
Noname manuscript No.
(will be inserted by the editor)

Encoding certainty in bump attractors
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Abstract Persistent activity in neuronal populations has been shown to represent the spatial position
of remembered stimuli. Networks that support bump attractors are often used to model such persis-
tent activity. Such models usually exhibit translational symmetry. Thus activity bumps are neutrally
stable, and perturbations in position do not decay away. We extend previous work on bump attractors
by constructing model networks capable of encoding the certainty or salience of a stimulus stored in
memory. Such networks support bumps that are not only neutrally stable to perturbations in position,
but also perturbations in amplitude. Possible bump solutions then lie on a two-dimensional attractor,
determined by a continuum of positions and amplitudes. Such an attractor requires precisely balancing
the strength of recurrent synaptic connections. The amplitude of activity bumps represents certainty,
and is determined by the initial input to the system. Moreover, bumps with larger amplitudes are more
robust to noise, and over time provide a more faithful representation of the stored stimulus. In networks
with separate excitatory and inhibitory populations, generating bumps with a continuum of possible
amplitudes, requires tuning the strength of inhibition to precisely cancel background excitation.

Keywords excitation-inhibition balance · bump attractor · neural field · spatial working memory

1 Introduction

Neuronal populations in many cortical areas exhibit sustained activity during the delay period in a
spatial working memory task (Wang, 2001; Curtis, 2006). Groups of cells responsive to the presence of a
stimulus that needs to be stored in memory can remain active after the stimulus is removed (Rao et al,
2000; Vijayraghavan et al, 2007). Which subset of neurons is active depends on the spatial location of the
cue (Funahashi et al, 1989). Such sustained activity has been observed in prefrontal cortex (Goldman-
Rakic, 1995), parietal cortex (Pesaran et al, 2002), as well as superior colliculus (Basso and Wurtz,
1997).

Such persistent elevation in firing rates is captured in model networks by “bumps” of activity. The
peaks of these activity bumps represent the remembered location of the cue (Compte et al, 2000; Durste-
witz et al, 2000; Gutkin et al, 2001). Maintaining a stable activity bump during the delay is hence
crucial for representing the remembered cue (Brody et al, 2003). The recurrent architecture of the local
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neuronal networks appears to play a crucial role in maintaining such selective activation (Constantinidis
and Wang, 2004). Tuned excitatory neurons reciprocally connect to one another with both fast and slow
synapses (Wang, 2001). In addition, inhibitory cells broadly project back to the rest of the network
keeping spatial tuning sharp (Rao et al, 2000). Understanding how synaptic architecture can be tuned
to produce reliable bumps is essential for understanding the mechanism behind spatial working memory.

Models that can store a continuous range of spatial locations typically possess solutions that are
neutrally stable(Amari, 1977; Seung, 1996; Brody et al, 2003). Due to the neutral stability of such
attractors, perturbations that change the location of a bump of activity do not decay away (Amari,
1977; Camperi and Wang, 1998; Compte et al, 2000). Aside from experimentally-introduced distractors in
spatial working memory experiments (Miller et al, 1996), cue memories can also be degraded by internal
variability within cortical networks (Faisal et al, 2008). Stochastic models show that such variability
causes bump attractors to wander diffusively, due to their inherent neutral stability (Camperi and Wang,
1998; Compte et al, 2000; Laing and Chow, 2001; Kilpatrick and Ermentrout, 2013). Psychophysical
studies show that errors made recalling remembered spatial locations scale roughly linearly with delay
time, suggesting the remembered location may diffuse in time (White et al, 1994; Ploner et al, 1998).
Also, heterogeneities in the spatial structure of the underlying neuronal network can further degrade the
relation between the stored memory and the initial cue (Seung, 1996; Renart et al, 2003; Itskov et al,
2011; Hansel and Mato, 2013). One solution to this problem is to structure the spatial arrangement of
excitatory synapses (Kilpatrick and Ermentrout, 2013; Kilpatrick et al, 2013) to make networks robust
to dynamic and static parametric perturbations. Thus, the spatial organization of synaptic architecture
can play a major role in accurately encoding stimuli for future recall.

To explore the relation between network architecture and the neural computation underlying working
memory, we consider bump attractor networks capable of encoding cue certainty. We define certainty
as the likelihood that the presented cue was faithfully communicated to the network generating delay
period activity. A number of experiments have shown that the certainty of a decision can be encoded by
the instantaneous firing rates of neurons in medial temporal cortex (Shadlen and Newsome, 1998; Gold
and Shadlen, 2002; Beck et al, 2008; Kiani and Shadlen, 2009). In this way, the activity of a network
can represent the encoded signal as well as the likelihood that the encoded signal accurately represents
reality (Zemel et al, 1998). We introduce this notion here in the context of spatial working memory.
Recordings from superior colliculus by Basso and Wurtz (1997) suggest that increased uncertainty in
a remembered cue position is represented by lower neural activity during the delay period. Conversely,
work by Meyer et al (2011) shows that training in a spatial working memory task that leads to improved
performance is also accompanied by a rise in delay period firing rates. These observations suggest that
certainty about stimulus location in a spatial working memory task may be represented by the level of
neural activity during the delay period.

Like cue position, the degree of certainty in a signal is an analog quantity. Phenomenological models
of decision making in the presence of two alternatives also frequently exhibit line attractors. In such
models the state along the line attractor represents the likelihood, or certainty, that one of the choices is
correct (Bogacz et al, 2006). This can be accomplished in more biophysically realistic models by choosing
synaptic time constants to match the slope of the input-output relationship of a firing rate model (Wang,
2002). Precisely balancing the rate of feedback excitation with the timescale of synaptic decay leads to
a model that behaves as a pure integrator. In the absence of external inputs, networks that behave as
pure integrators can store the value of a continuous variable (Goldman et al, 2003). Similar tuning can
also be accomplished in mutually inhibitory rate models for parametric working memory (Machens et al,
2005; Polk et al, 2012).

We build on these ideas to study spatial working memory networks that can encode certainty. Typi-
cally, bump attractor networks only possess a single stable bump amplitude at each orientation (Amari,
1977; Ermentrout, 1998). We explore networks that support a continuum of bump amplitudes at each ori-
entation. These are dynamical systems that contain two-dimensional attractor surfaces: One dimension
corresponded to the amplitude, and the other the position of the bump. The system therefore exhibits
a plane attractor. To accomplish this, excitation and inhibition must be balanced, and the shape of the
synaptic input to output firing rate function chosen appropriately (Amari, 1977). Namely, there is a
monotonic relationship between the total synaptic excitation and total synaptic inhibition that must be
maintained to represent a continuum of possible bump amplitudes.

Including a certainty code in networks for bump attractors has several consequences. First, the
strength of the original input can be encoded in the amplitude of the bump. Bumps with larger ampli-
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tudes stay closer to their original position when the effects of noise are considered during the storage
period. However, since certainty is encoded in the amplitude of the bump, memory of the original cer-
tainty can also be degraded by dynamic noise. Also, arbitrarily weak inputs can still be stored as a bump
attractor, which is not the case in networks that support a single stable bump amplitude (Amari, 1977;
Ermentrout, 1998). Using a stochastic neural field model of a bump attractor network with noise, we can
develop explicit formulae for most of these results using asymptotic methods.

2 Bump attractor networks

Bump attractor networks were originally developed as general models of recurrent neuronal circuits that
can support spatiotemporal patterns of activity (Wilson and Cowan, 1973; Amari, 1977). Since then
they have been used to represent activity subserving spatial working memory (Camperi and Wang, 1998;
Compte et al, 2000) and visual orientation processing (Ben-Yishai et al, 1995). We consider a spatially
organized neural field model where the positions of neurons correspond to their preferred stimulus ori-
entation. We focus on a ring architecture, but we believe these ideas will extend to more general models.

Consider a single population which incorporates local excitation and broadly tuned inhibition (Amari,
1977; Ben-Yishai et al, 1995; Ermentrout, 1998)

∂u(x, t)

∂t
= −u(x, t) +

∫ π

−π
w(x, y)f(u(y, t))dy + I(x, t). (2.1)

Here u(x, t) is the total synaptic input to spatial location x ∈ [−π, π] at time t. The integral kernel,
w(x, y), represents the synaptic feedback from the whole network which encodes the strength of connec-
tions from y to x. For a translationally symmetric synaptic weight function, w(x, y) = w̄(x − y), it can
be shown that bump solutions will be neutrally stable to translations in position (Amari, 1977; Ermen-
trout, 1998; Veltz and Faugeras, 2010). This relies on the assumption of a spatial homogeneity in the
net excitability of any particular neuron in the network (Renart et al, 2003; Kilpatrick and Ermentrout,
2013). For simplicity, we use a unimodal synaptic weight function

w(x, y) = w0 + w1 cos (x− y), (2.2)

where w0 represents the amplitude of broadly tuned inhibition, and w1 represents the amplitude of
locally tuned excitation. Results on the existence and stability of stationary bump solutions can easily
be extended to synaptic weights with many more modes (Veltz and Faugeras, 2010). However, the
anatomical structure of recurrent connectivity is not known at such a fine level of detail (Rao et al,
2000). We therefore use canonical functions that represent the short range excitation and broad inhibition
known to exist.

The nonlinearity, f, is the firing rate function which maps the synaptic inputs, u, to a resulting
fraction of active neurons (or probability of activation of a single neuron). Typically, f is a saturating,
non-negative function (Coombes and Owen, 2004; Bressloff, 2012). In this study, we consider a piecewise
linear firing rate function of the form (Hansel and Sompolinsky, 1998; Pinto and Ermentrout, 2001a;
Kilpatrick and Bressloff, 2010)

f(u) =


0, if u < θ

s(u− θ), if θ ≤ u ≤ 1
s + θ

1, if u > 1
s + θ,

(2.3)

where s is the gain parameter, and θ the threshold. This choice will allow for a straightforward con-
struction of a network capable of storing a continuum of bump amplitudes. In typical analyses of the
spatiotemporal dynamics of neural fields, the parameters in Eq. (2.3) are chosen so that the underlying
space-clamped system is bistable (Hansel and Sompolinsky, 1998; Pinto and Ermentrout, 2001a). Since
we assume the population u is quite large, we make the assumption θ = 0 throughout this study, so
arbitrarily weak inputs always activate a small fraction of the population (Hansel and Sompolinsky,
1998).

In addition, we will analyze a two population network containing separate excitatory and inhibitory
populations. The model we employ ignores inhibitory-inhibitory interactions – the small proportion of

3



inhibitory-inhibitory synaptic connections observed in prefrontal cortex is not expected to alter our
results substantially (Somogyi et al, 1998). Thus, we consider the system of integro-differential equations
(Pinto and Ermentrout, 2001b)

∂u(x, t)

∂t
= −u(x, t) +

∫ π

−π
wee(x, y)f(u(y, t))dy −

∫ π

−π
wie(x, y)v(y, t)dy + I(x, t)

τ
∂v(x, t)

∂t
= −v(x, t) +

∫ π

−π
wei(x, y)f(u(y, t))dy, (2.4)

where u(x, t) is the total synaptic input to the excitatory network and v(x, t) is the total synaptic input
to the inhibitory network. The integral kernel, wee, is the synaptic strength of the excitatory network
onto itself, wei is the strength of the excitatory network onto the inhibitory network, and wie is the
strength of the inhibitory network onto the excitatory network. Additionally, τ is the inhibitory time
constant which denotes the speed at which inhibition acts on the excitatory population. We will consider
weight functions of the form

wee(x) = w̄ee(1 + cosx)

wei(x) = w̄ei(1 + cosx)

wie(x) = w̄ie (2.5)

where w̄ee,w̄ei,w̄ie > 0. These functions are non-negative. Constant inhibition was chosen both to repre-
sent the broader tuning of inhibition compared to excitation, and to ease mathematical analysis.

We note that in the limit of fast inhibition, τ → 0, Eq. (2.4) reduces to

∂u(x, t)

∂t
= −u(x, t) + (wee(x)− wie(x) ∗ wei(x)) ∗ f(u(x, t)) + I(x, t)

v(x, t) =

∫ π

−π
wei(x, y)f(u(y, t))dy. (2.6)

Here the first equation is equivalent to the single population case in Eq. (2.1), and the second equation
has no impact on stability. Therefore, the study of a single population can provide insight into the
behavior of the two population network.

We first describe the general procedure for constructing stationary bump solutions with arbitrary
firing rate and weight functions in the network (2.1). In the absence of external input, we look for the
stationary bump solutions, u(x, t) = U(x), by plugging into Eq. (2.1) and obtaining

U(x) =

∫ π

−π
w(x, y)f(U(y))dy. (2.7)

Since U(x) must be periodic we expand it in a Fourier series

U(x) =

N∑
k=0

Ak cos (kx) +

N∑
l=1

Bk sin (kx) (2.8)

where N is the maximal mode. The assumption of there being a finite number of terms in the Fourier
expansion for U(x) relies on the weight function w(x, y) having a finite Fourier expansion. This is rea-
sonable since most typical smooth weight functions can be well approximated by a few terms in a Fourier
series (Veltz and Faugeras, 2010). Doing so, allows us to always construct solvable systems for the coef-
ficients of the bump and its stability. In the most general case for a spatially homogeneous weight kernel
we write

w(x, y) = w̄(x− y) =

N∑
k=0

wk cos (k(x− y)) =

N∑
k=0

wk [cos (kx) cos (ky) + sin (kx) sin (ky)] , (2.9)

so that

Ak = wk

∫ π

−π
cos (kx)f(U(x))dx, Bl = wl

∫ π

−π
sin (lx)f(U(x))dx. (2.10)
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Since the system is translationally symmetric, solutions centered at any position imply a translated
solution of that same shape exists. In addition, the system (2.1) will be reflection symmetric as well
(Amari, 1977). With this in mind, we look solely for even solutions (Amari, 1977; Veltz and Faugeras,
2010), so that Bl = 0 for all l, and (2.8) becomes

U(x) =

N∑
k=0

Ak cos (kx). (2.11)

By requiring self-consistency we have that

Ak = wk

∫ π

−π
cos (kx)f

(
N∑
k=0

Ak cos (kx)

)
dx. (2.12)

In general, numerical methods must be used to solve for the coefficients. However for particular
functions the solutions can be found analytically as we show in subsequent sections. In addition, we can
typically compute the spectrum of the linear system governing perturbations of the bump (Coombes and
Owen, 2004; Folias and Bressloff, 2004; Veltz and Faugeras, 2010), which yields relationships between
the eigenvalues determining bump stability and parameters of w and f . It is then straightforward to
tune parameters to attain neutral stability along the two eigendirections of interest: one corresponding
to translations of the bump (position) and the other corresponding to expansions/contractions of the
bump (amplitude). We start by demonstrating this in a single population model.

3 Neutral stability in a single population

We first derive conditions for a network that supports bump solutions with a continuum of possible
amplitudes. We find that the parameters of the network must be tuned precisely. We find that recurrent
excitation must be inversely proportional to the gain of the firing rate function. The resulting network
supports a continuum of bump amplitudes, and is capable of encoding certainty in the level of initial
activation. This initial activation is controlled by both the duration of cue exposure, and the contrast
(intensity) of the cue. That is, longer cue times and/or higher contrast cue lead to higher initial amplitude,
corresponding to higher certainty. Finally, we examine the dynamics of bumps during the delay period
using a stochastic neural field equation with additive white noise. We find that the spatial diffusion of the
bump depends on its amplitude, and stronger initial activation results in more stable bumps. This has
interesting implications for working memory: The greater the initial activation, the greater the certainty,
and the better the stimulus is remembered during the delay period.

3.1 Stationary Bump Solution

First we construct stationary bump solutions in the absence of external input and noise by plugging the
stationary solution u(x, t) = U(x) into Eq. (2.1) assuming a unimodal weight function given in Eq. (2.2).
We obtain

U(x) =

∫ π

−π
(w0 + w1 cos(x− y)) f(U(y))dy. (3.1)

We then write,

U(x) = A0 +

N∑
k=1

Ak cos (xk) +

N∑
k=1

Bk sin (xk), (3.2)

where N is the maximum mode of U(x), and find that

A0 = w0

∫ π

−π
f(U(y))dy,

A1 = w1

∫ π

−π
cos yf(U(y))dy,

B1 = w1

∫ π

−π
sin yf(U(y))dy, (3.3)
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and Ak = Bk = 0 for k 6= 0, 1. In particular we would like to restrict our analysis to even stationary
bump solutions, and we thus set B1 = 0. Since f(U(x)) is then even, the last integral in (3.3) will be
zero, making the equation for B1 self-consistent.

Given the piecewise linear firing rate function in Eq. (2.3), it is useful to set certain conditions on
the stationary bump solution U(x). To start, we consider bump solutions where 0 ≤ U(x) ≤ 1

s . In other
words, we will consider strictly positive bumps U(x) whose peaks lie below the saturating threshold of
(2.3). We will now show that excitation must properly balance inhibition as well as the gain of the firing
rate function in order to attain a line of neutrally stable bump amplitudes. When 0 ≤ U(x) ≤ 1

s , Eq. (3.3)
becomes

A0 = 2πw0sA0

A1 = πw1sA1 (3.4)

where |A0| ≥ A1, so that U(x) > 0 for all x. We additionally require that A1 > 0, so that the peak of
the bump corresponds to the stored spatial position. To ensure that a continuum of values of (A0, A1)
exist that solve Eq. (3.4) in this case, we require that s = 1

πw1
and w1 = 2w0. Thus, excitation w1 must

properly balance inhibition and the tuning of the firing rate gain s must be inversely proportional to
excitation for proper parameter balance.

Next, we will examine solutions that obey the restriction U(x) ≤ 1
s , but have some values at which

U(x) < 0. This corresponds to bumps in which only a portion of the population is active. Again, we will
show that the recurrent excitation in the network must be properly balanced by the gain of the system
to yield a continuum of allowable bump amplitudes. From our analysis in section 2, we can conclude that
if the synaptic weight function w is unimodal, then U(x) may be unimodal as well and the solution will
exhibit two roots, U(±a) = 0. Then the system of equations (3.3) becomes

A0 = 2sw0 [aA0 +A1 sin a]

A1 = sw1 [A0 sin a+ aA1] . (3.5)

Requiring self-consistency implies that either A1 = A0 or A0 = 0 and A1 <
1
s . Therefore, we must either

have that

U(x) = A(1 + cosx), (3.6)

or

U(x) = A cosx. (3.7)

Since equation (3.6) satisfies the more restrictive condition 0 ≤ U(x) ≤ 1
s that we have already considered,

we will focus on bump solutions of the form given by Eq. (3.7). To obtain solutions of this form, we must
have w0 = 0. Now using Eq. (3.3) we find that

A =

sAw1

[
π
2 − cos−1

(
1
sA

)
− 1

sA

√
1−

(
1
sA

)2]
+ 2w1

√
1−

(
1
sA

)2
, for sA > 1,

sAw1
π
2 , for sA ≤ 1,

which requires that w1 = 2
πs . This means that recurrent excitation must be inversely proportional to the

gain of the system. When sA ≤ 1 we have a continuum of solutions for A ∈ [0, 1
s ] that are all stationary

solutions. When sA > 1 there is no solution for A for the given fixed value of s. Thus the only fixed points
are in the interval [0, 1

s ] as illustrated in Fig. 1A. As we will show in the next section, any amplitude
above the threshold will decay back down to the boundary of the line attractor (red dashed plot in Fig.
1A). We also illustrate in Fig. 1B, and show in the stability analysis, that any phase shifted bump will
be neutrally stable as well. Thus we have a two-dimensional attractor surface on the closed disc of radius
1
s each point of which corresponds to a bump solution.
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Fig. 1 Stationary Bump Solutions. (A) Blue and black indicate neutrally stable solutions for U(x) while red indicates
unstable solutions that are attracted to the boundary of the line attractor. (B) Polar plot of neutrally stable region, with
the amplitude A as the radial parameter and ∆ as phase parameter. The grey area shows where solutions of the form
A cos (x−∆) are neutrally stable.

3.2 Stability of Bump Solution

To show that the solutions we described above are neutrally stable, we carry out a linear stability analysis
of the stationary bump solutions U(x) of Eq. (2.1). In particular, we study the temporal evolution of
small, smooth, separable perturbations eλtψ(x) by plugging in the linear expansion

u(x, t) = U(x) + ψ(x)eλt (3.8)

where ||ψ(x)|| � 1. Since ψ(x) must be periodic, we expand it in a Fourier series

ψ(x) =

N∑
k=1

Ak cos kx+

N∑
k=1

Bk sin kx. (3.9)

The perturbed bump solution given in Eq. (3.8) can then be plugged into Eq. (2.1) and linearized to
yield the general spectral problem (Ermentrout, 1998; Veltz and Faugeras, 2010)

(λ+ 1)ψ(x) =

∫ π

−π
w(x, y)f ′(U(y))ψ(y)dy (3.10)

for the stability of the bump. The associated coefficients of the expansion in Eq. (3.9) are then determined
by the linear system

Ak = wk

∫ π

−π
cos(kx)f ′(U(x))ψ(x)dx, Bl = wl

∫ π

−π
sin(lx)f ′(U(x))ψ(x)dx, (3.11)

where k, l = 1, ..., N . Solutions of this system, along with the associated λ, are eigensolutions of Eq. (3.10).
We can directly compute the eigenvalues associated with the stability of bumps in the case of the weight
function in Eq. (2.2) so that

(λ+ 1)ψ(x) = w1

∫ π

−π
cos (x− y)f ′(U(y))ψ(y)dy. (3.12)

Analyzing solutions (λ, ψ) of Eq. (3.12) is equivalent to determining the elements of the spectrum of
the linear system in the vicinity of the bump. We are mainly interested in the point spectrum of the
linear operator in Eq. (3.12), since the sign of the real part of λ for these solutions will determine the
associated stability of stationary bump solutions (see (Coombes and Owen, 2004; Veltz and Faugeras,
2010) for detailed discussions of the partitioning of spectra in neural field models). In particular, we
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examine the stability of stationary bump solutions of the form U(x) = A cosx when the firing rate
function has the form given in Eq. (2.3). Hence,

(λ+ 1)A1 =

A1sw1

[
π
2 − cos−1

(
1
sA

)
− 1

sA

√
1−

(
1
sA

)2]
, for sA > 1,

A1sw1
π
2 , for sA ≤ 1,

(3.13)

(λ+ 1)B1 =

B1sw1

[
π
2 − cos−1

(
1
sA

)
+ 1

sA

√
1−

(
1
sA

)2]
, for sA > 1,

B1sw1
π
2 , for sA ≤ 1,

(3.14)

and Ak = Bk = 0 for k 6= 1 and A0 = 0. Now, bump solutions of Eq. (2.1) will be neutrally stable to
both even and odd perturbations when parameters in Eqs.(3.13–3.14) are such that some solutions have
Reλ = 0 and others have Reλ < 0.

We show that for the conditions we derived in the previous section, when A ∈ [0, 1
s ], this is the case.

It is easy to see that if A ≤ 1
s , we obtain λ = 0 corresponding to both even and odd perturbations by

requiring that w1 = 2
πs as was the condition for finding the stationary amplitudes in section 3.1. When

A > 1
s , we find

λo =
2

π

− cos−1

(
1

sA

)
− 1

sA

√
1−

(
1

sA

)2
 < 0, (3.15)

λe =
2

π

− cos−1

(
1

sA

)
+

1

sA

√
1−

(
1

sA

)2
 < 0, (3.16)

so that the bump is linearly stable in this region. Thus if the amplitude of the bump exceeds this
threshold, it will decay back down to 1

s . Therefore, the saturating threshold 1/s sets an upper limit on
the certainty that can be encoded by the amplitude A. The two-dimensional surface of hence consists of
neutrally stable bumps to which all solutions are attracted.

3.3 Integrating Input

In an oculomotor delayed response task, an observer is presented with a spatial cue, for a time period
T0, during which the position of the cue must be remembered. During this period, the cue location is
encoded in the network activity by integration of the stimulus. By the end of the presentation a bump
of activity arises setting the initial condition for the solution during the delay period. We next propose
a way of determining how the cue is integrated by the network. More specifically we study how the
amplitude of the bump evolves during this integration period and how it evolves during the delay period,
once the cue disappears. We assume the stimulus current has the form

I(t) = I0(t) (H(t)−H(t− T0)) cosx, (3.17)

so that input starts at t = 0, ends at t = T0 and has magnitude I0(t). We write the solution to Eq. (2.1)
in the form

u(x, t) = A(t) cosx.

Substituting this into Eq. (2.1) we find

Ȧ(t) =

{
I0(t), if T0 ≤ tmax,
g(t), if T0 > tmax,

(3.18)

where g(t) is the piecewise function

g(t) =


I0(t), if t < tmax,

I0(t)− sA(t)w1

[
cos−1

(
1

sA(t)

)
+ 1

sA(t)

√
1−

(
1

sA(t)

)2
]

+ 2w1

√
1−

(
1

sA(t)

)2

, if t > tmax,

(3.19)
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Fig. 2 The integration of constant external input I(t) = I0 lasting for T0 time units by the single population network
(2.1). (A) The amplitude of the bump in response to a current injection of the form (3.17). (B) Bump solution as t→∞.

and tmax is the time at which A(t) = 1
s . We see that, in the line attractor region, the network simply

integrates the amplitude of I(t). Numerical methods must be employed to solve for A(t) when it exceeds
this value. However for amplitudes beyond this range, solutions are attracted toward the boundary of
the line attractor, and hence

lim
t→∞

A(t) =

{∫ T0

0
I0(t), if T0 ≤ tmax,

πw1

2 , if T0 > tmax.
(3.20)

Typically, in an experiment, an observer would be exposed to the spatial cue for a short time, T0.
Furthermore the cue would be at full contrast instantly. We therefore set I0(t) ≡ I0 to be constant, and
find from Eq. (3.18) that if T0 ≤ tmax then

A(t) =

{
I0t, for t ≤ T0,

I0T0, for t > T0.
(3.21)

It is easy to find that

tmax =
1

sI0

by solving A(tmax) = 1
s .

In general, the integration of the spatial cue has a very important consequence in terms of encoding
certainty. As mentioned above, experimental evidence suggests that higher uncertainty is preceded by
lower neuronal activity and vice versa. Thus we show here that in our model, longer cue exposure leads
to greater bump amplitudes which we interpret as greater initial certainty. Additionally, greater cue
contrast, I0, will also lead to larger bump amplitudes. Therefore we can reach the same bump amplitudes
for shorter cue times by increasing the contrast of the cue. It is also important to note that the amplitude
eventually saturates to a maximum value, even in the presence of infinite cue time (see Fig. 2A). Therefore
we always have an upper bound on the amount of transient initial certainty, corresponding to transient
high values of bump amplitude. Once the cue is turned off the amplitude relaxes to the boundary of the
line attractor set by the saturating threshold 1/s and corresponding to the maximal long-term certainty
of the system.

3.4 Diffusion of Bump in a Single Population Network

Cortical neurons in vivo typically have high variability in their spike train output (Softky and Koch,
1993), arising from channel noise (White et al, 2000) as well as a high level of background synaptic input
not linked to a circuit’s immediate task (Faisal et al, 2008). Effects of these fluctuations are typically
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incorporated into neural field models by considering finite sized corrections to the mean field (Ginzburg
and Sompolinsky, 1994; El Boustani and Destexhe, 2009; Bressloff, 2009). Truncating stochastic terms to
linear order then yields Langevin equations that can be analyzed using asymptotic techniques for stochas-
tic partial differential equations (Hutt et al, 2008; Bressloff, 2012). Here, we consider a phenomenological
model that incorporates fluctuations into a neural field model, which has recently been used to study
the effects of noise on spatiotemporal patterns (Hutt et al, 2008; Bressloff and Webber, 2012; Kilpatrick
and Ermentrout, 2013)

dU(x, t) =

[
−U(x, t) +

∫ π

−π
w(x− y)f(U(y, t))dy

]
dt+ ε1/2dW (x, t), (3.22)

where
〈dW (w, t)〉 = 0, 〈dW (x, t)dW (y, s)〉 = C(x− y)δ(t− s)dtds, (3.23)

and ε� 1 is the amplitude of noise. In our analysis, we use an ansatz originally used to study the effects
of noise on wave propagation in stochastic reaction-diffusion equations (Armero et al, 1998). In line with
previous studies (Armero et al, 1998; Bressloff and Webber, 2012; Kilpatrick and Ermentrout, 2013), we
assume that the noise term leads to diffusion of the bump’s position. In addition, due to the additional
neutrally stable direction associated with the bump’s amplitude, we assume the amplitude will diffuse
in response to noise too. With this in mind we can express the solution, U , as the sum of a fixed bump
profile, U , shifted in its phase by ∆(t) (which represents the remembered position), increased/decreased
in amplitude by amount ξ(t), and higher order time-dependent fluctuations ε1/2Φ+ εΦ1 + ε3/2Φ2 + ... in
the profile of the bump. Hence, we write

U(x, t) = (1 + ξA(t))U(x−∆(t)) + ε1/2Φ(x−∆(t), t), (3.24)

where, for convenience, we use the normalized stochastic variable

ξA(t) =
ξ(t)

A0
. (3.25)

Plugging this into Eq. (3.22) we get

dΦ(x, t) = ε−1/2U ′(x)d∆(t) + LΦ(x, t)− ε−1/2dξA(t)U(x)

+ε−1/2ξA(t)LU(x) + ε−1/2ξA(t)U ′(x)d∆(t) + dW (x, t), (3.26)

where

Lp(x) = −p(x) +

∫ π

−π
w(x− y)f ′(U(y))p(y)dy. (3.27)

In the case of the weight function given by Eq. (2.2) tuned so that the amplitude of the bump is neutrally
stable, we also have that LU(x) = 0. Then Eq. (3.26) can be rewritten as

dΦ(x, t) = ε−1/2U ′(x)(1 + ξA(t))d∆(t) + LΦ(x, t)− ε−1/2dξA(t)U(x) + dW (x, t). (3.28)

We can ensure that a bounded solution exists by requiring that the inhomogeneous part of Eq. (3.28) be
orthogonal to all elements of the nullspace of the adjoint operator L∗, (Bressloff, 2001; Kilpatrick and
Ermentrout, 2013), where

L∗q(x) = −q(x) + f ′(U(x))

∫ π

−π
w(x− y)q(y)dy (3.29)

Therefore, the equation defining the elements ϕ(x) of the nullspace of L∗ is

ϕ(x) = f ′(U(x))

∫ π

−π
w(x− y)q(y)dy. (3.30)

To identify the nullspace elements of L∗, recall that we have required neutral stability (λ = 0) with
respect to the linear operator L, defined in Eq. (3.27), for an odd φo(x) and even φe(x) eigenfunction, so

φj(x) =

∫ π

−π
w(x− y)f ′(U(y))φj(y)dy, j = o, e. (3.31)
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Setting ϕj(x) = f ′(U(x))φj(x) (j = o, e) in Eq. (3.30), we have

ϕj(x) = f ′(U(x))φj(x) = f ′(U(x))

∫ π

−π
w(x− y)f ′(U(y))φj(y))dy, j = o, e, (3.32)

which holds according to Eq. (3.31). Thus, there are two functions that span the nullspace of L∗: one
even function, ϕe(x), and one odd function, ϕo(x). Taking the inner product of both sides of Eq. (3.28)
with respect to each of these functions yields the following equations:∫ π

−π
ϕo(x)

[
U ′(x)(1− ξA(t))d∆(t) + ε1/2dW (x, t)

]
dx = 0,∫ π

−π
ϕe(x)

[
−U(x)dξA(t) + ε1/2dW (x, t)

]
dx = 0, (3.33)

since U(x) is even and U ′(x) is odd. Solving for d∆(t) and dξA(t), we find that

d∆(t) = − ε1/2

1 + ξA(t)

∫ π
−π ϕo(x)dW (x, t)dx∫ π
−π ϕo(x)U ′(x)dx

, (3.34)

dξA(t) = ε1/2

∫ π
−π ϕe(x)dW (x, t)dx∫ π
−π ϕe(x)U(x)dx

, (3.35)

and we see that the stochastic variable ∆(t) depends on ξ(t). Therefore ∆(t) will not undergo linear
diffusion.

We proceed by first computing the distribution of ξ(t), then and use it to find the distribution of
∆(t). Since 〈ξ(t)〉 = 0 (the additive noise we apply is white in time), computing the variance of ξ(t) we
find that it evolves according to pure diffusion since

〈ξ(t)2〉 = εA2
0

∫ π
−π
∫ π
−π ϕe(x)ϕe(y)〈W (x, t)W (y, t)〉dxdy[∫ π

−π ϕe(x)U(x)dx
]2 t,

= Dξ(ε)t (3.36)

Using Eq. (3.23) we write the diffusion coefficient as

Dξ(ε) = εA2
0

∫ π
−π
∫ π
−π ϕe(x)ϕe(y)C(x− y)dxdy[∫ π
−π ϕe(x)U(x)dx

]2 . (3.37)

Note that since L∗ϕe(x) = L∗ϕo(x) = 0, we use Eq. (3.29) and the general weight function given by
Eq. (2.9) to find that

ϕo(x) = f ′(U(x)

N∑
k=1

Sk sin (kx),

ϕe(x) = f ′(U(x)

N∑
k=1

Ck cos (kx), (3.38)

where

Sk = wk

∫ π

−π
sin (kx)ϕo(x),

Ck = wk

∫ π

−π
cos (kx)ϕe(x). (3.39)

This system can in general be solved using methods of linear algebra, (Veltz and Faugeras, 2010; Kil-
patrick and Ermentrout, 2013). For the weight function w(x, y) = w1 cos (x− y) the system simplifies
to

ϕo(x) = w1Sf ′(A0 cosx) sinx,

ϕe(x) = w1Cf ′(A0 cosx) cosx. (3.40)
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Therefore, we can solve Eq. (3.36) by first computing the integral in the denominator as∫ π

−π
ϕe(x)U(x)dx = w1CA0

∫ π

−π
f ′(A0 cosx) cos2 xdx =

π

2
sw1CA0, (3.41)

where we impose the condition for neutral stability, s = 2
πw1

. Thus, Eq. (3.36) becomes

Dξ(ε) = ε

∫ π

−π

∫ π

−π
cosx cos yf ′(U(x))f ′(U(y))C(x− y)dxdy. (3.42)

We can approximate ∆(t) by expanding the ξA(t) dependent term in Eq. (3.34) to second order, so

d∆(t) = −ε1/2
(
1− ξA(t) + ξA(t)2

) ∫ π−π ϕo(x)dW (x, t)dx∫ π
−π ϕo(x)U ′(x)dx

, (3.43)

where we know that 〈ξA(t)〉 = 0 and 〈ξA(t)2〉 = 1
A2

0
〈ξ(t)2〉. For short timescales we can approximate ∆(t)

as a pure diffusion process by ignoring the ξA(t) terms. We proceed similarly to find Dξ(ε) for unimodal
solutions U(x). Noting that U ′(x) = −A0 sinx, we find that

D∆(ε) =
ε

A2
0

∫ π

−π

∫ π

−π
sinx sin yf ′(U(x))f ′(U(y))C(x− y)dxdy. (3.44)

Thus the diffusion coefficient decreases as the inverse square of the initial bump amplitude. Since we
interpreted this amplitude as a measure of certainty, this implies that the greater the certainty of the
stored position the less the position diffuses during the delay period. We have shown that the initial
amplitude can be controlled by the duration and contrast at which the spatial cue presented to an
observer. Therefore longer exposure times along with contrast will determine the accuracy of recall.

3.5 Calculating effective stochastic motion of bumps

We now compute the diffusion coefficients using cosine shaped spatial correlations, C(x−y) = cos (x− y).
Under this assumption, we find that for A0 ∈

[
0, 1

s

]
Dξ(ε) = ε, D∆(ε) =

ε

A2
0

.

As demonstrated by comparing single realizations of the stochastic equation (3.34) in Fig. 3A, bumps with
initially smaller amplitudes (A0 = π/16) diffuse more than bumps with larger amplitudes (A = π/4). In
fact, we can see that both the relationship predicted by Eq. (3.45) and simulations show that the diffusion
of the bump’s position decreases as the initial amplitude increases (Fig. 3B). Theory and simulations
agree well, for noise amplitude of ε = 0.001. To account for dynamics occurring for larger values of ε or
longer timescales, we consider nonlinearities in Eq. (3.34). Additionally we must pay special attention to
deriving the effective stochastic differential equation for ξ(t), as a linear truncation becomes insufficient.

To derive a more accurate approximation of the variances of ∆(t) and ξ(t) in the case of cosine shaped
spatial noise correlations, we propose a more precise ansatz for the stochastic motion of the bump

U(x, t) = U0(x) +A1(t) cosx+A2(t) sinx (3.45)

where both A1(t), A2(t) are stochastic variables. Using the trigonometric identity for the sum of a sine
and a cosine and the initial condition, U0(x) = A0 cos(x), we can write

U(x, t) =
√

(A0 +A1(t))2 +A2(t)2 cos (x−∆(t)) (3.46)

where ∆(t) = tan−1
(

A2(t)
A0+A1(t)

)
. We use the equality, ξ(t) =

√
(A0 +A1(t))2 +A2(t)2−A0, to track the

stochastic variable that measures the displacement of the amplitude from it’s initial point. Therefore as
long as this effective amplitude is in the interval

[
0, 1

s

]
, then

U(x, t) =

∫ π

−π
w(x− y)f(U(y, t))dy, (3.47)
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is satisfied by the condition of neutral stability. Therefore Eq. (3.22) simplifies to

dA1(t) cosx+ dA2(t) sinx = ε1/2(dW1(t) cosx+ dW2(t) sinx), (3.48)

which we rewrite as

dA1(t) = ε1/2dW1(t),

dA2(t) = ε1/2dW2(t). (3.49)

We see that this is equivalent to a 2D diffusion process with initial condition, (A1(0), A2(0)) = (0, 0) and

〈A1(t)2〉 = 〈A2(t)2〉 = εt, (3.50)

〈A1(t)〉 = 〈A2(t)〉 = 0.

Therefore to compute the variance of the amplitude we must compute

〈ξ(t)2〉 − 〈ξ(t)〉2 = A2
0 + 2εt− 〈

√
(A0 +A1(t))2 +A2(t)2〉2, (3.51)

where the last term must be determined using Monte Carlo simulations. Again, we obtain the relationship
that ∆(t) decreases with increasing initial bump amplitude, A0. As shown in Fig. (4B) the Monte Carlo
simulation of the stochastic process ∆(t) agrees well with the full system. Additionally, we see that the
variance of ∆(t) indeed does decrease with initial amplitude, A0. Thus, the certainty of bumps relates
to how sensitive they will be to stochastic fluctuations. More initial certainty (higher A0) translates to
a lower diffusion coefficient across a broad range of noise amplitudes.

4 Obtaining neutral stability through excitatory-inhibitory balance

So far we have considered a network described by Eq. (2.2) which lumps excitatory and inhibitory
cells into a single population. In doing so, we were able to restrict the set of parameters to generate a
network which supported a set of bump solutions with a continuum of amplitudes. We can perform a

Fig. 3 Diffusion of Bump Solution. (A) Space-time plot of bump during the delay period for both low and high initial
amplitude. The bump’s position diffuses more for smaller initial bump amplitude. (B) Variance of the bump center, ∆(t),
and bump amplitude ξ(t) as a function of time as well as the the diffusion coefficient for ∆(t) as a function of initial
amplitude, A0. Other parameters used: ε = .001, s = 2/π, w1 = 1. For the variance plots, A0 = π/4
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similar analysis in a network with two separate populations for excitatory and inhibitory cells, but our
restrictions on parameters simply involve more conditions. As explained in section 2, the single population
network is equivalent to the two population network in the limit of fast inhibition, τ → 0. However, as
inhibition becomes slower, τ > 0, it is no longer clear that stability in the single population implies
stability in the two population network. We will see that the conditions for finding a continuum of fixed
points are exactly the same as in the single population, since the stationary solutions do not depend on
τ . However the equations used in the stability analysis do depend on τ . Excessively slow inhibition can
destabilize stationary bump solutions. Perturbations that translate the position of the bump are always
neutrally stable, due to the underlying translation symmetry of the network (Bressloff, 2001; Kilpatrick
and Ermentrout, 2013). However, generating a network with bumps that are neutrally stable to even
symmetric perturbations depends on conditions that relate to the speed of inhibition.

4.1 Stationary Bump Solution

We now study the excitatory-inhibitory network defined by Eq. (2.4) with synaptic weights determined
by the functions in Eq. (2.5). First we look for even stationary bump solutions of the form

u(x, t) = U(x) = A0 +A1 cosx,

v(x, t) = V (x) = M0 +M1 cosx. (4.1)

Note this ansatz implies time-derivatives ut = vt = 0 in Eq. (2.4). Thus, by substituting in V (x) equation
into the u equation we can generate the single equation

U(x) = (wee(x)− wei(x) ∗ wie(x)) ∗ f(U(x)), (4.2)

where f(x) ∗ g(x) =
∫ π
−π f(x − y)g(y)dy. Therefore, stationary solutions to Eq. (2.4) are the same as

stationary solutions to Eq. (2.1), under the requirement that the assignment of the effective synaptic
weight function

w(x) = wee(x)− wei(x) ∗ wie(x) = w̄ee − 2πw̄eiw̄ie + w̄ee cosx. (4.3)

Fig. 4 Diffusion of Bump Solution. (A) Space-time plot of bump during the delay period for both low and high initial
amplitude. The bump’s position diffuses more for smaller initial bump amplitude. (B) Variance of the bump center, ∆(t),
and bump amplitude ξ(t) as a function of time as well as the the variance for ∆(t), evaluated at t = 20, as a function of
initial amplitude, A0. Other parameters used: ε = .01, s = 2/π, w1 = 1. For the variance plots, A0 = π/4.
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Note that Eq. (4.3) is equivalent to Eq. (2.2) by setting w0 = w̄ee − 2πw̄eiw̄ie and w1 = w̄ee. Therefore,
under an appropriate change of variables, solving Eq. (4.2) is equivalent to solving Eq. (3.1). Therefore,
our results concerning the existence of a continuum of amplitudes concerning Eq. (3.1) should hold here
as well. This means that in order to obtain a line attractor of bump amplitudes, we must have that
A0 = 0 and w̄ee = 2πw̄eiw̄ie (i.e w0 = 0). However, we can still have M0 6= 0. Additionally, analogous to
the single network in Eq. (3.1), we must require that w̄ee = 2

πs . Again, we have

A =

sAw̄ee
[
π
2 − cos−1

(
1
sA

)
− 1

sA

√
1−

(
1
sA

)2]
+ 2w̄ee

√
1−

(
1
sA

)2
, for sA > 1,

sAw̄ee
π
2 , for sA ≤ 1,

(4.4)

and, for the v equation

V (x) = w̄ei

∫ π

−π
(1 + cos (x− y))f(U(y))dy,

so that

M0 =

2sw̄eiA

[
1−

√
1−

(
1
sA

)2]
+ 2w̄ei cos−1

(
1
sA

)
, for sA > 1,

2sw̄eiA, for sA ≤ 1,

M1 =

sAw̄ei
[
π
2 − cos−1

(
1
sA

)
− 1

sA

√
1−

(
1
sA

)2]
+ 2w̄ei

√
1−

(
1
sA

)2
, for sA > 1,

sAw̄ei
π
2 , for sA ≤ 1.

(4.5)

Again, we have a continuum of values for A ∈ [0, πw̄ee

2 ] that are fixed points, and the coefficients for v
will depend on A, and upon substituting values for s we obtain

M0 =
4w̄ie
πw̄ee

A, M1 =
w̄ie
w̄ee

A. (4.6)

To study the way in which the line attractor globally organizes dynamics, we consider effects of
breaking this balance condition in two ways: excess excitation or excess inhibition. As we shall see, too
much inhibition leads to no stable bump solutions whereas too much excitation leads to only a single
stable bump solution. To do this, we define the quantity

w̄ = w̄ee − 2πw̄eiw̄ie (4.7)

and simply consider when w̄ > 0 (excess excitation) and w̄ < 0 (excess inhibition).
First let w̄ < 0 (excess inhibition) and consider when U(x) < 1

s . Then, similar to section 3.1, we find
that

A0 = 2sw̄ [aA0 + sin aA1]

A1 = sw̄ee [sin aA0 + aA1] (4.8)

where a = cos−1
(
−A0

A1

)
and |A0| ≤ |A1|. We must consider the cases when A0 > 0, A0 < 0 and A0 = 0.

If A0 > 0, then since 0 ≤ a ≤ π we know that sin a ≥ 0. Also, we impose that A1 ≥ 0 so that the peak of
the bump corresponds to the remembered location of the stimulus. Then, since w̄ < 0, Eq. (4.8) implies
that A0 equals something negative, which is a contradiction. Now assume that A0 < 0. Then Eq. (4.8)
implies that

a ≥ A1

|A0|
sin a, and a ≥ |A0|

A1
sin a,

which implies that |A0| = A1. Then our only choices are U(x) = A1(cosx− 1) or U(x) ≡ 0. However, if
the former were true, then f(u) ≡ 0 which forces U(x) ≡ 0. Finally it is easy to see that if A0 = 0 then
A1 = 0 for w̄ 6= 0.

Now assume that w̄ > 0 (excess excitation). In the case U(x) < 1
s , we find that the only solution is

U(x) ≡ 0. When U(x) > 1
s for some x, then equation (4.8) becomes

A0 = 2sw̄ [(a− b)A0 + (sin a− sin b)A1] + 2w̄b,

A1 = sw̄ee [(sin a− sin b)A0 + (a− b)A1] + 2w̄ee sin b, (4.9)
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where b = cos−1
(

1−sA0

sA1

)
such that U(b) = 1

s . To simplify the analysis, we will let s = 2
πw̄ee

as was the

condition for the line attractor. We cannot solve the system in Eq. (4.9) analytically, so we compute the
solutions numerically and plot them in Fig. 5. We see that for any given w̄ there is either only a single
solution or two solutions for U(x), therefore there are no line attractors in this case. This means that
the only case that yields a line attractor of bump amplitudes is when w̄ = w̄ee − 2πw̄eiw̄ie = 0, when
recurrent excitation is perfectly balanced by feedback inhibition. Thus, by considering separate excitatory
and inhibitory populations, we see that we must place additional restrictions on the parameters of our
model to attain a continuum of bump amplitudes. In the next section we will compute the stability
of these solutions, showing we must consider the timescale τ of inhibition that feeds back upon the
excitatory population.

Fig. 5 Amplitudes of the stationary bump solutions U(x) = A0 +A1 cosx for varying w̄ values as per equation (4.9). (A)
A0 as a function of w̄. (B) A1 as a function of w̄. Other values used: s = 2

π
, w̄ee = 1

4.2 Stability of Bump Solution

We now perform a stability analysis on the fixed bump solution in Eq. (4.1). We consider the set of
parameters A0 = 0 and A1 = A ∈ [0, 1

s ] that leads to a line attractor of amplitudes. Similar to section
3.2, we study the temporal evolution of small, smooth, separable perturbations, eλtψ(x) and eλtφ(x), by
plugging in the linear expansion

u(x, t) = U(x) + ψ(x)eλt,

v(x, t) = V (x) + φ(x)eλt, (4.10)

where ||ψ(x)||, ||φ(x)|| � 1 and since both solutions must be periodic,

ψ(x) =

N∑
k=0

Ak cos (kx) +

N∑
k=1

Bk sin (kx),

φ(x) =

N∑
k=0

Mk cos (kx) +

N∑
k=1

Nk sin (kx). (4.11)

Plugging the ansatz given by Eq. (4.10) into Eq. (2.4) we obtain

(λ+ 1)ψ(x) = wee ∗ (f ′(U(x))ψ(x))− wie ∗ φ(x),

(τλ+ 1)φ(x) = wei ∗ (f ′(U(x))ψ(x)). (4.12)

Similar to section 3, we analyze the solutions (λ, ψ, φ) to determine the stability of the perturbations by
observing the sign of the real part of λ. By self-consistency of (4.11) with (4.12), we see that when using

16



the weight functions in Eq. (2.5) we have the system

(λ+ 1)A0 = w̄ee

∫ π

−π
(A0 +A1 cos y + B1 sin y) f ′(U(y))dy − w̄ie

∫ π

−π
(M0 +M1 cos y +N1 sin y) dy,

(λ+ 1)A1 = w̄ee

∫ π

−π
cos y (A0 +A1 cos y + B1 sin y) f ′(U(y))dy,

(λ+ 1)B1 = w̄ee

∫ π

−π
sin y (A0 +A1 cos y + B1 sin y) f ′(U(y))dy,

(τλ+ 1)M0 = w̄ei

∫ π

−π
(A0 +A1 cos y + B1 sin y) f ′(U(y))dy,

(τλ+ 1)M1 = w̄ei

∫ π

−π
cos y (A0 +A1 cos y + B1 sin y) f ′(U(y))dy,

(τλ+ 1)N1 = w̄ei

∫ π

−π
sin y (A0 +A1 cos y + B1 sin y) f ′(U(y))dy, (4.13)

where Ak = Bk for k 6= 0, 1. When τ 6= 0, we can compute the integrals and set conditions of the
parameters for the line attractor to find that the system in Eq. (4.13) is equivalent to the linear system

λ


A0

A1

B1

M0

M1

N1

 =



1 4
π 0 −2πw̄ie 0 0

4
π 0 0 0 0 0
0 0 0 0 0 0
1

πw̄ieτ
2

π2w̄ieτ
0 − 1

τ 0 0
2

π2w̄ieτ
1

2πw̄ieτ
0 0 − 1

τ 0

0 0 1
2πw̄ieτ

0 0 − 1
τ




A0

A1

B1

M0

M1

N1

 .

The associated matrix has the characteristic equation

λ2(τλ+ 1)2

(
τλ2 + (1− τ)λ+ 1− 16

π2
τ

)
= 0 (4.14)

from which we obtain only two zero eigenvalues corresponding to odd perturbations (0, 0, 1, 0, 0, w̄ei

w̄ee
)

and even perturbations (0, 1, 0, 4w̄ei

πw̄ee
, w̄ei

w̄ee
, 0). Thus we see that obtaining a zero eigenvalue associated

with even perturbations does not depend on the speed of inhibition, τ . However, neutral stability still
does depend on τ , as it is possible that other eigenvalues associated with even perturbations may have
positive real part. Looking at the other eigenvalues, we have two negative ones, λ− = − 1

τ , corresponding
to perturbations in M1 and N1. Therefore, if we only perturb the inhibitory network, then solutions
will be attracted back toward the fixed bump solutions. The final two eigenvalues can be analyzed by
examining

λ± =
1

2

(
1− 1

τ

)
± 1

2τ

√(
1 +

64

π2

)
τ2 − 6τ + 1. (4.15)

Note that if τ = π2

16 , then we obtain one more zero eigenvalue, however the corresponding eigenvector is
the zero vector. We plot the two eigenvalues determined by Eq. (4.15) in Fig. 7, showing λ− is negative

for all τ whereas λ+ is only negative when τ < π2

16 . Thus we can ensure that all eigenvalues are zero

or have negative real part as long as τ < π2

16 . Note that for a certain range of values for τ we have a
non-zero imaginary component in λ, however both eigenvalues have negative real part so that oscillatory
instabilities never arise.

When τ = 0, then the u equation is equivalent to the single population by letting w1 = wee. The
analysis we performed on the system (2.1) then applies, and we can derive the same conditions for
neutral stability. Thus, we conclude that one of the major differences between networks with one and
two populations is that it is possible to destabilize stationary bumps with sufficiently slow inhibition (τ
large enough). In the case of two populations, the restrictions required to derive a network possessing a
line attractor of bump amplitudes generate a relationship implying a monotone increasing correspondence
between the strength of excitation and inhibition.
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Fig. 6 Stability regions of stationary bumps in two population network, whose amplitudes are determined by equations
(4.3), (4.4). Eigenvalues that determine linear stability are given by (4.14). (A) The line indicates all the values of w̄ee
and s that induce neutral stability in the network. (B) The line w̄ee = 2πw̄iew̄ie divides parameter space into unstable
region (excess inhibition) and stable region (excess excitation). We achieve neutral stability when excitatory and inhibitory
strengths are balanced properly.

Fig. 7 Dependence of eigenvalues, defined by equation (4.15) plotted against τ for (A) λ+ and (B) λ−.

4.3 Stochastic motion of bumps in the two population network

As in the case of the single population network, we now study how fluctuations affect the motion of
bumps in the network (2.4). To do so, we consider a phenomenological model that incorporates noise as
an additive term in a Langevin equation

dU(x, t) =

[
−U(x, t) +

∫ π

−π
wee(x, y)f(U(y, t))dy −

∫ π

−π
wie(x, y)V(y, t)dy

]
dt+ ε1/2dW (x, t)

τdV(x, t) =

[
−V(x, t) +

∫ π

−π
wei(x, y)f(U(y, t))dy

]
dt (4.16)

with

〈dW (x, t)〉 = 0, 〈dW (x, t)dW (y, s)〉 = C(x− y)δ(t− s)dtds, (4.17)

where ε parameterizes the level of noise. Note that, because we could convert the system in Eq. (4.16)
into a single second order stochastic differential equation, it would be redundant to include a noise term
in the V equation. Rather than performing an asymptotic analysis on the system (4.16), we now briefly
present the results of numerical simulations, showing that bumps diffuse in a similar way to the single
population network (see Fig. 8A).
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Fig. 8 Diffusion of bump solution in the two population E-I network. (A) Space-time plot of bump during the delay period
for both the excitatory network, U , and inhibitory network, V. (B) Variances of the bump center (left) and peak of bump
(middle) as well as the variance for ∆(t), evaluated at t = 20, as a function of initial amplitude. Other parameters used:
ε = .01, s = 2/π, w̄ee = w̄ei = 1, w̄ie = 1/2π, τ = .4, A1 = π/4

Fig. 9 (A) Bump extinction occurring when τ = .7. (B) Variance of ∆(t) at t = 20 as a function of τ . Other values used:
ε = .01, s = 2/π, w̄ee = w̄ei = 1, w̄ie = 1/2π, A1 = π/4.

First we note that in the limit of fast inhibition, τ → 0, Eq. (4.16) is equivalent to Eq. (3.22).
Therefore, we would expect identical results for the numerically computed variance of the bump position
and amplitude as compared to the single population model in this limit. Moving away from this limit we
see slightly different behaviors in the variances of the bump center and maximum as shown in Fig. 8B.
First, we see that the variance of the position ∆(t) of the bump scales more quickly than in the single
population network. One reason for this may be that the excitatory and inhibitory populations are not
instantaneously coupled to one another, so the transient behavior of the excitatory population involves
more activation than in the single population network. Next, we note that the variance of the bump
amplitude saturates more quickly than in the single population network. Based on the stability analysis
we have carried out, we speculate that this saturation may arise because the initial build up in variance
is mostly along weakly stable eigendimensions. After this, variance in the amplitude may continue to
build up along the remaining neutrally stable eigendimension, happening at a considerably slower pace.
However, fully understanding this behavior will require studying the stochastic system in depth, which we
leave for future work. Finally, we still see that the variance of the bump center decreases with increasing
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initial amplitude as we saw in the single population. Once again, this implies that a signal that initially
possesses more certainty will be more robust to dynamic fluctuations during the storage period.

We showed in section 4.2 that all the remaining nonzero eigenvalues increase towards zero as τ in-
creases for τ ≤ π2/16. Thus we would expect that as inhibition becomes slower (τ increases), the variance
of the bump’s position would increase due to the stability of the bump to certain odd perturbations be-
comes weaker. We observe this numerically across a broad range of τ values in Fig. 9B. Essentially, when
the inhibitory population does not respond as quickly to transient motion of the excitatory population,
noise causes the bump’s position to alter more rapidly. Additionally, for τ > π/16, one of the eigenvalues
associated with the linear stability of the bump becomes positive. In this case we would expect a total
loss of the instantiated bump solution, which we can associated with a total loss of the remembered
position, as seen in Fig. 9A with τ = .7. Thus, by considering two separate excitatory and inhibitory
populations, we see that the speed of inhibition plays a crucial role in the response of the bump to noise.
Previously, Pinto and Ermentrout (2001a) showed that bumps on an unbounded domain are destabi-
lized by oscillatory instabilities for sufficiently slow inhibition. Here, we extend this work by showing
non-oscillatory instabilities can occur on the bounded domain of a ring, but these instabilities are still
associated with bump extinction.

5 Discussion

We have derived conditions under which networks can support bumps with a continuum of amplitudes.
While the location of the bump represents the stored location of a stimulus, its amplitude can represent
the certainty of this internal representation. These stationary bump solutions are neutrally stable to
perturbations in position as well as amplitude. Our analysis shows that recurrent excitation must be
balanced by inhibition to obtain a network that supports such neutrally stable bumps. When considering
the effects of noise, we find that the bump diffuses away from its initial position. Not only does the
position in orientation space change, but so does the amplitude. Using asymptotic approximations, we
can relate the parameters of the model to the effective amount of diffusion the bump will experience.
Importantly, bumps with larger initial amplitude diffuse less than bumps with smaller initial amplitudes.
Therefore, the amount of certainty initially attached to the stored stimulus determines the fragility of
the memory.

We believe this work contributes to the established claims concerning the importance of tuning
excitation and inhibition in cortical networks to support flexible computations for cognitive tasks (Brunel
and Wang, 2003; Haider et al, 2006; Yizhar et al, 2011). Note that by deriving conditions under which a
network supports a neutrally stable line attractor, we tune parameters of the model so its dynamics lie
right at a bifurcation, hence moving the system to criticality. Pharmacological manipulations of cortical
networks have recently revealed that a precise balance of excitation and inhibition in cortical networks is
crucial for criticality, and in this state a network can maximize the range of inputs it can process (Shew
et al, 2009). The fact that balancing excitation and inhibition in a network can lead to an increase in the
rate of information transfer was originally shown by the work of van Vreeswijk and Sompolinsky (1996).
As opposed to the work of Shew et al (2009), which examines the total transient activation of a network in
response to stimuli, we are considering the persistent spatially-dependent response of a network encoding
cue position. Nonetheless, we note that by balancing excitation and inhibition, we have created networks
that can transfer additional information about the certainty of a stimulus. Without this balance, the
amplitude of the bump would always relax to a single value.

The networks we considered are not only useful for studying spatial working memory tasks, but could
also be used as neural circuit models of decision making (Gold and Shadlen, 2002). Balancing synaptic
feedback with the timescale of synaptic decay is a well-established way to obtain model networks capable
of performing two-alternative forced choice (2AFC) tasks (Wang, 2002; Bogacz et al, 2006). External
inputs can then be slowly integrated along the direction of their bias. In 2AFC tasks, there are only
two possible directions (Gold and Shadlen, 2002). In this work, we have developed a model capable of
integrating inputs that can be biased to one of a continuum of dimensions around a ring. Thus, we suggest
the two-dimensional attractor we have derived in this work may be ideal for integrating information in the
presence of a continuum of alternatives. Recent recordings from lateral interparietal cortex suggest there
are neurons whose firing rates climb in correspondence to an animal’s certainty about one of a multitude
of decisions (Churchland et al, 2008). Subsequent computational work suggested an entire circuit may
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then be capable of sequentially updating a probability function that provides the instantaneous likelihood
of each alternative being true, based on accumulated input (Beck et al, 2008). Our model may provide a
complementary network implementation of a decision making circuit. Of course, depending on the form
of the synaptic weight function, the accumulating persistent activity would depend differently on the
timing of inputs. We will explore these issues in future studies.
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