qualitative dependencies of response statistics on 

presynaptic spiking statistics. Some of the dependencies have been previously noted in the 

literature and some have not.

The number of vesicles released over a time window is smaller for irregular inputs than for 

more regular inputs (Figs. 1 and 2) given the same number of presynaptic spikes. Thus, 

more regular presynaptic spiking is more efficient at driving synapses. This mechanism 

competes with a well-known property of excitable cells: that they are driven more 

effectively by irregular, positively correlated synaptic input currents [51,52,40,39]. In 

addition, a population of presynaptic spike trains drives a postsynaptic neuron more 

efficiently when the population-level activity is more irregular, for example due to pairwise 

correlations [45]. Together, these results suggest that a postsynaptic neuron is most 

efficiently driven by presynaptic populations that exhibit small or negative auto-correlations, 

but positive pairwise cross-correlations.

Our model predicts that the de-correlating effects of short term depression and stochastic 

vesicle dynamics can produce negative temporal auto-correlations in the synaptic response 

even when presynaptic spiking is temporally uncorrelated or positively correlated, in 

agreement with previous studies [34,21,45]. This yields a response Fano factor that 

decreases with window size, as observed in some recorded data [26]. We note, though, that 

some parameter choices can yield positively a correlated synaptic response when 

presynaptic inputs are positively correlated [21] or periodic [34] and neuronal membrane 

dynamics can introduce positive correlations to a postsynaptic spiking response even when 

synaptic currents are not positively correlated in time [38]. This is consistent with several 

studies showing positive temporal correlations in recorded spike trains [4,15,3,11].

We predict that moderate or high firing rates can induce a Poisson-like synaptic response 

even when presynaptic inputs are non-Poisson (Fig. 5, see also [33,44]). This is because 

even moderate firing rates can deplete synapses and depleted synapses inherit the Poisson-

like variability of synaptic vesicle recovery (Fig. 6B, see also [45,48]). At lower firing rates, 

short term depression and synaptic variability can increase or decrease Fano factor. For 

example, in Fig. 5B, the response Fano factor is larger than the presynaptic Fano factor (Fin 

= 1) at low firing rates, decreases at higher firing rates, then approaches Fx = 1 at higher 

firing rates. This complex dependence of firing rate on Fano factor might be related to the 

stimulus dependence of Fano factors observed in several cortical brain regions [11].

Our conclusion that fast presynaptic spiking causes Poisson-like variability in the synaptic 

response relied on the assumption that vesicle recovery times are exponentially distributed. 

The exponential distribution is a justifiable choice for recovery times only if recovery times 

obey a memoryless property: having already waited t units of time for a recovery event, the 

probability of waiting an additional s units of time does not depend on t. The precise 

mechanics of vesicle re-uptake and docking determine whether this is an appropriate 

assumption. If recovery times have a different probability distribution, then the synaptic 
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response will inherit the properties of this distribution at high presynaptic firing rates instead 

of inheriting the Poisson-like nature of exponentially distributed recovery times.

Previous methods have been developed to analyze the response of the synapse model used 

here. In [44, 20], the model restricted to the M = 1 case is analyzed for presynaptic spike 

trains that are renewal processes. This includes the Poisson and the regular input model 

discussed here, but excludes the irregular input model in which the spike train is a non-

renewal inhomogeneous Poisson process. In [48] approximations are obtained for the case 

where the presynaptic spike train is an inhomogeneous Poisson process, but the 

approximation is only valid when the rate-modulation of the Poisson process is small 

compared to the average firing rate. Thus, these approximations are only valid for the 

irregular input model when rf − rs ≪ rs. Other studies [29,37] use a deterministic synapse 

model that implicitly treats the number of available vesicles as a continuous rather than a 

discrete quantity. This deterministic model represents the trial average of the model 

considered here and can vastly underestimate the variability of a synaptic response [48].

A more detailed synapse model allows for multiple docking sites at a single contact [69,45]. 

This model can yield different response properties than the model used here in certain 

parameter regimes [45]. Even though this more detailed model can be represented as a 

continuous-time Markov chain, the analysis of this model would be significantly more 

complex than the analysis considered here since it would be necessary to keep track of the 

number of readily releasable vesicles at each contact separately. This would result in a 

Markov chain with K × NM states where M is the number of contacts, N is the number of 

docking sites per contact and K is the number of states used for the presynaptic input model 

(K = 1 for the Poisson input model, K = 2 for the irregular input model, and K = θ for the 

regular input model).

We focused on the effects of short term synaptic depression and ignored the effects of 

facilitation. Previous theoretical studies show that facilitation can introduce positive 

temporal correlations to the synaptic response in regimes where depression introduces 

negative temporal correlations [29,37]. These positive correlations cause the Fano factor of 

the synaptic response to be much larger than one in regimes where a depressing synapse 

predicts Fano factors near one [33].

Our model of irregular presynaptic spiking involves an inhomogeneous firing rate that 

switches randomly between two states. If one state is taken to be much faster than the other 

(rf ≫ rs), this model can be used to represent bursty or “chattering” neuronal spiking. We 

focused on the analysis of the auto-covariance and Fano factor of the synaptic response, but 

our analytical techniques also yield the full distribution of dynamical variables in each of 

these two states. This could be used, for example, to analyze burst and spike transmission in 

the presence of short term depression [33].

We used two specific models of non-Poisson presynaptic spiking statistics, one for irregular 

and one for regular spiking. There are a number of possible alternative models of irregular 

and regular spiking, but not all of them can be analyzed using the methods presented here. 

Nonetheless, insights gained from the models studied here are applicable to more general 
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presynaptic spiking models. The fact that positive temporal correlations in the input are 

reduced in the synaptic response is consistent across all models we studied and has also been 

observed using different models of irregular presynaptic spiking and also for irregular spike 

trains taken from experimental recordings [33, 21]. Our observation that depleted synapses 

respond in a Poisson-like fashion regardless of whether their inputs are Poisson relies on the 

fact that the response of depleted synapses inherit the Poisson-like dynamics of their vesicle 

recovery processes (see Fig. 6B), an explanation which we expect to apply to other models 

of presynaptic spiking. Indeed, Poisson-like responses to non-Poisson inputs have been 

observed in studies that use different presynaptic spiking models [33,44].

We focused on the effects of synaptic dynamics on the first- and second-order moments of 

the synaptic response (i.e., the rate, auto-covariance and Fano factor of vesicle release) since 

these quantities are the focus of many theoretical and experimental studies. However, higher 

order statistics can play a role in neural coding and network dynamics [28,59]. Since our 

analytical methods yield the full distribution of dynamical variables, they can be used to 

calculate higher order statistics of the synaptic response.

To quantify the synaptic response to a presynaptic spike train, we focused on the statistics of 

the number of vesicles released in a time window. Postsynaptic neurons observe changes in 

synaptic conductance in response to presynaptic spikes. The synaptic conductance are often 

modeled in such a way that they can be easily derived from our process x(t) through a 

convolution:  where g(t) is the synaptic conductance elicited by a 

presynaptic spike train and α(s) is a kernel representing the characteristic postsynaptic 

conductance elicited by the release of a single neuro-transmitter vesicle. Since this mapping 

is linear, the statistics of g(t) can easily be derived in terms of the statistics of x(t) [60,48].
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Fig. 1. Rate of vesicle release as a function of presynaptic firing rate for various presynaptic 
Fano factors
The rate of vesicle release, rx, is an increasing function of presynaptic firing rate, rin. Vesicle 

release is slower for the super-Poisson spiking model than for the Poisson and sub-Poisson 

spiking model.
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Fig. 2. Synaptic response to an super-Poisson and a sub-Poisson presynaptic spike train
A) An irregular, super-Poisson spike train, I(t), drives a depressing synapse. Each vesicle 

release event is indicated by a vertical bar with height indicating the number of vesicles 

released (here, all events release just one vesicle). Each time a vesicle is released, the 

number of available vesicles, m(t), is decremented accordingly. Vesicle recovery increments 

m(t) and occurs randomly in time (vesicle recovery events indicated by filled triangles). B) 
Same as (A) except for a more regular, sub-Poisson presynaptic spike train. Note that, even 

though the same number of presynaptic spikes occur in (A) and (B), the super-Poisson spike 

train is less effective in releasing vesicles. This occurs because all vesicles are depleted by 

the first few spikes in a burst and subsequent spikes in that burst are unable to release 

vesicles. For illustrative purposes, we set M = 3 in this figure.
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Fig. 3. Presynaptic auto-covariance functions and auto-covariance of vesicle release for three 
input models
Auto-covariance functions of presynaptic spike trains (top row) and the synaptic response 

they evoke (bottom row) for three different presynaptic input models: A,B) super-Poisson 

(Fin = 20), C,D) Poisson (Fin = 1) and E,F) sub-Poisson (Fin = 0.1). Each auto-covariance 

function has a Dirac delta function at the origin that is not depicted here. Dotted line in (D) 

is from the approximation in Eq. (4) and solid line is from exact calculation obtained using 

numerics for the sub-Poisson input model with θ = 1 (see Methods), but the two are nearly 

indistinguishable. Rin(τ) has units (spikes/sec)2 and Rx(τ) has units (vesicles/sec)2. Short 

term depression introduces negative temporal correlations even when presynaptic spike 

trains are temporally uncorrelated (C,D) or positively correlated (A,B).
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Fig. 4. Presynaptic and response Fano factor as a function of window size for three input models
Presynaptic and response Fano factors, Fin(T) and Fx(T), as a function of the window size 

over which inputs or vesicles are counted (see Methods), obtained by applying Eq. (1) to the 

auto-covariance functions in Fig. 3. Short term depression causes response Fano factor to 

decrease with window size even when presynaptic Fano factor increases with window size 

(A,B) or is independent of window size (C,D). Also, response Fano factors are near 1 even 

when presynaptic Fano factors are not (B and F).
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Fig. 5. Response Fano factor as a function of presynaptic firing rate for three input models
Response Fano factors calculated over large windows for A) the super-Poisson input model 

B) Poisson input model and C) sub-Poisson input model. Fano factors approach 1 at high 

presynaptic firing rates regardless of the presynaptic Fano factor (triangle on right is placed 

at Fx = 1). At low presynaptic firing rates, response Fano factors approach the value given in 

Eq. (16) (indicated by triangle on left). Dotted line in (B) is from closed form approximation 

in Eq. (8) and dashed line is from the expansion given in Eq. (17).
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Fig. 6. Vesicle release dynamics at low and high presynaptic firing rates
A) At low presynaptic rates, vesicles are recovered (i.e., m(t) returns to M = 3) between 

presynaptic spikes. Thus, the number of vesicles released by each presynaptic spike is 

approximately an independent binomial random variable with mean prM and variance prM 

(1 − M). B) At high presynaptic rates, vesicles are released almost immediately after they are 

recovered. Thus, the number of vesicles released over a time window of length T is 

approximately a Poisson random variable with mean and variance T M/τu.
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