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Abstract We present a model for the use of open loop
optogenetic control to inhibit epileptiform activity in a
meso scale model of the human cortex. The meso scale
cortical model first developed by [11] is extended to
two dimensions and the nature of the seizure waves
is studied. We adapt to the meso scale a 4 state func-
tional model of Channelrhodopsin-2 (ChR2) ion chan-
nels. The effects of pulsed and constant illumination
on the conductance of these ion channels is presented.
The inhibitory cell population is targeted for the ap-
plication of open loop control. Seizure waves are suc-
cessfully suppressed and the inherent properties of the
optogenetic channels ensures charge balance in the cor-
tex, protecting it from damage.

Keywords Meso-scale cortical model · Seizure
propagation · Optogenetic control

1 Introduction

About 70% of people suffering from epileptic seizures
can be treated with anti-epileptic drugs (AEDs). For the
remaining 30% with medically refractory, more com-
monly focal-onset, epilepsy, surgical removal of the epilep-
togenic zone is a treatment option, as are implanted
neurostimulators such as the vagal nerve stimulator. Op-
tions on the horizon include closed-loop devices that
sense the onset of a seizure and deliver local therapy
to interrupt the seizure’s spread. For example, the fir-
ing pattern of neurons bear the epileptogenic zone can
be altered by changing their mean soma potential by
the application of an external electric field. In vitro ex-
periments on rat cortex [15] showed it is possible to
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modulate the behaviour of seizure like waves, while
in vivo experiments on rats [5] showed that stimula-
tion using proportional feedback temporarily inhibited
seizure waves. Electrical cortical stimulation was mod-
elled computationally [8] using various methods of feed-
back control and charge balanced control was ensured
in subsequent work [12]. Here, we present another method
of suppressing seizure waves by altering the mean soma
potential of cells via the use of optogenetic channels.

The use of light as an input signal to stimulate neu-
rons was first suggested in 1999 by Sir Francis Crick
[3]. Since then the field of optogenetics has come a
long way, being named ’Method of the year’ in 2010
[4]. Optogenetics uses photoreceptors which are ge-
netically targeted onto cells of interest. When illumi-
nated with light of a certain wavelength, optogenetic
ion channels facilitate a transfer of cations or anions be-
tween the cell and the extra-cellular region. Two of the
most popular optogenetic channels are channelrhodopsin-
2 (ChR2), which is a cation pump introduced in 2004
[13], and Natromonas pharaonis halorhodopsin (NpHR),
which is a chloride pump introduced in 2007 [19].

The control of seizures using closed loop optoge-
netic control has been demonstrated in rats [17,14] and
in mice [10], where hyperpolarising excitatory neurons
or depolarising inhibitory neurons in the hippocampus
or the thalamus leads to the suppression of seizure waves.
In this work, we present a method of seizure suppres-
sion where we depolarise the inhibitory cells in a model
of the human cortex using ChR2 channels. The firing of
the inhibitory cells suppresses the firing of excitatory
cells, and this subsequently leads to the disruption of
pathological synchronous firing of cortical neurons.

This paper is organised as follows. First, we present
the meso scale model of the cortex, and how it may
be used to model the origin and propagation of seizure
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waves. Next, we adapt to the meso scale a model of the
dynamics of ChR2 channels in the cortex, and their be-
haviour when illuminated with either constant or pulsed
light is studied. Finally, we present results from the
use of ChR2 channels on inhibitory cells to implement
open loop control.

2 2D cortical model

To simulate electrical activity in the human cortex ide-
ally, one would have to model the connections between
individual neurons taking into account the character-
istics of each neuron (location, connections to other
neurons, pyramidal or stellate etc.). However, given the
limits of computing capacity, it would be extremely dif-
ficult to model a network consisting of all of these neu-
rons even if the complicated physiology were well de-
fined. To avoid this, we use the meso scale model of the
human cortex developed by [11] that is characterised by
a set of 8 non-linear stochastic partial differential equa-
tions (SPDEs). The mathematical model is written in
the following way:
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Here, all variables have been non dimensionalised
and are functions of time t̃, and the two spatial dimen-
sions x̃ and ỹ. The subscripts e and i represent excita-
tory and inhibitory populations respectively, and vari-
ables with two subscripts represent the transfer of en-
ergy from one population to another. The mean soma
potential for a neuronal population is represented by
the h̃ state variable, Ĩ represents the postsynaptic acti-
vation due to local, long-range, and subcortical inputs.

φ̃ represents long range (corticocortical) inputs. Values
and explanations for all parameters and variables can
be obtained from [9].

This model and EEG or ECoG data from a patient
undergoing seizure are in good agreement on the av-
erage frequency of maximum power and the speed of
spatial propagation of voltage peaks [9]. Also, the vari-
ables of the mean field model are spatially averaged
properties of neuron populations, and can be related
to EEG and ECoG measurements which represent the
spatially averaged extracellular local field potential (LFP).
The sign reversed LFP, in turn, is proportional to the
spatially averaged excitatory soma membrane poten-
tial, he, which is one of the variables used in the SPDEs.
It has been shown that increasing the subcortical in-
put results in he mimicking ECoG data obtained from a
seizing cortex [9]. Here, we look at tonic-clonic seizures
characterised by runaway excitation, and this makes the
meso scale model ideal for this study.

Fig. 1: Propagation of seizure waves in a 2D model
of cortex which measure 1400×1400 mm2. Snapshots
taken from time t = 0.5s to t = 1s. Stochastic fluctu-
ating inputs readily trigger a seizure wave when the
model cortex is put in a state susceptible to seizures,
which is characterized here by the baseline param-
eters of [9] for normal cortical function, except for
Pee = 548.0 and Γe = 0.8×10−3.

The evolution and propagation of seizure waves in
a one dimensional cortical model has been shown in
previous work [12] and [9]. The 1D model has been
extended to a 2D model by using the two dimensional
Laplacian (∂ 2/∂x2 + ∂ 2/∂y2) instead of just one sec-
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ond order spatial derivative, leading to the long range
connections scaled by a spatial decay in two dimen-
sions. Fig.(1) depicts an example, showing the propa-
gation of seizure waves in a two dimensional cortex of
size 1400 mm×1400 mm.1 Seizure waves originate at
a focus in response to stochastic fluctuations and prop-
agate outwards in spiral waves. This is in good agree-
ment with the results for the multi neuron integrate and
fire network model in [18]. Fig. 2a shows the varia-
tion of the mean soma potential of the excitatory cell
population at a point in the cortex. The cortex starts ex-
hibiting synchronous behaviour at around 0.2s. Fig. 2b
shows travelling seizure waves in a 1D slice of the 2D
model cortex.
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Fig. 2: Seizure wave propagation in a two dimensional
meso scale model of the human cortex, with Pee =

548.0, Γe = 0.66× 10−3 and α = 1. The model cortex
measures 700×700 mm2. The colour bar shows mean
soma potential values in mV .

3 Meso scale optogenetics model

The meso scale optogenetics model described here is
based on the four state model of Channelrhodopsin-2
(ChR2) cells first proposed by [13]. This model was
able to reproduce qualitatively the ChR2 photocurrents
obtained from experimental measurements. It takes into
account the fact that the recovery rates under constant
illumination and in the dark are different and is thus
able to simulate the characteristic peak-plateau behaviour
and degraded transient response for subsequent stimu-
lus. Building on this and a ChR1 model [7], a 4 state
model for ChR2 channels was proposed and the effect
of the change in conductance on a neuron described by
a cable model, which contains active HodgkinHuxley
type elements, was studied [6].

1 The average human cortex has dimensions of 500×500 mm2

if it were laid open like a sheet. However, the spiral seizure waves
have a radius of curvature that is too large to be appreciated
within a domain of the size of an average human cortex, and
because cortical dynamics is scale-free, we have used a larger
cortical domain to illustrate them.

Fig. 3: Transition from one optogenetic state to another
in the 4 state model for ChR2 channels.

The 4 state model has two open states (O1 and O2)
and two closed states (C1 and C2). These states do not
actually represent the physical energy levels of ChR2,
but instead describe a functional model that is a good
representation of the behaviour of ChR2 ion channels
when illuminated with light. The conductivity in the O1
state is more than in the O2 state, but the O2 state has a
longer life time. Conversion from one state to the other
can be achieved through both light and thermal excita-
tion. Fig.(3) illustrates the possible transitions from one
state to another. The equations describing the 4 state
model are based on those of [6].

dNO1

dt
= Ka1.NC1− (Kd1 + e12).NO1 + e21.NO2 (9)

dNO2

dt
= Ka2.NC2 + e12.NO1 +(Kd2 + e21).NO2 (10)

dNC2

dt
= Kd2.NO2− (Ka2 +Kr).NC2, (11)

Equations 9-11 describe the number of channels
in each open and closed state, represented by NOi and
NCi respectively. Kai are the rates of transition from the
closed states, C1 and C2, to the open states O1 and O2
respectively. Conversely, Kdi are the closing rates from
the open states to the closed states. Kr is the thermal re-
covery rate from C2 to C1. e12 and e21 are the transition
rates from O1 to O2 and vice versa. The values for all
rate constants can be found in table 1.

This optogenetic model was originally developed to
study the effect of optogenetic conductance on a cable
model of a neuron with active Hodgkin-Huxley type
elements [6]. The computational domain for our meso
scale cortical model is broken up into 100× 100 cells
which corresponds to a total area of 700×700 mm2. To
adapt the optogenetic model to the meso scale, the val-
ues of NOi and NCi have been normalised with the total
number of ChR2 channels per representative neuron,
and now represent the fraction of channels in each state
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Table 1: Rate constant values for the meso scale optogenetic model of ChR2 embedded in the cortex.

Rate constant Transition from Value (ms−1)

Ka1,Ka2 C1 to O1, C2 to O2 0.5Φ , 0.12Φ

Kd1,Kd2 O1 to C1, O2 to C2 0.1, 0.5
e12,e21 O1 to O2, O2 to O1 .011+ .005log(Φ/0.024), 0.008+0.004log(Φ/0.024)
Kr C2 to C1 1/3000

Φ(t) is the photon flux per ChR2 and has units of ms−1. Kai is given by the quantum efficiency times the photon flux, εi.Φ(t).

per representative neuron. The sum of these fractions
equals unity, and is described in eq.12.

NO1 +NO2 +NC1 +NC2 = 1. (12)

By multiplying these fractions with the expression
density (ion channels per unit area of cell membrane)
and the area of each representative neuron, we obtain
the total number of ion channels per representative neu-
ron, and consequently, the total conductance of all the
ion channels per representative neuron. It should be
noted that while we are dealing with chemical dynam-
ics at the molecular scale to describe the state of opto-
genetic channels, it is reasonable to scale the idea up
to the meso scale that describes the cortex because the
cortical model represents a population of spatially av-
eraged neurons.
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Fig. 4: Constant and pulsed illumination profiles for
light intensity of 1 mW/mm2.

In this study, we have not taken into account the
light cone [2] emitted by each light source and the vari-
ation in illumination intensity they produce over a given
area. Instead, we model the average intensity through-
out a representative neuron with no overlap between
two light cones. Fig. 4 shows the two kinds of illumina-
tion profiles we use for optogenetic actuation, and fig. 5
depicts the corresponding optogenetic conductance for
a given illumination using a constant cell membrane
voltage of −70 mV . For both constant and pulsed illu-
mination, light intensities of 1 mW/mm2, 0.1 mW/mm2

and 0.01 mW/mm2 have been used. The pulsing of light
has a markedly different effect on a cortical model with-
out a voltage clamp, and this is demonstrated in the

next section. Here, we use a fourth order Runge Kutta
method to solve equations 9-11.
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Fig. 5: Semi-log plot showing variation of conduc-
tance with light intensity for an ion channel den-
sity of 109ChR2’s/m2. 4− - 1 mW/mm2, − -
0.100 mW/mm2, •− - 0.01 mW/mm2. If the conduc-
tance were multiplied by the clamped voltage value of
-70 mV, it would reproduce the plot of current vs. time
in [6].

Fig. 5a shows the difference between the conduc-
tance of optogenetic channels illuminated by 1 mW/mm2,
0.1 mW/mm2 and 0.01 mW/mm2 light intensities. The
peak to plateau ratio of the conductance is decreased
and intensity decreases. Also, the peak and plateau val-
ues decrease as the intensity is decreased. Similar be-
haviour is observed in the case with pulsed illumina-
tion. Fig. 5b shows the conductance has sharper spikes
when a lower intensity is used. However, with a higher
intensity, the peak conductance value decreases less rapidly
at the highest point before dropping off again when the
light is turned off. Both constant and pulsed illumina-
tion profiles produce a sharp rise in conductance value
before it reaches a steady state after about 50 ms.

4 Open loop control

We now introduce open loop control using optogenetic
ion channels.

∂ h̃i

∂ t̃
= 1− h̃i +Γe(h0

e− h̃i)Ĩei +Γi(h0
i − h̃i)Ĩii−u, (13)
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is a modification of eqn. 2 that includes the control term
u. ChR2 channels are cation pumps that conduct Na+,
Ca2+ , H+ and K+ ions.

The control term is defined as

u = hi.GChR2.Rm. (14)

This formulation is dependent on the mean soma
potential of the inhibitory population, and the mean
membrane resistance of these cells represented by Rm
is obtained from voltage clamp experiments and has a
value of 7.1GΩ [16]. The conductance of ChR2 chan-
nels is given by,

GChR2 = Gmax.gChR2.
(1− exp(−hi/U0))

hi/U1
.NChR2, (15)

where hi is the membrane potential for the inhibitory
population, Gmax is the maximum conductance of op-
togenetic channels in the O1 state, gChR2 is the total
conductance of the optogenetic channels in the O1 and
O2 states defined by (gO1.NO1 + gO2.NO2). U0 and U1
are empirical constants with values of 40mV and 15mV
respectively. NChR2 is the number of ChR2 channels per
cortical macrocolumn.
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Fig. 6: Optogenetic seizure control using constant il-
lumination of intensity 20 mW/mm2. The model cor-
tex measures 700× 700 mm2, with Pee = 548.0, Γe =

0.66× 10−3 and α = 1.15. The arrow in fig. 6a indi-
cates control being turned on at 0.5s. The colour bar
shows mean soma potential values in mV .

In what follows, the use of optogenetic channels to
inhibit seizure waves is illustrated. Control is actuated
at 0.5s by illuminating the cortex with light of 470 nm.
From eq. 15 it can be seen that the net conductance

produced for a given light intensity is directly propor-
tional to the number of ChR2 channels expressed. Here,
we have used a channel expression density (number of
ChR2 channels per unit area) of ∼109/m2 in order to
use illumination intensities that correspond to experi-
ments [2]. Fig. 6 uses a constant light intensity source
of 20 mW/mm2 to illuminate the cortex, while fig. 7
uses a pulsed light source of 40 mW/mm2. Both plots
are of the mean soma potential of the excitatory popu-
lation.

The time scale at which the dynamics of the meso
scale cortex occur is larger than the time scale of the
optogenetic channel dynamics. We used a two step pre-
dictor corrector numerical method to solve the set of
SPDEs, and a first order forward Euler method to solve
the optogenetic ODEs at each point in the domain. 2
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Fig. 7: Optogenetic seizure control using pulsed illu-
mination of intensity 40 mW/mm2 with 0.005s pulses.
The model cortex measures 700×700 mm2, with Pee =

548.0, Γe = 0.66×10−3 and α = 1.15. The arrow in fig.
7a indicates control being turned on at 0.5s. The colour
bar shows mean soma potential values in mV .

The mechanism for seizure control using this ap-
proach is as follows. When ChR2 that is expressed in
the inhibitory cell population is activated with light, it
pumps cations from the extra-cellular space into the in-
hibitory cells, and this depolarises them. This changes
the mean soma potential and the firing rate of the in-
hibitory population, which in turn changes the mean
soma potential of the excitatory population through the
influence of the postsynaptic activation due to the in-
hibitory population (Ĩie). The firing rate of a represen-
tative neuron is determined by its mean soma poten-
tial, so by changing the mean soma potential, the fir-
ing rate can be changed as well. The seizures discussed

2 The fourth order solver is more accurate in producing re-
sults that match experimental observations of conductance, but
the first order method takes less computation time to solve the
equations. Because the optogenetic channels function at a smaller
time scale, and because we are only interested in time scales of
the cortical model, the use of the simpler first order method is
justified.
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here are caused by runaway excitation, so by increas-
ing the firing rate of the inhibitory population the fir-
ing rate of excitatory cells, which fire synchronously
during epileptic seizures, can be inhibited, breaking the
synchronicity and inhibiting seizure waves.
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Fig. 8: Firing rates for the excitatory and inhibitory
population with optogenetic control applied at 0.5s

Fig. 8, shows how the baseline value of firing rate
for the inhibitory population is higher than that of the
excitatory population after optogenetic control is ap-
plied at 0.5s. It should be noted here that Fig. 8 depicts
the firing rate of a representative neuron in the mean
field model, and not the spiking of an individual neu-
ron.

4.1 Pulsed Illumination

Optogenetic control using pulsed illumination depends
on the intensity and the pulsing profile. In figures 9 and
10 we use two different pulsing profiles with the same
peak intensity used to generate 7, where a 0.005s pulse
was used.
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Fig. 9: Optogenetic control applied at 0.5s using
0.05s pulsed illumination. Synchronous behaviour per-
sists even after control is applied, but the ampli-
tude of seizure waves is decreased. Parameters: Pee =

548.0, Γe = 0.00066, α = 1.15, expression density =

104 ChR2s/m2, Intensity = 40 mW/mm2.

Fig. 9 was generated using light pulses of 0.05s du-
ration. While the amplitude of the seizure waves is de-
creased considerably, it is seen that synchronous be-
haviour persists despite control being applied at 0.5s.
This is because the dark regions of the pulsing profile,
where the ion channels tend to close, is long enough to
reduce control to a low value where it does not have a
considerable effect on the seizing cortex. However, the
frequency of the pulsing still ensures the oscillations
are not fully developed because control does not go to
zero during the dark regions.
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Fig. 10: Pulsed optogenetic control using 0.08s pulses
applied at 0.5s. Frequency of seizure waves has
decreased, but amplitude of oscillations is invari-
ant. Parameters: Pee = 548.0, Γe = 0.00066, α =

1.15, expression density = 104 ChR2s/m2, Intensity =

40 mW/mm2 - pulsed illumination with 0.08 s pulses.

In fig. 10 light pulses of 0.08s duration were used.
In this case, seizure waves have not been inhibited, but
the frequency has been reduced. This can be accounted
for by the duration of the dark periods of pulsing which
is long enough to close the ion channels completely
leading to zero control. During the dark period, the cor-
tex starts seizing again, but the seizures are inhibited
completely during the illuminated periods of pulsing.
Finally, using 0.0005s pulses we successfully break down
all synchronous behaviour and inhibit seizure waves in
fig. 7. With the shorter pulses the dark periods aren’t
long enough for most of the optogenetic channels to
close and this results in behaviour similar to constant il-
lumination where the majority of the channels are open.

5 Robustness of control

In this section we explore the robustness of the control
approach to changes in different aspects of the model.
The parameters for the meso scale model are varied
within ranges provided in [1] and [11].
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5.1 Stochastic inputs

The subcortical input contributes to the postsynaptic
activation through constant Pi j and stochastic inputs de-
fined by

Γ̃ = α
√

Pi jξ [x̃, t̃]

where α is a scaling parameter for the stochastic inputs
and ξ is zero mean, Gaussian white noise in time and
space.
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Fig. 11: More uniform seizures produced with low
noise. Control switched on at 0.5s successfully inhibit-
ing seizures. Parameters: α = 0.05, Γe = 0.0008, Pee =

548.0, expression density = 104 ChR2s/m2, Intensity
= 40 mW/mm2 - constant illumination.

Figures 6, 11 and 12 demonstrate the efficacy of
the optogenetic control method for different stochastic
inputs over two orders of magnitude of noise. Seizure
waves are successfully inhibited for α values of 0.05,
1.15 and 5, using the same expression density and con-
stant illumination for all three cases.
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Fig. 12: Higher α causes noisier oscillations, how-
ever, control is still successful in diminishing syn-
chronous activity when applied at 0.5s. Parameters:
α = 5, Γe = 0.00066, Pee = 548.0, expression density
= 104 ChR2s/m2, Intensity = 60 mW/mm2 - constant
illumination.

5.2 Seizure hotspot

While the cortex has been laid out like a sheet in our
figures, it is made up of a number of folds in reality.
When optogenetic channels are expressed in the cor-
tex, the ones on the gyri have a better chance of being
illuminated.

Fig. 13: Gaussian distribution of Pee (seizure hotspot)
with a gyri to sulci area ratio of 1:2. Red lines running
across the model cortex represent gyri populated with
optogenetic channels.

In order to account for this reduction in the number
of channels being illuminated, fig. 14 only has chan-
nels expressed in a third of the cortical surface area.
The sites of optogenetic expression are in strips run-
ning across the cortex (representing gyri) separated by
strips of zero optogenetic channel expression (repre-
senting sulci). We have also included a seizure hotspot
by using a Gaussian distribution for Pee with a max-
imum value of 548.0. Seizure waves arise where the
value of Pee is high enough and travel outward until the
level of excitation is too low to support them. It should
also be noted that the channel expression only covers
the hotspot area of the model cortex as shown in fig.
13.
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Fig. 14: Seizure hotspot with maximum Pee at the cen-
ter of the model cortex. with a gyri to sulci ratio of
1:2. Parameters: Pee = 548.0, Γe = 0.001, α = 1.6,
expression density = 2× 104 ChR2s/m2, Intensity =

20 mW/mm2 - constant illumination.
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Fig. 14 shows the application of optogenetic control
at 0.5s to a cortex that has a gyri to sulci ratio of 1:2.
The expression density has been increased by a factor
of 2, but the control is successful in inhibiting seizures.
As a first attempt to account for the geometry of the
cortex and the ability to illuminate it, fig. 14 demon-
strates the efficacy of using optogenetics as a control
method.

5.3 Changes in cortical model parameters

The parameters of the meso scale model remain con-
stant during our simulations. However, the cortex is
more plastic. To account for this plasticity, parameters
like the number of long range connections between cell
populations and the neurotransmitter rate constants were
changed within their physiological bounds [11], and the
effect of optogenetic control on the model seizing cor-
tex was studied.
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Fig. 15: Change in the long range connectivity
Nα

j to demonstrate efficacy of the controller when
the connectivity is changed . Parameters: Pee =

548.0, Γe = 0.00066, α = 1.15, expression density =

104 ChR2s/m2, Intensity = 60 mW/mm2 - constant il-
lumination, Nα

e = 5000, Nα
i = 3000.

The long range connections are critical to a seizing
cortex [14]. In fig. 15 the number of long range con-
nections from the excitatory cells to other excitatory or
inhibitory cells was changed from the normative values
of 4000 e− e and 2000 e− i, where e and i represent
the excitatory and inhibitory populations respectively,
to the extrema of their ranges [11]. It is seen that the
model cortex can be driven to seizures only if both the
e− e and e− i connections are increased. To this end,
we used 5000 e−e connections and 3000 e− i connec-
tions for our simulations, and the seizing cortex was
successfully brought under control using a constant il-
lumination intensity of 60 mW/mm2.

In figures 16 and 17 the neurotransimtter rate con-
stants Te and Ti are changed to 20 and 4 respectively

0 0.5 1
−100

−80

−60

−40

−20

Time (s)

h
e
 (

m
V

)

(a) Mean soma potential at a point

h
e
 (mV)

Space [mm]

T
im

e
 [

s
]

 

 

0 200 400 600

0.2

0.4

0.6

0.8

1

−80

−70

−60

−50

−40

(b) 1D slice of a 2D domain

Fig. 16: Change in the neurotransmitter rate con-
stant Te to demonstrate efficacy of the controller
when the connectivity is changed . Parameters: Pee =

548.0, Γe = 0.00066, α = 1.15, expression density =

104 ChR2s/m2, Intensity = 60 mW/mm2 - constant il-
lumination, Te = 20, Ti = 2.6.

from the normative values of 12 and 2.6. Again, seizures
are produced in the cortical model, but they are suc-
cessfully inhibited when optogenetic control is applied
at 0.5s.
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Fig. 17: Change in the neurotransmitter rate con-
stant Ti to demonstrate efficacy of the controller
when the connectivity is changed . Parameters: Pee =

548.0, Γe = 0.00066, α = 1.15, expression density =

104 ChR2s/m2, Intensity = 60 mW/mm2 - constant il-
lumination, Te = 12.0, Ti = 4.0.

6 Conclusion

A method of seizure control using optogenetic chan-
nels in a model of the human cortex has been presented.
First, the focal origin of seizure waves and their spi-
ral nature was demonstrated. This is in good agree-
ment with the results of [18] multi neuron integrate
and fire network model. Then, a meso scale optogenetic
model was presented and its light activated characteris-
tics studied. Two illumination profiles were used, con-
stant and pulsed. In a voltage clamped sense, the peak
conductance produced by both illumination profiles was
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the same. However, while constant illumination satu-
rates at some value after a few milliseconds, pulsed il-
lumination varies at the frequency of the pulsing. Also,
the dependence of the total conductance of the opto-
genetic channels on the light intensity at a point in the
cortex shows higher intensities produce higher conduc-
tances. However, at a certain intensity, the conductance
value plateaus irrespective of the illumination profile
used, and this is called the saturation intensity. For the
clamped voltage case, the conductance saturates at 160 mW/mm2.

Open loop control using ChR2 cation pumps on the
inhibitory population of a meso scale cortical model
has also been demonstrated. The inherent charge bal-
ancing characteristic of optogenetic channels ensures
the cortex is not damaged by a transfer of charge be-
tween the extra-cellular space and the neurons. For an
expression density of 109 ChR2’s/m2, we used a con-
stant illumination intensity of 20 mW/mm2 and a pulsed
illumination intensity of 40 mW/mm2 to push the seiz-
ing cortex away from seizure. The difference in inten-
sities to produce similar results can be explained by the
differences in the conductance profiles. While the con-
ductance produced by a constant illumination profile is
dependent only on the mean soma potential of the neu-
ron population, the conductance produced by a puls-
ing light source depends on the variable illumination as
well. In both cases, however, seizure waves were suc-
cessfully inhibited.

Finally, to study the robustness of the control model
to changes in the parameters in the model, we changed
the strength of stochastic inputs, the neurotransmitter
rate constants and the number of long range connec-
tions between cell populations, and changed the area of
illuminated surface to account for the gyri and sulci in a
cortex. Optogenetic control applied using constant illu-
mination of different intensities successfully inhibited
seizures in each case. It was also shown that while us-
ing pulsed illumination, the duration of time for which
the cortex was not illuminated in between pulses played
an important role in the behaviour of a seizing cortex.
If the dark period was too long, weak synchronicity or
seizure waves propagating at lower frequencies were
produced.

To obtain an understanding of the dynamical sys-
tem characterised by the cortical model coupled with
the optogenetic model, we used AUTO (continuation
and bifurcation software for ODEs) to study the na-
ture of the dynamical changes wrought by variations in
the model, as follows. By switching off the stochastic
terms and the spatial terms in the PDEs, we obtain a set
of ordinary differential equations (ODEs). Pee, which
is related to the excitation of the model, was varied to
drive the cortex from normal function to seizure state
resulting in the destabilising of the base state [9] engen-

dering seizure dynamics. We restart the analysis and
vary the light intensity, thus applying control to the in-
hibitory population. As the intensity is increased from
0.01mW/mm2 to 40mW/mm2 the base state again be-
comes stable, which is associated with the vanishing
of the seizure dynamics. Further analysis of the nature
of bifurcations and stability of the fixed points will be
taken up in future work.

While this study suggests the use of optogenetics
to inhibit seizure waves is possible, there are a num-
ber of improvements that can be made. The light cone
produced by a light source will render variable illu-
mination in the spatial domain [2]. This can be ex-
ploited for better spatial and temporal control of the
activation of optogenetic channels. Also, incorporating
a feedback loop will make this a more attractive con-
trol method because control can be applied only when
seizure waves are detected.
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