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Abstract

Several efforts are currently underway to decipher the ectume or parts
thereof in a variety of organisms. Ascertaining the dethghysiological proper-
ties of all the neurons in these connectomes, however, isfahe scope of such
projects. It is therefore unclear to what extent knowlediggh® connectome alone
will advance a mechanistic understanding of computati@uég in these neu-
ral circuits, especially when the high-level function o thaid circuit is unknown.
We consider, here, the question of how the wiring diagrameafrons imposes
constraints on what neural circuits can compute, when waataassume detailed
information on the physiological response properties efrtaurons. We call such
constraints — that arise by virtue of the connecton@mrnectomic constraintsn
computation. For feedforward networks equipped with nesitthat obey a deter-
ministic spiking neuron model which satisfies a small numtfeproperties, we
ask if just by knowing the architecture of a network, we cde nut computations
that it could be doing, no matter what response propertiels eits neurons may
have. We show results of this form, for certain classes ofrodt architectures.
On the other hand, we also prove that with the limited set operties assumed
for our model neurons, there are fundamental limits to thestaints imposed by
network structure. Thus, our theory suggests that whileectomic constraints
might restrict the computational ability of certain classénetwork architectures,
we may require more elaborate information on the properdfeseurons in the
network, before we can discern such results for other ctasseetworks.

1 Introduction

Recent remarkable experimental advances (Denk and Haretma2004;
Hayworth et al, | 2006;| Knott etlal| 2008; Mishchenko et al, @O0ITuraga et al,
2010; | Helmstaedter et al, 2011; Mikula etal, 2012) have fhbithe prospect of
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ascertaining the connectome or parts thereof closer tayr€@hklovskii et al,[ 2010;
Kleinfeld et al, 2011; Seung, 2011; Denk etlal, 2012; Reid.Z2Melmstaedter et al,
2013). This data is currently not expected to include infation on the detailed
physiological properties of all the neurons in the conneeo Even so, already,
there have been two pioneering studies (Briggman et al,;2Bddk et &l 2011) that
fruitfully use electron-microscopy reconstructions inngoiction with two-photon
calcium imaging on the same tissue. In (Briggmanletal, 20ftl§ authors used
this approach to rule out certain models of direction saligtin the retina. The
other study [(Bock etlal, 2011) examined the orientatioeetility circuitry in the
cortex and found that inhibitory interneurons receivedvengent anatomical input
from nearby excitatory neurons that had a broad range ofepesf orientations.
Recent work [(Takemura et al, 2013) has also used connect@oinstructions of
the motion detection circuit in the fruit fly visual system,arder to identify cellular
targets for future functional investigations; this is todsthe goal of a comprehensive
mechanistic understanding of this circuit. While this lm@proach of combining
functional imaging with structural reconstructions cesatew opportunities to unravel
structure-function relationships_(Seung, 2011), to fullg use functional imaging
seems to require that (a) we have an a priori credible hyg@ttabout at least one
high-level computation that the neural circuit in questisrperforming and (b) we
have a way of experimentally eliciting performance of thiel mputation, usually
via an appropriate stimulus. Unfortunately, neither ofstheonditions appear to be
satisfied for a majority of neuronal circuits in the braimpesally as one moves away
from the sensory/motor periphery. Suppose, in additiotstwiring diagram, we knew
the detailed physiological response properties of all #fa@ons in such a neural circuit
to the extent that we could predict circuit behavior (viagiations, for example). This
might provide a way forward towards advancing hypothesesiatvhat high-level
computation(s) the circuit is actually involved in. Regabty, ascertaining the detailed
physiological response properties of all the neurons i suaetwork appears to be
out of reach of current experimental technology. The prospaf obtaining the wiring
diagram, however, seem to hold more promise. The questenefitre becomes: (1)
What can we learn from the wiring diagram alone, even wherspeeific high-level
function of the neural circuit may be unknown? (2) Are tharedamental limits to
what can be learned from the wiring diagram alone, in the radsef more detailed
physiological information?

To investigate these questions, we have studied a netwodehsguipped with
neurons that obey a deterministic spiking neuron model. S{ewshat computations
networks of specific architectureannotperform, no matter what response properties
each of their neurons may have. The implication, then, is, txing to its struc-
ture, the network is unable to effect the computation in faesThat is, connectomic
constraints forbid the network from performing the said paation. In addition, to
rule out the possibility that this computation is so “harldat no network (of any ar-
chitecture) can accomplish it, we stipulate the need to destnate that there exists a
network (of a different architecture) comprising simplairans that can indeed effect
this computation. The goal of this paper is to establishltesid this form for various
network architectures, after setting up a mathematicahéwaork within which these
questions can be precisely posed. As a first simplifying, stefhis paper, we limit our



study to feedforward networks of neurons. Having starteti tis goal, however, we
also find that with the small number of basic properties assufar our model neu-
rons, there are fundamental limits to the computationastraints imposed by network
structure, in certain cases. In particular, we prove thatstrained only by the prop-
erties in the current neuron model, every feedforward ngtwaf arbitrary size and
depth, has an equivalent feedforward network of depth gqualo that effectexactly
the same computation. The implication of this result is thatneed more elaborate
information about the properties of the neurons before eotumic constraints on the
computational ability of such networks can be discerned.

Before we can examine these questions, we are confrontédtiét problem of
having to define what computation exactly means, in thiseexdnPhysically, neurons
and their networks are simply devices that receive spikmdras input, and in turn
generate spike-trains as output. It is this translatiomfepike-trains to spike-trains
that characterizes information processing and indeed evgnition in the brain. It is
tempting to view a feedforward network agransformationwhich is to say a function,
that associatesumiqueoutput spike train with each combination of afferent inpuike
trains, since such networks do not have recurrent loopss iStthe intuition we will
seek to make precise.

Since the functional role of single neurons and small neita/or the brain is not yet
well understood, we do not make assumptions about partibigh-level tasks that the
network is trying to perform; we are just interested in phgbspike-train to spike-train
transformations. Likewise, since the kinds of neural coaleyed are unclear, we
make no overarching assumptions about the neural code.aiteestudy precise spike
times since there is widespread eviderice (Strehler anithest,| 1986, Rieke et al,
1997, & references therein) that precise spike times playeaim information process-
ing in the brain, in many cases. Indeed, Spike-Timing DepanhBlasticity, a class of
Hebbian learning rules that are sensitive to the relatimint of pre and postsynaptic
spikes have been discovered (Markram et al, 1997; Bi andF388) that support the
role of precise spike-timing in computation in the brain.ud@ting spike times also
subsumes cases where spiking rate may be the relevant garand therefore there
is no loss of generality in making this assumption.

2 Notation and Preliminaries

In this section, we define the mathematical formalism usetszribe spike-trains and
frequently-used operations on them that, for instancdt ahd segment them. The
reader may skim these on the first reading and revisit therspiaific technical point
needs clarification later on.

An action potentiabr spikeis a stereotypical event characterized by the time instant
at which it is initiated in the neuron, which is referred tataspike time Spike times
are represented relative to the present by real numbets pogitive values denoting
past spike times and negative values denoting future spilest Aspike-traint =
(x, 22,... 2% ...) is a strictly increasing sequence of spike times, with epaiy of
spike times being at least apart, wherex > 0 is the absolute refractory perﬂ)dnd

1we assume a single fixed absolute refractory period for aliares, for convenience, although our results



z* is the spike time of spike. An empty spike-traindenoted byz_{, is one which has
no spikes. Atime-bounded spike-traifwith bound(a, b)) is one where all spike times
lie in the bounded intervala, b), for somea,b € R. We useS to denote the set of
all spike trains an£(a7b) to denote the set of all time-bounded spike-trains with ldoun
(a,b). A spike-train is said to havegapin the interval(c, d), if it has no spikes in that
time interval. Furthermore, this gap is said to bdewsigthd — c.

We use the termspike-train ensembli® denote a collection of spike-trains. Thus,
formally, a spike-train ensemblg = (%1,...,Z,,) is a tuple of spike-trains. The
order of a spike-train ensemble is the number of spike-trains .inkbr example,
X = {&1,...,%,) is a spike-train ensemble of order. A time-bounded spike-train
ensembléwith bound(a, b)) is one in which each of its spike-trains is time-bounded
(with bound(a, b)). A spike-train ensemblg is said have gapin the interval(c, d),
if each of its spike trains has a gap in the interfeal).

Next, we define some operators to time-shift, segment arefrdge/disassemble
spike-trains from spike-train ensembles. let= (z!,22,... 2% ...) be a spike-
train andx = (Z,...,Zn,) be a spike-train ensemble. Tlhiee-shift operator
for spike-trainsis used to time-shift all the spikes in a spike-train. ThagZ) =
(wt —t, 2% —t,..., 2% —t,...). Thetime-shift operator for spike-train ensembies
defined asr;(x) = (01(Z1),...,0:(Zm)). Thetruncation operator for spike-trains
used to “cut out” specific segments of a spike-train. It isrdedias followsZ=, ;) (7)
is the time-bounded spike-train with bouffid b] that is identical taz in the inter-
val [a,b]. E(qp)(T), Ea,p (L) andZ, ;) (£) are defined likewise. In the same vein,
Ela,00)(Z) is the spike-train that is identical t8 in the interval[a, oc) and has no
spikes in the interval—oo, a). Similarly, =_ . 5 (¥) is the spike-train that is identi-
cal to 7 in the interval(—oo, b] and has no spikes in the interv@l co). =4 o) (7)
and=(_ ) (¥) are also defined similarly. Theuncation operator for spike-train en-
sembless defined asS(, 4 (x) = (Zja,p)(Z1), - -+, Efa,5)(@m))- Eap)(X)s Ean(X),
Efa,0) (X)) Efa,00)(X)r E(=00,0](X)s E(a,00)(X) @NAE(_o ) (x) are defined likewise.
FurthermoreZ;(-) is shorthand foEy, ;(-). The projection operator for spike-train
ensembless used to “pull-out” a specific spike-train from a spikeitransemble. It
is defined adl;(x) = &;, wherel < i < m. Lety, o, .., y, be spike-trains. The
join operator for spike-traings used to “bundle-up” a set of spike-trains to obtain a

n
spike-train ensemble. Itis defined@s o U ... U, = | ¥ = (U1, Y2, - - s Un)-
=1

3 The Neuron Model

The present work treats the setting in which we know the gidiagram of a network,
but lack detailed information on the response propertiés ofeurons. We then wish to
show computations that the network cannot accomptisimatter what response prop-
erties its neurons may havéhe modeling question we must first address, therefore, is
what kind of neuron model we ought to use in such a context.

While we lack detailed information on each of the neuronshim network, it is
reasonable to assume that all the neurons in the netwodfysatismall number of

would be no different if different neurons had different alloge refractory periods.



elementary properties. For example, spiking neurons anergly known to have an
absolute refractory period and most of them settle to amgstiembrane potential
upon receiving no input for sufficiently long, where thistreg membrane potential
is smaller than the threshold required to elicit a spike. Vighwo have a model that
is contingent on a small number of such basic propertieswingse responses are
unconstrained otherwise, in order to allow for a large ctdgmssible responses.

Mathematically, we formulate the neuron as an abstract enadltical object that
satisfies a small number of axioms, which correspond to slechemtary properties.

Another way to think about the model is as one that brings &uritd umbrella”
several other neuron models. These are models that sdtisfproperties that our
model is contingent on. In Appendix A, we demonstrate, fatance, that neuron
models such as the Leaky Integrate-and-Fire Model and tlilee Spesponse Model
SRM, satisfy these properties up to arbitrary accuracy. Our fneatethus be seen as
a generalizatid}of these neuron models, specifically one that allows for ahmwider
class of responses.

There are also other strong reasons for employing this tymeoalel. Crucially,
it allows the possibility of incrementally adding more peofes to the neuron model,
and studying how that further constrains the computatiprgberties of the network.
This would model the scenario where we have more detailed/leutye about individ-
ual neuron properties, which might well turn out to be theecagth the connectome
projects. While technical hurdles presently lie in the wainterring, for example, dis-
tributions of ion-channels and neurotransmitter recegitbeach neuron using electron
microscopy(Denk etial, 2012), it is conceivable that futadeances make this possi-
ble, giving us a better sense of the physiological propediall the individual neurons
in the connectome; other future technological advancesatsayhelp in this direction.
Furthermore, the need for adding more properties to the hasdistudying the conse-
quences will become especially apparent towards the erfdsopaper, when we show
limits to the constraints imposed by the present set of pt@seassumed in the model.

3.1 Properties

We start off by informally describing the properties that owdel is contingent on.
Notable cases where the properties do not hold are alsogubintt. This is followed
by a formal mathematical definition of the model. The apphdaken here in defining
the model is along the lines of the onelin (Banerjee, 2001).

The following are our assumptions:

1. We assume that the neuron is a device that receives input dther neurons
exclusively by spikes which are received via chemical syaﬂ)

2. The neuron is a finite-precision device with fading memdatgnce, the under-

2Models such as the Leaky Integrate-and-Fire (LIF) and SBi&sponse Model (SRM), in addition to
the constraints in our model have their membrane potentiation P(-) specified outright. In case of the
LIF model, this is specified via a differential equation andtie case of SRM, the specific functional form
is written down explicitly.

3In this work, we do not treat electrical synapses or ephaptizactions|(Shepherd, 2004).



lying potential function can be determirfefiom a bounded past. Thatis, we
assume that, for each neuron, there exist positive real atsfibandp, so that
the current membrane potential of the neuron can be detethais a function of
the input spikes received in the p&&tmilliseconds and the spikes produced by
the neuron in the pagtmilliseconds. The paramet&rwould correspond to the
timescale at which the neuron integrates inputs receivad fither neurons and
p corresponds to the notion dflative refractory period.

3. Specifically, we assume that the membrane potential afi¢hieon can be writ-
ten down as a real-valued, everywhere-bounded functioheofdrm P (; Zo),
whereZ is a time-bounded spike-train, with bouf@ p) andy = (Z1, ..., Zmn)
is a time-bounded spike-train ensemble with boy®d('). Informally, Z;, for
1 < i < m, is the sequence of spikes afferent in synapisethe pastY” mil-
liseconds and, is the sequence of spikes efferent from the current neuron in
the pasf milliseconds. The functio®(-) characterizes the entire spatiotempo-
ral response of the neuron to spikes including synaptiagths, their location
on dendrites, and their modulation of each other’s effetthe soma, spike-
propagation delays, and the postspike hyperpolarization.

4. Without loss of generality, we assume the resting mengypatential to be.

5. LetT > 0 be the threshold that the membrane potential must reachdir ¢o
elicit a spike. Observe that the model allows for varigiteesholds, as long as
the threshold itself is a function of spikes afferent in thasti” milliseconds and
spikes efferent from the present neuron in the pastilliseconds. Furthermore,
when a new output spike is produced, in the model, the membpatential
immediately goes below threshold. That is, the membranenpiat function in
the model takes values that are at most that of the threshbld.simplifies our
condition for an output spike to be that tii&-) merely hits threshold, without
having to check if it hits it from below, since it cannot hifiom above. Again,
this is done without loss of generality. Additionally, letbe a negative real
number that represents a lower-bound on the values thatehgbnane potential
can take.

6. Outspéjt spikes in the recent past tend to have an inhibéfegt, in the following
sensg:

P(x;Zo) < P(x; ), for all “legal” x andZ.

Thus, our model allows for a wide variety of AHPs. Indeed,dhé/ constraint
on AHPs is the one given above. That is, suppose, in the fis#t tzat at a
certain point in time the neuron received spikes in the ffastconds present in

4We do not treat stochastic variability in the responses afares or neuromodulation in this paper.

5In many biological neurons, the membrane potential thastimea (or axon initial segment) must reach,
in order to elicit a spike is not fixed at all times and is, fommple, a function of the inactivation levels
of the voltage-gated Sodium channels. Our model can accat®dldis phenomenon, to the extent that this
threshold itself is a function of spikes afferent in the pastilliseconds and spikes efferent from the present
neuron in the past milliseconds.

6This is violated, notably, in neurons that have a post-iinip rebound.



x as input and did not output any spikes in the pastilliseconds. In the second
case, suppose that at a certain point in time the neuron aged@ived spikes
in the pastY seconds present ig as input but output some spikes in the past
p milliseconds. The condition states that the membrane giatén the second
case must be at most that of the value in the first case. Thusesuits will be
true for any neuron model that has an AHP that obeys this tiondi

7. Owing to the absolute refractory periad> 0, no two input or output spikes
can occur closer tham. That is, suppos&, = (z}, 22, ..., xf), wherez} < a.
ThenP(x; Zy) < T, for all “legal” x.

8. Finally, on receiving no input spikes in the pastmilliseconds and no output
spikes in the past milliseconds, the neuron settles to its resting potentibht
is,

P(<$7(517¢>7¢):O

A feedforward network of neuronss a Directed Acyclic Graph where each vertex
corresponds to an instantiation of the neuron model, with ékception of some
vertices, designated as input vertices (which are pladehnsifor input spike-trains);
one neuron is designated the output neuron. dider of a feedforward network is
equal to the number of its input vertices. Thepthof a feedforward network is the
length of the longest path from an input vertex to the outgutex.

Next, we formalize the above notions into a rigorous definitof a neuron as an ab-
stract mathematical object.

Definition 1 (Neuron) A neuronN is a 7-tuple(a, Y, p, 7, \,m, P : S(”(},T) x8(0,0) =
[\, 7]), wherea, T, p, 7 € Rt with p > o, A € R~ andm € Z*. Furthermore,

1. If &y = (2}, 22,...,2k) with 2} < «, thenP(x; 7)) < 7, forall x € 3(78 )
and for allz, € S ).

2. P(x; %) < P(x; ¢), forallx € 8j5 ) and for allzy € g,

- -,

3. P(($,¢,...,8);¢) = 0.

A neuron is said tgenerate a spikesheneverP(-) = 7.

4 Feedforward Networks as Input-to-Output transfor-
mations

As discussed earlier, it is intuitively appealing to viewdéorward networks of neurons
as transformations that map input spike-trains to outpiespains. In this section, we
seek to make this notion precise by clarifying in what seifsa, all, these networks
constitute the said transformations. It will turn out thaer single neurons cannot
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Figure 1: This counterexample describes a single neuronhnlims just one afferent
synapse. Until time’ in the past, it received no input spikes. After this timejnfsut
consisted of spikes that arrived every- 6/2 milliseconds, wher@ < 6 < 2(p — «).
An input spike alone (if there were no output spikes in the pasilliseconds) causes
this neuron to produce an output spike. However, in addiifcthere were an output
spike within the past milliseconds, the afterhyperpolarization (AHP) due td ke

is sufficient to bring the potential below threshold, so i neuron does not spike
currently. We therefore observe that if the first spike ofitiput spike-train is absent,
then the output spike-train changes drastically. Notettiiatchange occurs no matter
how often the shaded segment in the middle is replicatedjtigoes not depend on
how long ago the first spike occurred. Thus, the countereladgmonstrates that the
membrane potential at any point in time may depend on thdipogif an input spike
that occurred arbitrarily long time ago. Note that the inputhe output pattern being
periodic and the two output patterns being phase-shiftedts necessary ingredient
of the counterexample; i.e. it is straightforward to comstra (more complicated)
counterexample that exhibits this same phenomenon whéttleen¢he input spike-
train nor the output spike-train are periodic and wherewtedutput spike patterns are
not phase-shifted versions of each other.



correctly be viewed as such transformations, in generahémext section, however,
we show that under biologically-relevant spiking regimes,can salvage this view of
feedforward networks as spike-train to spike-train trarsfations.

Let us first consider the simplest type of feedforward nekywoamely a single
neuron. Observe that our abstract neuron model does natiélyprescribe an output
spike-train for a given input spike-train ensemble. Thatésall from the previous
section, that the membrane potential of the neuron depeardsity on the input spikes
received in the past’ milliseconds, it also depends on the output spikes produced
by it in the pastp milliseconds. Therefore, knowledge of just input spikedsrin
the pastY milliseconds does not uniquely determine the current mamdpotential
(and therefore the output spike-train produced from it)might be tempting to then
somehow use the fact that past output spikes are themsefuegtzon of input and
output received in the more distant past, and attempt to ritakeurrent membrane
potential a function of a bounded albeit larger “window” afgp input spikes alone.
The simple counterexample described in Fidure 1 shows tiimtbes not work. In
particular, if we attempt to characterize the current membmotential of the neuron
as a function of past input spikes alone, the current menelypatential may depend
on the position of an input spike that has occurred arblyrdong time ago in the
past. To sum up, this counterexample proves that, withatitdu restrictions, even a
single neuron cannot be correctly viewed as a boundedHespgjte-train to spike-train
transformation.

This pessimistic prognosis notwithstanding, it may seeat thwe knew the in-
finite history of input spikes received by the neuron, we $thdne able to uniquely
determine its current membrane potential. Unfortunatbly,situation turns out to be
even more dire — this turns out not to be the case. Before wedstnate this, we must
return to the issue of what it means for a neuroprimducean output spike-train when
it receives a certain spike-train ensemble as input. Thauigpose the reader had an
instantiation of our neuron model, which in this case woukbmthe values of, p
and 7 and the membrane potential functiét(-). Further, suppose the reader were
given an input spike-train ensembjeand told that the neuron “produced” the output
spike-train¥y when driven byy. Then, all that the reader can do to verify this claim is
to check if the given output spike-traingsnsistentvith the input spike-train ensemble
for the given neuron in the following sense. We would go tchgamint in time where
the neuron spiked and plug infé(-) the input spikes in the padt milliseconds from
X, and output spikes from the pagstmilliseconds fromz, and check if the value of
P(-) equals the threshold Likewise, for the time points where the output spike-train
does not have a spike, we need to check that this value isHaasttie threshold. If
the answers are in the affirmative for all time-points we canthat the given output
spike-train isconsistenwith the given input spike-train ensemble with respect ® th
neuron in question. However, this still allows the pos#ipibf more than one consis-
tent output spike-train to exist for a given input spikeftransemble, with respect to a
given neuron. Indeed, we will demonstrate that this polifsilsian occur and therefore
given the infinite history of input spikes received by the e we cannot uniquely
determine the output spike train produced. Before gettitmthe counterexample, for
completeness, let us formally define this notiorcohsistencyRecall that(t) denotes
a spike-train with a single spike at time instant
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Figure 2: The counterexample here is very similar to the arféigure[1, except that,
instead of there being no input spikes befétewe have an unbounded input spike-
train ensemble, with the same periodic input spikes ocagrsince the infinite past.
The neuron here has the exact same response properties@wsetheFiguré L. Ob-
serve that both output spike-trains are consistent withittput, for eachh € R. The
corresponding membrane potential traces appear belowa@addistent output spike
train.
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Definition 2. An output spike-trairr is said to beconsistentvith an input spike-train
ensembley, with respect to a neurdd(«, T, p, 7, A\, m, P : Sggx) X S(0,p) = [N 7)),
if x € 8™ and the following holds. For evetye R, =,Z, = (¢) if and only if
P(Zq0,1)(0¢(X)): E(0,p) (0(T0)) = T.

The question, therefore, is the following. For every (unmmbed) input spike-train en-

sembley, does there exist exactly one (unbounded) output spike #@iso thatz,

is consistent withy with respect to a given neurdi? As alluded to, the answer turns
out to be in the negative. The counterexample in Figlire 2riesca neuron and an
infinitel)ﬂ long input spike-train, which has two consistent outpukegrains.

The underlying difficulty in defining even single neurons pikes-train to spike-
train transformations, with both viewpoints discussedvab@s persistent dependence,
in general, of current membrane potential on “initial statéhe way to circumvent
this difficulty would be to impose additional restrictionsieh render such counterex-
amples untenable. For example, there is the possibilitponéitering just a subset of
input/output spike-trains, which have the property of therent membrane potential
being independent of the input spikes beyond a certain tintled past. Such a subset
would certainly exclude the examples discussed in thisaecthis would correspond
to restricting our theory to a certain kind of spiking regime

In the next section, we come up with a condition that, in éffexstricts spike-trains
to biologically-relevant spiking regimes and prove thas timplies independence as
alluded to above. Roughly speaking, the condition is thatrituron has had a recent
gap in its output spike-train equal to at leastce its relative refractory period, then
its current membrane potential is independent of the inpybhd the relatively recent
past. We show that this leads to the notion of feedforwardioeds as spike-train to
spike-train transformations to be well-defined.

5 The Gap Lemma and Criteria

In this section, we devise a biologically well-motivatedhddion that guarantees inde-
pendence of current membrane potential from input spikgsrixéthe recent past. This
condition is used in constructing a criterion for single rs which when satisfied,
guarantees a unique consistent output spike-train and teatie view of a neuron as
a transformation that maps bounded-length input spikedr@ bounded-length out-
put spike-trains. After this, similar criteria are definedt feedforward networks, in
general.

For a neuron, the way input spikes that happened sufficieatllfer affect current
membrane potential is via a causal sequence of output smiiasal in the sense that
each output spike in the sequence had an effect on the meenpaaential while the
subsequent one in the sequence was being produced anduhepile in question had
an effect on the membrane potential, when the oldest oupilte &1 the same sequence
was produced. As a result, when an input spike is moved, tféstecould propagate

"The interested reader is referred to Appendix B for a disonssn the issue of infinitely-long input
spike-trains in this context.

11
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Figure 3: This figure illustrates the idea behind the Gap LamBuppose there exists
a neuron, withY andp being the lengths of input and output windows respectively,
that “effects” the transformation shown above. [&t— ¢) > Y. Suppose, the spikes
in the shaded region, which is an interval of lengtbccurred at the exact same posi-
tion, for all input spike-train ensembles that are iderticghe rangelt, ¢'], but have
spikes occurring at arbitrary positions older than timeanst’. Then, the membrane
potential of that neuron dtis identical in all those cases. This implies that the spikes
in the shaded region are a function of exactly the input spikethe intervalt, t']; in
particular, they are independent of input spikes occurbiefgret’.

across time and cause the output spike train to changeahthstiThe condition in the
Gap Lemma, in effect, seeks to break the causality in thisalaahain.

Figure[3 elaborates the main idea behind the condition. Geghere exists a
neuron, withY andp being the lengths of input and output windows respectivait
“effects” the transformation shown in Figdrk 3. In a nut§héthere was a guarantee
that spike positions in an interval of lengthin the output spike train would remain
invariant to changes in the past input spike-train ensentbén this would break the
aforementioned causal chain.

The question, of course, is what condition might guaranteb & situation. It turns
out that a gap of lengthp in the output spike-train suffices, as the next lemma shows.
That is, if the neuron effects a transformation witBagap, say ending at present
in the output, then fot’ beingT + p milliseconds before, such that no matter how
input spikes older thar' are changed, the latter half of tRe gap is guaranteed to
have no spikes in each case. Therefore, membrane potdati@hg att, is the same
in all such cases2p also turns out to be the smallest gap length for which thiskeior
Figure[4 offers some brief intuition on why a gap of lengghsuffices to guarantee
independence. The technical details are in the followimgni@a. A formal proof is
available in Appendix B.

Lemma 1(Gap Lemmja Consider a neuroM(a, Y, p, 7, \,m, P : SZ&T) xS0,p) =
[\, 7]), a spike-train ensemble* of orderm and a spike-traing; which has a gap in
the interval(¢, t + 2p), so thatz} is consistent with*, with respect toN. Lety be an
arbitrary spike-train ensemble that is identical{d in the interval(¢, ¢ + T + p).

8For the sake of simplicity of exposition, assume there istix@ne consistent output spike-train. This
is not a requirement as will become clear in the lemma.
9Formally, this follows from Axiom 2 in the definition of our atract neuron.
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Figure 4: This figure helps visualize the intuition behindrvalgap of lengti2p suffices

to guarantee independence in the Gap Lemma. Suppose a meueeeiving an input
spike-train ensemblg* “producesﬁan output spike-trai. Further, supposer;
has a gap of lengthp ending at time instant. Now let y be some input spike-train
ensemble, which is identical t* in an interval of lengthHY" + p ending att. Let

Zo be the output spike-train "produced” by Then, the condition guarantees thgt
has a gap of lengtlh immediately preceding. Here is why. When the neuron is
being driven byy*, clearly, the membrane potential is below threshold at ¢mch
instantp milliseconds before. At each such time instant, the neuron has no past
output spikes milliseconds previously. Now, when the neuron is being eliby x
instead, there is no guarantee that the earlier half oRthgap is preserved . Thus,
at each time instarnt milliseconds before, the neuron “sees” the same input spike-
train ensemblér milliseconds previously as witly*, but possibly some past output
spikesp milliseconds previously. Therefore, it's membrane patdrit each such time
instant may be less than or equal to the corresponding vahike the neuron was
being driven byy*, since, intuitively, the presence of recent efferent spidé@uld serve
to afterhyperpolarize the membrane poteIiaThus, since the membrane potential
was already below threshold in this time interval while tieeiron was being driven by
x*, itis below the threshold, while the neuron is being drivgnas well.

13



Then, every output spike-train consistent wittwith respect td\, has a gap in the
interval (¢,t + p). Furthermore2p is the smallest gap length iff;, for which this is
true.

The Gap Lemma has some ready implications as stated in to#azgrbelow. A
proof is available in Appendix B.

Corollary 1. Consider a neurom{a, Y, p, 7, \,m, P : 5‘(’3 1) % S0, = [N 7]), @
spike-train ensemble* of orderm and a spike-trair’§ which has a gap in the interval

(t,t + 2p) so thatzy is consistent with*, with respect taN. Then
1. EveryZ, consistent with¢*, with respect td\, has a gap in the intervdk, ¢+ p).

2. EveryZ, consistent withy*, with respect td\, is identical toZ in the interval
(—o0,t + p), i.e. into the future after time instantt+ p.

3. For everyt’ more recent thaift 4 p), the membrane potential &t is a function
of spikes IrE 114, (X*)-

The upshot of the Gap Lemma and its corollary is that whenavwseuron goes
through a period of time equal to twice its relative refragtperiod where it has pro-
duced no output spikes it undergoes a “reset” in the senséshmembrane potential
from then on becomes independent of input spikes that asz thdnY + p millisec-
onds before the end of the gap.

Large gaps in the output spike-trains of neurons seem to temsixely prevalent
in the human brain. In parts of the brain where the neurornegpérsistently, such
as in the frontal cortex, the spike rate is very low (0.1HH2D(Shepherd, 2004).
In contrast, the typical spike rate of retinal ganglion €alan be very high but the
activity is generally interspersed with large gaps durirtgolr no spikes are emitted
(Nirenberg et al, 2001).

These observations motivate our definition of a criterionifiput spike-train en-
sembles afferent on single neurons. The criterion stipaltat there be intermittent
gaps of length at least twice the relative refractory peioan output spike-train con-
sistent with the input spike-train ensemble, with respet¢he neuron in question. As
we elaborate in a moment, the definition is set up so that fanaut spike-train en-
sembley that satisfies §-Gap criterion for a neuron, the membrane potential at any
pointin time is dependent on at mdstmilliseconds of input spikes iy before it.

Definition 3 (Gap Criterion for a single neuronfFor T' € R, a spike-train ensemble
X is said to satisfy &-Gap Criterioid for a neurorN{a, T, p, 7, A\, m, P : Sggx) X
S(0,) — [A, 7)) if the following is true: There exists a spike-trai with at least one
gap of lengti2p in every interval of time of lengti” — T + 2p, so thatz is consistent

with x with respect ta\.

Such input spike-train ensembles also have exactly oneistens output spike-
train. The interested reader is directed to Proposition Appendix B for a formal
statement and proof of this fact.

10Note that for sufficiently small values @t (in relation toY andp), no x may satisfy &’-Gap Criterion.
This is deliberate formulation that will minimize notatalrclutter in forthcoming definitions.
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Figure 5: lllustration demonstrating that for an input sptkain ensemblg that sat-
isfies aT-Gap criterion, the membrane potential at any point in timmdépendent on
at mostT" milliseconds of input spikes iy before it. Owing to thel'-Gap criterion
the distance between the end and start of any two consegapseof lengti2p on the
output spike-train is at mo§t — T — 2p. Upto the earlier half of &p gap (whose latest
point is denoted by’) is dependent on input corresponding to the previqugap. It
follows that the membrane potentialtatdepends only on input spikes in the interval
of lengthT before it, as depicted, owing to the Gap Lemma.

For an input spike-train ensembilethat satisfies &'-Gap criterion for a neuron,
the membrane potential at any point in time is dependent oroat7” milliseconds of
input spikes iny before it, as discussed in Figlire 5.

With inputs that satisfy th&-Gap Criterion, here is what we need to do to physi-
cally determine the current membrane potential, even ifituiron has been receiving
input since the infinite past: Start off the neuron from antealy state, and drive it
with input that the neuron received in the pasmilliseconds. The Gap Lemma guar-
antees that the membrane potential we see now will be id#dithe actual membrane
potential, since the membrane potential is guaranteedvie tladergone a “reset” in
the ensuing time.

The Gap Criterion we have defined for single neurons can heaalbt extended
to the case of feedforward networks. The criterion is sintpbt the input spike-train
ensemble to the network is such that every neuron’s inpwybescaled Gap crite-
rion for single neurons. Figuté 6 explains the idea. Foryn#ile definition proceeds
inductively, starting with neurons of depth 1.

Definition 4 (Gap Criterion for a feedforward networkhn input spike-train ensemble
x is said to satisfy &-Gap Criterion for a feedforward network if each neuron in the
network satisfies é%)-Gap Criterion, when the network is driven Rywhered is the
depth of the acyclic network.

As with the criterion for the single neuron, the membranesptial of the output
neuron at any point is dependent on at niBsnilliseconds of past input, if the input
spike-train ensemble to the feedforward network satisfiEs@ap criterion. Addition-
ally, the output spike-train is unique. Lemma 2 and its priooAppendix B make
precise these facts.
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Figure 6: Schematic diagram illustrating how the Gap doteworks for the simple
two-neuron network on the left. The membrane potential efdbtput neuron at
depends on input received from the “intermediate” neursrdepicted in the darkly-
shaded region, owing to the Gap Lemma. The output of thenmgdiate neuron in the
darkly-shaded region, in turn, depends on input it receineke lightly-shaded region.
Thus, transitively, membrane potential of the output nawaty is dependent at most
on input received by the network in the lightly-shaded ragio

We thus find ourselves at a juncture where questions wellgisaught to ask can
be posed in a self-consistent manner. So, looking back diithpicture, we had ini-
tially wished to view feedforward networks as transforroas that mapped bounded-
length input spike-trains to bounded-length output spikins. However, we found
that this notion was not always well-defined. We then showatlif we restrict the set
of input spike-trains so they satisfied certain criteriee oan correctly speak of output
spike-trains that such inputs are mapped to, by the feedforwetwork in question.
We also argued that this restricted set of spike-trainsmpesses biologically-relevant
spiking regimes. Thus, feedforward networks can be seamasformations that map
this restricted set of input spike-trains to output spikeris. Indeed, this will be the
sense in which feedforward networks are treated as tramsfins. Next, we formal-
ize these observations and define some notation.

Notation. Given a feedforward network’, letG7, be the set of all input spike-train
ensembles that satisfyB-Gap Criterion for\V. Let Gy = Upcp+ GAr. Therefore,
every feedforward networkV\ induces a transformatiofy : G — S that maps
each spike-train ensemble @), to a unique output spike train in the set of spike-
trainsS. Supposgj’ C Gu. Then, letTy|es : G — S be the map defined as
Tile (x) = Tw(x), forall x € ¢'.

The Gap Criteria are very general and biologically well-wated. However, given
a neuron or a feedforward network, there does not appearda basy way to charac-
terize all the input spike-train ensembles that satisfyreageGap Criterion for it. That
is, for a given neuron, whether an input spike-train ensersétisfies a Gap Criterion
for it seems to depend intimately on the exact form of its mesmb potential function.
As a result, a spike-train ensemble that satisfies a Gapiorit®r one neuron may not
satisfy any Gap Criterion for another neuron. For a feedémdwmetwork, the problem
becomes even more difficult, since intermediate neurons satisfy Gap Criteria, and
also produce output spike-trains that satisfy Gap Critesaneurons further down-
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stream. Furthermore, in order to compare transformatifested by two different
networks, we need to study inputs that satisfy some Gagrionitéor both of them, for
otherwise, the notion of a transformation may no longer hdldw, we sought to ask
what transformationall feedforward networks with a certain architecture coulddmt
For this, we need to characterize inputs that satisfy a Gaeron for all the networks
involved, which seems to be an even more intractable prablem

This brings up the question of the existence of another@iteccording to which
the set of spike-train ensembles is easier to charactarzessaommoracross different
networks. Next, we propose one such criterion and show tlcanisists of spike-train
ensembles which are a subset of those induced by the Gapacfdeall feedforward
networks. Loosely speaking, these are input spike-traseeles which, before a cer-
tain time instant in the past, have had no spikes. The spiie-¢nsembles satisfying
the said criterion, which we call the Flush criterion, allaw to sidestep the difficult
issues just discussed. While this is a purely theoreticastact with no claim of bi-
ological relevance, in Sectidn 7, we prove that there is B8 ly restricting ourselves
to the Flush criterion. That is, not only is a result provethgshe Flush criterion ap-
plicable with the Gap criterioreveryresult true with the Gap criterion can be proved
by using the Flush criterion exclusively.

6 Flush Criterion

The idea of the Flush Criterion is to force the neuron to poedno output spikes
for sufficiently long so as to guarantee that a Gap critersobding satisfied. This is
done by having a semi-infinitely long interval with no inppiles. This “flushes” the

neuron by bringing it to the resting potential and keepsétdtfor a sufficiently long

time, during which it produces no output spikes. In a feadfod network, the flush

is propagated so that all neurons have had a sufficientlydapgn their output spike-

trains. Observe that the Flush Criterion is not defined vafarence to any feedforward
network and is just a property of the spike-train ensemble nvike this notion precise
below.

Definition 5 (Flush Criterion) A spike-train ensemblg is said to satisfy &'-Flush
Criterion, if all its spikes lie in the interval0, T'), i.e. it has no spikes upto time instant
T and since time instant 0.

It turns out that an input spike-train ensemble to a neuran $htisfies a Flush
criterion also satisfies a Gap criterion. The technicalitfetdong with a proof are in
Lemma 3 in Appendix B.

Likewise, an input spike-train ensemble to a feedforwatdnek satisfying a Flush
criterion also satisfies a Gap criterion for that networlelaborated in Lemma 4 which
is available in Appendix B with a proof.

The Flush criterion is a construct made for mathematicakdigmce and prima
facie does not have any biological relevance. It is a netvilndiependent criterion
which enables us to circumvent difficulties that workingtwithie Gap criterion entailed.
It will soon become clear why it is a useful construction, whee show that it is
equivalent to the Gap criterion insofar as the questionsagk 0 ask are concerned.
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7 Transformational Complexity

Having laid the groundwork, in this section, we set up a diinithat will allow us
to ask if there exists a transformation that no network of ra@® architecture could
effect that a network of a different architecture could. slttonvenient to formulate
the definition in the following terms. Given two cladsbsf networks with the second
class encompassing the first, we ask if there is a networkdrséitond class whose
transformation cannot be performed by any network in thédless. That is, does the
second class possess a larger repertoire of transformdkian the first, giving itnore
complexcomputational capabilities?

Definition 6 (Transformational Complexity)Let ¥; and ¥, be two sets of feed-
forward networks, each network being of order with ¥; C X,. DefineGs =
ﬂ/\/ezg Gn. The sef; is said to banore complex thal,, if there exists atv” € 3
such that for allV € X1, Tar|o,, # T oy, -

A couple of remarks about the definition above are in ordestllyj > being a proper
subset obl,, does not necessarily imply that the that the set of transditions effected
by networks in3}; is also a proper subset of those effectedy In particular, it
could be the case that the set of transformations effected;big exactly the same
as that effected by, even thouglt; is a proper subset df;. Indeed, this is what
is demonstrated by the result of Section 9, which shows irctimgext of the present
neuron model that even though the set of depth-two feedforwatworks is a strict
subset of the set of all feedforward networks, both theseefftct the same class of
transformations, namely those that are causal, time-gwveand resettable. Secondly,
observe that while comparing a set of networks, we restucseves to inputs for
which all the networks satisfy a certain Gap Criterion (thlounot necessarily for the
sameT’), so that the notion of a transformation is well-defined amittput set, for all
networks under consideration. Note also tgaf is always a nonempty set, because
G12 contains within it all inputs satisfying the Flush critarioHenceforth, for brevity,
any result that establishes a relationship of the form défr®ve is called eomplexity
result. Before we proceed, we introduce some useful notation.

Notation. Let the set of spike-train ensembles of ordethat satisfy the T-Flush
criterion beF.. Let F, = Uper+ Fr- What we have established in the previous
section is thafF,,, C G, for every feedforward network” of orderm.

Next, we show that if one class of networks is more complex taother, then
inputs that satisfy the Flush Criterion are both necessadysalfficient to prove this.
That is, to prove this type of complexity result, one can wexklusively with Flush
inputs without losing any generality. This is not obviougsdese Flush inputs form a
subset of the more biologically well-motivated Gap inp(tse next lemma formalizes
this equivalence. Note that the statement of the lemma istantially identical to that
of Definition[8, except that the input spike-train ensembidfie lemma below satisfy
the Flush criterion, as opposed to the ones in Definftlon &lwisatisfyG; s, the set
of input spike-train ensembles that satisfy a Gap Critefarall the networks under
consideration.

11The classes of networks could correspond to ones that comitaietworks with specific network archi-
tectures, although for the purpose of the definition, thereireason to require this to be the case.
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Lemma 5 (Equivalence of Flush and Gap Criteria with respect to Thi@mnsational
Complexity) LetX; andX; be two sets of feedforward networks, each network being
of orderm, with¥; C 5. Then X, is more complex thak; if and only if 3N’ € X,
such thatV N € X1, Ty |5, # TN |5, -

Proof sketch.A full proof is available in Appendix B; here we sketch theduiition
behind the proof.

Showing that Flush inputs are sufficient is the easier hathefproof. If a com-
plexity result can be shown using Flush inputs, it followattth holds for Gap inputs as
well, sinceF,, C Gio. To show that the existence of Flush inputs is necessaryswe a
sume a complexity result proved using Gap inputs and coetdtfush inputs such that
the result can be shown using those Flush inputs alone. Nppose\”’ € X, be the
network such that no network i, effects the same transformation./&$, when the
domain is restricted to the s€t;. Now, consider arbitraryv” € ;. There must exist
ax € Giz such thatfy| . (x) # Ta| =, (x). By definition, thisy satisfies &7 -Gap
Criterion for A/ and aT»-Gap Criterion for\”’. LetT = max(T},T5). The claim is
that if x is cut up into “chunks” of lengtT', where each “chunk” satisfies a 2T-Flush
criterion, then\V and A/ will map at least one of those chunks to different outputepik
trains, since the output in the latter half of the chunk isititel to that produced by
the corresponding segment pf This process of “cutting up”, when “completed” for
eachV € X yields a subset of Flush inputs, using which the complexisytt can be
established. O

Assured by this theoretical guarantee that there is no liogsreerality by doing so,
we will henceforth only work with inputs satisfying the Flu€riterion, while faced
with the task of proving complexity results. This buys us eagrdeal of mathematical
expedience at no cost. From now on, unless qualified otheywisen we speak of a
transformation we mean a map of the form : F,,, — S that maps the set of Flush
input spike-train ensembles to the set of output spikersrai

8 Complexity results

In this section, we establish some complexity results.tFive show that there exist
spike-train to spike-train transformations that no feedfrd network can effect. Next,
we show a transformation that no single neuron can effeca lmgtwork consisting of
two neurons can. After this, we prove a result which showsdldass of architectures
that share a certain structural property also share in itnaility in effecting a partic-
ular class of transformations. Notably, while this classaafhitectures has networks
with arbitrarily many neurons, we show a class of networkth\jiist two neurons
which can effect this class of transformations. The inteatseader is directed to Ap-
pendix B for some technical remarks concerning the meckanfiproving complexity
results that are not central to the exposition here.

Before establishing complexity results, we point out thas istraightforward to
construct a transformation that cannot be effected by aegfteward network. One of

12Recall that the neurons considered in this work are detéstitn
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(b) Atransformation that no single neuron can effect, thatavork with
two neurons can.

Figure 7:

its input spike-train ensembles with the prescribed outpshown in Figuré 7(f). For
larger T, the shaded region is simply replicated over and over agaformally, the
reason this transformation cannot be effected by any n&tigghat, for any network,
beyond a certain value df’, the shaded region tends to act as a “flush”, erasing “mem-
ory” of the first input spike. When the network receives aeothput spike, it is in the
exact same “state” it was when it received the first inputespédnd therefore cannot
produce an output spike after the second input spike.

Next, we prove that the set of feedforward networks with asieo neurons is
more complex than the set of single neurons. The proof is bgqguibing a transfor-
mation which cannot be done by any single neuron. We thertremis: network with
two neurons that can indeed effect this transformation.eNloat in the statement of
the theorem belowp stands for the number of input spike trains.

Theorem 1. Supposen > 2. LetX be the set of feedforward networks with at most
two neurons that each receive an input spike-train ensemwbtder m. Then,X is
more complex than the set of single neurons of order

Proof. We first prescribe a transformation, prove that it cannotffeeted by a single
neuron and then construct a two-neuron network and shovitttext indeed effect the
same transformation.

We first prove the result fom = 2 and later indicate how it can be extended for
larger values ofn. Let the two input spike-trains in each input spike-traisemble,
which satisfies a Flush Criterion leandl,. Figurg7(D) illustrates the transformation.
Informally, I; has regularly-spaced spikes starting after time instaantil 0. I has
two spikes, with the first one, loosely speaking, in the “nfetldf (0, 7") and the second
one at the end, i.e. right before time inst@ntAn output spike is always prescribed

20



after the second spike ify, occurs, and not elsewhere. For largérthe number of
spikes onl; increases so as to maintain the same regular spakingy contrast, still
has just two spikes, the first one roughly in the middle ands#eond in the end. For
the sake of exposition, we call the distance between cotise@pikes o/, one time
unit and we number the spikes bf with the first spike being the oldest one.

More precisely, the transformation is prescribed for a stb&7,,,, whose elements
are indexed by = 1,2,---. Figure[7(D) illustrates the transformation, for= 2.
The ith input spike-train ensemble in this subset satisfi@sEush criterion, where
T = 4¢ + 3 time units. In theith spike-train ensembld; has spikes at time instants
at which spike number®i + 1 and4i + 3 occur inI;. Finally, the output spike-train
corresponding to théth input spike-train ensemble has exactly one spike@ftbe
time instant at whicH; has spike numbeti + 3.

Next, we prove that the transformation prescribed abovaatdre effected by any
single neuron. For the sake of contradiction, suppose jttmaa neuron with associated
T andp. Let max(Y,p) be bounded from above by time units. We show that
fori > (%1, theith input spike-train ensemble cannot be mapped by this metaro
the prescribed output spike train. Foe [%1, consider the membrane potential of
the neuron after the time instants corresponding to(the- 1)th spike number and
(2k + 3)rd spike number of;. At each of these corresponding time instants, the input
received in the pagt time units and the output produced by the neuron in the past
time units are the same. Therefore, the neuron’s membraeatia must be identical
as well. However, the transformation prescribes no spika@of the first time instants
and a spike in the second, which is a contradiction. It foi¢kaat no single neuron can
effect the prescribed transformation.

We now construct a two-neuron network which can carry ouptiescribed trans-
formation. The network is shown in Figuré 8(al, andl; arrive instantaneously at
Ns. I arrives instantaneously af; but I, arrives atV; after a delay ofi time unit.
Spikes output byV; take one time unit to arrive d¥s, which is the output neuron of
the network. The functioning of this network for= 2 is described in Figurl 8(b). The
generalization for larger is straightforward. All inputs are excitatoryV; is akin to
the neuron described in Figure 1, in that while the depadion due to a spike itf;
causes potential to cross threshold, if, additionallyprevious output spike happened
one time unit ago, the associated hyperpolarization iscseiffi to keep the membrane
potential below threshold now. However, if there is a spikanf I also at the same
time as from/y, the depolarization is sufficient to cause an output spikespective of
if there was an output spike one time unit ago. Theorresponding tdVs is shorter
than1 time unit. Further, Ny produces a spike if and only if all three of its afferent
synapses receive spikes at the same time. In the figirepikes after timeg, 3, 5.

It spikes after6 because it received spikes both frdmand I, at that time instant.
Subsequently, it spikes aft8rand10. The only time whereinV, received spikes at
all three synapses at the same time i$latafter which is the prescribed time for the
output spike. The generalization for larges straightforward.

For largerm, to construct a transformation that cannot be done by aesimgliron

13strictly speaking, the output spike happendiat 3+ ¢, wheree > 0 is a small real number. Henceforth
whenever we say an output spikeaiser a certain time instant, we mean it in this sense.
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Figure 8: (a) The network that can effect the transformatiescribed in Figurg 7(p).
(b) Figure describing the operation of this network.
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but can be, by a two-neuron network, one can just have the sgutasi; or I; on
the extra input spike trains and the same proof generalask/e O

The previous result might seem to suggest that the more thbeuof neurons
(and connections between them) the larger the variety n§toeamations possible. The
next complexity result demonstrates, on the contrary,ttie@structure of the network
architecture is crucial. That is, we can construct netwackigectures with arbitrar-
ily large number of neurons which cannot perform transfdioms that a two-neuron
network with simple neurons can.

First, we define the structural property that charactetizissclass of architectures.

Definition 7 (Path-plural Network) A feedforward network of order is calledpath-
plural if for every set ofm paths, where th&h path starts aith input vertex and ends
at the output vertex, the intersection of theepaths is exactly the output vertex.

Every feedforward network in which all the inputs aren’teméint on every neu-
ron, must have embedded within it a path-plural network. thisrreason, path-plural
networks are an important and ubiquitous class of feedfatwatworks. How large
such networks are in the brain remains to be seen, and thidb&dibme clearer as
we get more and more data from the connectomics efforts. iBstconceivable that
such networks exist in feedforward pathways that that cg@/ento networks that, for
example, integrate information from multiple sensory miigs.

We now state and prove the complexity result.

Theorem 2. For m > 3, let 3; be the set of all path-plural feedforward networks of
orderm. LetX5 be the union oE; with the set of all two-neuron feedforward networks
of orderm. Then,X5 is more complex thak; .

Proof. We first prescribe a transformation, prove that it cannotffeeted by any net-
work in X1 and then construct a two-neuron network and show that itredeed effect
the same transformation.

We prove the theorem fon = 3; the generalization for larger is straightforward.
The following transformation is prescribed for = 3. Let the three input spike-trains
in each input spike train ensemble, which satisfies a Flugier@m bel;, I, and 3.
As before, we will use regularly spaced spikes; we call tistatice between two such
consecutive spikes one time unit and number these spiketistents with the oldest
being numbered 1; we call this numbering the spike index.i®\ghe transformation
is prescribed for a subset &%,,, whose elements are indexedby: 1,2, ---. Figure
illustrates the transformation fer= 2. Theith input spike-train ensemble in the
subset satisfies’B-Flush Criterion fofl’ = 4im time units. The firsi; time units have
spikes onl; spaced one time unit apart, the néxon I3 and so forth. In addition, at
spike index2im, I,,, has a single spike. The input spike pattern from the beggisin
repeated once again for the latigr time units. The prescribed output spike-train has
exactly one spike after spike indéxm.

Next we prove that the transformation prescribed aboveaidmm effected by any
network inX;. For the sake of contradiction, assume that there existstvaorie
N € ¥ that can effect the transformation. L¥tandp be upper bounds on the same
parameters over all of the neuronsAfand letd be the depth ofV". By construction
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Figure 9: A transformation that no feedforward network ademn3 with a path-plural
architecture can effect.
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Figure 10: (a) Network that can effect the transformatiosctdibed in Figurd19.
(b) Figure describing the operation of this network.

of X1, every neuron inV that is afferent on the output neuron receives input from at
mostm — 1 of the input spike-trains; for, otherwise there would eziset ofm paths,
one from each input vertex to the output neuron, whose iatin would contain the
neuron in question. The claim, now, is that for- % + p, the output neuron ol

has the same membrane potential at spike irddexand4im, and therefore either has
to spike at both those instants or not. Intuitively, thisashecause each neuron affer-
ent on the output neuron receives a “flush” at some point after, so that the output
produced by iff" milliseconds before time inde¥m andY milliseconds before time
index4im are the same. This is straightforward to verify.

We now construct a two-neuron network that can effect tliagformation. The
construction is similar to the one used in Theofém 1./Rot 3, the network is shown
in Figure[10.1;, I, andI; arrive instantaneously &f; and N>. Spikes output byV;
take two time units to arrive a¥,, which is the output neuron of the network. The
functioning of this network foi = 2 is described in Figurde_10(b). The generalization
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for largeri is straightforward. All inputs are excitatory¥; is akin to the the neuroi;
used in the network in Theordm 1 except that that periodiatingay arrive from any
one of Iy, I, or Is. As before, if two input spikes arrive at the same time, agpikes
index2im, the depolarization is sufficient to cause an output spik¥iinirrespective
of if there was an output spike one time unit ago. Again, Theorresponding taVs

is shorter tharl time unit andN, produces a spike if and only if three of its afferent
synapses receive spikes at the same time instant. As btfelidea is that at timgim,
No, receives two spikes, but not a spike fravi, since it is “out of sync”. However,
at time4im, additionally, there is a spike frolv; arriving at/N,, which causesV, to
spike. O

To conclude, what we have demonstrated in this section tsftivecertain classes
of networks, just by knowing the architecture of the netwavk can rule out compu-
tations that the network could be doing. All we assumed wasttie neurons in the
network satisfy a small number of elementary propertiealnly these results do not
require knowledge of detailed physiological propertieshaf neurons in the network.
This, in itself, is somewhat surprising due to the intuityjvappealing expectation that
network structure may not impose as strong a constraint@®pbysiology insofar as
the computational ability of a network is concerned. In te&trsection, however, we
show that this intuition is sound in some cases by provingttinere are limits to the
constraints imposed by network structure in the preseneenyflimited information
on the physiology.

9 Limits to constraints imposed by network structure

The main thrust of this work, thus far, has been in demonsgahat connectomic
constraints do indeed restrict the computational abilitgestain networks, even when
we do not assume much about the physiological propertielsedf heurons. As one
might expect, we should be able to get better mileage, soe@ks|if we had more elab-
orate information on the response properties of the indaficheurons. Conversely, it
is logical to expect that there might be fundamental limoteshat can be said about the
computational properties of networks, given very limitemwledge of the neurophysi-
ology of its neurons. In this section, we prove this to be tsec In particular, we show
that the small set of assumptions made about our model nelgad to the absence of
connectomic constraints on computation for the class affte@/ard networks of depth
equal to two. More precisely, it turns out that there doesendt a transformation that
cannot be performed by any network of depth[E\rmat in turn can be effected by
another network (of a different architecture). What theuteimplies is that oneeeds
to make further assumptions on the properties obeyed by taehmeurons, before
connectomic constraints on this class of networks appear.

So, how does one prove that there does not exist a transfonrthat cannot be
performed by any network of depth two that in turn can be éffg@by another network?
Equivalently, we need to prove that given an arbitrary feestérd network, there exists
a feedforward network of depth two that effeetsactlythe same transformation.

lequipped with instances of our model neurons
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The difficulty in proving that every feedforward networkviveg arbitrary depth,
has an equivalent network of depth two, appears to be inidevsway of “collapsing”
the depth of the former network, while keeping the effectadd4formation the same.
Our proof actually does not demonstrate this head-on, tsi¢dnl proves it to be the
case indirectly. The broad attack is the following: Consitie set of transformations
spanned by the set of all feedforward networks. Recall thiatis a proper subset of
the set of all transformations, since we had shown a tramsftion that no feedforward
network could effect. The idea is to start off with a certaiice” subset of the set of all
transformations and show that every transformation effebly feedforward networks
certainly lies within this subset. Thereafter, we prove,pogviding a construction,
that every transformation in this “nice” subset can in faz€fffected by a feedforward
network of depth twh. Together, this implies that, for every transformatiort tbem
be effected by a feedforward network, there exists a feagfat network of depth two
that can effect exactly that transformation.

The interested reader is directed to Appendix C, which is-an#te video that
provides an intuitive outline of the results in this sectiming animations.

Technical structure of the proof

The main theorem that we prove in this section is the follgwin

Theorem 3. If T : F,, — S can be effected by a feedforward network, then it can be
effected by a feedforward network of depth two.

This theorem follows from the following two lemmas which greved in the two
subsections that follow:

Lemma 6. If T : F,, — S can be effected by a feedforward network, tiep) is
causal, time-invariant and resettable.

Lemma 7. If T : F, — S is causal, time-invariant and resettable, then it can be
effected by a feedforward network of depth two.

9.1 Causal, Time-Invariant and Resettable Transformatiois

In this section, we first define notions of causal, time-ifaratrand resettable transfor-
mationBY. Transformations that are causal, time-invariant andtasie form a strict
subset of the set of all transformations. We then show thasformations effected by
feedforward networks always lie within this subset. Thithis relatively easy part of
the proof. The next subsection proves the harder part, ydimetievery transformation
in this subset can indeed be effected by a feedforward nktefatepth equal to two.

15As a by-product, the proof also ends up providing a complegeacterization of the set of transforma-
tions spanned by the set of all feedforward networks equippith neurons of the present abstract model,
which turns out to be exactly this “nice” set.

16Recall that when we say transformation, without furtherlijoation, we mean one, of the form :
Fm — S.
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Informally, a causal transformatiofis one whose current output depends only on
its past input (and not current or future input). Abstracilys convenient to define
a causal transformation as one that, given two differenttsphat are identical until
a certain point in time, also have their outputs, accordmghe transformation, be
identical up to (at least) the same point.

Definition 8 (Causal Transformation)A transformation7 : F,, — S is said to be
causalif, for every x1, x2 € F, With Z¢, ooy X1 = E(1,00) X2, fOr somet € R, we
haveE[tyoo)T(m) = E[tyoo)T(Xg).

As in signals and systems theorytime-invariant transformationis one which
always transforms the time-shifted version of an input, toree-shifted version of its
corresponding output. To keep the definition sound, we atsmino ensure that the
time-shifted input, in fact, also satisfies the Flush cidter

Definition 9 (Time-Invariant Transformation)A transformatior7 : 7, — S is said
to betime-invariantif, for every xy € F,, and everyt € R with o:(x) € F,, we have

T(o1(x)) = o:(T(x))-

A resettable transformatiois one for which there exists a positive real number
W, so that an input gap of the forift, ¢ + W) “resets” it, i.e. output beyond is
independent of input received before it. Again, abstraidthecomes convenient to say
that the output in this case is identical to that producediypput which has no spikes
beforet, but is identical to the present input thereafter.

Definition 10 (W-Resettable Transformatianfor W € RT, a transformatiory :
Fm — S is said to belV-resettableif, for every x € F,, which has a gap in the
interval (t,t 4+ W), for somet € R, we haveZ(_ . 41T (x) = T (Z(— o0, X)-

Definition 11 (Resettable Transformatianf transformation7 : 7, — S is said to
beresettabldf, there exists &7 ¢ R, so that it islV -resettable.

Next, we prove that every transformation that can be eftebie a feedforward
network is causal, time-invariant and resettable, in theext of our neuron model and
its assumptions.

Lemma 6. If 7 : F, — S can be effected by a feedforward network, tifgn) is
causal, time-invariant and resettable.

Proof sketch.If 7 : F,, — S can be effected by a single neuron it is relatively
straightforward to verify tha¥ (-) is causal, time-invariant and resettable. That it is
causal and time-invariant follows from the fact that thé) function of the neuron
only “looks” at the recent past and not the present or theéuimdetermine membrane
potential. That7 (-) is resettable follows from Axiom (3) of the neuron and the Gap
Lemma. For a feedforward network, the proof proceeds by ema#tical induction on
the depth of the network. A full proof is provided in Appendix O
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9.2 Construction of a depth two feedforward network for every
causal, time-invariant and resettable transformation

In this subsection, we prove the following lemma.

Lemma 7. If T : F, — S is causal, time-invariant and resettable, then it can be
effected by a feedforward network of depth two.

Before diving into the proofs, we offer some intuition.

Suppose we had a transformatidn: F,, — S which is causal, time-invariant
and resettable. For the moment, pretend it satisfies thanfimiyy property: There exist
constant-sized input and output “windows” so that, for guaput spike-train ensem-
ble satisfying a flush criterion, just given knowledge ofkgsi in those windows of
past input and output, one can unambiguously determinayyapaint in time, if the
transformation prescribes an output spike or not. Inteljivit sSeems reasonable that
such a transformation can be effected by a single n@utnmsetting theY andp of
the neuron to the sizes of the input and output windows meeti@bove.

Of course, one easily sees that not every transformationisheausal, time-
invariant and resettable satisfies the aforementionedepiphat is, there could exist
two different input instances, whose past inputs and oatarg identical in the afore-
mentioned windows at some points in time; yet in one instattoe transformation
prescribes an output spike, whereas it prescribes nonesiottier. Indeed, the two
input instances must differ at some point in the past, foentfise the transformation
would not be causal. Therefore, in such a situation, it iar@to ask if a single “inter-
mediate” neuron can “break the tie”. That s, if two inputtarsces differ at some point
in the past, the output of the intermediate neuron since, timeany interval of time
of lengthU, must be different in either case, whéveis a fixed constant. This is so
that a neuron receiving input from the intermediate neuamdisambiguatehe two
inputs, were an output spike demanded for one input but mobther. Unfortunately,
this exact property cannot be achieved by any single “teaker” neuron because ev-
ery transformation induced by a neuron is resettable. lerotfords, the problem is
that, suppose two input instances differ at a certain paitite; however, since then,
both have had an arbitrarily large input gap. The input gapeseto “erase memory”
in any network that received it and therefore it cannot disignmate two inputs beyond
this gap. Now, fortunately, it does not have to, since this glao causes a “reset” in
the transformation (which is resettable). That is, if suohagbitrarily large gap were
presentin the input, the transformation would not aftedrdmand an output spike in
one case and no output spike in another. This is becausélitissettable and there-
fore cannot make such demands, for input @hﬂger thanl¥. Thus, we can make
do with a slightly weaker condition; that the intermedia¢eiron is only guaranteed to
break the tie, whenitis required to do so. Thatis, suppcsetfire two input instances,
whose outputs according ¥ : F,,, — S are different at certain points in time. Then,
the corresponding inputs are different too at some poirtténpiast with no reset gaps
in the intervening time and therefore the intermediate mewught to break the tie.

17strictly speaking, it turns out that this is not true; axiormay be violated.
18which we call a “reset gap” from now on, for the sake of exposit
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Figure 11: The network architecture for (order two) feedfard networks of depth
two equipped with model neurons described in Sedtion 3 thaateffect any causal,
time-invariant and resettable transformation.

Additionally, for technical reasons that will become cléater, we stipulate that the
outputs of the intermediate neuron in the precedihgilliseconds are guaranteed to
be different, only if the inputs themselves in the pdgnilliseconds are not different.
The network we have in mind is illustrated in Figlird 11, for= 2. In the fol-

lowing proposition, we prove that if the intermediate neusatisfies the “tie-breaker”
condition alluded to above, then there exists an outputarewso that the network
effects the transformation in question. Thereafter, inghlesequent proposition, we
provide a construction for the intermediate neuron thasféas this condition. By way
of notation, recall thaEy(-) is shorthand foEg g ()

Proposition 2. Let 7 : F,, — S be causal, time-invariant and resettable. LUdbe
a neuron with7; : F,, — S, so that for eachy € F,,,, T;(x) is consistent withy
with respect tal. Further, suppose there existsla € R* so that for allt1,t, € R
andyxi, x2 € Fm With Zoot, (T (x1)) # Z00t, (T (x2)), we haves g vy (o1, (T3 (x1) U
X1)) # Eo,0) (01, (T3(x2) U x2))-

Then, there exists a neur@, so that for every € F,,, 7 (x) is consistent with
Ti(x) U x with respect ta.

Proof sketch.The straightforward way for the neur@nto effect7(-) is to determine
the points of time wherein an output spike is prescribed adsmembrane potential
function to hit threshold at those instances. Since theorediressentially “disam-
biguates” the input, this assignment can be done withoutlicanHowever, we also
need to show that doing this does not violate any of the thxésres of our abstract
model, for the neuro@. Axiom (1) follows easily from the fact that the co-domain of
T(-)is S. Axiom (3) takes some work to show and uses the factTha} is causal,
time-invariant and resettable. Axiom (2), on the other hamdsents some subtleties.
Now, in addition to setting membrane potential to threshetidhe aforementioned
points, in order to satisfy Axiom (2), we would also need tbits® hit threshold, when
the input window has the same pattern and the output windemjsty instead. How-
ever, with this assignment, we need to then show that nossispikes are generated.
This takes a little work and again uses the “tie-breaker’dison of the intermediate
neuronl. The full proof is available in Appendix B. O
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The next proposition shows that one can always construattamaediate neuron
that satisfies the said “tie-breaker” condition.

Proposition 3. Let 7 : F,, — S be causal, time-invariant and resettable. Then
there exists a neurod and U € RT so that for all¢;,t, € R and x1,x2 €
Fm With Zgoe, (T(x1)) # Eo0t, (T (x2)), we haveZ g ) (o, (To(xa) U x1)) #
Z(0,0) (01, (T3(x2) U x2)), whereT; : F,, — S is such that for eacly € F,,, Ti(x)

is consistent with¢ with respect tal.

Proof idea. The basic idea is to “encode”, in the time difference of twocassive
output spikes, the positions of all the input spikes thatehagcurred since the last
input gap of the form(¢,¢ + W), where7 () is W-resettable. Such pairs of output
spikes are produced once everynilliseconds, with the time difference within each
pair being a function of the time difference within the pas pair and the input spikes
encountered since. Intuitively, it is convenient to thirfkttus encoding as one from
which we can “reconstruct” the entire past input spikerterisemble after the last reset
gap in the input. We first describe the encoding function liertase of a single input
spike-train after which we indicate how it can be generalize

So, suppose the time difference of the successive spikgsioly J lies in the
interval[0, 1). Define the encoding function as : [0,1) x S ,) — [0,1), that takes
in the old encoding and the input spikes in the pastilliseconds to produce the new
encoding, which is output by as the time difference between a new pair of spikes.
The numberp is chosen to be such that there are at ngospikes in any interval of
the form (¢,t + p]. We now describe howy(e, ¥) is computed, givere € [0,1)
andz = (2!, 22,...,2%), such that each spike time iflies in the interval(0, p].
Let e have a decimal expans@n so thate = 0.cys1¢082¢383 - - -. Accordingly, let
c = 0.cicac3 --- ands = 0.s1s283 - - -. ¢ IS a real number that encodes the number of
spikes in each interval of lengghencountered, since the last reset. Since each interval
of lengthp has betweef and8 spikes, the digib is used as a “termination symbol”.
So, for example, suppose there have béaémervals of lengthp, since the last reset
with 5,0, 8 and2 spikes apiece respectively, thee= 0.8059 andc¢’ = 0.28059, where
¢ is the “updated” value of. Likewise, s is a real number that stores the positions
of all input spikes encountered since the last reset. Ldt spike time be of the form
zt = 0.ztabay -+ x 109, for appropriate;, whose value is fixed for a givem Then
the updated value of is s’ = 0.x{2? - a¥s12da3 - - 2bsy---. Suppose the’ and
s’ obtained above were of the forth = 0.¢|chcs -+ ands’ = 0.s)shsh -+, then
eo(e, @) = 0.¢) s\ chsh - - - . Observe that the decimal expansion constructes by, )
cannot have infinitely many successii® for ¢’ has only a finite number of non-zero
digits. Suppose the input were a spike-train ensemble arond then for each spike-
train an encoding would be computed as above and in the fegalttern real numbers
obtained would be interleaved together, so as to producerntbeding.

whenever we say decimal expansion, we forbid decimal eipasisvith an infinite number of succes-
sive9s. With this restriction, each real number has a unique daaxpansion.

20j.e. p milliseconds after time instant’.

2lwe setlV > pto force a spike ai” — p.

22unless the present clock spike is the first after a reset gyimput.
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Figure 12: This figure illustrates the operation of the intediate neuron). Suppose
X € Fm is an input spike-train. Let its oldest spike Bemilliseconds ago. Then
J produces a spike at it — p and at everyl’ — kp, for k € Z*, unless in the
previousp milliseconds to when it is to spike, there is a@rﬂ the form(¢, ¢t + W).
For the sake of exposition, let’s call these the “clock” ggik Now, suppose there is
a gap of the form(¢,¢ + W) in the input and there is an input spike at timehen
the neuron spikes at time— p and everyp milliseconds thereafter subject to the same
“rules” as above. These clock spikes are followed by “enegtépikes, which occur at
leastg milliseconds after the clock spike, but less tlganr milliseconds after, wherg

is greater than the absolute refractory penod\s expected, the position of the current
encoding spike is a function of the time difference betwéenprevious encoding and
clock spikesiand the positions of the input spikes in thamilliseconds before the
current clock spike. The output of the encoding functioniniseffect, appropriately
scaled to “fit” in this interval of length; the details are available in the proof.
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Given knowledge of the encoding function, Figlird 12 briefgsaribes howl
works. The claim then is that if two input spike-train enséeshare different at some
point with no intervening “reset” gaps, then the outpuf @ the past/ milliseconds,
whereU = p+q+r will be different. Intuitively, this is because the differee between
the latest encoding and clock spike in each case would berdift, as they encode dif-
ferent “histories” of input spikes. The exception is if tmput spike-train ensembles
differed only in the past/ milliseconds. In this case, the difference is communicated
to O directly by .

Finally, we ought to remark that the above is just an inforak@cription that
glosses over several technical details contained in tHepfabf, which is available
in Appendix B. O

The preceding two propositions thus imply Lemima 7 which tbhgewith Lemmdb
implies Theorerh13.

Lemma 7. If T : F, — Sis causal, time-invariant and resettable, then it can be
effected by a feedforward network of depth two.

Theorem 3. If T : F,, — S can be effected by a feedforward network, then it can be
effected by a feedforward network of depth two.

Corollary 2. The set of all feedforward networks is not more complex tharset of
feedforward networks of depth equal to two.

Incidentally, Lemmd16 and] 7 also lead to a full characteioradf the class of
transformations effected by all feedforward networks pged with neurons obeying
the abstract model of Sectibh 3. This is formalized in thet tiexorem.

Theorem 4. A transformatior] : F,, — S can be effected by a feedforward network
if and only if it is causal, time-invariant and resettable.

Directions for further constraining the present model

The results of this section imply that we need to add new ptigsao further constrain
our model neurons, in order for complexity results invotyfeedforward networks of
depth two to be manifested. There are a number of directi@atohe could take. One
is that spike-times in the present model are real numberen/gtochastic variability
in neurons is taken into account, this assumption is no Iotrge. Also, we did not

assume that the membrane potential changes smoothly with tvhich would be a

reasonable assumption to add. And, finally, an assumptinsistent with Dale’s prin-

ciple, that each neuron has either an excitatory effectlatsglostsynaptic neurons or
an inhibitory effect might also help in this direction.

10 Discussion

There has been some debate about how useful data from theatonre projects might
be in advancing a mechanistic understanding of computatiearring in the circuits
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of the brain. One of the main type of arguments that has beeie mgainst their utility
is that, since these projects C%)yseek to ascertain the wiring diagram, without giv-
ing us detailed physiological information, it is not cleanat we might learn from this
data alone, especially for networks whose high-level fiomcis not known. While it
is acknowledged that network architecture places comssr@in what a network can
computel(Kleinfeld et al, 2011; Denk et al, 2012), the naand scope of these con-
straints have remained poorly understood. Our goal withwhark was in asking, on
one hand, if we can deduce non-trivial examples of comprtatihat a networkould
notbe doing, given just the knowledge of its architecture asdiasng that the neurons
obey some elementary properties. On the other hand, we dsketk are fundamental
limits to what can be said, given just this information. Weuexned this question for
the case of feedforward networks equipped with neuronsabeyed a deterministic
spiking neuron model. We first set the stage by creating aenadlkical framework in
which this question could be precisely posed. Crucially,ngeded to make precise
what computation exactly meant in this context. This tookialfit of work and led
us to the view of feedforward networks as spike-train to sjiilain transformations
under biologically-relevant spiking regimes. After segtiup necessary definitions, we
then showed some examples of transformations that netwedsdsecific architectures
cannoteffect, that other networks can. First of all, we shoffetiat there exist spike-
train to spike-train transformations that no feedforwagtivork could effect. Next, we
showed a transformation that no single neuron could effeichmetwork consisting of
two neurons could. After this, we proved a result which shtives a class of architec-
tures that share a certain structural property also shareittability to effect a partic-
ular class of transformations. Notably, while this classafhitectures has networks
with arbitrarily many neurons, we showed a class of netwarks just two neurons
which could effect this class of transformations. This ®sglg that network structure
alone may impose crucial constraints on computationaltgbiFinally, we demon-
strated that the small number of properties assumed for agleimeurons can only
take us so far. We proved that without making further assiongtabout our model
neurons, we couldn’t discern such examples for the set ééediforward networks of
depth two.

While there is more to neuronal networks than just their ngirdiagram, what
our theory suggests is that the wiring diagram could imposeial constraints on the
computational ability of networks, in some cases. On themtiand, there seem to be
classes of networks for which a more elaborate knowledgangfesneuron properties
may be necessary, before we can determine restrictionseandmputational abil-
ity. While technical issues in electron microscopy (DenkigP012) have so far stood
in the way of mapping, for example, distributions of ion-ohals and neurotransmit-
ter and neuromodulator receptors in neurons, it is conbkEvhat such hurdles may
be overcome in future. If successful, these or other adwimceonjunction with the
wiring diagram could provide useful information to help esde out pertinent con-
straints on the computational capabilities of these neksior

In this work, as a first step, we have aimed to demonstratéfspexample®f com-

23This in itself is a formidable problem and one that is takiegdic effort.
24See Figurg 7(3) and the second paragraph of Sedtion 8.
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putations that a network cannot accomplish, given its &chire. The more ambitious
goal would be the ability to have an exact characterizatfdheset ofall computations
that a given neural circuit cannot perform, given knowledg#s architecture, to the
extent that a given incomplete knowledge of the physiolaigicoperties of its neurons
will allow. This is not necessarily a goal that is out of reaEken in the present work,
we have obtained such an exact characteriZ&tionthe set of all computations that
the set of feedforward networks cannot accomplish, givers#t of properties that our
model neurons are presently assumed to obey. Thereforenitiple, there seems to
be no reason why we may not be able to do likewise for specifigar& architectures.
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Appendix A: Relationship of the abstract neuron model
to some widely-used neuron models

Here, we demonstrate that the properties that our abstr@dthof the neuron is con-
tingent on are satisfied, up to arbitrary accuracy, by séwédely-used neuron models
such as the Leaky Integrate-and-Fire Model and Spike Respidiodel.

Leaky Integrate-and-Fire Model
Consider the standard form of the Leaky Integrate-andNodel:

du
Tm
wherer,, = RC. Whenu(t\/)) = v, the neuron fires a spike and the reset is given
by u(t¥) + A) = u,., wherev is the threshold and is the absolute refractory period.
Suppose an output spike has occurred at time\, the above differential equation has
the following solution:

= —u(t) + RI(t) 1)

h t—t
u(t) = u, exp(—u) + 1 / exp(—i)f(t — s)ds 2
Tm C Jo Tm

Supposd (t) = X,w;E;a(t — tg.l)) anda(-) had a finite support. Then, it is clear
from the above expression that the contribution of the jevioutput spike fired by
the present neuron as well as the contribution of input spfitam presynaptic neurons
decays exponentially with time. Therefore, one can comigenembrane potential to
arbitrary accuracy by choosing input and output “windowkappropriate size so that
u(+) is a function only of input spikes and output spikes in thogedews. It is easy to
verify that the all the axioms of our model are satisfied: @leghe model above has

25This characterization is a consequence of Theorem 4. licpkt, it is the set of all transformations
that arenot causal, time-invariant or resettable.
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an absolute refractory period, a past output spike has alitoty effect on membrane
potential, and upon receiving no input and output spikehénsiaid windows, it settles
to resting potential. Thus, an instantiation of our abstmaadel can simulate a Leaky
Integrate-and-Fire Model to arbitrary accuracy.

Spike Response Model

Consider now the standard form of the Spike Response Moded{Ger and Kistler,
2002).

In the absence of spikes, the membrane potentiglis set to the value:, = 0.
Otherwise, the membrane potential is given by

u(t) = ﬁ(t - t}) + Ej wy Ei €ij (t - fi,t - t;-z)) (3)

wherer)(-) describes the after-hyperpolarization after an outpiesgit; ande;(-)
describes the response to incoming spﬂ%@swhich are the spikes fired by presynaptic
neuron; with w; being synaptic weights;(-), is set to a sufficiently low value fah
milliseconds after an output spike so as not to cause aneflikee, whereA is the
absolute refractory period. The functions) ande;;(-) typically decay exponentially
with time and therefore, as before, one can compute the nsralpotential to arbitrary
accuracy by choosing input and output “windows” of appraf@size so that the(-) is
a function only of input spikes and output spikes in thosedeims. Likewise, it is easy
to verify that the all the axioms of our model are satisfieceatly, the model above has
an absolute refractory period, a past output spike has alitoty effect on membrane
potential, and upon receiving no input and output spikebénsiid windows, it settles
to resting potential. Thus, it is straightforward to verthat an instantiation of our
abstract model can simulate a Spike Response Model toambéccuracy.
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Appendix B: Proofs and Technical Remarks

Technical Remarks from Sectiori 4

It might be argued that the input spike-train to a neuron oapossibly be infinitely
long, since every neuron begins existence at a certain poitine. However, this
begs the question whether the neuron was at the restingtjabtehen the first input
spikes arrived. An assumption to this effect would be significant, partelyl if the
current membrane potential depended on it. It is easy toteaisan example along
the lines of the example described in Figlire 1, where theeatimembrane potential
is different depending on whether this assumption is mad@brAssuming infinitely
long input spike-train ensembles, on the other hand, obsilie need to make any such
assumption. We retain this viewpoint for the rest of the payith the understanding
that the alternative viewpoint discussed at the beginnfribis paragraph can also be
expounded along similar lines.

Proofs from Section®

Proof of Gap LemmasSince, in eacl¥, consistent withy, with respect td\, the inter-
val (t+2p,t+3p) of o and the(t + T + p, t + T + 2p) of x are arbitrary, the sequence
of spikes present in the intervéll + p,t + 2p) of Z, could be arbitrary. Howevex*
andy are identical in(¢,t + p + T). Thus, it follows from Axiom 2 in the formal
definition of a neuron that for every € (t,t + p), P(E0,v) (o (X)), E(0,p) (01 (Z0)))

is at most the value oP (Zo,v) (o (X*)), E(o,p) (0w (Z5))) » becaus& g, ) (o (7))

is ¢, i.e. empty. SinceP (Z 0,7 (0 (X)), E(0.p) (01 (25))) is less thanr for every

t' € (t,t + p),

P(Z0,7y(0¢ (X)), E0,p) (0 (Z0))) is less thamr in the same interval, as well. There-
fore, Zy has no spikes i, t + p).

That2p is the smallest possible gap lengthidf for this to hold, follows from the
counterexample in Figufé 1, where the present conclusiwmaii hold, whenzj had
gaps of lengtl2p — 4, for arbitrarily smally > 0.

O

Proof of Corollanfl. (@) is immediate from the Gap Lemma, when weget y*.

For (2), the proof is by strong induction on the number of epikince. Let %, be
an arbitrary spike-train that is consistent wigh, with respect td\. Notice that from
(I) we have that is identical tozj in (¢,¢ + p). The base case is to show that both
Z5 andzy have their first spike sinceat the same time. Assume, without loss of gen-
erality, that the first spike ofy at¢; < ¢, is no later than the first spike af. We have
P(E(O,T) (Utl (X*))v E(O,p) (Utl (‘i%))) = P(E(O,T) (Utl (X*))7 E(O,p) (Utl (fo))) since
E(0,0) (04, (75)) = E(0,p) (01, (%0)) = o. Thereforez also has its first spike since
t att;. Let the induction hypothesis be that bath andz, have their first: spikes
sincet at the same times. We show that this implies that(the- 1)*" spike in each
spike-train is also at the same time instant. Assume, withass of generality, that

26Note that our axiomatic definition of a neuron does not adtigis question.
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the (k + 1)t spike sincet of 7, att; 1, is no later than th¢k + 1) spike sincet
of 5. Now, Z ) (04,.,, (£3)) is identical to= g ) (0, ., (Zo)) from the induction hy-
pothesis sincgt + p) — tx11 > p. Thus,P(E o 1) (0,1 (X¥)), E(0.p) (01,1, (T5))) =
P(E0,7) (01,51 (X)), E(0,p) (044, (T0))) and therefore; also has itgk + 1) spike
att,.,. This completes the proof dfl(2).
@) follows from the Gap Lemma and](2).
O

Proposition 1. Let x be a spike-train ensemble that satisfies a T-Gap criteriorafo
neuronN{a, T, p, 7, A\, m, P : 3("3,1() X 80,0y = [A,7]), whereT' € R*. Then, there
is exactly one spike-traify, such that, is consistent withy, with respect ta\.

Proof of PropositiofIL.Since x satisfies a'-Gap criterion, there exists a spike-train
Zp with at least one gap of lengflp in every interval of time of lengtid” — T + 2p,
so that is consistent withy with respect td\. For the sake of contradiction, assume
that there exists another spike-traify not identical taz,, which is consistent witly,
with respect td\. Lett’ be the time at which one spike-train has a spike but another
doesn't. Lett > ¢’ be such thaf, has a gap in the intervéd, t + 2p). By Corollary
[0 to the Gap Lemma, it follows thay, is identical toZ, after time instant + p. This
contradicts the hypothesis thgj is different fromz, at t'.

O

Lemma 2. Consider a feedforward network’. Lety satisfy aT'-Gap criterion for

N, whereT € R*. Then the output neuron df produces a unique output spike-
train when\ receivesy as input. Furthermore, the membrane potential of the output
neuron at any time instant depends on at most the Pastlliseconds of input iry.

Proof of Lemm&12 We prove that the output of the network is unique by strongidad
tion on depth. LetV;, for1 < i < d, be the set of neurons iV of depthi. Each
neuronN € N; receives all inputs from spike-trains jn  Since,N satisfies a Gap
criterion with those input spike-trains, its output is wnéq The induction hypothesis
thenis thatfor alf < k < d, each neurol € N; produces a unique output spike-train
when\ is driven byy. Consider arbitrarN’ € Ny.;. Itis clear that all inputs to
N’ are from spike-trains frony or neurons irUf:1 N;, for otherwise the depth df’
would be greater thah+ 1. Since, all its inputs are unique by the induction hypothesi
and they satisfy a Gap criterion fé¥, its output is also unique.

Next, we show that the membrane potential of the output meatrany time instant
depends on at most the pastmilliseconds of input iny. Since the output neuron
satisfies a(%)-Gap Criterion, its membrane potential at any point dep@&mdat most
the pas(%) milliseconds of the inputs it receives (some of which may bigpot spike-
trains of other neurons). Consider one such “penultimaterfaneuron. Again, its
output membrane potential at any time instant, likewisgetiels on its inputs in the
past(%) milliseconds. Therefore, the current potential of the attpeuron is depen-
dent on the input received by the penultimate layer neuraat imost the pas(t%)
milliseconds. Similar arguments can be put forth until, éach path, one reaches a
neuron, all of whose inputs do not come from other neuronsceSihe longest such

37



T 0 -1
T4+p+7T ;pff

OUTPUT

INPUT

1 P
PAST T T T

Figure 13: lllustration showing that an input spike-trairsemble satisfying a Flush
Criterion also satisfies a Gap Criterion.

path is of lengthd, it is straightforward to verify that the membrane potenbiathe
output neuron depends on at m@sinilliseconds of past input i.
O

Proofs from Section 6

Lemma 3. An input spike-train ensemble for a neuronN({a, T, p, 7, A\, m, P :
S0y X S(0,0) — [A, 7]) that satisfies &'-Flush Criterion also satisfies @ + 271 +
2p)-Gap Criterion for that neuron.

Proof of Lemma&l3 Figure[ 13 accompanies this proof. The neuron on being dhiyen
X cannot have output spikes outside the intefvall, T'). This easily follows from
Axiom 2 and 3 of the neuron because the neuron does not haue spjkes before
time instantI” and in the interva(—7, 0) and onwards. Now, to see thatsatisfies a
(T 4+ 27 + 2p)-Gap Criterion, recall that with @’-Gap Criterion, distance between
any two gaps of lengthp on the output spike-train is at mdBt — Y — 2p. With y, we
observe that the distance between any dw@aps on the output spike-train is at most
T+ Y. Thus, T/ — T —2p =T + Y, which givesus’ = T + 2T + 2p. The result
follows.

o

Lemma 4. An input spike-train ensembje for a feedforward network that satisfies

a T-Flush Criterion also satisfies &1 + d(d + 1) + 2dp)-Gap Criterion for that
network, whereY', p are upper bounds on the same parameters taken over all the
neurons in the network andlis the depth of the network.

Proof of Lemm&l4 Following the proof of the previous lemma, we know that n@sro
that receive all their inputs frorg have no output spikes outside the intergall, 7).
Similarly, neurons that have depth 2 with respect to the timputices of the network
have no output spikes outsi@e2Y, T'). Likewise, the output neuron, which has depth
d, has no output spikes outside dY,T). It follows that the output neuron obeys a
(T 4+ (d + 1) + 2p)-Gap Criterion. Also, every other neuron obeys this criteri
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because the distance between #peoutput gaps for every neuron is at most that of

the output neuron, since their depth is bounded from abowbdgepth of the output

neuron. Thus, from the definition of the Gap criterion fordeward networks, we

have thaly satisfies ddT" + d(d + 1) Y + 2dp)-Gap Criterion for the current network.
O

Proofs from Section[7

Proof of Lemmé&l5We prove the easy direction first. V' € X5 such thatA' €
1, Tne | # Tarl 7, then it follows thatTy |, # Tarle,, becauser,, C Gy
For the other direction, leiN” € X, such that/V € 21, Ty g, # Tarlg,,- We
constructF’ C F,,, so thatTa|» # Tn|». This immediately implie§y |-, #
Txr| 7., - Consider arbitraryy” € ;. From the hypothesis, we haV&r |q,, # Talg,,-
Thereforedy € Giz such thatTy|¢,,(x) # Tile,,(x). Additionally, there exist
T, T, € R, so thaty satisfies al;-Gap Criterion forA” and aT»-Gap Criterion
for N'. LetT = max(T4,T5). Let Ta|g,,(x) = Z4 andTy|g,,(x) = @ . Let
F =U,er Z(0,2m) (¢(x)). Note that each element &f satisfies 7-Flush Criterion.
The claim, then, is thaly/ |z # Ta|z. We haveZ (o 7y (T (Eo,21) (0t (X)) =
Z(0,1)(04 (&) AN 0,1 (Tar (E (0,27 (04 (X)) = E0,1(04(Z0)). This follows from
the fact thaty satisfies th@-Gap Criterion with bothV" and A/ and therefore whei
and\” are driven by any segment gfof length2T", the output produced in the lattér
milliseconds of that interval agrees witly andz|, respectively. Therefore, ify # ),
itis clear that there existstaso that7y (Zj,211(0(x))) # Ta (Ep,21)(0¢(x))). F'
is obtained by taking the union of su¢hfor every\ € %,. The result follows.
O

Technical Remarks from Sectior 8

Some technical remarks concerning the mechanics of praongplexity results are
stated below.

For two sets of feedforward networks; and>, with 3; C 35, in order to prove
thatX:, is more complex thahiy, it is sufficient to show a transformatigh: 7,,, — S
that no network present iR, can perform, while demonstrating a networkdip that
can effect it. This involves constructing such a transfdiomai.e. prescribing an out-
put spike train for every element i,,. Recall thatF,,, consists of spike-train ensem-
bles of ordern, with the property that for each such ensemble there exiptstive
real numbefl’, so that the ensemble satisfieg'dlush criterion. In practice, however,
it usually suffices to prescribe output spike trains for alismﬁbsdf% of elements of
Fm, and prove that no network if; can map the input spike trains in that subset to
their prescribed outputs. The second step would involveatestnating a network in
¥, that maps this subset &, to the prescribed output, while mapping the resFof
to arbitrary output spike trains. Strictly speaking théw, transformatioi : 7, — S
we prescribe comprises the mapping fr@in to output spike trains, as effected thys

2Talbeit typically one that contains, for each positive reainerT", at least one spike-train ensemble
satisfying a'-Flush Criterion.
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network inXs. For convenience however, we shall refer to the mappingpitesd for
some small subset ¢f,,, as the prescribed transformation.

The next remark concerns timescales of the param@&tensdp of each neuron in
the network and the timescale at which the transformatiaratps. Recall that the
parameter§” andp correspond to the timescale at which the neuron integrafrgs
it receives and the relative refractory period respedtivét would be reasonable to
expect that the values of these parameters lie within ainedage as constrained by
physiology, although this range might be different for éi#nt local neuronal networks
in the brain. Suppose we have an upper bound on the value bfse@h parameter.
Then, when we prove a complexity result, there would exighascalel’, which is a
function of these upper bounds, such that there exists sftranation on this timescale
that cannot be performed by any network with the said archite, whose parameters
are governed by these upper bounds. More precisely, thentleaist a transforma-
tion that maps a set of inputs satisfyingl'aFlush criterion to an output spike train
that (provably) cannot be performed by any network with ttelhiecture in question.
When stating and proving a complexity result, however, figr $ake of succinctness,
we do not explicitly state the relation between these boandisthe correspondirif.
We simply letY, p andT remain unbounded. It is straightforward for the reader to
derive a bound off" as a function of bounds dh andp, as discussed.

The final remark is about our neuron model and the issue of whatan assume
about the neurons when demonstrating that a certain netweorkffect a given trans-
formation. Recall that our neuron model assumes that ouonesatisfy a small num-
ber of elementary properties but are otherwise unconsgttiaifhis allowed our model
to accomodate a large variety of neuronal responses. Ths@a@/enient when faced
with the task of showing that no network of a certain architeecould perform a given
transformation, no matter what response properties itsomsthave. However, when
we wish to show that a certain transformation can be done pgeific network, some
caution is in order. In this case, it is prudent to restriatselves to as simple a neuron
model as possible, so that whether the neuronal respongssyard are achievable by
a real biological neuron, is not in question. In practice,describe the neurons in the
construction, so that they can certainly be effected by aljéigeduced neuron model
such as the Spike Response Model SREerstner and Kistler, 2002).

Proofs from Section9

Proof of Lemmé&l6 Let N be a network that effectg : F,,, — S.

T (-) is causal.Consider arbitrary, x2 € Fm With Z¢; ) X1 = E(¢,00) X2, fOr some
t € R. We wish to show thaEj; )7 (x1) = Ejt,00)T (x2). LEtN;, for1 < i <
d, be the set of neurons iV of depthi, whered is the depth of\/. Each neuron
N € N, receives all its inputs from spike-trains in When the network receiveg
and x»2 as input, supposH receivesy] and xj respectively as input. Also, clearly,
E(t,00)X1 = E(t,00)X2- LetZ] and be the output produced by on receivingy’
andys respectively. Sincg’, x5 € Fi,, there exists & € R, so thatZ 1, ) x| =
Er,o0)Xs = ™', wherem' is the number of inputs tdl. Therefore, by Axiom (3)

=

of the neuron, we havE(7 )7} = E[r,00)Ty = 5 Now, for allt’ € R, =y
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(") it and only if Pn(Z0,vy) (01 (X)), Eq0,00) (0 (T5)) = 7, fOrj = 1,2. 1Itis
immediate that fot’ > ¢, we haveE g vy (o (x1)) = E¢o,1y) (0 (x5)). Now, by an
induction argument on the spike number sifiget is straightforward to show that for
allt’ > t, E(O,pN)(Ut’ (f’l)) = E(O,pN)(Ut’ (f’g)) Thus, we havé[t,w)fﬁ = E[t,w)fé.
Similarly, using a straightforward induction argument @pth, one can show that for
every neuron in the network, its output until time instang identical in either case.
We therefore havE(; )7 (x1) = Ejt,00) T (X2)-

T (-) is time-invariant. Consider arbitrary € F,,, and¢ € R with o,(x) € Fi,. We
wish to show thaf (o:(x)) = o+ (T (x)). As before, letV;, for1 < i < d, be the set of
neurons in\ of depthi, whered is the depth of\". Each neuroiN € N; receives all its
inputs from spike-trains irg. When the network receiveasando(x) as input, suppose
N receives’ ando:(x’) respectively as input. Let, andz, be the output produced by
N on receivingy’ ando:(x’) as input respectively. We wish to show thgt= o (7).
Sincex’ € F, there exists & € R, so thatZr o)X’ = Er—t,00)0t(X) = 5’”',
wherem' is the number of inputs tdl. Therefore, by Axiom (3) of the neuron, we
haveZ(r o) 7] = E[r—t,00)Th = 5 Now, for allt’ € R, Ep#; = (t') if and only
if Pn(E0,v0) (00 (X)), E0,o0) (01 (Z7)) = 7w Itis therefore straightforward to make
an induction argument on the spike number, starting fromoldest spike in} to
show that#; has a spike at somgiff &, has a spike at' — ¢ and therefore we have
Zh, = o(#)). Similarly, using a straightforward induction argumentdapth, one can
show that for every neuron in the network, its output in theosel case is a time-shifted
version of the one in the first case. We therefore HaU&; (x)) = o (T (x))-

T(-) is resettable. Let T and p be upper bounds on those parameters over all the
neurons inV. If T < p, then set the value df = p. The claim is that folV =
d(Y + p) + p, T(-) is W-resettable, wherd is the depth of\/. Consider arbitrary
X € Fm S0 thaty has a gap in the intervdt, t + d(T + p) + p), for somet € R.
As before, letV;, for 1 < i < d, be the set of neurons jK of depthi. Each neuron
N € N, receives all its inputs from spike-trains jn Therefore by Axiom (3) of
the neuron, it is straightforward to see that the outpulldfas a gap in the interval
(t,t+ (d—1)(YT + p) + 2p). By similar arguments, we have that output of each neuron
N € N;, for1 < i < d has agapinthe intervéd,t + (d —i)(T + p) + (i + 1)p).
Thus, in particular, the output neuron has a gap in the iatétvt + (d + 1)p). Since

d > 1, the Gap Lemma applies, and at time instatite output of the output neuron
depends on spikes in the interalt + (T + p)) of its inputs. All inputs to the output
neuron have a gap in the intenf@l ¢ + (Y + p) + dp), since they have depth at most
(d—1). Since those inputs have a gap in the intetval (Y +p), t+ (T + p) +dp), for

d > 2, the Gap Lemma applies and the output neuron’s output atitisteéntt depends
on outputs of the “penultimate layer” in the inten@alt + 2(T + p)). Therefore by
similar arguments, the output of the output neuron at tinsaintt at most depends on
inputs fromy in the interval(t,z 4 d(T + p)). That s to say thaf (x’), for everyy’
identical tox in the interval(—oo,t + d(T + p)), has the same output dx) in the
interval [t, —oc), following the corollary to the Gap Lemma. In particulay, . ;) x

is one suchy’. We therefore hav& _ . 17 (x) = T(E(—s,Xx) Upon noting that
E(—00,) T (E(=o0,1X) = T (E(~0,1X), SINCET (+) has no spikes iifit, co). Thus, 7 (-)

is resettable.
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O

Proof of Propositiol R2.Assume that the hypothesis in the proposition is true.TLet
Fm — S beW-Resettable for som@” ¢ RT.

We first show a construction for the neur@nprove that it obeys all the axioms of
the abstract model and then show that it has the propertydhaveryy € F.., T (x)
is consistent withV; () U x with respect td.

We first construct the neurdao, Yo, po, 7o, Ao, mo, Po : SZ’(}?TO) X S(0,p0) =
[Xo,70]). Setap = a andpo, 70 € RT, Ao € R~ arbitrarily with po > ao. Set
Yo = max{U, W} andmo = m+ 1. The functionP : SEH,OTO) X 8(0,p0) —* [A0s 70]
is constructed as follows.

Forx' € 8%, and@) € S o), SEtPo(x', &) = To and Po(x',¢) = 7o
if and only if there existsy € F,,, andt € R so thatE,7(x) = (¢) andx’ =
E(0,7v0) (0t (T3(x) U x)) and iy = Z(0,p0)(0¢(T (x))). Everywhere else, the value
of this function is set to zero.

Next, we show it obeys all of the axioms of the single neuron.

We prove tha satisfies Axiom (1) by showing that its contrapositive isstruet

X' € S(’S?TO) andi) € S(o,,,) be arbitrary so thabo (', 7)) = 7o. If &) = ¢, Axiom

(1) is immediately satisfied. Thus, consider the case wier= (z}', 22 ,...zk).
Thenz} > a, otherwise, from the construction &% (-), it is immediate that there
exists axy € F,, with 7(x) ¢ S.

Next, we prove thaO satisfies Axiom (2). Lety’ € SZ’(}?TO) and @, € S, o)
be arbitrary. IfPo(x’,Z;) = 70, then it is immediate from the construction that
Po(x’,q_b') = 70. On the contrary, ifPo(x’, ;) # 70, from the construction 00,
we havePy (X', Z,) = 0. Then the “tie-breaker” condition in the hypothesis implie
that Po(x, @) # 0. Therefore,Po(x’,$) = 0. Thus, Axiom (2) is satisfied either
way.

With Axiom (3), we wish to ShOV\Po(gngrl, d;) = 0. Here, we will show that
Po(ZyU¢™, @) =0, forall 7y € S vo) andzy € S(o,,,) Which implies the required
result. Assume, for the sake of contradiction, that theist®az;, € S r,) and
Ty € S(O_,po), so thatPo () U 5’”, ¥y) = 10. From the construction d, this implies
that there existy € F,,, andt € R so that=,7 (x) = (t) andZ(o,v,)(0:(x)) = om.
That is,x has a gap in the intervédt, ¢ + W), sinceYo > W. Since7 : F,, —» S
is causal, time-invariant and’-resettable, by Corollafyl 3 (stated and proved later in
the present write-up), we ha®& 7 (x) = 5 which is a contradiction. Therefore, we
havePo (%, L ¢™, Z)) # 7o and by construction o®, Po(Z) LI ¢, &) = 0, for all
Ty € Sjo,re) ANAT, € Sjg,01- This impliesPo (6™, ) = 0, satisfying Axiom (3).

Finally, we wish to show that for every € F,,,, T (x) is consistent with;(x) Ll x
with respect td. That is, we wish to show that for evegye F,,, and for every € R,
Eooi (T (x)) = (0) if and only if Po(Z0,74) (¢ (T3(X) U X))s Z(0,p0) (0:(T (x)))) =
To. Consider arbitrary € F,,, andt € R. If Zg0¢(T (x)) = (0), then it is immediate
from the construction 0D that Po (Z0,v,) (0 (T3(X) LX), E(0,p0) (@ (T (X)))) = To.
To prove the converse, suppaSgo:(7 (x)) # (0). Then, from the contrapositive
of the “tie-breaker” condition, it follows that for alf € F,, and for allt € R
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With Z(0,10) (07(T3(X) U X)) = E0,10)(0:(T3(X) U x)), we haveZqo3(T (X)) =
Eoot(T (x)) # (0). Therefore, from the construction, we haRg(=Z o ) (o (73 (x) U
X)), E0,00) (0t(T (X)) # 70-

o

Proof of Propositiol B.Assume that the hypothesis in the proposition is true.TLet
Fm — S beW’'-Resettable for som&”’ € R*. SetW = max{W’,12a}. One
readily verifies tha¥ : F,,, — S is alsolV-resettable.

We first show a construction for the neurdyrprove that it obeys all the axioms and
then show that it has the property that there exidts@ R so that for allt;,t, € R
andy1, x2 € Fm With Zooy, (T (x1)) # S0, (T (x2)), We haveE g, (0w, (Tr(xa) U
X1)) # Z0,0) (01, (T3(x2) U x2)), whereT; : F,, — S is such that for eack € 7.,
T;(x) is consistent withy with respect tal.

We first construct the neuroiay, Yy, py, 75, Ay, my, Py - S(’gjm X So,p) —
[A\),71]). Setay = a. Letp,q,r € RT, Wiﬂ‘@p = 8a,q = 2a andr = «. Set
Yy=p+qg+r+W,p,=2p—randm; = m. Letr; € RT, \; € R~ be chosen

arbitrarily. The functionP; : S(’SJTJ) X S(Oym) — [A\J, 7] is constructed as follows.
Fory € S’B”TJ) andz € S p,), SetPy(x, To) = 7y andPy(x, ¢) = 7, ifand only

if one of the following is true; everywhere else, the funntis set to zero.

L. Egpprw)X = 6™, Zpx # ™ and= g 7o = ¢.
2. E(ptqo = (1), whereq < ¢ < (¢+r) and(t — q) = £(0,Z,po¢(x))-
MOreoVer= ;s p i prw)X = ™ and=(, »x # ™.

3. E(0,21)—(11-‘-7")]1?‘0 = <tmaty> with (p - (q + T)) <ty < (p - Q) < ty =D Also,
forallt’ € [0, p], @ vywyx # ™.

4. Ejo2p—rTo = (L, ta, ty) Withg <t < (q+7) < (p—r) <ty <p<t, =p+t
and(t — q) = e((ty — te — ), Z(0,5)0¢(x)). Furthermore, for alt’ € [0, p + ],
Ew v w)X 7 O™

wheree : [0,7) X S‘(Tg“p] — [0, r) is as defined below.

For convenience, we define an operaﬁpr: [0,1) — [0,1), for j,k € ZT, that
constructs a new number obtained by concatenating ét/edigit of a given number,
wherei = j mod k. More formally, forz € [0,1), /% (z) = £52, (([& x 107+0-DF | —
10|z x 109HG=DE=1]) 5 1077).

Also, we define another operatgy : [0,1)F — [0,1), for k € ZT which “in-
terleaves” the digits ok given numbers in order to produce a new number. More
formaIIy, fOI’,To,SCl, e, Tp—1 € [0, 1), <k(5€07x1, . ,xk—l) = Eﬁo((@k(%—(%]) X
10" ) — 10[@y 2 2y x 1006 ) x 1076+D),

i
k

28The choice of values fap, ¢, » and W was made so as to satisfy the following inequalities, whieh w
will need in the proofp < W,p > 2(q 4+ r) andg > a.
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Let d be the largest integer so that, for afl € [0,r), we havex’ x 10¢ <
1. Fora’ € [0,7), letz = 2’ x 10%. Fory e Sy, defin€ e(a’,x) =
1074 % G, (20 (7 (), TL (X)), €0 (15 (2), T2 (X)), - - . €0 (¢722(2), T, (X)), Where
g0 :10,1) X So,p) — [0, 1) is as defined below.

Letn € [0,1) andZ € S ,). Furthermore, let = :3(n) ands = :3(n). Let
7= (2%, 22%,...,2%). We haved < k < 8, becaus® = 8a. Also, sincep = 8r, we
haver’ x 109! < 1,for1 <i < k. Lets’ = Cpyq (2! x 10971 22 x 10971 ... 2k x

— k k c H ]
10971, s). If ¢ = 0, then let¢ = {5 + 0.09 else let¢’ = %5 + 5. Finally, define
eo(n, Z) = ((c, 8).

Next, we show thai satisfies all the axioms of the neuron.

It is immediate thatl satisfies Axiom (1), since all output spikes in the above con-
struction are at leagtmilliseconds apart, ang= 2a. B

We now prove thal satisfies Axiom (2). Lei’ € SZ&JTJ) andz € S,,,) be arbi-

trary. If Py(y', ) = 75, then it is immediate from the construction tHa{y', ¢) = 7
which satisfies Axiom (2). On the contrary &5 (x’, Z,) # ;. from the construction of
J, we havePy(x, &) = 0. Also, from the construction we have eithBr(x’, ) = 0
or Py(y/, 5) = 75. Axiom (2) is satisfied in either case.

Also, J satisfies Axiom (3), since it is clear thgt= 5"“” does not satisfy any of
the conditions enumerated above. We therefore IB@(/A’”J , 5) =0.

Finally, we show that there exists@@ € R™ so that for allt;,#, € R and
X1, X2 € Fm with EOUtl (T(Xl)) 75 EoUtz (T(Xz)), we haVGE(O_’U)(Utl (7]()(1) [
X1)) # Zqo,0)(0t, (T3(x2) U x2)), whereT; : F,, — S such that for eacly € F,,
Ti(x) is consistent withy with respect toJ. LetU = p + g + r + W. Assume
001, (T(x1)) # E001, (T (x2))- Now, SUPPOSE (5,040, (x1) = ¢™, then clearly
E(0,0+4w)0t (X2) # om, otherwiseT () produces no spike at times andts re-
spectively on receiving; and x2, by Corollary[3. As a resultZ o o, (x1) #
E(0,0)0t, (x2), which implies the required result. Otherwise, from Propos (5, it
follows that there exist;, Vo € RT so that= (g v,1(0¢, (x1)) # Z(0,15] (0, (x2))- I
Eo,0) (01, (X1)) # E(o,v) (01, (x2)), itis immediate thaE o, 17 (o, (T1(x1) U x1)) #
E0,0) (01, (Ti(x2) U x2)). It therefore suffices to prove that Hy, v, (o1, (x1)) #
E(v.v2)(9t: (x2)) thenZ o,y (01, T3(x1)) # Eo,v) (91 Ta(x2)). Propositiori.b implies
that=v, v, +w) (0w, (x1)) = ¢™ andZy, (o, (x1)) # ¢™. Therefore, by Case (1) of
the constructionz v, o+, 75(x1) = (V1 —p). Moreover, since Propositign 5 implies
thatfor allt} € [0, V1), Z¢ ¢ yw) (0w, (1)) # ¢™, from Case (3) of the construction,
we have that for every € Z* with Vi — kp > 0, Z(v;, —ipyor, Ts(x1) = (Vi — kp).
Let k; bé] the smallest positive integer, so thidt — k1p < U. From the previ-
ous arguments, we ha®&y, _, 0+, T1(x1) = (Vi — kip). Also, it is easy to see
thatVy — k1p > (¢ + r). Let ko be similarly defined with respect tg, so that
E(Va—kap)Tt2 T3(x2) = (Vo — kop) andVs — kop < U. Now, there are two cases:

LI VI — kip # Vo — kop, we now show that= vy (os, Ti(x1)) #

29Recall that theorojection operator for spike-train ensembissiefined agl;(x) = @;, for 1 < i < m,
wherex = (%1, Z2,. .., Tm).
30k, exists becaus® > p.
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E(0,0(0t, T3(x2)), which is the required result. Assume, without loss of gener
ality, thatVy, — k1p < Vo — kop. If these two quantities are less thar r apart,
we haveZ g iy (0, Ti(x1)) # Eo,v) (0, Ti(x2)), because by Case (4) of the
constructior7;(x1) has a spike in the interv@Vy — k1p— (¢+1), Vi — kip— ¢
and by Case (3) of the constructioffy(x2) has no spike in the interval
(Vo — kap, Vo — kap 4+ p — (¢ + r)). In other words, the spike following the
one atV; — k1p in T;(x1) has no counterpart ifi;(x2). On the other hand, if
they are less thap apart but at mosp — r apart, by similar arguments, it is
easy to show that the spike B — kap in T;(x2) has no counterpart iff; (x1).
Finally, if they are at least apart, therk, does not satisfy the property that it is
the smallest positive integer, so that— kop < U, which is a contradiction.

2. On the contrary, consider the case whén- kip = Vo — kop. We have two
cases:

(a) Supposek; # ko. Lett) be the largest positive integer so that
Ep o, Ti(xa) = (1) andty < Vi—Fkip. From Case (4) of the construction,
we have thay < (Vi—ki1p)—t} < ¢+r. Lett}, be defined likewise, with re-
specttoy,. Further, let] = (Vi —kip)—t) —gandn} = (Vo—kop)—th—q
andn; = n} x 10% andny = n), x 109, Sincek, # k», itis straightforward
to verify that for allj with 1 < j < my, 13 (7" (n1)) # 3(¢]” (n2)), for
the former number hagin the (k; + 1)*" decimal place, while the latter
number does in thék, + 1)*" decimal place and not in th&; + 1)*" dec-
imal place since:; # ko. Thereforepn; # ny and consequently, # t),
which gives uUs= o, (o¢, T3(x1)) # Zo,0) (01, T3(x2)), Which is the re-
quired result.

(b) On the other hand, suppoke= k,. Again, we have two cases:

i. Suppose, there exists awith 1 < ;7 < my and ak’ < ki, so
that= v, _p/p, vy — (k' —1)p) 1 (01, (x1)) has a different number of spikes
when compared t& v, _p, v, — (k' —1)p) L (01, (X2)). L€t ny,ny be
defined as before. It is straightforward to verify th%\(u}’“ (n1)) #

13 (17" (n2)), because they differ in the, — &'+ 1) decimal pladé]
. ThereforeZo,v) (01, T3(x1)) # Eo,0) (01, Ta(x2))-

ii. Now consider the case where for allvith 1 < j < mj andk’ < kq,
we haveE v, _ip v, -k —1)p 1L (0, (x1)) have the same number of
spikes when compared By, —i/p, v, — (k' —1)p) 1L (04, (x2)). Now, by
hypothesis, we havE(y, v, (0, (x1)) # Ev,vs](04, (x2)). Therefore
there must exist & < j < my andk’ < ki, so that there is a point in
time where one of the spike-trai®§y, _ip, v, — (k' —1)p 1L (01, (X1))
and Ew,—wp,va——1)p1Li (01, (x2)) has a spike, while the
other does not. Lett’ be the latest time instant at which
this is so. Also, assume without loss of generality that
Evi—kpvi——p L (o1, (x1)) = (2',...,29) has a spike at time

3lwhich inny andng encodes the number of spikes in the interfél — k'p, Va — (k' — 1)p] on the
jth spike-train ofy1 andys respectively.
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instantt’ while Z v, i, v, — (b —1)p) 1L (04, (x2)) does not. Lep be
the number so that = z?. Letn,ny be defined as before. Also,
for eachh with 1 < h < kq, let r, be the number of spikes in
EWi —hp,vi—(h—1)p 1L (0, (x1)). Eachr, can be determined fromy .

T Tk!/—1

Then, it is straightforward to verifg thatep* vry, —) o0t L%L;-mnl #*

W kT irti30 M ny. Thereforen, # ny and it follows that

Eo,0) (06, T3(x1)) # Z0,0) (01, Ti(x2))-

Some auxiliary propositions used in the proofs of Propositins[2 and 3

Proposition 4. If T : F,, — S is time-invariant, theﬂ‘(&m) = (5

Proof. For the sake of contradiction, suppoﬁ(ﬁm) = ¥y, wherexy # q? That is,
there exists @ € R with Z,7, = (t). Letd < a. Clearly,o5(¢™) = ¢™ € Fpn.
SinceT : F, — S is time-invariant,7 (o5(¢™)) = os(T(6™)) = os(Z). Now,
0s(To) # To SINCEE(1_s)05(T0) = (t — 6) whereasE;_5 7o = ¢, for otherwise
Ty ¢ S. This is a contradiction. Therefor&(¢™) = ¢.

O

Corollary 3. Let T : F,, — S be causal, time-invariant anW—resettabLe, for some
W e R*. If x € F,, has agap in the interval, ¢t + W), thenZ, T (x) = ¢.

Proof. Assume the hypothesis of the above statement. One readsytlsat=, 7 (y) =
Elt,00)E(—o00,] T (x). Now, sincey has a gap in the intervét, ¢ + W) and7 : F,,, —
S is W-resettable, we haVE(; oo)Z(—0o,) T (X) = Ejt,00)T (E(—o0,4X)- Further, by
definition, Z; o) E(— 0o,y X = E(tyoo)&m. Therefore, sinc§ : F,, — S is causal, it
follows that=;, o) T (E(— oo, X) = E[t,oo)'T(d;m) = ¢, with the last equality following
from the previous proposition. Thus, we hawgl () = . O

Proposition 5. Let 7 : F,, — S be causal, time-invariant andii’’-resettable,
for someW’ € R*. Then for allW € Rt with W > W', t;,t, € R and

X1, X2 € Fr With S0, (T (x1)) # Z00, (T (x2)), WhereZ (g o wyor, (x1) # 6™ #
Z(0,04W)0t, (X2), there exist/, Va € R* so that the following are true.

1. Zo,v(06, (x1)) # Eo,va] (01, (x2))

2. Evi,viw) (o (1)) = ", v, (00, (x1)) # ™ andZ v, vy 1wy (01, (x2)) =
(bm* EVz (Ut2 (XQ)) 7£ ¢m

3. Forallt € [0,V1), E¢r v 1w (01, (x1)) # ™ and for allt € [0, Va),
Ety ty+w) (01, (x2)) # O™

32The expression on either side of the inequality is a real rentitat encodes for the&” spike time in the
spike-trains= v, —p/p, vy — (k' —1)p) L (0¢3 (1)) @NAE (v, 17, v — (k7 —1)p) L1 (0t5 (x2)) rEspectively.
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Proof. SinceT : F,, — S is causal, we hav&;, )7 (x1) = Ejt;,00) T (Ety,00)X1)-
This impliesoy, (Zj,,00)T (X1)) = 04, (Efty,00) T (Et1,00)X1)) Which gives us
’—[0 00) 0ty (T(Xl)) - :[O 00) 0ty (T(’—(tl OO)Xl)) SinceT : F,, — S'is
time-invariant andr;, (Z, , oo)X1) = Z(0,00)0t, (X1) € Fm, We have

E (0,000t (T (E(tr,00)X1)) = E[0,00) T (E(0,00)0t: (X1))- In short,
E0,00)01, (T (x1)) = E[0.,00)7-( Z(0,00) 0, (x1)) which implies
Eoor, (T(x1)) = Z0T(E(0,00)01 (X1))- Similarly, Z¢0v, (T (x2)) =
Z0T (E(0,00)0t2 (X2))- Therefore, it follows from the hypothesis that
20T (Z0.00) (0, (1)) # Z0T (E(0,00) (022 (x2))-

Let V1,V € RT be the smallest positive real numbers so that
E(0,00) (04, (x1)) and E(g o) (01, (x2)) have gaps in the intervalgl;, Vi + W)
and (Va, Vo + W) respectively. That such/i, V> exist follows from the fact
that x1,x2 € Fmn. Since, 7 : F,, — S is W'-resettable, it is alsdV-
resettable folV > W’. It therefore follows tha€ _.. v, 7 (E(0,00) (01, (X1))) =
T (E(—00,11]1Z(0,00) (01, (x1))) Which equalsST (Zo,v,1(o+, (x1))). This implies that
E0E(—o0,vi] T (E(0,00) (01, (X1))) = EoT (B0, (Ut] (x1))) due to which we have

E0T (B(0,00) (01, (x1))) = E0T (E(0,14) (0%, (Xl))) Likewise,

0T (E(0,00) (015 (x2))) = uoT( Z0,v5) (015 (x2)))- We therefore have
Z0T (E0,wa) (0 ))) #  ZoT(E0,)(01.(x2))).  This readily implies

E(0,v1] (Utl(X ) # Ev) (0 (x2)) and from the construction, it follows that

m =

Ewivirw) (06 (x1)) = 5, By, (o1, (x1)) # 6™ andE(y, vurw) (01, (x2)) = 6™,
Ev, (01, (x2)) # ¢™, for otherwiseV; or V, would not be the smallest choice of
numbers with the said property. Furthermore, for the samsanes, for alt| € [0, 1),

B 4w (01, (x1)) # ™ and for allty € [0, V2), Zqey 1 w) (01, (x2)) # 6™
O
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