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Abstract

Several efforts are currently underway to decipher the connectome or parts
thereof in a variety of organisms. Ascertaining the detailed physiological proper-
ties of all the neurons in these connectomes, however, is outof the scope of such
projects. It is therefore unclear to what extent knowledge of the connectome alone
will advance a mechanistic understanding of computation occurring in these neu-
ral circuits, especially when the high-level function of the said circuit is unknown.
We consider, here, the question of how the wiring diagram of neurons imposes
constraints on what neural circuits can compute, when we cannot assume detailed
information on the physiological response properties of the neurons. We call such
constraints – that arise by virtue of the connectome –connectomic constraintson
computation. For feedforward networks equipped with neurons that obey a deter-
ministic spiking neuron model which satisfies a small numberof properties, we
ask if just by knowing the architecture of a network, we can rule out computations
that it could be doing, no matter what response properties each of its neurons may
have. We show results of this form, for certain classes of network architectures.
On the other hand, we also prove that with the limited set of properties assumed
for our model neurons, there are fundamental limits to the constraints imposed by
network structure. Thus, our theory suggests that while connectomic constraints
might restrict the computational ability of certain classes of network architectures,
we may require more elaborate information on the propertiesof neurons in the
network, before we can discern such results for other classes of networks.

1 Introduction

Recent remarkable experimental advances (Denk and Horstmann, 2004;
Hayworth et al, 2006; Knott et al, 2008; Mishchenko et al, 2010; Turaga et al,
2010; Helmstaedter et al, 2011; Mikula et al, 2012) have brought the prospect of
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ascertaining the connectome or parts thereof closer to reality (Chklovskii et al, 2010;
Kleinfeld et al, 2011; Seung, 2011; Denk et al, 2012; Reid, 2012; Helmstaedter et al,
2013). This data is currently not expected to include information on the detailed
physiological properties of all the neurons in the connectome. Even so, already,
there have been two pioneering studies (Briggman et al, 2011; Bock et al, 2011) that
fruitfully use electron-microscopy reconstructions in conjunction with two-photon
calcium imaging on the same tissue. In (Briggman et al, 2011), the authors used
this approach to rule out certain models of direction selectivity in the retina. The
other study (Bock et al, 2011) examined the orientation-selectivity circuitry in the
cortex and found that inhibitory interneurons received convergent anatomical input
from nearby excitatory neurons that had a broad range of preferred orientations.
Recent work (Takemura et al, 2013) has also used connectomicreconstructions of
the motion detection circuit in the fruit fly visual system, in order to identify cellular
targets for future functional investigations; this is towards the goal of a comprehensive
mechanistic understanding of this circuit. While this broad approach of combining
functional imaging with structural reconstructions creates new opportunities to unravel
structure-function relationships (Seung, 2011), to fruitfully use functional imaging
seems to require that (a) we have an a priori credible hypothesis about at least one
high-level computation that the neural circuit in questionis performing and (b) we
have a way of experimentally eliciting performance of the said computation, usually
via an appropriate stimulus. Unfortunately, neither of these conditions appear to be
satisfied for a majority of neuronal circuits in the brain, especially as one moves away
from the sensory/motor periphery. Suppose, in addition to its wiring diagram, we knew
the detailed physiological response properties of all the neurons in such a neural circuit
to the extent that we could predict circuit behavior (via simulations, for example). This
might provide a way forward towards advancing hypotheses about what high-level
computation(s) the circuit is actually involved in. Regrettably, ascertaining the detailed
physiological response properties of all the neurons in such a network appears to be
out of reach of current experimental technology. The prospects of obtaining the wiring
diagram, however, seem to hold more promise. The question therefore becomes: (1)
What can we learn from the wiring diagram alone, even when thespecific high-level
function of the neural circuit may be unknown? (2) Are there fundamental limits to
what can be learned from the wiring diagram alone, in the absence of more detailed
physiological information?

To investigate these questions, we have studied a network model equipped with
neurons that obey a deterministic spiking neuron model. We ask what computations
networks of specific architecturescannotperform, no matter what response properties
each of their neurons may have. The implication, then, is that, owing to its struc-
ture, the network is unable to effect the computation in question. That is, connectomic
constraints forbid the network from performing the said computation. In addition, to
rule out the possibility that this computation is so “hard” that no network (of any ar-
chitecture) can accomplish it, we stipulate the need to demonstrate that there exists a
network (of a different architecture) comprising simple neurons that can indeed effect
this computation. The goal of this paper is to establish results of this form for various
network architectures, after setting up a mathematical framework within which these
questions can be precisely posed. As a first simplifying step, in this paper, we limit our
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study to feedforward networks of neurons. Having started with this goal, however, we
also find that with the small number of basic properties assumed for our model neu-
rons, there are fundamental limits to the computational constraints imposed by network
structure, in certain cases. In particular, we prove that, constrained only by the prop-
erties in the current neuron model, every feedforward network, of arbitrary size and
depth, has an equivalent feedforward network of depth equalto two that effectsexactly
the same computation. The implication of this result is thatwe need more elaborate
information about the properties of the neurons before connectomic constraints on the
computational ability of such networks can be discerned.

Before we can examine these questions, we are confronted with the problem of
having to define what computation exactly means, in this context. Physically, neurons
and their networks are simply devices that receive spike-trains as input, and in turn
generate spike-trains as output. It is this translation from spike-trains to spike-trains
that characterizes information processing and indeed evencognition in the brain. It is
tempting to view a feedforward network as atransformation, which is to say a function,
that associates auniqueoutput spike train with each combination of afferent input spike
trains, since such networks do not have recurrent loops. This is the intuition we will
seek to make precise.

Since the functional role of single neurons and small networks in the brain is not yet
well understood, we do not make assumptions about particular high-level tasks that the
network is trying to perform; we are just interested in physical spike-train to spike-train
transformations. Likewise, since the kinds of neural code employed are unclear, we
make no overarching assumptions about the neural code either. We study precise spike
times since there is widespread evidence (Strehler and Lestienne, 1986; Rieke et al,
1997, & references therein) that precise spike times play a role in information process-
ing in the brain, in many cases. Indeed, Spike-Timing Dependent Plasticity, a class of
Hebbian learning rules that are sensitive to the relative timing of pre and postsynaptic
spikes have been discovered (Markram et al, 1997; Bi and Poo,1998) that support the
role of precise spike-timing in computation in the brain. Studying spike times also
subsumes cases where spiking rate may be the relevant parameter and therefore there
is no loss of generality in making this assumption.

2 Notation and Preliminaries

In this section, we define the mathematical formalism used todescribe spike-trains and
frequently-used operations on them that, for instance, shift and segment them. The
reader may skim these on the first reading and revisit them if aspecific technical point
needs clarification later on.

An action potentialor spikeis a stereotypical event characterized by the time instant
at which it is initiated in the neuron, which is referred to asits spike time. Spike times
are represented relative to the present by real numbers, with positive values denoting
past spike times and negative values denoting future spike times. Aspike-train~x =
〈x1, x2, . . . , xk, . . .〉 is a strictly increasing sequence of spike times, with everypair of
spike times being at leastα apart, whereα > 0 is the absolute refractory period1 and

1We assume a single fixed absolute refractory period for all neurons, for convenience, although our results
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xi is the spike time of spikei. An empty spike-train, denoted by~φ, is one which has
no spikes. Atime-bounded spike-train(with bound(a, b)) is one where all spike times
lie in the bounded interval(a, b), for somea, b ∈ R. We useS to denote the set of
all spike trains and̄S(a,b) to denote the set of all time-bounded spike-trains with bound
(a, b). A spike-train is said to have agapin the interval(c, d), if it has no spikes in that
time interval. Furthermore, this gap is said to be oflengthd− c.

We use the termspike-train ensembleto denote a collection of spike-trains. Thus,
formally, a spike-train ensembleχ = 〈~x1, . . . , ~xm〉 is a tuple of spike-trains. The
order of a spike-train ensemble is the number of spike-trains in it. For example,
χ = 〈~x1, . . . , ~xm〉 is a spike-train ensemble of orderm. A time-bounded spike-train
ensemble(with bound(a, b)) is one in which each of its spike-trains is time-bounded
(with bound(a, b)). A spike-train ensembleχ is said have agap in the interval(c, d),
if each of its spike trains has a gap in the interval(c, d).

Next, we define some operators to time-shift, segment and assemble/disassemble
spike-trains from spike-train ensembles. Let~x = 〈x1, x2, . . . , xk, . . .〉 be a spike-
train andχ = 〈~x1, . . . , ~xm〉 be a spike-train ensemble. Thetime-shift operator
for spike-trainsis used to time-shift all the spikes in a spike-train. Thus,σt(~x) =
〈x1 − t, x2 − t, . . . , xk − t, . . .〉. Thetime-shift operator for spike-train ensemblesis
defined asσt(χ) = 〈σt(~x1), . . . , σt(~xm)〉. Thetruncation operator for spike-trainsis
used to “cut out” specific segments of a spike-train. It is defined as follows:Ξ[a,b](~x)
is the time-bounded spike-train with bound[a, b] that is identical to~x in the inter-
val [a, b]. Ξ(a,b)(~x), Ξ(a,b](~x) andΞ[a,b)(~x) are defined likewise. In the same vein,
Ξ[a,∞)(~x) is the spike-train that is identical to~x in the interval[a,∞) and has no
spikes in the interval(−∞, a). Similarly,Ξ(−∞,b](~x) is the spike-train that is identi-
cal to ~x in the interval(−∞, b] and has no spikes in the interval(b,∞). Ξ(a,∞)(~x)
andΞ(−∞,b)(~x) are also defined similarly. Thetruncation operator for spike-train en-
semblesis defined asΞ[a,b](χ) = 〈Ξ[a,b](~x1), . . . ,Ξ[a,b](~xm)〉. Ξ(a,b)(χ), Ξ(a,b](χ),
Ξ[a,b)(χ), Ξ[a,∞)(χ), Ξ(−∞,b](χ), Ξ(a,∞)(χ) andΞ(−∞,b)(χ) are defined likewise.
Furthermore,Ξt(·) is shorthand forΞ[t,t](·). Theprojection operator for spike-train
ensemblesis used to “pull-out” a specific spike-train from a spike-train ensemble. It
is defined asΠi(χ) = ~xi, where1 ≤ i ≤ m. Let ~y1, ~y2, . . . , ~yn be spike-trains. The
join operator for spike-trainsis used to “bundle-up” a set of spike-trains to obtain a

spike-train ensemble. It is defined as~y1 ⊔ ~y2 ⊔ . . . ⊔ ~yn =
n⊔

i=1

~yi = 〈~y1, ~y2, . . . , ~yn〉.

3 The Neuron Model

The present work treats the setting in which we know the wiring diagram of a network,
but lack detailed information on the response properties ofits neurons. We then wish to
show computations that the network cannot accomplish,no matter what response prop-
erties its neurons may have. The modeling question we must first address, therefore, is
what kind of neuron model we ought to use in such a context.

While we lack detailed information on each of the neurons in the network, it is
reasonable to assume that all the neurons in the network satisfy a small number of

would be no different if different neurons had different absolute refractory periods.
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elementary properties. For example, spiking neurons are generally known to have an
absolute refractory period and most of them settle to a resting membrane potential
upon receiving no input for sufficiently long, where this resting membrane potential
is smaller than the threshold required to elicit a spike. We wish to have a model that
is contingent on a small number of such basic properties, butwhose responses are
unconstrained otherwise, in order to allow for a large classof possible responses.

Mathematically, we formulate the neuron as an abstract mathematical object that
satisfies a small number of axioms, which correspond to such elementary properties.

Another way to think about the model is as one that brings “under its umbrella”
several other neuron models. These are models that satisfy the properties that our
model is contingent on. In Appendix A, we demonstrate, for instance, that neuron
models such as the Leaky Integrate-and-Fire Model and the Spike Response Model
SRM0 satisfy these properties up to arbitrary accuracy. Our model can thus be seen as
a generalization2 of these neuron models, specifically one that allows for a much wider
class of responses.

There are also other strong reasons for employing this type of model. Crucially,
it allows the possibility of incrementally adding more properties to the neuron model,
and studying how that further constrains the computationalproperties of the network.
This would model the scenario where we have more detailed knowledge about individ-
ual neuron properties, which might well turn out to be the case with the connectome
projects. While technical hurdles presently lie in the way of inferring, for example, dis-
tributions of ion-channels and neurotransmitter receptors in each neuron using electron
microscopy(Denk et al, 2012), it is conceivable that futureadvances make this possi-
ble, giving us a better sense of the physiological properties of all the individual neurons
in the connectome; other future technological advances mayalso help in this direction.
Furthermore, the need for adding more properties to the model and studying the conse-
quences will become especially apparent towards the end of this paper, when we show
limits to the constraints imposed by the present set of properties assumed in the model.

3.1 Properties

We start off by informally describing the properties that our model is contingent on.
Notable cases where the properties do not hold are also pointed out. This is followed
by a formal mathematical definition of the model. The approach taken here in defining
the model is along the lines of the one in (Banerjee, 2001).

The following are our assumptions:

1. We assume that the neuron is a device that receives input from other neurons
exclusively by spikes which are received via chemical synapses.3

2. The neuron is a finite-precision device with fading memory. Hence, the under-

2Models such as the Leaky Integrate-and-Fire (LIF) and SpikeResponse Model (SRM), in addition to
the constraints in our model have their membrane potential functionP (·) specified outright. In case of the
LIF model, this is specified via a differential equation and in the case of SRM, the specific functional form
is written down explicitly.

3In this work, we do not treat electrical synapses or ephapticinteractions (Shepherd, 2004).
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lying potential function can be determined4 from a bounded past. That is, we
assume that, for each neuron, there exist positive real numbersΥ andρ, so that
the current membrane potential of the neuron can be determined as a function of
the input spikes received in the pastΥ milliseconds and the spikes produced by
the neuron in the pastρ milliseconds. The parameterΥ would correspond to the
timescale at which the neuron integrates inputs received from other neurons and
ρ corresponds to the notion ofrelative refractory period.

3. Specifically, we assume that the membrane potential of theneuron can be writ-
ten down as a real-valued, everywhere-bounded function of the formP (χ; ~x0),
where~x0 is a time-bounded spike-train, with bound(0, ρ) andχ = 〈~x1, . . . , ~xm〉
is a time-bounded spike-train ensemble with bound(0,Υ). Informally, ~xi, for
1 ≤ i ≤ m, is the sequence of spikes afferent in synapsei in the pastΥ mil-
liseconds and~x0 is the sequence of spikes efferent from the current neuron in
the pastρ milliseconds. The functionP (·) characterizes the entire spatiotempo-
ral response of the neuron to spikes including synaptic strengths, their location
on dendrites, and their modulation of each other’s effects at the soma, spike-
propagation delays, and the postspike hyperpolarization.

4. Without loss of generality, we assume the resting membrane potential to be0.

5. Let τ > 0 be the threshold that the membrane potential must reach in order to
elicit a spike. Observe that the model allows for variable5 thresholds, as long as
the threshold itself is a function of spikes afferent in the pastΥ milliseconds and
spikes efferent from the present neuron in the pastρ milliseconds. Furthermore,
when a new output spike is produced, in the model, the membrane potential
immediately goes below threshold. That is, the membrane potential function in
the model takes values that are at most that of the threshold.This simplifies our
condition for an output spike to be that theP (·) merely hits threshold, without
having to check if it hits it from below, since it cannot hit itfrom above. Again,
this is done without loss of generality. Additionally, letλ be a negative real
number that represents a lower-bound on the values that the membrane potential
can take.

6. Output spikes in the recent past tend to have an inhibitoryeffect, in the following
sense6:
P (χ; ~x0) ≤ P (χ; ~φ), for all “legal” χ and~x0.

Thus, our model allows for a wide variety of AHPs. Indeed, theonly constraint
on AHPs is the one given above. That is, suppose, in the first case that at a
certain point in time the neuron received spikes in the pastΥ seconds present in

4We do not treat stochastic variability in the responses of neurons or neuromodulation in this paper.
5In many biological neurons, the membrane potential that thesoma (or axon initial segment) must reach,

in order to elicit a spike is not fixed at all times and is, for example, a function of the inactivation levels
of the voltage-gated Sodium channels. Our model can accomodate this phenomenon, to the extent that this
threshold itself is a function of spikes afferent in the pastΥ milliseconds and spikes efferent from the present
neuron in the pastρ milliseconds.

6This is violated, notably, in neurons that have a post-inhibitory rebound.
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χ as input and did not output any spikes in the pastρ milliseconds. In the second
case, suppose that at a certain point in time the neuron againreceived spikes
in the pastΥ seconds present inχ as input but output some spikes in the past
ρ milliseconds. The condition states that the membrane potential in the second
case must be at most that of the value in the first case. Thus, our results will be
true for any neuron model that has an AHP that obeys this condition.

7. Owing to the absolute refractory periodα > 0, no two input or output spikes
can occur closer thanα. That is, suppose~x0 = 〈x1

0, x
2
0, . . . , x

k
0〉, wherex1

0 < α.
ThenP (χ; ~x0) < τ , for all “legal” χ.

8. Finally, on receiving no input spikes in the pastΥ milliseconds and no output
spikes in the pastρ milliseconds, the neuron settles to its resting potential.That
is,
P (〈~φ, ~φ, . . . , ~φ〉; ~φ) = 0.

A feedforward network of neurons, is a Directed Acyclic Graph where each vertex
corresponds to an instantiation of the neuron model, with the exception of some
vertices, designated as input vertices (which are placeholders for input spike-trains);
one neuron is designated the output neuron. Theorder of a feedforward network is
equal to the number of its input vertices. Thedepthof a feedforward network is the
length of the longest path from an input vertex to the output vertex.

Next, we formalize the above notions into a rigorous definition of a neuron as an ab-
stract mathematical object.

Definition 1 (Neuron). A neuronN is a 7-tuple〈α,Υ, ρ, τ, λ,m, P : S̄m
(0,Υ)×S̄(0,ρ) →

[λ, τ ]〉, whereα,Υ, ρ, τ ∈ R
+ with ρ ≥ α, λ ∈ R

− andm ∈ Z
+. Furthermore,

1. If ~x0 = 〈x1
0, x

2
0, . . . , x

k
0〉 with x1

0 < α, thenP (χ; ~x0) < τ , for all χ ∈ S̄m
(0,Υ)

and for all~x0 ∈ S̄(0,ρ).

2. P (χ; ~x0) ≤ P (χ; ~φ), for all χ ∈ S̄m
(0,Υ) and for all~x0 ∈ S̄(0,ρ).

3. P (〈~φ, ~φ, . . . , ~φ〉; ~φ) = 0.

A neuron is said togenerate a spikewheneverP (·) = τ .

4 Feedforward Networks as Input-to-Output transfor-
mations

As discussed earlier, it is intuitively appealing to view feedforward networks of neurons
as transformations that map input spike-trains to output spike-trains. In this section, we
seek to make this notion precise by clarifying in what sense,if at all, these networks
constitute the said transformations. It will turn out that even single neurons cannot
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t = 0t = t′

spike is absent

Membrane potential

spike is absent
when the 1st input

Membrane potential
with AHP
effects

Membrane potential
after ignoring

AHP effects

Input spike train

Output spike train

Output spike train
when the 1st input

2ρ − δ

τ

τ

τ

1st input spike

PAST ρ − δ/2

Figure 1: This counterexample describes a single neuron which has just one afferent
synapse. Until timet′ in the past, it received no input spikes. After this time, itsinput
consisted of spikes that arrived everyρ− δ/2 milliseconds, where0 < δ ≤ 2(ρ− α).
An input spike alone (if there were no output spikes in the past ρ milliseconds) causes
this neuron to produce an output spike. However, in addition, if there were an output
spike within the pastρ milliseconds, the afterhyperpolarization (AHP) due to that spike
is sufficient to bring the potential below threshold, so thatthe neuron does not spike
currently. We therefore observe that if the first spike of theinput spike-train is absent,
then the output spike-train changes drastically. Note thatthis change occurs no matter
how often the shaded segment in the middle is replicated, i.e. it does not depend on
how long ago the first spike occurred. Thus, the counterexample demonstrates that the
membrane potential at any point in time may depend on the position of an input spike
that occurred arbitrarily long time ago. Note that the inputor the output pattern being
periodic and the two output patterns being phase-shifted isnot a necessary ingredient
of the counterexample; i.e. it is straightforward to construct a (more complicated)
counterexample that exhibits this same phenomenon where neither the input spike-
train nor the output spike-train are periodic and where the two output spike patterns are
not phase-shifted versions of each other.
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correctly be viewed as such transformations, in general. Inthe next section, however,
we show that under biologically-relevant spiking regimes,we can salvage this view of
feedforward networks as spike-train to spike-train transformations.

Let us first consider the simplest type of feedforward network, namely a single
neuron. Observe that our abstract neuron model does not explicitly prescribe an output
spike-train for a given input spike-train ensemble. That is, recall from the previous
section, that the membrane potential of the neuron depends not only on the input spikes
received in the pastΥ milliseconds, it also depends on the output spikes produced
by it in the pastρ milliseconds. Therefore, knowledge of just input spike times in
the pastΥ milliseconds does not uniquely determine the current membrane potential
(and therefore the output spike-train produced from it). Itmight be tempting to then
somehow use the fact that past output spikes are themselves afunction of input and
output received in the more distant past, and attempt to makethe current membrane
potential a function of a bounded albeit larger “window” of past input spikes alone.
The simple counterexample described in Figure 1 shows that this does not work. In
particular, if we attempt to characterize the current membrane potential of the neuron
as a function of past input spikes alone, the current membrane potential may depend
on the position of an input spike that has occurred arbitrarily long time ago in the
past. To sum up, this counterexample proves that, without further restrictions, even a
single neuron cannot be correctly viewed as a bounded-length spike-train to spike-train
transformation.

This pessimistic prognosis notwithstanding, it may seem that if we knew the in-
finite history of input spikes received by the neuron, we should be able to uniquely
determine its current membrane potential. Unfortunately,the situation turns out to be
even more dire – this turns out not to be the case. Before we demonstrate this, we must
return to the issue of what it means for a neuron toproducean output spike-train when
it receives a certain spike-train ensemble as input. That is, suppose the reader had an
instantiation of our neuron model, which in this case would mean the values ofΥ, ρ
andτ and the membrane potential functionP (·). Further, suppose the reader were
given an input spike-train ensembleχ and told that the neuron “produced” the output
spike-train~x0 when driven byχ. Then, all that the reader can do to verify this claim is
to check if the given output spike-train isconsistentwith the input spike-train ensemble
for the given neuron in the following sense. We would go to each point in time where
the neuron spiked and plug intoP (·) the input spikes in the pastΥ milliseconds from
χ, and output spikes from the pastρ milliseconds from~x0 and check if the value of
P (·) equals the thresholdτ . Likewise, for the time points where the output spike-train
does not have a spike, we need to check that this value is less than the threshold. If
the answers are in the affirmative for all time-points we can say that the given output
spike-train isconsistentwith the given input spike-train ensemble with respect to the
neuron in question. However, this still allows the possibility of more than one consis-
tent output spike-train to exist for a given input spike-train ensemble, with respect to a
given neuron. Indeed, we will demonstrate that this possibility can occur and therefore
given the infinite history of input spikes received by the neuron, we cannot uniquely
determine the output spike train produced. Before getting into the counterexample, for
completeness, let us formally define this notion ofconsistency. Recall that〈t〉 denotes
a spike-train with a single spike at time instantt.

9



2ρ − δ

2ρ − δ

PAST

consistent

consistent

Input

First

output

Second

output

τ

τ

ρ − δ/2

Figure 2: The counterexample here is very similar to the one in Figure 1, except that,
instead of there being no input spikes beforet′, we have an unbounded input spike-
train ensemble, with the same periodic input spikes occurring since the infinite past.
The neuron here has the exact same response properties as theone in Figure 1. Ob-
serve that both output spike-trains are consistent with this input, for eacht ∈ R. The
corresponding membrane potential traces appear below eachconsistent output spike
train.
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Definition 2. An output spike-train~x0 is said to beconsistentwith an input spike-train
ensembleχ, with respect to a neuronN〈α,Υ, ρ, τ, λ,m, P : S̄m

(0,Υ) × S̄(0,ρ) → [λ, τ ]〉,
if χ ∈ Sm and the following holds. For everyt ∈ R, Ξt~x0 = 〈t〉 if and only if
P (Ξ(0,Υ)(σt(χ)),Ξ(0,ρ)(σt(~x0)) = τ .

The question, therefore, is the following. For every (unbounded) input spike-train en-
sembleχ, does there exist exactly one (unbounded) output spike train ~x0, so that~x0

is consistent withχ with respect to a given neuronN? As alluded to, the answer turns
out to be in the negative. The counterexample in Figure 2 describes a neuron and an
infinitely7 long input spike-train, which has two consistent output spike-trains.

The underlying difficulty in defining even single neurons as spike-train to spike-
train transformations, with both viewpoints discussed above, is persistent dependence,
in general, of current membrane potential on “initial state”. The way to circumvent
this difficulty would be to impose additional restrictions which render such counterex-
amples untenable. For example, there is the possibility of considering just a subset of
input/output spike-trains, which have the property of the current membrane potential
being independent of the input spikes beyond a certain time in the past. Such a subset
would certainly exclude the examples discussed in this section. This would correspond
to restricting our theory to a certain kind of spiking regime.

In the next section, we come up with a condition that, in effect, restricts spike-trains
to biologically-relevant spiking regimes and prove that this implies independence as
alluded to above. Roughly speaking, the condition is that ifa neuron has had a recent
gap in its output spike-train equal to at leasttwice its relative refractory period, then
its current membrane potential is independent of the input beyond the relatively recent
past. We show that this leads to the notion of feedforward networks as spike-train to
spike-train transformations to be well-defined.

5 The Gap Lemma and Criteria

In this section, we devise a biologically well-motivated condition that guarantees inde-
pendence of current membrane potential from input spikes beyond the recent past. This
condition is used in constructing a criterion for single neurons which when satisfied,
guarantees a unique consistent output spike-train and leads to the view of a neuron as
a transformation that maps bounded-length input spike-trains to bounded-length out-
put spike-trains. After this, similar criteria are defined for feedforward networks, in
general.

For a neuron, the way input spikes that happened sufficientlyearlier affect current
membrane potential is via a causal sequence of output spikes, causal in the sense that
each output spike in the sequence had an effect on the membrane potential while the
subsequent one in the sequence was being produced and the input spike in question had
an effect on the membrane potential, when the oldest output spike in the same sequence
was produced. As a result, when an input spike is moved, this effect could propagate

7The interested reader is referred to Appendix B for a discussion on the issue of infinitely-long input
spike-trains in this context.
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Figure 3: This figure illustrates the idea behind the Gap Lemma. Suppose there exists
a neuron, withΥ andρ being the lengths of input and output windows respectively,
that “effects” the transformation shown above. Let(t′ − t) ≥ Υ. Suppose, the spikes
in the shaded region, which is an interval of lengthρ occurred at the exact same posi-
tion, for all input spike-train ensembles that are identical in the range[t, t′], but have
spikes occurring at arbitrary positions older than time instantt′. Then, the membrane
potential of that neuron att is identical in all those cases. This implies that the spikes
in the shaded region are a function of exactly the input spikes in the interval[t, t′]; in
particular, they are independent of input spikes occurringbeforet′.

across time and cause the output spike train to change drastically. The condition in the
Gap Lemma, in effect, seeks to break the causality in this causal chain.

Figure 3 elaborates the main idea behind the condition. Suppose there exists a
neuron, withΥ andρ being the lengths of input and output windows respectively,that
“effects” the transformation shown in Figure 3. In a nutshell, if there was a guarantee
that spike positions in an interval of lengthρ in the output spike train would remain
invariant to changes in the past input spike-train ensemble, then this would break the
aforementioned causal chain.

The question, of course, is what condition might guarantee such a situation. It turns
out that a gap of length2ρ in the output spike-train suffices, as the next lemma shows.
That is, if the neuron effects a transformation with a2ρ gap, say ending att, present
in the output, then fort′ beingΥ + ρ milliseconds beforet, such that no matter how
input spikes older thant′ are changed, the latter half of the2ρ gap is guaranteed to
have no spikes in each case. Therefore, membrane potential starting att, is the same
in all such cases.2ρ also turns out to be the smallest gap length for which this works.
Figure 4 offers some brief intuition on why a gap of length2ρ suffices to guarantee
independence. The technical details are in the following lemma. A formal proof is
available in Appendix B.

Lemma 1 (Gap Lemma). Consider a neuronN〈α,Υ, ρ, τ, λ,m, P : S̄m
(0,Υ)×S̄(0,ρ) →

[λ, τ ]〉, a spike-train ensembleχ∗ of orderm and a spike-train~x∗
0 which has a gap in

the interval(t, t+ 2ρ), so that~x∗
0 is consistent withχ∗, with respect toN. Letχ be an

arbitrary spike-train ensemble that is identical toχ∗ in the interval(t, t+Υ+ ρ).

8For the sake of simplicity of exposition, assume there is exactly one consistent output spike-train. This
is not a requirement as will become clear in the lemma.

9Formally, this follows from Axiom 2 in the definition of our abstract neuron.
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Figure 4: This figure helps visualize the intuition behind why a gap of length2ρ suffices
to guarantee independence in the Gap Lemma. Suppose a neuronon receiving an input
spike-train ensembleχ∗ “produces”8an output spike-train~x∗

0. Further, suppose,~x∗
0

has a gap of length2ρ ending at time instantt. Now letχ be some input spike-train
ensemble, which is identical toχ∗ in an interval of lengthΥ + ρ ending att. Let
~x0 be the output spike-train ”produced” byχ. Then, the condition guarantees that~x0

has a gap of lengthρ immediately precedingt. Here is why. When the neuron is
being driven byχ∗, clearly, the membrane potential is below threshold at eachtime
instantρ milliseconds beforet. At each such time instant, the neuron has no past
output spikesρ milliseconds previously. Now, when the neuron is being driven byχ
instead, there is no guarantee that the earlier half of the2ρ gap is preserved . Thus,
at each time instantρ milliseconds beforet, the neuron “sees” the same input spike-
train ensembleΥ milliseconds previously as withχ∗, but possibly some past output
spikesρ milliseconds previously. Therefore, it’s membrane potential at each such time
instant may be less than or equal to the corresponding value while the neuron was
being driven byχ∗, since, intuitively, the presence of recent efferent spikes could serve
to afterhyperpolarize the membrane potential9. Thus, since the membrane potential
was already below threshold in this time interval while the neuron was being driven by
χ∗, it is below the threshold, while the neuron is being driven by χ as well.
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Then, every output spike-train consistent withχ, with respect toN, has a gap in the
interval (t, t + ρ). Furthermore,2ρ is the smallest gap length in~x∗

0, for which this is
true.

The Gap Lemma has some ready implications as stated in the corollary below. A
proof is available in Appendix B.

Corollary 1. Consider a neuronN〈α,Υ, ρ, τ, λ,m, P : S̄m
(0,Υ) × S̄(0,ρ) → [λ, τ ]〉, a

spike-train ensembleχ∗ of orderm and a spike-train~x∗
0 which has a gap in the interval

(t, t+ 2ρ) so that~x∗
0 is consistent withχ∗, with respect toN. Then

1. Every~x0 consistent withχ∗, with respect toN, has a gap in the interval(t, t+ρ).

2. Every~x0 consistent withχ∗, with respect toN, is identical to~x∗
0 in the interval

(−∞, t+ ρ), i.e. into the future after time instantt+ ρ.

3. For everyt′ more recent than(t+ ρ), the membrane potential att′, is a function
of spikes inΞ(t′,t+Υ+ρ)(χ

∗).

The upshot of the Gap Lemma and its corollary is that whenevera neuron goes
through a period of time equal to twice its relative refractory period where it has pro-
duced no output spikes it undergoes a “reset” in the sense that its membrane potential
from then on becomes independent of input spikes that are older thanΥ + ρ millisec-
onds before the end of the gap.

Large gaps in the output spike-trains of neurons seem to be extensively prevalent
in the human brain. In parts of the brain where the neurons spike persistently, such
as in the frontal cortex, the spike rate is very low (0.1Hz-10Hz) (Shepherd, 2004).
In contrast, the typical spike rate of retinal ganglion cells can be very high but the
activity is generally interspersed with large gaps during which no spikes are emitted
(Nirenberg et al, 2001).

These observations motivate our definition of a criterion for input spike-train en-
sembles afferent on single neurons. The criterion stipulates that there be intermittent
gaps of length at least twice the relative refractory periodin an output spike-train con-
sistent with the input spike-train ensemble, with respect to the neuron in question. As
we elaborate in a moment, the definition is set up so that for aninput spike-train en-
sembleχ that satisfies aT -Gap criterion for a neuron, the membrane potential at any
point in time is dependent on at mostT milliseconds of input spikes inχ before it.

Definition 3 (Gap Criterion for a single neuron). For T ∈ R
+, a spike-train ensemble

χ is said to satisfy aT -Gap Criterion10 for a neuronN〈α,Υ, ρ, τ, λ,m, P : S̄m
(0,Υ) ×

S̄(0,ρ) → [λ, τ ]〉 if the following is true: There exists a spike-train~x0 with at least one
gap of length2ρ in every interval of time of lengthT −Υ+2ρ, so that~x0 is consistent
with χ with respect toN.

Such input spike-train ensembles also have exactly one consistent output spike-
train. The interested reader is directed to Proposition 1 inAppendix B for a formal
statement and proof of this fact.

10Note that for sufficiently small values ofT (in relation toΥ andρ), noχ may satisfy aT -Gap Criterion.
This is deliberate formulation that will minimize notational clutter in forthcoming definitions.
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Figure 5: Illustration demonstrating that for an input spike-train ensembleχ that sat-
isfies aT -Gap criterion, the membrane potential at any point in time is dependent on
at mostT milliseconds of input spikes inχ before it. Owing to theT -Gap criterion
the distance between the end and start of any two consecutivegaps of length2ρ on the
output spike-train is at mostT −Υ−2ρ. Upto the earlier half of a2ρ gap (whose latest
point is denoted byt′) is dependent on input corresponding to the previous2ρ gap. It
follows that the membrane potential att′ depends only on input spikes in the interval
of lengthT before it, as depicted, owing to the Gap Lemma.

For an input spike-train ensembleχ that satisfies aT -Gap criterion for a neuron,
the membrane potential at any point in time is dependent on atmostT milliseconds of
input spikes inχ before it, as discussed in Figure 5.

With inputs that satisfy theT -Gap Criterion, here is what we need to do to physi-
cally determine the current membrane potential, even if theneuron has been receiving
input since the infinite past: Start off the neuron from an arbitrary state, and drive it
with input that the neuron received in the pastT milliseconds. The Gap Lemma guar-
antees that the membrane potential we see now will be identical to the actual membrane
potential, since the membrane potential is guaranteed to have undergone a “reset” in
the ensuing time.

The Gap Criterion we have defined for single neurons can be naturally extended
to the case of feedforward networks. The criterion is simplythat the input spike-train
ensemble to the network is such that every neuron’s input obeys a scaled Gap crite-
rion for single neurons. Figure 6 explains the idea. Formally, the definition proceeds
inductively, starting with neurons of depth 1.

Definition 4 (Gap Criterion for a feedforward network). An input spike-train ensemble
χ is said to satisfy aT -Gap Criterion for a feedforward network if each neuron in the
network satisfies a(T

d
)-Gap Criterion, when the network is driven byχ, whered is the

depth of the acyclic network.

As with the criterion for the single neuron, the membrane potential of the output
neuron at any point is dependent on at mostT milliseconds of past input, if the input
spike-train ensemble to the feedforward network satisfies aT -Gap criterion. Addition-
ally, the output spike-train is unique. Lemma 2 and its proofin Appendix B make
precise these facts.
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Figure 6: Schematic diagram illustrating how the Gap criterion works for the simple
two-neuron network on the left. The membrane potential of the output neuron att
depends on input received from the “intermediate” neuron, as depicted in the darkly-
shaded region, owing to the Gap Lemma. The output of the intermediate neuron in the
darkly-shaded region, in turn, depends on input it receivedin the lightly-shaded region.
Thus, transitively, membrane potential of the output neuron at t is dependent at most
on input received by the network in the lightly-shaded region.

We thus find ourselves at a juncture where questions we initially sought to ask can
be posed in a self-consistent manner. So, looking back at thebig picture, we had ini-
tially wished to view feedforward networks as transformations that mapped bounded-
length input spike-trains to bounded-length output spike trains. However, we found
that this notion was not always well-defined. We then showed that if we restrict the set
of input spike-trains so they satisfied certain criteria, one can correctly speak of output
spike-trains that such inputs are mapped to, by the feedforward network in question.
We also argued that this restricted set of spike-trains encompasses biologically-relevant
spiking regimes. Thus, feedforward networks can be seen as transformations that map
this restricted set of input spike-trains to output spike-trains. Indeed, this will be the
sense in which feedforward networks are treated as transformations. Next, we formal-
ize these observations and define some notation.

Notation. Given a feedforward networkN , letGT
N be the set of all input spike-train

ensembles that satisfy aT -Gap Criterion forN . Let GN =
⋃

T∈R+ GT
N . Therefore,

every feedforward networkN induces a transformationTN : GN → S that maps
each spike-train ensemble inGN to a unique output spike train in the set of spike-
trainsS. SupposeG′ ⊆ GN . Then, letTN |G′ : G′ → S be the map defined as
TN |G′(χ) = TN (χ), for all χ ∈ G′.

The Gap Criteria are very general and biologically well-motivated. However, given
a neuron or a feedforward network, there does not appear to bean easy way to charac-
terize all the input spike-train ensembles that satisfy a certain Gap Criterion for it. That
is, for a given neuron, whether an input spike-train ensemble satisfies a Gap Criterion
for it seems to depend intimately on the exact form of its membrane potential function.
As a result, a spike-train ensemble that satisfies a Gap criterion for one neuron may not
satisfy any Gap Criterion for another neuron. For a feedforward network, the problem
becomes even more difficult, since intermediate neurons must satisfy Gap Criteria, and
also produce output spike-trains that satisfy Gap Criteriafor neurons further down-
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stream. Furthermore, in order to compare transformations effected by two different
networks, we need to study inputs that satisfy some Gap criterion for both of them, for
otherwise, the notion of a transformation may no longer hold. Now, we sought to ask
what transformationsall feedforward networks with a certain architecture could notdo.
For this, we need to characterize inputs that satisfy a Gap Criterion for all the networks
involved, which seems to be an even more intractable problem.

This brings up the question of the existence of another criterion according to which
the set of spike-train ensembles is easier to characterize and iscommonacross different
networks. Next, we propose one such criterion and show that it consists of spike-train
ensembles which are a subset of those induced by the Gap criteria for all feedforward
networks. Loosely speaking, these are input spike-train ensembles which, before a cer-
tain time instant in the past, have had no spikes. The spike-train ensembles satisfying
the said criterion, which we call the Flush criterion, allowus to sidestep the difficult
issues just discussed. While this is a purely theoretical construct with no claim of bi-
ological relevance, in Section 7, we prove that there is no loss by restricting ourselves
to the Flush criterion. That is, not only is a result proved using the Flush criterion ap-
plicable with the Gap criterion,everyresult true with the Gap criterion can be proved
by using the Flush criterion exclusively.

6 Flush Criterion

The idea of the Flush Criterion is to force the neuron to produce no output spikes
for sufficiently long so as to guarantee that a Gap criterion is being satisfied. This is
done by having a semi-infinitely long interval with no input spikes. This “flushes” the
neuron by bringing it to the resting potential and keeps it there for a sufficiently long
time, during which it produces no output spikes. In a feedforward network, the flush
is propagated so that all neurons have had a sufficiently longgap in their output spike-
trains. Observe that the Flush Criterion is not defined with reference to any feedforward
network and is just a property of the spike-train ensemble. We make this notion precise
below.

Definition 5 (Flush Criterion). A spike-train ensembleχ is said to satisfy aT -Flush
Criterion, if all its spikes lie in the interval(0, T ), i.e. it has no spikes upto time instant
T and since time instant 0.

It turns out that an input spike-train ensemble to a neuron that satisfies a Flush
criterion also satisfies a Gap criterion. The technical details along with a proof are in
Lemma 3 in Appendix B.

Likewise, an input spike-train ensemble to a feedforward network satisfying a Flush
criterion also satisfies a Gap criterion for that network, aselaborated in Lemma 4 which
is available in Appendix B with a proof.

The Flush criterion is a construct made for mathematical expedience and prima
facie does not have any biological relevance. It is a network-independent criterion
which enables us to circumvent difficulties that working with the Gap criterion entailed.
It will soon become clear why it is a useful construction, when we show that it is
equivalent to the Gap criterion insofar as the questions we seek to ask are concerned.
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7 Transformational Complexity

Having laid the groundwork, in this section, we set up a definition that will allow us
to ask if there exists a transformation that no network of a certain architecture could
effect that a network of a different architecture could. It is convenient to formulate
the definition in the following terms. Given two classes11 of networks with the second
class encompassing the first, we ask if there is a network in the second class whose
transformation cannot be performed by any network in the first class. That is, does the
second class possess a larger repertoire of transformations than the first, giving itmore
complexcomputational capabilities?

Definition 6 (Transformational Complexity). Let Σ1 and Σ2 be two sets of feed-
forward networks, each network being of orderm, with Σ1 ⊆ Σ2. DefineG12 =⋂

N∈Σ2
GN . The setΣ2 is said to bemore complex thanΣ1, if there exists anN ′ ∈ Σ2

such that for allN ∈ Σ1, TN ′ |G12
6= TN |G12

.

A couple of remarks about the definition above are in order. Firstly,Σ1 being a proper
subset ofΣ2, does not necessarily imply that the that the set of transformations effected
by networks inΣ1 is also a proper subset of those effected byΣ2. In particular, it
could be the case that the set of transformations effected byΣ1 is exactly the same
as that effected byΣ2, even thoughΣ1 is a proper subset ofΣ2. Indeed, this is what
is demonstrated by the result of Section 9, which shows in thecontext of the present
neuron model that even though the set of depth-two feedforward networks is a strict
subset of the set of all feedforward networks, both these sets effect the same class of
transformations, namely those that are causal, time-invariant and resettable. Secondly,
observe that while comparing a set of networks, we restrict ourselves to inputs for
which all the networks satisfy a certain Gap Criterion (though, not necessarily for the
sameT ), so that the notion of a transformation is well-defined on the input set, for all
networks under consideration. Note also thatG12 is always a nonempty set, because
G12 contains within it all inputs satisfying the Flush criterion. Henceforth, for brevity,
any result that establishes a relationship of the form defined above is called acomplexity
result.Before we proceed, we introduce some useful notation.

Notation. Let the set of spike-train ensembles of orderm that satisfy the T-Flush
criterion beFT

m. Let Fm =
⋃

T∈R+ FT
m. What we have established in the previous

section is thatFm ⊆ GN , for every feedforward networkN of orderm.
Next, we show that if one class of networks is more complex than another, then

inputs that satisfy the Flush Criterion are both necessary and sufficient to prove this.
That is, to prove this type of complexity result, one can workexclusively with Flush
inputs without losing any generality. This is not obvious because Flush inputs form a
subset of the more biologically well-motivated Gap inputs.The next lemma formalizes
this equivalence. Note that the statement of the lemma is substantially identical to that
of Definition 6, except that the input spike-train ensemblesin the lemma below satisfy
the Flush criterion, as opposed to the ones in Definition 6 which satisfyG12, the set
of input spike-train ensembles that satisfy a Gap Criterionfor all the networks under
consideration.

11The classes of networks could correspond to ones that contain all networks with specific network archi-
tectures, although for the purpose of the definition, there is no reason to require this to be the case.
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Lemma 5 (Equivalence of Flush and Gap Criteria with respect to Transformational
Complexity). LetΣ1 andΣ2 be two sets of feedforward networks, each network being
of orderm, withΣ1 ⊆ Σ2. Then,Σ2 is more complex thanΣ1 if and only if∃N ′ ∈ Σ2

such that∀N ∈ Σ1, TN ′ |Fm 6= TN |Fm .

Proof sketch.A full proof is available in Appendix B; here we sketch the intuition
behind the proof.

Showing that Flush inputs are sufficient is the easier half ofthe proof. If a com-
plexity result can be shown using Flush inputs, it follows that it holds for Gap inputs as
well, sinceFm ⊆ G12. To show that the existence of Flush inputs is necessary, we as-
sume a complexity result proved using Gap inputs and construct Flush inputs such that
the result can be shown using those Flush inputs alone. Now supposeN ′ ∈ Σ2 be the
network such that no network inΣ1 effects the same transformation asN ′, when the
domain is restricted to the setG12. Now, consider arbitraryN ∈ Σ1. There must exist
aχ ∈ G12 such thatTN ′ |Fm(χ) 6= TN |Fm(χ). By definition, thisχ satisfies aT1-Gap
Criterion forN and aT2-Gap Criterion forN ′. Let T = max(T1, T2). The claim is
that if χ is cut up into “chunks” of length2T , where each “chunk” satisfies a 2T-Flush
criterion, thenN andN ′ will map at least one of those chunks to different output spike
trains, since the output in the latter half of the chunk is identical to that produced by
the corresponding segment ofχ. This process of “cutting up”, when “completed” for
eachN ∈ Σ1 yields a subset of Flush inputs, using which the complexity result can be
established.

Assured by this theoretical guarantee that there is no loss of generality by doing so,
we will henceforth only work with inputs satisfying the Flush Criterion, while faced
with the task of proving complexity results. This buys us a great deal of mathematical
expedience at no cost. From now on, unless qualified otherwise, when we speak of a
transformation, we mean a map of the formT : Fm → S that maps the set of Flush
input spike-train ensembles to the set of output spike-trains.

8 Complexity results

In this section, we establish some complexity results. First, we show that there exist
spike-train to spike-train transformations that no feedforward network can effect. Next,
we show a transformation that no single neuron can effect buta network consisting of
two neurons can. After this, we prove a result which shows that a class of architectures
that share a certain structural property also share in theirinability in effecting a partic-
ular class of transformations. Notably, while this class ofarchitectures has networks
with arbitrarily many neurons, we show a class of networks with just two neurons
which can effect this class of transformations. The interested reader is directed to Ap-
pendix B for some technical remarks concerning the mechanics of proving complexity
results that are not central to the exposition here.

Before establishing complexity results, we point out that it is straightforward to
construct a transformation that cannot be effected by any feedforward network. One of

12Recall that the neurons considered in this work are deterministic.
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(a) Example of a transformation that no feedforward network12can effect.
The shaded region is replicated over, to obtain mappings forlarger and
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(b) A transformation that no single neuron can effect, that anetwork with
two neurons can.

Figure 7:

its input spike-train ensembles with the prescribed outputis shown in Figure 7(a). For
larger T , the shaded region is simply replicated over and over again.Informally, the
reason this transformation cannot be effected by any network is that, for any network,
beyond a certain value ofT , the shaded region tends to act as a “flush”, erasing “mem-
ory” of the first input spike. When the network receives another input spike, it is in the
exact same “state” it was when it received the first input spike, and therefore cannot
produce an output spike after the second input spike.

Next, we prove that the set of feedforward networks with at most two neurons is
more complex than the set of single neurons. The proof is by prescribing a transfor-
mation which cannot be done by any single neuron. We then construct a network with
two neurons that can indeed effect this transformation. Note that in the statement of
the theorem below,m stands for the number of input spike trains.

Theorem 1. Supposem ≥ 2. LetΣ be the set of feedforward networks with at most
two neurons that each receive an input spike-train ensembleof orderm. Then,Σ is
more complex than the set of single neurons of orderm.

Proof. We first prescribe a transformation, prove that it cannot be effected by a single
neuron and then construct a two-neuron network and show thatit can indeed effect the
same transformation.

We first prove the result form = 2 and later indicate how it can be extended for
larger values ofm. Let the two input spike-trains in each input spike-train ensemble,
which satisfies a Flush Criterion beI1 andI2. Figure 7(b) illustrates the transformation.
Informally, I1 has regularly-spaced spikes starting after time instantT until 0. I2 has
two spikes, with the first one, loosely speaking, in the “middle” of (0, T ) and the second
one at the end, i.e. right before time instant0. An output spike is always prescribed
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after the second spike inI2 occurs, and not elsewhere. For largerT , the number of
spikes onI1 increases so as to maintain the same regular spacing;I2, in contrast, still
has just two spikes, the first one roughly in the middle and thesecond in the end. For
the sake of exposition, we call the distance between consecutive spikes onI1, one time
unit and we number the spikes ofI1 with the first spike being the oldest one.

More precisely, the transformation is prescribed for a subset ofFm, whose elements
are indexed byi = 1, 2, · · · . Figure 7(b) illustrates the transformation, fori = 2.
The ith input spike-train ensemble in this subset satisfies aT -Flush criterion, where
T = 4i + 3 time units. In theith spike-train ensemble,I2 has spikes at time instants
at which spike numbers2i + 1 and4i + 3 occur inI1. Finally, the output spike-train
corresponding to theith input spike-train ensemble has exactly one spike after13 the
time instant at whichI1 has spike number4i+ 3.

Next, we prove that the transformation prescribed above cannot be effected by any
single neuron. For the sake of contradiction, suppose it can, by a neuron with associated
Υ and ρ. Let max(Υ, ρ) be bounded from above byk time units. We show that
for i ≥ ⌈k

2 ⌉, the ith input spike-train ensemble cannot be mapped by this neuron to
the prescribed output spike train. Fori = ⌈k

2⌉, consider the membrane potential of
the neuron after the time instants corresponding to the(k + 1)th spike number and
(2k+ 3)rd spike number ofI1. At each of these corresponding time instants, the input
received in the pastk time units and the output produced by the neuron in the pastk
time units are the same. Therefore, the neuron’s membrane potential must be identical
as well. However, the transformation prescribes no spike inone of the first time instants
and a spike in the second, which is a contradiction. It follows that no single neuron can
effect the prescribed transformation.

We now construct a two-neuron network which can carry out theprescribed trans-
formation. The network is shown in Figure 8(a).I1 andI2 arrive instantaneously at
N2. I1 arrives instantaneously atN1 but I2 arrives atN1 after a delay of1 time unit.
Spikes output byN1 take one time unit to arrive atN2, which is the output neuron of
the network. The functioning of this network fori = 2 is described in Figure 8(b). The
generalization for largeri is straightforward. All inputs are excitatory.N1 is akin to
the neuron described in Figure 1, in that while the depolarization due to a spike inI1
causes potential to cross threshold, if, additionally, theprevious output spike happened
one time unit ago, the associated hyperpolarization is sufficient to keep the membrane
potential below threshold now. However, if there is a spike from I2 also at the same
time as fromI1, the depolarization is sufficient to cause an output spike, irrespective of
if there was an output spike one time unit ago. TheΥ corresponding toN2 is shorter
than1 time unit. Further,N2 produces a spike if and only if all three of its afferent
synapses receive spikes at the same time. In the figure,N1 spikes after times1, 3, 5.
It spikes after6 because it received spikes both fromI1 andI2 at that time instant.
Subsequently, it spikes after8 and10. The only time whereinN2 received spikes at
all three synapses at the same time is at11, after which is the prescribed time for the
output spike. The generalization for largeri is straightforward.

For largerm, to construct a transformation that cannot be done by a single neuron

13Strictly speaking, the output spike happens at4i+3+ǫ, whereǫ > 0 is a small real number. Henceforth
whenever we say an output spike isafter a certain time instant, we mean it in this sense.
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Figure 8: (a) The network that can effect the transformationdescribed in Figure 7(b).
(b) Figure describing the operation of this network.
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but can be, by a two-neuron network, one can just have the sameinput asI1 or I2 on
the extra input spike trains and the same proof generalizes easily.

The previous result might seem to suggest that the more the number of neurons
(and connections between them) the larger the variety of transformations possible. The
next complexity result demonstrates, on the contrary, thatthe structure of the network
architecture is crucial. That is, we can construct network architectures with arbitrar-
ily large number of neurons which cannot perform transformations that a two-neuron
network with simple neurons can.

First, we define the structural property that characterizesthis class of architectures.

Definition 7 (Path-plural Network). A feedforward network of orderm is calledpath-
plural if for every set ofm paths, where theith path starts atith input vertex and ends
at the output vertex, the intersection of them paths is exactly the output vertex.

Every feedforward network in which all the inputs aren’t afferent on every neu-
ron, must have embedded within it a path-plural network. Forthis reason, path-plural
networks are an important and ubiquitous class of feedforward networks. How large
such networks are in the brain remains to be seen, and this will become clearer as
we get more and more data from the connectomics efforts. But,it is conceivable that
such networks exist in feedforward pathways that that converge onto networks that, for
example, integrate information from multiple sensory modalities.
We now state and prove the complexity result.

Theorem 2. For m ≥ 3, let Σ1 be the set of all path-plural feedforward networks of
orderm. LetΣ2 be the union ofΣ1 with the set of all two-neuron feedforward networks
of orderm. Then,Σ2 is more complex thanΣ1.

Proof. We first prescribe a transformation, prove that it cannot be effected by any net-
work inΣ1 and then construct a two-neuron network and show that it can indeed effect
the same transformation.

We prove the theorem form = 3; the generalization for largerm is straightforward.
The following transformation is prescribed form = 3. Let the three input spike-trains
in each input spike train ensemble, which satisfies a Flush Criterion beI1, I2 andI3.
As before, we will use regularly spaced spikes; we call the distance between two such
consecutive spikes one time unit and number these spike timeinstants with the oldest
being numbered 1; we call this numbering the spike index. Again, the transformation
is prescribed for a subset ofFm, whose elements are indexed byi = 1, 2, · · · . Figure
9 illustrates the transformation fori = 2. The ith input spike-train ensemble in the
subset satisfies aT -Flush Criterion forT = 4im time units. The first2i time units have
spikes onI2 spaced one time unit apart, the next2i on I3 and so forth. In addition, at
spike index2im, Im has a single spike. The input spike pattern from the beginning is
repeated once again for the latter2im time units. The prescribed output spike-train has
exactly one spike after spike index4im.

Next we prove that the transformation prescribed above cannot be effected by any
network inΣ1. For the sake of contradiction, assume that there exists a network
N ∈ Σ1 that can effect the transformation. LetΥ andρ be upper bounds on the same
parameters over all of the neurons inN and letd be the depth ofN . By construction
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Figure 9: A transformation that no feedforward network of order3 with a path-plural
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Figure 10: (a) Network that can effect the transformation described in Figure 9.
(b) Figure describing the operation of this network.

of Σ1, every neuron inN that is afferent on the output neuron receives input from at
mostm− 1 of the input spike-trains; for, otherwise there would exista set ofm paths,
one from each input vertex to the output neuron, whose intersection would contain the
neuron in question. The claim, now, is that fori > Υd

2 + ρ, the output neuron ofN
has the same membrane potential at spike index2im and4im, and therefore either has
to spike at both those instants or not. Intuitively, this is so because each neuron affer-
ent on the output neuron receives a “flush” at some point after2im, so that the output
produced by itΥ milliseconds before time index2im andΥ milliseconds before time
index4im are the same. This is straightforward to verify.

We now construct a two-neuron network that can effect this transformation. The
construction is similar to the one used in Theorem 1. Form = 3, the network is shown
in Figure 10.I1, I2 andI3 arrive instantaneously atN1 andN2. Spikes output byN1

take two time units to arrive atN2, which is the output neuron of the network. The
functioning of this network fori = 2 is described in Figure 10(b). The generalization
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for largeri is straightforward. All inputs are excitatory.N1 is akin to the the neuronN1

used in the network in Theorem 1 except that that periodic input may arrive from any
one ofI1, I2 or I3. As before, if two input spikes arrive at the same time, as in spike
index2im, the depolarization is sufficient to cause an output spike inN1, irrespective
of if there was an output spike one time unit ago. Again, theΥ corresponding toN2

is shorter than1 time unit andN2 produces a spike if and only if three of its afferent
synapses receive spikes at the same time instant. As before,the idea is that at time2im,
N2, receives two spikes, but not a spike fromN1, since it is “out of sync”. However,
at time4im, additionally, there is a spike fromN1 arriving atN2, which causesN2 to
spike.

To conclude, what we have demonstrated in this section is that, for certain classes
of networks, just by knowing the architecture of the network, we can rule out compu-
tations that the network could be doing. All we assumed was that the neurons in the
network satisfy a small number of elementary properties; notably these results do not
require knowledge of detailed physiological properties ofthe neurons in the network.
This, in itself, is somewhat surprising due to the intuitively-appealing expectation that
network structure may not impose as strong a constraint as neurophysiology insofar as
the computational ability of a network is concerned. In the next section, however, we
show that this intuition is sound in some cases by proving that there are limits to the
constraints imposed by network structure in the presence ofvery limited information
on the physiology.

9 Limits to constraints imposed by network structure

The main thrust of this work, thus far, has been in demonstrating that connectomic
constraints do indeed restrict the computational ability of certain networks, even when
we do not assume much about the physiological properties of their neurons. As one
might expect, we should be able to get better mileage, so to speak, if we had more elab-
orate information on the response properties of the individual neurons. Conversely, it
is logical to expect that there might be fundamental limits to what can be said about the
computational properties of networks, given very limited knowledge of the neurophysi-
ology of its neurons. In this section, we prove this to be the case. In particular, we show
that the small set of assumptions made about our model neurons lead to the absence of
connectomic constraints on computation for the class of feedforward networks of depth
equal to two. More precisely, it turns out that there does notexist a transformation that
cannot be performed by any network of depth two14 that in turn can be effected by
another network (of a different architecture). What this result implies is that oneneeds
to make further assumptions on the properties obeyed by the model neurons, before
connectomic constraints on this class of networks appear.

So, how does one prove that there does not exist a transformation that cannot be
performed by any network of depth two that in turn can be effected by another network?
Equivalently, we need to prove that given an arbitrary feedforward network, there exists
a feedforward network of depth two that effectsexactlythe same transformation.

14equipped with instances of our model neurons
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The difficulty in proving that every feedforward network, having arbitrary depth,
has an equivalent network of depth two, appears to be in devising a way of “collapsing”
the depth of the former network, while keeping the effected transformation the same.
Our proof actually does not demonstrate this head-on, but instead proves it to be the
case indirectly. The broad attack is the following: Consider the set of transformations
spanned by the set of all feedforward networks. Recall that this is a proper subset of
the set of all transformations, since we had shown a transformation that no feedforward
network could effect. The idea is to start off with a certain “nice” subset of the set of all
transformations and show that every transformation effected by feedforward networks
certainly lies within this subset. Thereafter, we prove, byproviding a construction,
that every transformation in this “nice” subset can in fact be effected by a feedforward
network of depth two15. Together, this implies that, for every transformation that can
be effected by a feedforward network, there exists a feedforward network of depth two
that can effect exactly that transformation.

The interested reader is directed to Appendix C, which is a 24-minute video that
provides an intuitive outline of the results in this sectionusing animations.

Technical structure of the proof

The main theorem that we prove in this section is the following.

Theorem 3. If T : Fm → S can be effected by a feedforward network, then it can be
effected by a feedforward network of depth two.

This theorem follows from the following two lemmas which areproved in the two
subsections that follow:

Lemma 6. If T : Fm → S can be effected by a feedforward network, thenT (·) is
causal, time-invariant and resettable.

Lemma 7. If T : Fm → S is causal, time-invariant and resettable, then it can be
effected by a feedforward network of depth two.

9.1 Causal, Time-Invariant and Resettable Transformations

In this section, we first define notions of causal, time-invariant and resettable transfor-
mations16. Transformations that are causal, time-invariant and resettable form a strict
subset of the set of all transformations. We then show that transformations effected by
feedforward networks always lie within this subset. This isthe relatively easy part of
the proof. The next subsection proves the harder part, namely that every transformation
in this subset can indeed be effected by a feedforward network of depth equal to two.

15As a by-product, the proof also ends up providing a complete characterization of the set of transforma-
tions spanned by the set of all feedforward networks equipped with neurons of the present abstract model,
which turns out to be exactly this “nice” set.

16Recall that when we say transformation, without further qualification, we mean one, of the formT :
Fm → S.
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Informally, acausal transformationis one whose current output depends only on
its past input (and not current or future input). Abstractly, it is convenient to define
a causal transformation as one that, given two different inputs that are identical until
a certain point in time, also have their outputs, according to the transformation, be
identical up to (at least) the same point.

Definition 8 (Causal Transformation). A transformationT : Fm → S is said to be
causalif, for everyχ1, χ2 ∈ Fm, with Ξ(t,∞)χ1 = Ξ(t,∞)χ2, for somet ∈ R, we
haveΞ[t,∞)T (χ1) = Ξ[t,∞)T (χ2).

As in signals and systems theory, atime-invariant transformationis one which
always transforms the time-shifted version of an input, to atime-shifted version of its
corresponding output. To keep the definition sound, we also need to ensure that the
time-shifted input, in fact, also satisfies the Flush criterion.

Definition 9 (Time-Invariant Transformation). A transformationT : Fm → S is said
to betime-invariantif, for everyχ ∈ Fm and everyt ∈ R with σt(χ) ∈ Fm, we have
T (σt(χ)) = σt(T (χ)).

A resettable transformationis one for which there exists a positive real number
W , so that an input gap of the form(t, t + W ) “resets” it, i.e. output beyondt is
independent of input received before it. Again, abstractly, it becomes convenient to say
that the output in this case is identical to that produced by an input which has no spikes
beforet, but is identical to the present input thereafter.

Definition 10 (W -Resettable Transformation). For W ∈ R
+, a transformationT :

Fm → S is said to beW -resettableif, for every χ ∈ Fm which has a gap in the
interval(t, t+W ), for somet ∈ R, we haveΞ(−∞,t]T (χ) = T (Ξ(−∞,t]χ).

Definition 11 (Resettable Transformation). A transformationT : Fm → S is said to
beresettableif, there exists aW ∈ R

+, so that it isW -resettable.

Next, we prove that every transformation that can be effected by a feedforward
network is causal, time-invariant and resettable, in the context of our neuron model and
its assumptions.

Lemma 6. If T : Fm → S can be effected by a feedforward network, thenT (·) is
causal, time-invariant and resettable.

Proof sketch.If T : Fm → S can be effected by a single neuron it is relatively
straightforward to verify thatT (·) is causal, time-invariant and resettable. That it is
causal and time-invariant follows from the fact that theP (·) function of the neuron
only “looks” at the recent past and not the present or the future to determine membrane
potential. ThatT (·) is resettable follows from Axiom (3) of the neuron and the Gap
Lemma. For a feedforward network, the proof proceeds by mathematical induction on
the depth of the network. A full proof is provided in AppendixB.
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9.2 Construction of a depth two feedforward network for every
causal, time-invariant and resettable transformation

In this subsection, we prove the following lemma.

Lemma 7. If T : Fm → S is causal, time-invariant and resettable, then it can be
effected by a feedforward network of depth two.

Before diving into the proofs, we offer some intuition.
Suppose we had a transformationT : Fm → S which is causal, time-invariant

and resettable. For the moment, pretend it satisfies the following property: There exist
constant-sized input and output “windows” so that, for every input spike-train ensem-
ble satisfying a flush criterion, just given knowledge of spikes in those windows of
past input and output, one can unambiguously determine, at any point in time, if the
transformation prescribes an output spike or not. Intuitively, it seems reasonable that
such a transformation can be effected by a single neuron17 by setting theΥ andρ of
the neuron to the sizes of the input and output windows mentioned above.

Of course, one easily sees that not every transformation that is causal, time-
invariant and resettable satisfies the aforementioned property. That is, there could exist
two different input instances, whose past inputs and outputs are identical in the afore-
mentioned windows at some points in time; yet in one instance, the transformation
prescribes an output spike, whereas it prescribes none in the other. Indeed, the two
input instances must differ at some point in the past, for otherwise the transformation
would not be causal. Therefore, in such a situation, it is natural to ask if a single “inter-
mediate” neuron can “break the tie”. That is, if two input instances differ at some point
in the past, the output of the intermediate neuron since then, in any interval of time
of lengthU , must be different in either case, whereU is a fixed constant. This is so
that a neuron receiving input from the intermediate neuron candisambiguatethe two
inputs, were an output spike demanded for one input but not the other. Unfortunately,
this exact property cannot be achieved by any single “tie-breaker” neuron because ev-
ery transformation induced by a neuron is resettable. In other words, the problem is
that, suppose two input instances differ at a certain point in time; however, since then,
both have had an arbitrarily large input gap. The input gap serves to “erase memory”
in any network that received it and therefore it cannot disambiguate two inputs beyond
this gap. Now, fortunately, it does not have to, since this gap also causes a “reset” in
the transformation (which is resettable). That is, if such an arbitrarily large gap were
present in the input, the transformation would not afterward demand an output spike in
one case and no output spike in another. This is because it isW -resettable and there-
fore cannot make such demands, for input gaps18 larger thanW . Thus, we can make
do with a slightly weaker condition; that the intermediate neuron is only guaranteed to
break the tie, when it is required to do so. That is, suppose there are two input instances,
whose outputs according toT : Fm → S are different at certain points in time. Then,
the corresponding inputs are different too at some point in the past with no reset gaps
in the intervening time and therefore the intermediate neuron ought to break the tie.

17Strictly speaking, it turns out that this is not true; axiom 2may be violated.
18which we call a “reset gap” from now on, for the sake of exposition.
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Figure 11: The network architecture for (order two) feedforward networks of depth
two equipped with model neurons described in Section 3 that can effect any causal,
time-invariant and resettable transformation.

Additionally, for technical reasons that will become clearlater, we stipulate that the
outputs of the intermediate neuron in the precedingU milliseconds are guaranteed to
be different, only if the inputs themselves in the pastU milliseconds are not different.

The network we have in mind is illustrated in Figure 11, form = 2. In the fol-
lowing proposition, we prove that if the intermediate neuron satisfies the “tie-breaker”
condition alluded to above, then there exists an output neuron, so that the network
effects the transformation in question. Thereafter, in thesubsequent proposition, we
provide a construction for the intermediate neuron that satisfies this condition. By way
of notation, recall thatΞ0(·) is shorthand forΞ[0,0](·)

Proposition 2. Let T : Fm → S be causal, time-invariant and resettable. LetJ be
a neuron withTJ : Fm → S, so that for eachχ ∈ Fm, TJ(χ) is consistent withχ
with respect toJ. Further, suppose there exists aU ∈ R

+ so that for allt1, t2 ∈ R

andχ1, χ2 ∈ Fm withΞ0σt1(T (χ1)) 6= Ξ0σt2(T (χ2)), we haveΞ(0,U)(σt1 (TJ(χ1)⊔
χ1)) 6= Ξ(0,U)(σt2(TJ(χ2) ⊔ χ2)).

Then, there exists a neuronO, so that for everyχ ∈ Fm, T (χ) is consistent with
TJ(χ) ⊔ χ with respect toO.

Proof sketch.The straightforward way for the neuronO to effectT (·) is to determine
the points of time wherein an output spike is prescribed and set its membrane potential
function to hit threshold at those instances. Since the neuron J essentially “disam-
biguates” the input, this assignment can be done without conflict. However, we also
need to show that doing this does not violate any of the three axioms of our abstract
model, for the neuronO. Axiom (1) follows easily from the fact that the co-domain of
T (·) is S. Axiom (3) takes some work to show and uses the fact thatT (·) is causal,
time-invariant and resettable. Axiom (2), on the other hand, presents some subtleties.
Now, in addition to setting membrane potential to thresholdat the aforementioned
points, in order to satisfy Axiom (2), we would also need to set it to hit threshold, when
the input window has the same pattern and the output window isempty instead. How-
ever, with this assignment, we need to then show that no spurious spikes are generated.
This takes a little work and again uses the “tie-breaker” condition of the intermediate
neuronJ. The full proof is available in Appendix B.
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The next proposition shows that one can always construct an intermediate neuron
that satisfies the said “tie-breaker” condition.

Proposition 3. Let T : Fm → S be causal, time-invariant and resettable. Then
there exists a neuronJ and U ∈ R

+ so that for all t1, t2 ∈ R and χ1, χ2 ∈
Fm with Ξ0σt1(T (χ1)) 6= Ξ0σt2(T (χ2)), we haveΞ(0,U)(σt1(TJ(χ1) ⊔ χ1)) 6=
Ξ(0,U)(σt2 (TJ(χ2) ⊔ χ2)), whereTJ : Fm → S is such that for eachχ ∈ Fm, TJ(χ)
is consistent withχ with respect toJ.

Proof idea. The basic idea is to “encode”, in the time difference of two successive
output spikes, the positions of all the input spikes that have occurred since the last
input gap of the form(t, t + W ), whereT (·) is W -resettable. Such pairs of output
spikes are produced once everyp milliseconds, with the time difference within each
pair being a function of the time difference within the previous pair and the input spikes
encountered since. Intuitively, it is convenient to think of this encoding as one from
which we can “reconstruct” the entire past input spike-train ensemble after the last reset
gap in the input. We first describe the encoding function for the case of a single input
spike-train after which we indicate how it can be generalized.

So, suppose the time difference of the successive spikes output by J lies in the
interval[0, 1). Define the encoding function asε0 : [0, 1)× S̄(0,p] → [0, 1), that takes
in the old encoding and the input spikes in the pastp milliseconds to produce the new
encoding, which is output byJ as the time difference between a new pair of spikes.
The numberp is chosen to be such that there are at most8 spikes in any interval of
the form (t, t + p]. We now describe howε0(e, ~x) is computed, givene ∈ [0, 1)
and~x = 〈x1, x2, . . . , xk〉, such that each spike time in~x lies in the interval(0, p].
Let e have a decimal expansion19, so thate = 0.c1s1c2s2c3s3 · · · . Accordingly, let
c = 0.c1c2c3 · · · ands = 0.s1s2s3 · · · . c is a real number that encodes the number of
spikes in each interval of lengthp encountered, since the last reset. Since each interval
of lengthp has between0 and8 spikes, the digit9 is used as a “termination symbol”.
So, for example, suppose there have been4 intervals of lengthp, since the last reset
with 5, 0, 8 and2 spikes apiece respectively, thenc = 0.8059 andc′ = 0.28059, where
c′ is the “updated” value ofc. Likewise,s is a real number that stores the positions
of all input spikes encountered since the last reset. Let each spike time be of the form
xi = 0.xi

1x
i
2x

i
3 · · · × 10q, for appropriateq, whose value is fixed for a givenp. Then

the updated value ofs is s′ = 0.x1
1x

2
1 · · ·x

k
1s1x

1
2x

2
2 · · ·x

k
2s2 · · · . Suppose thec′ and

s′ obtained above were of the formc′ = 0.c′1c
′
2c

′
3 · · · ands′ = 0.s′1s

′
2s

′
3 · · · , then

ε0(e, ~x) = 0.c′1s
′
1c

′
2s

′
2 · · · . Observe that the decimal expansion constructed byε0(e, ~x)

cannot have infinitely many successive9s, forc′ has only a finite number of non-zero
digits. Suppose the input were a spike-train ensemble of orderm, then for each spike-
train an encoding would be computed as above and in the final step, them real numbers
obtained would be interleaved together, so as to produce theencoding.

19Whenever we say decimal expansion, we forbid decimal expansions with an infinite number of succes-
sive9s. With this restriction, each real number has a unique decimal expansion.

20i.e. p milliseconds after time instantT .
21We setW > p to force a spike atT − p.
22unless the present clock spike is the first after a reset gap inthe input.
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Figure 12: This figure illustrates the operation of the intermediate neuronJ. Suppose
χ ∈ Fm is an input spike-train. Let its oldest spike beT milliseconds ago. Then
J produces a spike at time20T − p and at everyT − kp, for k ∈ Z

+, unless in the
previousp milliseconds to when it is to spike, there is a gap21of the form(t, t + W ).
For the sake of exposition, let’s call these the “clock” spikes. Now, suppose there is
a gap of the form(t, t + W ) in the input and there is an input spike at timet, then
the neuron spikes at timet− p and everyp milliseconds thereafter subject to the same
“rules” as above. These clock spikes are followed by “encoding” spikes, which occur at
leastq milliseconds after the clock spike, but less thanq+r milliseconds after, whereq
is greater than the absolute refractory periodα. As expected, the position of the current
encoding spike is a function of the time difference between the previous encoding and
clock spikes22and the positions of the input spikes in thep milliseconds before the
current clock spike. The output of the encoding function is,in effect, appropriately
scaled to “fit” in this interval of lengthr; the details are available in the proof.
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Given knowledge of the encoding function, Figure 12 briefly describes howJ
works. The claim then is that if two input spike-train ensembles are different at some
point with no intervening “reset” gaps, then the output ofJ in the pastU milliseconds,
whereU = p+q+r will be different. Intuitively, this is because the difference between
the latest encoding and clock spike in each case would be different, as they encode dif-
ferent “histories” of input spikes. The exception is if the input spike-train ensembles
differed only in the pastU milliseconds. In this case, the difference is communicated
toO directly byχ.

Finally, we ought to remark that the above is just an informaldescription that
glosses over several technical details contained in the full proof, which is available
in Appendix B.

The preceding two propositions thus imply Lemma 7 which together with Lemma 6
implies Theorem 3.

Lemma 7. If T : Fm → S is causal, time-invariant and resettable, then it can be
effected by a feedforward network of depth two.

Theorem 3. If T : Fm → S can be effected by a feedforward network, then it can be
effected by a feedforward network of depth two.

Corollary 2. The set of all feedforward networks is not more complex than the set of
feedforward networks of depth equal to two.

Incidentally, Lemma 6 and 7 also lead to a full characterization of the class of
transformations effected by all feedforward networks equipped with neurons obeying
the abstract model of Section 3. This is formalized in the next theorem.

Theorem 4. A transformationT : Fm → S can be effected by a feedforward network
if and only if it is causal, time-invariant and resettable.

Directions for further constraining the present model

The results of this section imply that we need to add new properties to further constrain
our model neurons, in order for complexity results involving feedforward networks of
depth two to be manifested. There are a number of directions that one could take. One
is that spike-times in the present model are real numbers. When stochastic variability
in neurons is taken into account, this assumption is no longer true. Also, we did not
assume that the membrane potential changes smoothly with time, which would be a
reasonable assumption to add. And, finally, an assumption consistent with Dale’s prin-
ciple, that each neuron has either an excitatory effect on all its postsynaptic neurons or
an inhibitory effect might also help in this direction.

10 Discussion

There has been some debate about how useful data from the connectome projects might
be in advancing a mechanistic understanding of computationoccurring in the circuits
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of the brain. One of the main type of arguments that has been made against their utility
is that, since these projects only23 seek to ascertain the wiring diagram, without giv-
ing us detailed physiological information, it is not clear what we might learn from this
data alone, especially for networks whose high-level function is not known. While it
is acknowledged that network architecture places constraints on what a network can
compute (Kleinfeld et al, 2011; Denk et al, 2012), the natureand scope of these con-
straints have remained poorly understood. Our goal with this work was in asking, on
one hand, if we can deduce non-trivial examples of computations that a networkcould
notbe doing, given just the knowledge of its architecture and assuming that the neurons
obey some elementary properties. On the other hand, we askedif there are fundamental
limits to what can be said, given just this information. We examined this question for
the case of feedforward networks equipped with neurons thatobeyed a deterministic
spiking neuron model. We first set the stage by creating a mathematical framework in
which this question could be precisely posed. Crucially, weneeded to make precise
what computation exactly meant in this context. This took a fair bit of work and led
us to the view of feedforward networks as spike-train to spike-train transformations
under biologically-relevant spiking regimes. After setting up necessary definitions, we
then showed some examples of transformations that networksof specific architectures
cannoteffect, that other networks can. First of all, we showed24 that there exist spike-
train to spike-train transformations that no feedforward network could effect. Next, we
showed a transformation that no single neuron could effect but a network consisting of
two neurons could. After this, we proved a result which showsthat a class of architec-
tures that share a certain structural property also share their inability to effect a partic-
ular class of transformations. Notably, while this class ofarchitectures has networks
with arbitrarily many neurons, we showed a class of networkswith just two neurons
which could effect this class of transformations. This suggests that network structure
alone may impose crucial constraints on computational ability. Finally, we demon-
strated that the small number of properties assumed for our model neurons can only
take us so far. We proved that without making further assumptions about our model
neurons, we couldn’t discern such examples for the set of allfeedforward networks of
depth two.

While there is more to neuronal networks than just their wiring diagram, what
our theory suggests is that the wiring diagram could impose crucial constraints on the
computational ability of networks, in some cases. On the other hand, there seem to be
classes of networks for which a more elaborate knowledge of single neuron properties
may be necessary, before we can determine restrictions on their computational abil-
ity. While technical issues in electron microscopy (Denk etal, 2012) have so far stood
in the way of mapping, for example, distributions of ion-channels and neurotransmit-
ter and neuromodulator receptors in neurons, it is conceivable that such hurdles may
be overcome in future. If successful, these or other advances in conjunction with the
wiring diagram could provide useful information to help us tease out pertinent con-
straints on the computational capabilities of these networks.

In this work, as a first step, we have aimed to demonstrate specific examplesof com-

23This in itself is a formidable problem and one that is taking heroic effort.
24See Figure 7(a) and the second paragraph of Section 8.
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putations that a network cannot accomplish, given its architecture. The more ambitious
goal would be the ability to have an exact characterization of the set ofall computations
that a given neural circuit cannot perform, given knowledgeof its architecture, to the
extent that a given incomplete knowledge of the physiological properties of its neurons
will allow. This is not necessarily a goal that is out of reach. Even in the present work,
we have obtained such an exact characterization25 of the set of all computations that
the set of feedforward networks cannot accomplish, given the set of properties that our
model neurons are presently assumed to obey. Therefore, in principle, there seems to
be no reason why we may not be able to do likewise for specific network architectures.
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Appendix A: Relationship of the abstract neuron model
to some widely-used neuron models

Here, we demonstrate that the properties that our abstract model of the neuron is con-
tingent on are satisfied, up to arbitrary accuracy, by several widely-used neuron models
such as the Leaky Integrate-and-Fire Model and Spike Response Model.

Leaky Integrate-and-Fire Model

Consider the standard form of the Leaky Integrate-and-FireModel:

τm
du

dt
= −u(t) +RI(t) (1)

whereτm = RC. Whenu(t(f)) = v, the neuron fires a spike and the reset is given
by u(t(f) +∆) = ur, wherev is the threshold and∆ is the absolute refractory period.
Suppose an output spike has occurred at timet̂−∆, the above differential equation has
the following solution:

u(t) = ur exp(−
t− t̂

τm
) +

1

C

∫ t−t̂

0

exp(−
s

τm
)I(t− s)ds (2)

SupposeI(t) = ΣjwjΣiα(t − t
(i)
j ) andα(·) had a finite support. Then, it is clear

from the above expression that the contribution of the previous output spike fired by
the present neuron as well as the contribution of input spikes from presynaptic neurons
decays exponentially with time. Therefore, one can computethe membrane potential to
arbitrary accuracy by choosing input and output “windows” of appropriate size so that
u(·) is a function only of input spikes and output spikes in those windows. It is easy to
verify that the all the axioms of our model are satisfied: Clearly, the model above has

25This characterization is a consequence of Theorem 4. In particular, it is the set of all transformations
that arenotcausal, time-invariant or resettable.
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an absolute refractory period, a past output spike has an inhibitory effect on membrane
potential, and upon receiving no input and output spikes in the said windows, it settles
to resting potential. Thus, an instantiation of our abstract model can simulate a Leaky
Integrate-and-Fire Model to arbitrary accuracy.

Spike Response Model

Consider now the standard form of the Spike Response Model(Gerstner and Kistler,
2002).

In the absence of spikes, the membrane potentialu(·) is set to the valueur = 0.
Otherwise, the membrane potential is given by

u(t) = η(t− t̂i) + Σj wj Σi ǫij(t− t̂i, t− t
(i)
j ) (3)

whereη(·) describes the after-hyperpolarizationafter an output spike att̂i andǫij(·)

describes the response to incoming spikest
(i)
j , which are the spikes fired by presynaptic

neuronj with wj being synaptic weights.η(·), is set to a sufficiently low value for∆
milliseconds after an output spike so as not to cause anotherspike, where∆ is the
absolute refractory period. The functionsη(·) andǫij(·) typically decay exponentially
with time and therefore, as before, one can compute the membrane potential to arbitrary
accuracy by choosing input and output “windows” of appropriate size so that theu(·) is
a function only of input spikes and output spikes in those windows. Likewise, it is easy
to verify that the all the axioms of our model are satisfied: Clearly, the model above has
an absolute refractory period, a past output spike has an inhibitory effect on membrane
potential, and upon receiving no input and output spikes in the said windows, it settles
to resting potential. Thus, it is straightforward to verifythat an instantiation of our
abstract model can simulate a Spike Response Model to arbitrary accuracy.
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Appendix B: Proofs and Technical Remarks

Technical Remarks from Section 4

It might be argued that the input spike-train to a neuron cannot possibly be infinitely
long, since every neuron begins existence at a certain pointin time. However, this
begs the question whether the neuron was at the resting potential when the first input
spikes arrived26. An assumption to this effect would be significant, particularly if the
current membrane potential depended on it. It is easy to construct an example along
the lines of the example described in Figure 1, where the current membrane potential
is different depending on whether this assumption is made ornot. Assuming infinitely
long input spike-train ensembles, on the other hand, obviates the need to make any such
assumption. We retain this viewpoint for the rest of the paper with the understanding
that the alternative viewpoint discussed at the beginning of this paragraph can also be
expounded along similar lines.

Proofs from Section 5

Proof of Gap Lemma.Since, in each~x0 consistent withχ, with respect toN, the inter-
val (t+2ρ, t+3ρ) of ~x0 and the(t+Υ+ρ, t+Υ+2ρ)of χ are arbitrary, the sequence
of spikes present in the interval(t + ρ, t + 2ρ) of ~x0 could be arbitrary. However,χ∗

andχ are identical in(t, t + ρ + Υ). Thus, it follows from Axiom 2 in the formal
definition of a neuron that for everyt′ ∈ (t, t+ ρ), P (Ξ(0,Υ)(σt′(χ)),Ξ(0,ρ)(σt′(~x0)))
is at most the value ofP (Ξ(0,Υ)(σt′ (χ

∗)),Ξ(0,ρ)(σt′ (~x
∗
0))) , becauseΞ(0,ρ)(σt′ (~x

∗
0))

is ~φ, i.e. empty. SinceP (Ξ(0,Υ)(σt′(χ
∗)),Ξ(0,ρ)(σt′(~x

∗
0))) is less thanτ for every

t′ ∈ (t, t+ ρ),
P (Ξ(0,Υ)(σt′(χ)),Ξ(0,ρ)(σt′(~x0))) is less thanτ in the same interval, as well. There-
fore,~x0 has no spikes in(t, t+ ρ).

That2ρ is the smallest possible gap length in~x∗
0 for this to hold, follows from the

counterexample in Figure 1, where the present conclusion did not hold, when~x∗
0 had

gaps of length2ρ− δ, for arbitrarily smallδ > 0.

Proof of Corollary 1. (1) is immediate from the Gap Lemma, when we setχ = χ∗.
For (2), the proof is by strong induction on the number of spikes sincet. Let~x0 be

an arbitrary spike-train that is consistent withχ∗, with respect toN. Notice that from
(1) we have that~x0 is identical to~x∗

0 in (t, t + ρ). The base case is to show that both
~x∗
0 and~x0 have their first spike sincet at the same time. Assume, without loss of gen-

erality, that the first spike of~x0 at t1 ≤ t, is no later than the first spike of~x∗
0. We have

P (Ξ(0,Υ)(σt1(χ
∗)),Ξ(0,ρ)(σt1(~x

∗
0))) = P (Ξ(0,Υ)(σt1(χ

∗)),Ξ(0,ρ)(σt1 (~x0))) since

Ξ(0,ρ)(σt1 (~x
∗
0)) = Ξ(0,ρ)(σt1(~x0)) = ~φ. Therefore~x∗

0 also has its first spike since
t at t1. Let the induction hypothesis be that both~x∗

0 and~x0 have their firstk spikes
sincet at the same times. We show that this implies that the(k + 1)th spike in each
spike-train is also at the same time instant. Assume, without loss of generality, that

26Note that our axiomatic definition of a neuron does not address this question.

36



the (k + 1)th spike sincet of ~x0 at tk+1, is no later than the(k + 1)th spike sincet
of ~x∗

0. Now,Ξ(0,ρ)(σtk+1
(~x∗

0)) is identical toΞ(0,ρ)(σtk+1
(~x0)) from the induction hy-

pothesis since(t+ ρ)− tk+1 ≥ ρ. Thus,P (Ξ(0,Υ)(σtk+1
(χ∗)),Ξ(0,ρ)(σtk+1

(~x∗
0))) =

P (Ξ(0,Υ)(σtk+1
(χ∗)),Ξ(0,ρ)(σtk+1

(~x0))) and therefore~x∗
0 also has its(k + 1)th spike

at tk+1. This completes the proof of (2).
(3) follows from the Gap Lemma and (2).

Proposition 1. Let χ be a spike-train ensemble that satisfies a T-Gap criterion for a
neuronN〈α,Υ, ρ, τ, λ,m, P : S̄m

(0,Υ) × S̄(0,ρ) → [λ, τ ]〉, whereT ∈ R
+. Then, there

is exactly one spike-train~x0, such that~x0 is consistent withχ, with respect toN.

Proof of Proposition 1.Sinceχ satisfies aT -Gap criterion, there exists a spike-train
~x0 with at least one gap of length2ρ in every interval of time of lengthT − Υ + 2ρ,
so that~x0 is consistent withχ with respect toN. For the sake of contradiction, assume
that there exists another spike-train~x′

0, not identical to~x0, which is consistent withχ,
with respect toN. Let t′ be the time at which one spike-train has a spike but another
doesn’t. Lett > t′ be such that~x0 has a gap in the interval(t, t + 2ρ). By Corollary
1 to the Gap Lemma, it follows that~x′

0 is identical to~x0 after time instantt + ρ. This
contradicts the hypothesis that~x′

0 is different from~x0 at t’.

Lemma 2. Consider a feedforward networkN . Letχ satisfy aT -Gap criterion for
N , whereT ∈ R

+. Then the output neuron ofN produces a unique output spike-
train whenN receivesχ as input. Furthermore, the membrane potential of the output
neuron at any time instant depends on at most the pastT milliseconds of input inχ.

Proof of Lemma 2.We prove that the output of the network is unique by strong induc-
tion on depth. LetNi, for 1 ≤ i ≤ d, be the set of neurons inN of depthi. Each
neuronN ∈ N1 receives all inputs from spike-trains inχ. Since,N satisfies a Gap
criterion with those input spike-trains, its output is unique. The induction hypothesis
then is that for alli ≤ k < d, each neuronN ∈ Ni produces a unique output spike-train
whenN is driven byχ. Consider arbitraryN′ ∈ Nk+1. It is clear that all inputs to
N′ are from spike-trains fromχ or neurons in

⋃k
i=1 Ni, for otherwise the depth ofN′

would be greater thank+1. Since, all its inputs are unique by the induction hypothesis
and they satisfy a Gap criterion forN′, its output is also unique.

Next, we show that the membrane potential of the output neuron at any time instant
depends on at most the pastT milliseconds of input inχ. Since the output neuron
satisfies a(T

d
)-Gap Criterion, its membrane potential at any point dependson at most

the past(T
d
) milliseconds of the inputs it receives (some of which may be output spike-

trains of other neurons). Consider one such “penultimate layer” neuron. Again, its
output membrane potential at any time instant, likewise, depends on its inputs in the
past(T

d
) milliseconds. Therefore, the current potential of the output neuron is depen-

dent on the input received by the penultimate layer neuron inat most the past(2T
d
)

milliseconds. Similar arguments can be put forth until, foreach path, one reaches a
neuron, all of whose inputs do not come from other neurons. Since the longest such
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Figure 13: Illustration showing that an input spike-train ensemble satisfying a Flush
Criterion also satisfies a Gap Criterion.

path is of lengthd, it is straightforward to verify that the membrane potential of the
output neuron depends on at mostT milliseconds of past input inχ.

Proofs from Section 6

Lemma 3. An input spike-train ensembleχ for a neuronN〈α,Υ, ρ, τ, λ,m, P :
S̄m
(0,Υ) × S̄(0,ρ) → [λ, τ ]〉 that satisfies aT -Flush Criterion also satisfies a(T + 2Υ+

2ρ)-Gap Criterion for that neuron.

Proof of Lemma 3.Figure 13 accompanies this proof. The neuron on being drivenby
χ cannot have output spikes outside the interval(−Υ, T ). This easily follows from
Axiom 2 and 3 of the neuron because the neuron does not have input spikes before
time instantT and in the interval(−Υ, 0) and onwards. Now, to see thatχ satisfies a
(T + 2Υ + 2ρ)-Gap Criterion, recall that with aT ′-Gap Criterion, distance between
any two gaps of length2ρ on the output spike-train is at mostT ′−Υ− 2ρ. With χ, we
observe that the distance between any two2ρ gaps on the output spike-train is at most
T + Υ. Thus,T ′ − Υ− 2ρ = T +Υ, which gives usT ′ = T + 2Υ + 2ρ. The result
follows.

Lemma 4. An input spike-train ensembleχ for a feedforward network that satisfies
a T -Flush Criterion also satisfies a(dT + d(d + 1)Υ + 2dρ)-Gap Criterion for that
network, whereΥ, ρ are upper bounds on the same parameters taken over all the
neurons in the network andd is the depth of the network.

Proof of Lemma 4.Following the proof of the previous lemma, we know that neurons
that receive all their inputs fromχ have no output spikes outside the interval(−Υ, T ).
Similarly, neurons that have depth 2 with respect to the input vertices of the network
have no output spikes outside(−2Υ, T ). Likewise, the output neuron, which has depth
d, has no output spikes outside(−dΥ, T ). It follows that the output neuron obeys a
(T + (d + 1)Υ + 2ρ)-Gap Criterion. Also, every other neuron obeys this criterion
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because the distance between the2ρ output gaps for every neuron is at most that of
the output neuron, since their depth is bounded from above bythe depth of the output
neuron. Thus, from the definition of the Gap criterion for feedforward networks, we
have thatχ satisfies a(dT + d(d+ 1)Υ+ 2dρ)-Gap Criterion for the current network.

Proofs from Section 7

Proof of Lemma 5.We prove the easy direction first. If∃N ′ ∈ Σ2 such that∀N ∈
Σ1, TN ′ |Fm 6= TN |Fm , then it follows thatTN ′ |G12

6= TN |G12
becauseFm ⊆ GN .

For the other direction, let∃N ′ ∈ Σ2 such that∀N ∈ Σ1, TN ′ |G12
6= TN |G12

. We
constructF ′ ⊆ Fm, so thatTN ′ |F′ 6= TN |F′ . This immediately impliesTN ′ |Fm 6=
TN |Fm . Consider arbitraryN ∈ Σ1. From the hypothesis, we haveTN ′ |G12

6= TN |G12
.

Therefore∃χ ∈ G12 such thatTN ′ |G12
(χ) 6= TN |G12

(χ). Additionally, there exist
T1, T2 ∈ R

+, so thatχ satisfies aT1-Gap Criterion forN and aT2-Gap Criterion
for N ′. Let T = max(T1, T2). Let TN ′ |G12

(χ) = ~x′
0 andTN |G12

(χ) = ~x0 . Let
F̃ =

⋃
t∈R

Ξ(0,2T )(σt(χ)). Note that each element of̃F satisfies a2T -Flush Criterion.
The claim, then, is thatTN ′ |F̃ 6= TN |F̃ . We haveΞ(0,T )(TN ′ (Ξ(0,2T )(σt(χ)))) =
Ξ(0,T )(σt(~x

′
0)) andΞ(0,T )(TN (Ξ(0,2T )(σt(χ)))) = Ξ(0,T )(σt(~x0)). This follows from

the fact thatχ satisfies theT -Gap Criterion with bothN andN ′ and therefore whenN
andN ′ are driven by any segment ofχ of length2T , the output produced in the latterT
milliseconds of that interval agrees with~x0 and~x′

0 respectively. Therefore, if~x0 6= ~x′
0,

it is clear that there exists at, so thatTN ′(Ξ[0,2T ](σt(χ))) 6= TN (Ξ[0,2T ](σt(χ))). F ′

is obtained by taking the union of such̃F for everyN ∈ Σ1. The result follows.

Technical Remarks from Section 8

Some technical remarks concerning the mechanics of provingcomplexity results are
stated below.

For two sets of feedforward networks,Σ1 andΣ2 with Σ1 ⊆ Σ2, in order to prove
thatΣ2 is more complex thanΣ1, it is sufficient to show a transformationT : Fm → S
that no network present inΣ1 can perform, while demonstrating a network inΣ2 that
can effect it. This involves constructing such a transformation, i.e. prescribing an out-
put spike train for every element inFm. Recall thatFm consists of spike-train ensem-
bles of orderm, with the property that for each such ensemble there exists apositive
real numberT , so that the ensemble satisfies aT -Flush criterion. In practice, however,
it usually suffices to prescribe output spike trains for a small subset27 of elements of
Fm, and prove that no network inΣ1 can map the input spike trains in that subset to
their prescribed outputs. The second step would involve demonstrating a network in
Σ2 that maps this subset ofFm to the prescribed output, while mapping the rest ofFm

to arbitrary output spike trains. Strictly speaking then, the transformationT : Fm → S
we prescribe comprises the mapping fromFm to output spike trains, as effected bythis

27albeit typically one that contains, for each positive real numberT , at least one spike-train ensemble
satisfying aT -Flush Criterion.
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network inΣ2. For convenience however, we shall refer to the mapping prescribed for
some small subset ofFm as the prescribed transformation.

The next remark concerns timescales of the parametersΥ andρ of each neuron in
the network and the timescale at which the transformation operates. Recall that the
parametersΥ andρ correspond to the timescale at which the neuron integrates inputs
it receives and the relative refractory period respectively. It would be reasonable to
expect that the values of these parameters lie within a certain range as constrained by
physiology, although this range might be different for different local neuronal networks
in the brain. Suppose we have an upper bound on the value of each such parameter.
Then, when we prove a complexity result, there would exist a timescaleT , which is a
function of these upper bounds, such that there exists a transformation on this timescale
that cannot be performed by any network with the said architecture, whose parameters
are governed by these upper bounds. More precisely, there would exist a transforma-
tion that maps a set of inputs satisfying aT -Flush criterion to an output spike train
that (provably) cannot be performed by any network with the architecture in question.
When stating and proving a complexity result, however, for the sake of succinctness,
we do not explicitly state the relation between these boundsand the correspondingT .
We simply letΥ, ρ andT remain unbounded. It is straightforward for the reader to
derive a bound onT as a function of bounds onΥ andρ, as discussed.

The final remark is about our neuron model and the issue of whatwe can assume
about the neurons when demonstrating that a certain networkcaneffect a given trans-
formation. Recall that our neuron model assumes that our neurons satisfy a small num-
ber of elementary properties but are otherwise unconstrained. This allowed our model
to accomodate a large variety of neuronal responses. This was convenient when faced
with the task of showing that no network of a certain architecture could perform a given
transformation, no matter what response properties its neurons have. However, when
we wish to show that a certain transformation can be done by a specific network, some
caution is in order. In this case, it is prudent to restrict ourselves to as simple a neuron
model as possible, so that whether the neuronal responses employed are achievable by
a real biological neuron, is not in question. In practice, wedescribe the neurons in the
construction, so that they can certainly be effected by a highly-reduced neuron model
such as the Spike Response Model SRM0 (Gerstner and Kistler, 2002).

Proofs from Section 9

Proof of Lemma 6.Let N be a network that effectsT : Fm → S.
T (·) is causal.Consider arbitraryχ1, χ2 ∈ Fm with Ξ(t,∞)χ1 = Ξ(t,∞)χ2, for some
t ∈ R. We wish to show thatΞ[t,∞)T (χ1) = Ξ[t,∞)T (χ2). Let Ni, for 1 ≤ i ≤
d, be the set of neurons inN of depthi, whered is the depth ofN . Each neuron
N ∈ N1 receives all its inputs from spike-trains inχ. When the network receivesχ1

andχ2 as input, supposeN receivesχ′
1 andχ′

2 respectively as input. Also, clearly,
Ξ(t,∞)χ

′
1 = Ξ(t,∞)χ

′
2. Let ~x′

1 and~x′
2 be the output produced byN on receivingχ′

1

andχ′
2 respectively. Sinceχ′

1, χ
′
2 ∈ Fm, there exists aT ∈ R

+, so thatΞ[T,∞)χ
′
1 =

Ξ[T,∞)χ
′
2 = ~φm′

, wherem′ is the number of inputs toN. Therefore, by Axiom (3)

of the neuron, we haveΞ[T,∞)~x
′
1 = Ξ[T,∞)~x

′
2 = ~φ. Now, for all t′ ∈ R, Ξt′~x

′
j =
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〈t′〉 if and only if PN(Ξ(0,ΥN)(σt′(χ
′
j)),Ξ(0,ρN)(σt′(~x

′
j)) = τN, for j = 1, 2. It is

immediate that fort′ > t, we haveΞ(0,ΥN)(σt′(χ
′
1)) = Ξ(0,ΥN)(σt′(χ

′
2)). Now, by an

induction argument on the spike number sinceT , it is straightforward to show that for
all t′ > t, Ξ(0,ρN)(σt′(~x

′
1)) = Ξ(0,ρN)(σt′(~x

′
2)). Thus, we haveΞ[t,∞)~x

′
1 = Ξ[t,∞)~x

′
2.

Similarly, using a straightforward induction argument on depth, one can show that for
every neuron in the network, its output until time instantt is identical in either case.
We therefore haveΞ[t,∞)T (χ1) = Ξ[t,∞)T (χ2).
T (·) is time-invariant. Consider arbitraryχ ∈ Fm andt ∈ R with σt(χ) ∈ Fm. We
wish to show thatT (σt(χ)) = σt(T (χ)). As before, letNi, for 1 ≤ i ≤ d, be the set of
neurons inN of depthi, whered is the depth ofN . Each neuronN ∈ N1 receives all its
inputs from spike-trains inχ. When the network receivesχ andσt(χ) as input, suppose
N receivesχ′ andσt(χ

′) respectively as input. Let~x′
1 and~x′

2 be the output produced by
N on receivingχ′ andσt(χ

′) as input respectively. We wish to show that~x′
2 = σt(~x

′
1).

Sinceχ′ ∈ Fm, there exists aT ∈ R
+, so thatΞ[T,∞)χ

′ = Ξ[T−t,∞)σt(χ
′) = ~φm′

,
wherem′ is the number of inputs toN. Therefore, by Axiom (3) of the neuron, we
haveΞ[T,∞)~x

′
1 = Ξ[T−t,∞)~x

′
2 = ~φ. Now, for all t′ ∈ R, Ξt′~x

′
1 = 〈t′〉 if and only

if PN(Ξ(0,ΥN)(σt′ (χ
′)),Ξ(0,ρN)(σt′(~x

′
1)) = τN. It is therefore straightforward to make

an induction argument on the spike number, starting from theoldest spike in~x′
1 to

show that~x′
1 has a spike at somet′ iff ~x′

2 has a spike att′ − t and therefore we have
~x′
2 = σt(~x

′
1). Similarly, using a straightforward induction argument ondepth, one can

show that for every neuron in the network, its output in the second case is a time-shifted
version of the one in the first case. We therefore haveT (σt(χ)) = σt(T (χ)).
T (·) is resettable. Let Υ andρ be upper bounds on those parameters over all the
neurons inN . If Υ < ρ, then set the value ofΥ = ρ. The claim is that forW =
d(Υ + ρ) + ρ, T (·) is W -resettable, whered is the depth ofN . Consider arbitrary
χ ∈ Fm so thatχ has a gap in the interval(t, t + d(Υ + ρ) + ρ), for somet ∈ R.
As before, letNi, for 1 ≤ i ≤ d, be the set of neurons inN of depthi. Each neuron
N ∈ N1 receives all its inputs from spike-trains inχ. Therefore by Axiom (3) of
the neuron, it is straightforward to see that the output ofN has a gap in the interval
(t, t+(d−1)(Υ+ρ)+2ρ). By similar arguments, we have that output of each neuron
N ∈ Ni, for 1 ≤ i ≤ d has a gap in the interval(t, t + (d − i)(Υ + ρ) + (i + 1)ρ).
Thus, in particular, the output neuron has a gap in the interval (t, t+ (d + 1)ρ). Since
d ≥ 1, the Gap Lemma applies, and at time instantt the output of the output neuron
depends on spikes in the interval(t, t+ (Υ+ ρ)) of its inputs. All inputs to the output
neuron have a gap in the interval(t, t+ (Υ + ρ) + dρ), since they have depth at most
(d−1). Since those inputs have a gap in the interval(t+(Υ+ρ), t+(Υ+ρ)+dρ), for
d ≥ 2, the Gap Lemma applies and the output neuron’s output at timeinstantt depends
on outputs of the “penultimate layer” in the interval(t, t + 2(Υ + ρ)). Therefore by
similar arguments, the output of the output neuron at time instantt at most depends on
inputs fromχ in the interval(t, t + d(Υ + ρ)). That is to say thatT (χ′), for everyχ′

identical toχ in the interval(−∞, t+ d(Υ + ρ)), has the same output asT (χ) in the
interval [t,−∞), following the corollary to the Gap Lemma. In particular,Ξ(−∞,t]χ
is one suchχ′. We therefore haveΞ(−∞,t]T (χ) = T (Ξ(−∞,t]χ) upon noting that
Ξ(−∞,t]T (Ξ(−∞,t]χ) = T (Ξ(−∞,t]χ), sinceT (·) has no spikes in(t,∞). Thus,T (·)
is resettable.
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Proof of Proposition 2.Assume that the hypothesis in the proposition is true. LetT :
Fm → S beW -Resettable for someW ∈ R

+.
We first show a construction for the neuronO, prove that it obeys all the axioms of

the abstract model and then show that it has the property thatfor everyχ ∈ Fm, T (χ)
is consistent withTJ(χ) ⊔ χ with respect toO.

We first construct the neuronO〈αO,ΥO, ρO, τO, λO,mO, PO : S̄mO

(0,ΥO)
×S̄(0,ρO) →

[λO, τO]〉. SetαO = α andρO, τO ∈ R
+, λO ∈ R

− arbitrarily with ρO ≥ αO. Set
ΥO = max{U,W} andmO = m+1. The functionPO : S̄mO

(0,ΥO)
×S̄(0,ρO) → [λO, τO]

is constructed as follows.
For χ′ ∈ S̄mO

(0,ΥO)
and~x′

0 ∈ S̄(0,ρO), setPO(χ
′, ~x′

0) = τO andPO(χ
′, ~φ) = τO

if and only if there existsχ ∈ Fm and t ∈ R so thatΞtT (χ) = 〈t〉 andχ′ =
Ξ(0,ΥO)(σt(TJ(χ) ⊔ χ)) and~x′

0 = Ξ(0,ρO)(σt(T (χ))). Everywhere else, the value
of this function is set to zero.

Next, we show it obeys all of the axioms of the single neuron.
We prove thatO satisfies Axiom (1) by showing that its contrapositive is true. Let

χ′ ∈ S̄mO

(0,ΥO)
and~x′

0 ∈ S̄(0,ρO) be arbitrary so thatPO(χ
′, ~x′

0) = τO. If ~x′
0 = ~φ, Axiom

(1) is immediately satisfied. Thus, consider the case when~x′
0 = 〈x1′

0 , x2′

0 , . . . xk′

0 〉.
Thenx1′

0 ≥ α, otherwise, from the construction ofPO(·), it is immediate that there
exists aχ ∈ Fm with T (χ) /∈ S.

Next, we prove thatO satisfies Axiom (2). Letχ′ ∈ S̄mO

(0,ΥO)
and~x′

0 ∈ S̄(0,ρO)

be arbitrary. IfPO(χ
′, ~x′

0) = τO, then it is immediate from the construction that
PO(χ

′, ~φ) = τO. On the contrary, ifPO(χ
′, ~x′

0) 6= τO, from the construction ofO,
we havePO(χ

′, ~x′
0) = 0. Then the “tie-breaker” condition in the hypothesis implies

thatPO(χ
′, ~φ) 6= τO. Therefore,PO(χ

′, ~φ) = 0. Thus, Axiom (2) is satisfied either
way.

With Axiom (3), we wish to showPO(~φ
m+1, ~φ) = 0. Here, we will show that

PO(~xJ⊔ ~φm, ~x′
0) = 0, for all ~xJ ∈ S̄(0,ΥO) and~x′

0 ∈ S̄(0,ρO) which implies the required
result. Assume, for the sake of contradiction, that there exists a~xJ ∈ S̄(0,ΥO) and

~x′
0 ∈ S̄(0,ρO), so thatPO(~xJ ⊔ ~φm, ~x′

0) = τO. From the construction ofO, this implies

that there existsχ ∈ Fm andt ∈ R so thatΞtT (χ) = 〈t〉 andΞ(0,ΥO)(σt(χ)) = ~φm.
That is,χ has a gap in the interval(t, t + W ), sinceΥO ≥ W . SinceT : Fm → S
is causal, time-invariant andW -resettable, by Corollary 3 (stated and proved later in
the present write-up), we haveΞtT (χ) = ~φ , which is a contradiction. Therefore, we
havePO(~xJ ⊔ ~φm, ~x′

0) 6= τO and by construction ofO, PO(~xJ ⊔ ~φm, ~x′
0) = 0, for all

~xJ ∈ S̄[0,ΥO] and~x′
0 ∈ S̄[0,ρO]. This impliesPO(~φ

m+1, ~φ) = 0, satisfying Axiom (3).
Finally, we wish to show that for everyχ ∈ Fm, T (χ) is consistent withTJ(χ)⊔χ

with respect toO. That is, we wish to show that for everyχ ∈ Fm and for everyt ∈ R,
Ξ0σt(T (χ)) = 〈0〉 if and only if PO(Ξ(0,ΥO)(σt(TJ(χ) ⊔ χ)),Ξ(0,ρO)(σt(T (χ)))) =
τO. Consider arbitraryχ ∈ Fm andt ∈ R. If Ξ0σt(T (χ)) = 〈0〉, then it is immediate
from the construction ofO thatPO(Ξ(0,ΥO)(σt(TJ(χ)⊔χ)),Ξ(0,ρO)(σt(T (χ)))) = τO.
To prove the converse, supposeΞ0σt(T (χ)) 6= 〈0〉. Then, from the contrapositive
of the “tie-breaker” condition, it follows that for all̃χ ∈ Fm and for all t̃ ∈ R
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with Ξ(0,ΥO)(σt̃(TJ(χ̃) ⊔ χ̃)) = Ξ(0,ΥO)(σt(TJ(χ) ⊔ χ)), we haveΞ0σt̃(T (χ̃)) =
Ξ0σt(T (χ)) 6= 〈0〉. Therefore, from the construction, we havePO(Ξ(0,ΥO)(σt(TJ(χ)⊔
χ)),Ξ(0,ρO)(σt(T (χ)))) 6= τO.

Proof of Proposition 3.Assume that the hypothesis in the proposition is true. LetT :
Fm → S beW ′-Resettable for someW ′ ∈ R

+. SetW = max{W ′, 12α}. One
readily verifies thatT : Fm → S is alsoW -resettable.

We first show a construction for the neuronJ, prove that it obeys all the axioms and
then show that it has the property that there exists aU ∈ R

+ so that for allt1, t2 ∈ R

andχ1, χ2 ∈ Fm with Ξ0σt1(T (χ1)) 6= Ξ0σt2(T (χ2)), we haveΞ(0,U)(σt1(TI(χ1)⊔
χ1)) 6= Ξ(0,U)(σt2 (TJ(χ2) ⊔ χ2)), whereTJ : Fm → S is such that for eachχ ∈ Fm,
TJ(χ) is consistent withχ with respect toJ.

We first construct the neuronJ〈αJ,ΥJ, ρJ, τJ, λJ,mJ, PJ : S̄mJ

(0,ΥJ)
× S̄(0,ρJ) →

[λJ, τJ]〉. SetαJ = α. Let p, q, r ∈ R
+, with28 p = 8α, q = 2α andr = α. Set

ΥJ = p + q + r +W , ρJ = 2p− r andmJ = m. Let τJ ∈ R
+, λJ ∈ R

− be chosen
arbitrarily. The functionPJ : S̄

mJ

(0,ΥJ)
× S̄(0,ρJ) → [λJ, τJ] is constructed as follows.

Forχ ∈ S̄mJ

(0,ΥJ)
and~x0 ∈ S̄(0,ρJ), setPJ(χ, ~x0) = τJ andPJ(χ, ~φ) = τJ if and only

if one of the following is true; everywhere else, the function is set to zero.

1. Ξ(p,p+W )χ = ~φmJ , Ξpχ 6= ~φmJ andΞ(0,p]~x0 = ~φ.

2. Ξ(0,p+q]~x0 = 〈t〉, whereq ≤ t < (q + r) and (t − q) = ε(0,Ξ(0,p]σt(χ)).

Moreover,Ξ(t+p,t+p+W )χ = ~φmJ andΞ(p+t)χ 6= ~φmJ .

3. Ξ(0,2p−(q+r)]~x0 = 〈tx, ty〉 with (p− (q + r)) < tx ≤ (p− q) ≤ ty = p. Also,

for all t′ ∈ [0, p], Ξ(t′,t′+W )χ 6= ~φmJ .

4. Ξ[0,2p−r]~x0 = 〈t, tx, ty〉 with q ≤ t < (q+ r) < (p− r) ≤ tx ≤ p ≤ ty = p+ t
and(t− q) = ε((ty − tx − q),Ξ(0,p]σt(χ)). Furthermore, for allt′ ∈ [0, p+ t],

Ξ(t′,t′+W ]χ 6= ~φmJ .

whereε : [0, r)× S̄mJ

(0,p] → [0, r) is as defined below.

For convenience, we define an operatorιkj : [0, 1) → [0, 1), for j, k ∈ Z
+, that

constructs a new number obtained by concatenating everyith digit of a given number,
wherei ≡ j mod k. More formally, forx ∈ [0, 1), ιkj (x) = Σ∞

i=1((⌊x×10j+(i−1)k⌋−

10⌊x× 10j+(i−1)k−1⌋)× 10−i).
Also, we define another operatorζk : [0, 1)k → [0, 1), for k ∈ Z

+ which “in-
terleaves” the digits ofk given numbers in order to produce a new number. More
formally, for x0, x1, . . . , xk−1 ∈ [0, 1), ζk(x0, x1, . . . , xk−1) = Σ∞

i=0((⌊xk( i
k−⌊ i

k ⌋) ×

101+⌊ i
k ⌋⌋ − 10⌊xk( i

k−⌊ i
k ⌋) × 10⌊

i
k ⌋⌋)× 10−(i+1)).

28The choice of values forp, q, r andW was made so as to satisfy the following inequalities, which we
will need in the proof:p < W, p > 2(q + r) andq > α.
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Let d be the largest integer so that, for allx′ ∈ [0, r), we havex′ × 10d <
1. For x′ ∈ [0, r), let x = x′ × 10d. For χ ∈ S̄mJ

(0,p], define29 ε(x′, χ) =

10−d × ζmJ
(ε0(ι

mJ

1 (x),Π1(χ)), ε0(ι
mJ

2 (x),Π2(χ)), . . . , ε0(ι
mJ
mJ

(x),ΠmJ
(χ))), where

ε0 : [0, 1)× S̄(0,p] → [0, 1) is as defined below.
Let n ∈ [0, 1) and~x ∈ S̄(0,p]. Furthermore, letc = ι21(n) ands = ι22(n). Let

~x = 〈x1, x2, . . . , xk〉. We have0 ≤ k ≤ 8, becausep = 8α. Also, sincep = 8r, we
havexi×10d−1 < 1, for 1 ≤ i ≤ k. Lets′ = ζk+1(x

1×10d−1, x2×10d−1, . . . , xk×
10d−1, s). If c = 0, then letc′ = k

10 + 0.09 else letc′ = k
10 + c

10 . Finally, define
ε0(n, ~x) = ζ2(c

′, s′).
Next, we show thatJ satisfies all the axioms of the neuron.
It is immediate thatJ satisfies Axiom (1), since all output spikes in the above con-

struction are at leastq milliseconds apart, andq = 2α.
We now prove thatJ satisfies Axiom (2). Letχ′ ∈ S̄mJ

(0,ΥJ)
and~x′

0 ∈ S̄(0,ρJ) be arbi-

trary. IfPJ(χ
′, ~x′

0) = τJ, then it is immediate from the construction thatPJ(χ
′, ~φ) = τJ

which satisfies Axiom (2). On the contrary, ifPJ(χ
′, ~x′

0) 6= τJ, from the construction of
J, we havePJ(χ

′, ~x′
0) = 0. Also, from the construction we have eitherPJ(χ

′, ~φ) = 0

orPJ(χ
′, ~φ) = τJ. Axiom (2) is satisfied in either case.

Also, J satisfies Axiom (3), since it is clear thatχ = ~φmJ does not satisfy any of
the conditions enumerated above. We therefore havePJ(~φ

mJ , ~φ) = 0.
Finally, we show that there exists aU ∈ R

+ so that for allt1, t2 ∈ R and
χ1, χ2 ∈ Fm with Ξ0σt1(T (χ1)) 6= Ξ0σt2 (T (χ2)), we haveΞ(0,U)(σt1 (TJ(χ1) ⊔
χ1)) 6= Ξ(0,U)(σt2 (TJ(χ2) ⊔ χ2)), whereTJ : Fm → S such that for eachχ ∈ Fm,
TJ(χ) is consistent withχ with respect toJ. Let U = p + q + r + W . Assume
Ξ0σt1(T (χ1)) 6= Ξ0σt2(T (χ2)). Now, supposeΞ(0,0+W )σt1(χ1) = ~φm, then clearly

Ξ(0,0+W )σt2(χ2) 6= ~φm, otherwiseT (·) produces no spike at timest1 and t2 re-
spectively on receivingχ1 andχ2, by Corollary 3. As a result,Ξ(0,U)σt1(χ1) 6=
Ξ(0,U)σt2(χ2), which implies the required result. Otherwise, from Proposition 5, it
follows that there existV1, V2 ∈ R

+ so thatΞ(0,V1](σt1(χ1)) 6= Ξ(0,V2](σt2 (χ2)). If
Ξ(0,U)(σt1 (χ1)) 6= Ξ(0,U)(σt2(χ2)), it is immediate thatΞ(0,U)(σt1(TI(χ1) ⊔ χ1)) 6=
Ξ(0,U)(σt2 (TJ(χ2) ⊔ χ2)). It therefore suffices to prove that ifΞ[U,V1](σt1(χ1)) 6=
Ξ[U,V2](σt2 (χ2)) thenΞ(0,U)(σt1TJ(χ1)) 6= Ξ(0,U)(σt2TJ(χ2)). Proposition 5 implies

thatΞ(V1,V1+W )(σt1(χ1)) = ~φm andΞV1
(σt1 (χ1)) 6= ~φm. Therefore, by Case (1) of

the construction,Ξ(V1−p)σt1TJ(χ1) = 〈V1−p〉. Moreover, since Proposition 5 implies

that for allt′1 ∈ [0, V1), Ξ(t′
1
,t′

1
+W )(σt1 (χ1)) 6= ~φm, from Case (3) of the construction,

we have that for everyk ∈ Z
+ with V1 − kp > 0, Ξ(V1−kp)σt1TJ(χ1) = 〈V1 − kp〉.

Let k1 be30 the smallest positive integer, so thatV1 − k1p < U . From the previ-
ous arguments, we haveΞ(V1−k1p)σt1TJ(χ1) = 〈V1 − k1p〉. Also, it is easy to see
that V1 − k1p ≥ (q + r). Let k2 be similarly defined with respect toχ2 so that
Ξ(V2−k2p)σt2TJ(χ2) = 〈V2 − k2p〉 andV2 − k2p < U . Now, there are two cases:

1. If V1 − k1p 6= V2 − k2p, we now show thatΞ(0,U)(σt1TJ(χ1)) 6=

29Recall that theprojection operator for spike-train ensemblesis defined asΠi(χ) = ~xi, for 1 ≤ i ≤ m,
whereχ = 〈~x1, ~x2, . . . , ~xm〉.

30k1 exists becauseU > p.
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Ξ(0,U)(σt2TJ(χ2)), which is the required result. Assume, without loss of gener-
ality, thatV1 − k1p < V2 − k2p. If these two quantities are less thanp− r apart,
we haveΞ(0,U)(σt1TJ(χ1)) 6= Ξ(0,U)(σt2TJ(χ2)), because by Case (4) of the
constructionTJ(χ1) has a spike in the interval(V1−k1p− (q+ r), V1−k1p− q]
and by Case (3) of the construction,TJ(χ2) has no spike in the interval
(V2 − k2p, V2 − k2p + p − (q + r)). In other words, the spike following the
one atV1 − k1p in TJ(χ1) has no counterpart inTJ(χ2). On the other hand, if
they are less thanp apart but at mostp − r apart, by similar arguments, it is
easy to show that the spike atV2 − k2p in TJ(χ2) has no counterpart inTJ(χ1).
Finally, if they are at leastp apart, thenk2 does not satisfy the property that it is
the smallest positive integer, so thatV2 − k2p ≤ U , which is a contradiction.

2. On the contrary, consider the case whenV1 − k1p = V2 − k2p. We have two
cases:

(a) Supposek1 6= k2. Let t′1 be the largest positive integer so that
Ξt′

1
σt1TJ(χ1) = 〈t′1〉 andt′1 < V1−k1p. From Case (4) of the construction,

we have thatq ≤ (V1−k1p)−t′1 ≤ q+r. Lett′2 be defined likewise, with re-
spect toχ2. Further, letn′

1 = (V1−k1p)−t′1−q andn′
2 = (V2−k2p)−t′2−q

andn1 = n′
1×10d andn2 = n′

2×10d. Sincek1 6= k2, it is straightforward
to verify that for allj with 1 ≤ j ≤ mJ, ι21(ι

mJ

j (n1)) 6= ι21(ι
mJ

j (n2)), for
the former number has9 in the (k1 + 1)th decimal place, while the latter
number does in the(k2 +1)th decimal place and not in the(k1 +1)th dec-
imal place sincek1 6= k2. Therefore,n1 6= n2 and consequentlyt′1 6= t′2
which gives usΞ(0,U)(σt1TJ(χ1)) 6= Ξ(0,U)(σt2TJ(χ2)), which is the re-
quired result.

(b) On the other hand, supposek1 = k2. Again, we have two cases:

i. Suppose, there exists aj with 1 ≤ j ≤ mJ and ak′ ≤ k1, so
thatΞ(V1−k′p,V1−(k′−1)p]Πj(σt1(χ1)) has a different number of spikes
when compared toΞ(V2−k′p,V2−(k′−1)p]Πj(σt2(χ2)). Let n1, n2 be
defined as before. It is straightforward to verify thatι21(ι

mJ

j (n1)) 6=

ι21(ι
mJ

j (n2)), because they differ in the(k1−k′+1)th decimal place31

. Therefore,Ξ(0,U)(σt1TJ(χ1)) 6= Ξ(0,U)(σt2TJ(χ2)).

ii. Now consider the case where for allj with 1 ≤ j ≤ mJ andk′ ≤ k1,
we haveΞ(V1−k′p,V1−(k′−1)p]Πj(σt1(χ1)) have the same number of
spikes when compared toΞ(V2−k′p,V2−(k′−1)p]Πj(σt2(χ2)). Now, by
hypothesis, we haveΞ[U,V1](σt1(χ1)) 6= Ξ[U,V2](σt2(χ2)). Therefore
there must exist a1 ≤ j ≤ mJ andk′ ≤ k1, so that there is a point in
time where one of the spike-trainsΞ(V1−k′p,V1−(k′−1)p]Πj(σt1(χ1))
and Ξ(V2−k′p,V2−(k′−1)p]Πj(σt2(χ2)) has a spike, while the
other does not. Lett′ be the latest time instant at which
this is so. Also, assume without loss of generality that
Ξ(V1−k′p,V1−(k′−1)p]Πj(σt1(χ1)) = 〈x1, . . . , xq〉 has a spike at time

31Which inn1 andn2 encodes the number of spikes in the interval(V2 − k′p, V2 − (k′ − 1)p] on the
jth spike-train ofχ1 andχ2 respectively.
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instantt′ while Ξ(V2−k′p,V2−(k′−1)p]Πj(σt2 (χ2)) does not. Letp be
the number so thatt′ = xp. Let n1, n2 be defined as before. Also,
for eachh with 1 ≤ h ≤ k1, let rh be the number of spikes in
Ξ(V1−hp,V1−(h−1)p]Πj(σt1 (χ1)). Eachrh can be determined fromn1.
Then, it is straightforward to verify32 that ιrk′

p ι
rk′−1

rk′−1
. . . ιr1r1ι

2
2ι

mJ

j n1 6=

ι
rk′

p ι
rk′−1

rk′−1
. . . ιr1r1ι

2
2ι

mJ

j n2. Therefore,n1 6= n2 and it follows that
Ξ(0,U)(σt1TJ(χ1)) 6= Ξ(0,U)(σt2TJ(χ2)).

Some auxiliary propositions used in the proofs of Propositions 2 and 3

Proposition 4. If T : Fm → S is time-invariant, thenT (~φm) = ~φ.

Proof. For the sake of contradiction, supposeT (~φm) = ~x0, where~x0 6= ~φ. That is,
there exists at ∈ R with Ξt~x0 = 〈t〉. Let δ < α. Clearly,σδ(~φ

m) = ~φm ∈ Fm.
SinceT : Fm → S is time-invariant,T (σδ(~φ

m)) = σδ(T (~φm)) = σδ(~x0). Now,
σδ(~x0) 6= ~x0 sinceΞ(t−δ)σδ(~x0) = 〈t − δ〉 whereasΞ(t−δ)~x0 = ~φ, for otherwise

~x0 /∈ S. This is a contradiction. Therefore,T (~φm) = ~φ.

Corollary 3. Let T : Fm → S be causal, time-invariant andW -resettable, for some
W ∈ R

+. If χ ∈ Fm has a gap in the interval(t, t+W ), thenΞtT (χ) = ~φ.

Proof. Assume the hypothesis of the above statement. One readily sees thatΞtT (χ) =
Ξ[t,∞)Ξ(−∞,t]T (χ). Now, sinceχ has a gap in the interval(t, t+W ) andT : Fm →
S is W -resettable, we haveΞ[t,∞)Ξ(−∞,t]T (χ) = Ξ[t,∞)T (Ξ(−∞,t]χ). Further, by

definition,Ξ(t,∞)Ξ(−∞,t]χ = Ξ(t,∞)
~φm. Therefore, sinceT : Fm → S is causal, it

follows thatΞ[t,∞)T (Ξ(−∞,t]χ) = Ξ[t,∞)T (~φm) = ~φ, with the last equality following

from the previous proposition. Thus, we haveΞtT (χ) = ~φ.

Proposition 5. Let T : Fm → S be causal, time-invariant andW ′-resettable,
for someW ′ ∈ R

+. Then for allW ∈ R
+ with W ≥ W ′, t1, t2 ∈ R and

χ1, χ2 ∈ Fm with Ξ0σt1(T (χ1)) 6= Ξ0σt2(T (χ2)), whereΞ(0,0+W )σt1(χ1) 6= ~φm 6=
Ξ(0,0+W )σt2(χ2), there existV1, V2 ∈ R

+ so that the following are true.

1. Ξ(0,V1](σt1(χ1)) 6= Ξ(0,V2](σt2(χ2))

2. Ξ(V1,V1+W )(σt1(χ1)) = ~φm, ΞV1
(σt1(χ1)) 6= ~φm andΞ(V2,V2+W )(σt2(χ2)) =

~φm, ΞV2
(σt2 (χ2)) 6= ~φm

3. For all t′1 ∈ [0, V1), Ξ(t′
1
,t′

1
+W )(σt1 (χ1)) 6= ~φm and for all t′2 ∈ [0, V2),

Ξ(t′
2
,t′

2
+W )(σt2(χ2)) 6= ~φm.

32The expression on either side of the inequality is a real number that encodes for thepth spike time in the
spike-trainsΞ(V1−k′p,V1−(k′−1)p]Πj(σt1 (χ1)) andΞ(V2−k′p,V2−(k′−1)p]Πj(σt2 (χ2)) respectively.
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Proof. SinceT : Fm → S is causal, we haveΞ[t1,∞)T (χ1) = Ξ[t1,∞)T (Ξ(t1,∞)χ1).
This impliesσt1(Ξ[t1,∞)T (χ1)) = σt1(Ξ[t1,∞)T (Ξ(t1,∞)χ1)) which gives us
Ξ[0,∞)σt1(T (χ1)) = Ξ[0,∞)σt1(T (Ξ(t1,∞)χ1)). SinceT : Fm → S is
time-invariant andσt1(Ξ(t1,∞)χ1) = Ξ(0,∞)σt1(χ1) ∈ Fm, we have
Ξ[0,∞)σt1(T (Ξ(t1,∞)χ1)) = Ξ[0,∞)T (Ξ(0,∞)σt1(χ1)). In short,
Ξ[0,∞)σt1(T (χ1)) = Ξ[0,∞)T (Ξ(0,∞)σt1(χ1)) which implies
Ξ0σt1(T (χ1)) = Ξ0T (Ξ(0,∞)σt1(χ1)). Similarly, Ξ0σt2(T (χ2)) =
Ξ0T (Ξ(0,∞)σt2(χ2)). Therefore, it follows from the hypothesis that
Ξ0T (Ξ(0,∞)(σt1 (χ1))) 6= Ξ0T (Ξ(0,∞)(σt2 (χ2))).

Let V1, V2 ∈ R
+ be the smallest positive real numbers so that

Ξ(0,∞)(σt1(χ1)) and Ξ(0,∞)(σt2(χ2)) have gaps in the intervals(V1, V1 + W )
and (V2, V2 + W ) respectively. That suchV1, V2 exist follows from the fact
that χ1, χ2 ∈ Fm. Since, T : Fm → S is W ′-resettable, it is alsoW -
resettable forW ≥ W ′. It therefore follows thatΞ(−∞,V1]T (Ξ(0,∞)(σt1 (χ1))) =
T (Ξ(−∞,V1]Ξ(0,∞)(σt1 (χ1))) which equalsT (Ξ(0,V1](σt1(χ1))). This implies that
Ξ0Ξ(−∞,V1]T (Ξ(0,∞)(σt1(χ1))) = Ξ0T (Ξ(0,V1](σt1(χ1))) due to which we have
Ξ0T (Ξ(0,∞)(σt1 (χ1))) = Ξ0T (Ξ(0,V1](σt1(χ1))). Likewise,
Ξ0T (Ξ(0,∞)(σt2 (χ2))) = Ξ0T (Ξ(0,V2](σt2 (χ2))). We therefore have
Ξ0T (Ξ(0,V1](σt1(χ1))) 6= Ξ0T (Ξ(0,V2](σt2(χ2))). This readily implies
Ξ(0,V1](σt1 (χ1)) 6= Ξ(0,V2](σt2(χ2)) and, from the construction, it follows that

Ξ(V1,V1+W )(σt1 (χ1)) = ~φm, ΞV1
(σt1(χ1)) 6= ~φm andΞ(V2,V2+W )(σt2(χ2)) = ~φm,

ΞV2
(σt2(χ2)) 6= ~φm, for otherwiseV1 or V2 would not be the smallest choice of

numbers with the said property. Furthermore, for the same reasons, for allt′1 ∈ [0, V1),
Ξ(t′

1
,t′

1
+W )(σt1 (χ1)) 6= ~φm and for allt′2 ∈ [0, V2), Ξ(t′

2
,t′

2
+W )(σt2(χ2)) 6= ~φm.
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